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Abstract -Critical steps of IC fabrication  are  simulated  by ont - and 
two-dimensional computer  programs  using  advanced  physical  modek . Our 
codes deal  with  an  arbitrary  number  of  physical  quantities  such a! con- 
centrations of dopants, vacancies,  interstitials  and  clusters,  the  electrc:)s,tatic 
potential, and so on. Furthermore,  they easily permit the exchange or 
variation of the physical  models  under  consideration. As typical  al:pllica- 
tions phenomena of  coupled  diffusion  in one and two dimensions and 
dynamic arsenic clustering are  investigated. The differences caused I y  the 
models of the zero space-charge approximation  and  the  solution (01 the 
exact  Poisson equation are  studied by examples of As-B diffusioi  with 
various  doping concentrations at different temperatures. A dynamic cl~ster 
model developed for the simulation of  thermally  annealed As implant uions 
is compared to measured  data of laser  annealing experiments. A r,,hort 
outline of the mathematical and the numerical  problems is given to !8bhow 
the amount of sophistication necessary for up-to-date process simula ion. 

I.  INTRODUCTION 

T HE  RECENT advances  in  device miniaturization lave 
called for a  better understanding of physical procxmes 

and their effect upon the dopant distribution during dtwice 
and circuit fabrication, especially in VLSI. To date, a fair 
amount of work has been done in terms of experiment,: 1 ion ' 

and  in the development of advanced  physical  models  /:.g., 
dynamic cluster/precipitation models,  enhancement of: Idif- 
fusion  by vacancies, interstitials and the electrical fkld, 
etc.). This research requires efficient computer progranu; to 
evaluate, to compare, to verify, or to reject the varilms 
models. In addition, accurate simulations of process !itRPS 
are often  desirable to compute  unknown  parameters IC ]  to 
calculate  more precisely  roughly estimated parameters of 
physical models. 

The complicated structure of advanced physical mcdels 
often exceeds the capabilities of commonly  used simulation 
programs. The implementation of models often req~il~res 
simplifications which diminish the expected improverc1:nts 
by the models. 

To counteract this situation we have  developed a 1;I:n- 
eral-purpose simulation program  which treats an arbit :ilry 
number of physical quantities such  as concentration; of 
donors, acceptors, vacancies, interstitials and clusters, alnd 
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the electrostatic potential, etc. In the first step, the applica- 
tion is  mainly scientific and the code  is  used to study 
advanced models.  We investigate the validity range of 
current models  and estimate, as  closely  as  possible, if 
improvements of more  complicated  models are  justified by 
the  additional  amount of computation  time  and  memory 
resources. The program has been  developed to quickly  vary 
physical models  (e.g.,  varying the number and kind of 
physical quantities, modifying  some of the physical param- 
eters, etc). Since the main  purpose of the program  is 
concentrated  on the physical  problem, the mesh  necessary 
for  the discretization is created automatically and adapted 
with respect to the specific  problem. This feature frees the 
user from  mathematical  and  numerical problems. 

In Section I1  we  explain the capabilities of our  code and 
discuss the differential equations which  can be solved  by 
our  programs. In Section I11  we use our code to study some 
phenomena of coupled diffusion and  compare the results 
of the  quasi-neutral approximation to those using the exact 
Poisson equation. Section  IV  compares  dynamic cluster 
models for shallow  highly  doped arsenic implantations. 

A short  outline of the numerical  methods  and capabili- 
ties is  given in Section V. 

11. SPECIFICATIONS OF THE PROGRAMS 

On specifying the capabilities of our code, we had to 
find  a compromise  between a wide  range of applications 
and  an acceptable amount of computation time and  mem- 
ory  requirement.  The specifications to be described in the 
following are concerned  with ion implantation and redistri- 
bution of dopants by diffusion. 

Ion  implantation is one of the most applied doping 
techniques in  IC fabrication, especially in VLSI.  The simu- 
lation of implantation must  be a basic capability of any 
process simulation program.  Advanced simulation pro- 
grams  tend to use distribution functions which are speci- 
fied by a higher number of moments to describe the 
impurity concentrations, e.g.,  Pearson  IV distributions. 
Since our  code is laid out to have  mainly scientific applica- 
tions, we have  implemented all commonly  used distribu- 
tion functions. This allows for investigations of differences 
caused  by the assumption of different impurity distribution 
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functions  and for comparison with any published simula- 
tions,  In  the first step, we have installed the simple Gaus- 
sian,  the  joined half Gaussian, and the Pearson IV distribu- 
tions.  Ion  implantation can be simulated in single  layer  as 
well as in multilayer structures. The layers  may  consist of 
arbitrary  ordering of silicon,  silicon nitride, and silicon 
dioxide. A summary of the distribution functions and their 
mathematical background can be found in [ll]. 

Sometimes it is  necessary to use experimental data, 
obtained by SIMS, n(a), or spreading resistance measure- 
ments as an initial solution for further process simulation. 
It should be noted that measured data often need a 
mathematical pretreatment to yield  sufficiently continuous 
distribution functions for the simulation of a following 
diffusion step. An example  may be a short time annealing 
step using CW or pulsed  laser. Monte Carlo methods have 
been omitted  at present because  they  lead to very  time 
consuming computations. 

This level of implementation permits the computation of 
nearly all impurity distributions which  may be the initial 
solution for a following diffusion step. 

Impurity redistribution during IC fabrication will be the 
main  application of the first version of our code described 
in this paper.  The physical  model on which  all considera- 
tions  are based is a “genexal continuity equation” (1) and  a 
“general flux relation” (2). The number n of physical 
quantities in (1) and (2) is arbitrary and is only restricted 
by computer resources. The ordering and the physical 
meaning of the quantities must be specified by the user 
through  a few parameter definitions. This feature offers the 
possibility to optimize the program for a specific problem 
(e.g., omitting unnecessary quantities or modifying  some 
physical parameters). With respect to a fixed amount of 
memory, the user can choose  between additional physical 
quantities  or additional grid points to obtain  a higher 
accuracy of the simulation. 

If the physical quantity is a concentration, (1) and (2) 
state  that  the concentration can be modified by a diffusion 
flux, a field flux, or a generation or a recombination 
process. The first two  effects are included in Fick’s  law and 
are commonly used to describe dopant redistribution 
whereas the  other effects  become essential when  time de- 
pendent  transformations between  physical quantities occur 
(e.g., vacancies-interstitials, electrically  active  arsenic- 
clustered arsenic, etc.). Certainly any of these effects can be 
included or excluded if necessitated  by the corresponding 
physical model. It can be easily  seen that (1) and ( 2 )  also 
include the Poisson equation. 

The program solves a system of n partial differential 
equations  (PDE) of the form 

n ac, n c ai] .  = - p i j .  divJ, + G, (1) 
j = 1   j = l  

J ,  = - Di.gradCi +/-  p,.Ci.gradt,L (2) 

where a i j ,  p i j ,  Di, p i n  and Gi are functions of space, time 
and any of the quantities Ck and + represents the electro- 
static poh t i a l .  The index i runs from 1 to n and indicates 

the ith equation of the differential equation system. It is 
clear that unusual functions, which  would  change the type 
of the differential equations, must  be  excluded. This con- 
straint, however, does not affect the commonly  used mod- 
eling of the parameters. 

This set of PDE’s  includes the possibility to simulate a 
simple diffusion step, a Poisson equation, coupled diffu- 
sion of dopants with  same  or different charge, dynamic 
clustering of dopants, the  effect of precipitation and en- 
hanced diffusion by vacancies or interstitials. The variables 
Ck in (1) and (2) represent not only a concentration or a 
potential,  but can also represent the radius; of precipitates 
or any other physical quantity. 

By changing the functions a, p, D, p, and G we can 
simply vary physical models and apply the main part of 
our code unchanged to  very  many  problems. 

The initial solution for the PDE‘s can be computed from 
the modeling of ion implantation, can be given by the 
background impurities of the wafer or can be computed 
from measured data. It is  worthwhile  now to discuss the 
boundary conditions in  more detail. In the first level of our 
code we constrain ourselves to rigid boundaries, i.e., we 
exclude the simulation of oxidations with  moving 
boundaries.  The boundary conditions for each of the dif- 
ferential  equations are given  by (3). 

n n 
tij*C, + qi+*J ,  + B, 0 (3) 

j = l   j = l  

where t i j ,  q i j  are functions of space and time and B, is a 
function of space, time, and any of the quantities ck. It is 
worth noting that tij  and q i j  are independent from ai j  and 

This  formulation includes a Dirichlet, a Neumann, and  a 
mixed boundary condition. From the physical point of 
view, these implementations offer the possibility  to  simu- 
late  an  inert diffusion step ( e g ,  Ji  = 0), a predeposition 
step (C, = C,), an ideal sink for vacancies or interstitials 
(C, = C;q), a concentration dependent source of intersti- 
tials Jr = J,(ck), etc. 

Pi j  

111. COUPLED DIFFUSION 

Field enhancement strongly  affects the migration of 
dopants  in diffusion steps. The effect dominates in the 
vicinity of p-n junctions, especially  when the carrier con- 
centrations near the junction exceed the ilntrinsic number. 
Neglecting heavy doping effects, the exact formulation of 
the field enhancement is  given by (4)-(6). 

-- a ‘As 

at 
- div ( DAs.  grad CAS + pAs‘ C i s -  grad IJ ) (4) 

-- ac, 
at 

-div(D,.gradC,-p,.C,.gradrC/) ( 5 )  

This correct implementation is, for the sake of simplicity, 
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seldomly used in simulation programs. When  only  equally 
charged dopants are present the influence of the int:rnal 
field is modeled by  the field-enhancement factor o '  the 
diffusion coefficient (7). 

-0.5 

h = l + & . ( $ + l )  

If p-n  junctions are present, the analytic solution 0:' the 
quasi-neutral approximation, (3), replaces the Poi won 
equation. 

Both methods reduce the amount of computation tinll: at 
least by a factor two  since the amount of computation time 
is proportional to about the square of -the number o ' the 
physical quantities. The use of the field-enhancement, Tac- 
tor, however, additionally simplifies the structure 01 the 
continuity  equation, causing an additional nonlinear t8l:rm 
in  the diffusivities. Considering a simulation of ars  :nic, 
boron,  and  the electrostatic potential we can reducs: the 
amount of computation time and memory  by a factor 4/9 
using (8) instead of (6).  These facts have supported the 
implementation of the quasi-neutral approximation into 
simulation programs for engineering application where high 
performance  and a small amount of memory are powcxful 
arguments. Some publications, e.g., [1]-[3], have dealt with 
coupled diffusion and the question if the quasi-nelltral 
approximation may replace the exact  Poisson equatio 3, or 
not.  The results presented in these papers are not sal .I;fy- 
ing. In [3] the exact  Poisson equation was replaced b! the 
depletion assumption, e.g.,  set n = 0, p = 0, and t) corn- 
puted by (6) in the vicinity of the junction. In the other 
domains the quasi-neutral approximation has been used to 
replace the Poisson equation. The boundary between the 
two domains was  posed at the end of the space-ch arge 
region. In [2] an exact solution of the Poisson  equaticm  is 
presented; however, the Computations do not involve a p-n 
junction. 

Correct implementation of field-enhanced diffusiw is 
not  the only point of interest. Sometimes  it  is  claimed :hat 
the influence of the electrostatic potential on the chitlrge 
state of vacancies necessitates a precise  knowledge of tlme 
physical quantities or at least an estimation of the dif- 
ferences caused by various  models. As it is often propc  rled 
that the diffusion of, e.g., boron, arsenic, etc. occurs ma  .Illy 
by charged vacancies, the electrostatic potential can in- 
fluence the enhancement of diffusion via point defects, 

Since recently developed  models for diffusion have  he- 
come more advanced and accurate, a comparison betnJelen 
the results of the two  models  seems  necessary. As the SI: ace 
charge causes the difference  between the two  models, 'we 
will without loss of generality concentrate our invest !:a- 
tions to boron  and arsenic p-n junctions with  fairly ljgh 
concentrations at the junctions. 

1016 1 . I I I . I I I I I , I , 1 - . 6  
0.0 .I . 2  . 3  . 4  .S . 6  . 7  
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Fig. 1. Arsenic and  boron profile  after ion  implantations. As: 4 ~ 1 0 ' ~  
cm-2 with  90  keV, LSS, Gaussian; B: 4 X  10'5 cm-2 with 80 keV, LSS, 
Gaussian.  The electrostatic  potential is computed  from  the  exact Pois- 
son  equation at 950°C. 

The first example demonstrates a worst  case estimation. 
Ion  implantations, As 4 X  lo1' cm-2 with 90  keV and 
boron 4 X  1015 cmW2 with 80 keV,  lead to boron dopant 
concentrations which  exceed those commonly  used. Fur- 
thermore, we  neglect any clustering  effects of boron and 
arsenic  to  obtain  an extreme  electrical  field and consider- 
able space charges. The diffusivities are defined  by  (9) and 
(10). They are modeled temperature dependent and include 
enhanced diffusion by charged point defects. 

D, = 0.031 - . exp cm2 ( - 3;; eV ) 
S 

+0.72---exp cm2 S ( -3.46;;- qat) 

DAs = 0.066 - exp cm2 ( - 3;; e~ ) 
s 

+ 12.0 - exp 
S ( kT 

Fig. 1 shows the initial distribution of boron and arsenic 
and the solution of the potential due to (6) for a tempera- 
ture of 950°C. Fig. 2 reveals the final distribution and the 
electrostatic potential after an inert diffusion of 30 min at 
950OC. The transient behavior of the dopants is worth 
being investigated more  carefully.  Figs. 3-5 reveal a survey 
of the time dependent migration of the boron and arsenic 
dopants  in  the vicinity of the junction. They indicate that 
the diffusion consists of two periods, a short field-con- 
trolled period (ca. 100 s) followed  by an ambipolar diffu- 
sion. The  strong field-controlled migration of both dopants 
in  the vicinity of the junction leads to a steepening of the 
dopant profiles. This causes the transition from the n- 
domain to the p-domain to become narrower and  in- 
creases, therefore, the electrical field.  These  two effects 
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Fig. 2. Arsenic and  boron  distribution  and electrostatic potential  after 
an inert  diffusion  step of  30 min at 950°C. The  initial  distribution  is 
given in  Fig. 1. 
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Fig. 3. Arsenic and  boron  distributions  after 10-s inert diffusion at 
95OoC due to the  models P and Q. 

enhance  each other and lead to a steadily increasing flux of 
dopants, especially of boron  atoms which  have a higher 
mo'bility. The process  will  weaken as soon as the dopant 
migration will  have  reduced the abrupt transient in the 
junction  and will  have  replaced it by a smooth junction. 
The decreasing electrical  field  weakens the field-controlled 
flux. Figs. 3-5 show the As and B concentrations, and 4 
for both models  at 10, 30, and lOOs, respectively. The 
potential,  due to the models, differs from the beginning of 
the diffusion step. The steeper  slope of 4 computed by 
model Q (quasi-neutral approximation (4),(5),(8)) leads to 
a stronger electrical field. Therefore the field-controlled 
migration of the  boron  and arsenic due  to model Q is more 
distinct thin that of model P (exact  Poisson equation 
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Fig. 4. Arsenic and  boron distributions  after 30-s inert diffusion at 
95OOC due to the  models P and Q. 
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Fig. 5. Arsenic  and  boron  distributions after 100-s inert diffusion at 
950°C due tothe models P and Q. 

(4)-(6)). The  boron profiles  reveal the d.ifferences  more 
clearly because the mobility  is  larger and the gradient is 
smaller than  that of the  arsenic  profiles.  Fig. 6 reveals the 
transient dependence of the  space  charge and confirms our 
findings. Since the space  charge,  causing the main dif- 
ference between the two  models Q and P, disappears after 
100 s, the differences between the two  models  will  certainly 
not increase. On the contrary, Figs. 3-5 indicate that the 
small differences which  have  been built up in the  first 
period are too small to resist  the  following  diffusion  step. 
Fig. 7 supports the suggestion. Fig. 7 shows the time 
dependence of the quantities at a depth of 0.099 pm. This 
depth coincides with  the  n-side of the p-n junctions close to 
the  junction. Differences of the dopant concentrations 
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Fig. 6. Time  dependent survey of the positive  space  charge  dt;nsity 
which is defined as the maximum of 0 and n- p + N,, - ND 111 the 
vicinity of the  p-n  junction for an inert  diffusion  step at 950°C. lnitial 
and  final  distribution are given  by  Figs. 1 and 2, respectively. 
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Fig. 7. Transient behavior of arsenic,  boron and the  electrostatic pt~l’en- 
tial at a depth of 0.099 pm for  model P and model Q. 
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begin to  build  up after 10 s, remain stable until 200 s, al.nd 
then slowly disappear. 

The  dopant migration during the following  time peiod 
is mainly characterized by an “ambipolar” diffusion in the 
vicinity of the  p-n junction. This means that the dopmts 
migrate in such a way that neither significant space charge 
nor a significant electric field can be built up. The am- 
bipolar diffusion seems controlled by the diffusivity of Ithe 
arsenic  atoms which leads to a strongly retarded diffu:;~~on 
of the boron atoms. Away from the junction the diffu4on 
of the majority dopants reveals normal results whereas  i.he 
migration of minority dopants is strongly retarded. Th :i is 
caused by the extreme values of the potential which cn- 
hances majority diffusivities but retards the minority di.FPu- 
sivities. A comparison of the initial profile (Fig. 1) and the 
final profile (Fig. 2) reveals the impression that the tbwo 
dopant distributions moved towards each other, a Fkct 
which is not unexpected, since the dopants have a diffel cnt 
charge. It is worth noting that although the models 1eac.I to 
different  dopant concentrations in the vicinity of the j l  ]IC- 

tion, the junction depth is not affected by these  differen :es. 
It might be interesting if the small differences at the p-n 
junctions which  occur at the beginning of the diffusion !I tep 
are sufficiently large to  cause a different electrical  cltiir- 
acteristic of the device. 

Our second example shows a more realistic process.  Two 
implantations, As 4 X  lo1’ cm-’  with 90  keV and boron 
7 ~ 1 0 ~ ~  cm-’ with 40 keV, are followed by an 1000°C 
annealing  step for 40 min. In this  example the boron 
concentration is far too small to influence the electrostatic 
potential at the n-doped side.  Since the peak  value of the 
boron concentration is of the same order of magnitude as 
the  intrinsic number (6X1Ol8 cm-3  at 1000°C), we can 
almost neglect the influence of the boron concentration on 
the  computation of the potential away from the peak  value. 
The influence of the field can clearly be seen by a “ valley” 
in  the  boron profile (Fig. 8) caused  by the field controlled 
flux. The electrical field pushes the boron atoms towards 
the surface against the diffusion flux. Certainly the “ valley” 
in  the  boron profile moves as the steep gradient of the 
arsenic profile shifts into the bulk. The space charge,  Fig. 
9, indicates again two  periods. A short time domain char- 
acterized by remarkable space charge and electrical  field 
and a following period dominated by normal diffusion of 
the arsenic and the retarded diffusion of the boron atoms. 
In contrary  to tlie former  example we cannot speak of 
ambipolar diffusion. The arsenic migration is hardly in- 
fluenced by the boron concentration since arsenic exceeds 
the  intrinsic number and the boron concentration by some 
orders of magnitude. On the other hand, the boron migra- 
tion is controlled by the arsenic in two  ways. Firstly, the 
movement of the boron atoms is  field controlled in the 
vicinity of the  p-n  junction and secondly strongly retarded 
in  the regions of high arsenic concentration. (The positive 
electrostatic potential suppresses the second term in  the 
diffusion coefficient of (9).) Here again, the quasi-neutral 
approximation computes a steeper slope of  the electrostatic 
potential, causing a stronger electrical field. Therefore, the 
 valley^' in the boron profile computed by  model Q is 
more distinct than that of model P. The maximum dif- 
ference between the two  models can be  expected  when the 
space charge reaches its maximum,  which  occurs at 30 s. 
Fig. 10 shows the time dependence at a depth of 0.12 pm. 
The differences caused  by the two  models appear as soon 
as the  junction moves into the vicinity of the depth under 
consideration and disappears as soon as the junction moves 
away. Fig. 11 shows the p-n junction  at a time of 30 s. The 
stronger electrical field  causes a deeper “valley” in the 
boron profile for model Q than for model P. Away from 
the  p-n  junction no differences can be seen. The  depth of 
the p-n junction is not dependent on the model  because the 
steep  gradient of the arsenic compensates the different 
boron profiles. 

The two examples justify the use of the quasi-neutral 
approximation instead of the exact  Poisson equation when 
the  duration of the diffusion step is long enough to exceed 
the first, field-controlled period of dopant migration. The 
first example reveals that the differences diminish after at 
least 200 s at a temperature of 950°C. We could not 
observe any significant differences for typical diffusion 
steps in IC fabrication at temperatures beyond 950°C. At 
lower temperatures one has to be more careful. To estimate 
the  temperature dependence of the coupled diffusion we 
have simulated the dopant migration of example one at a 
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Fig. 8. Time-de  endent  boron rofile for an inert diffusion step of 40 
min at 1000°8 The initial chribution has been obtained by  ion 
implantations. As: 4 X  lo1' cm-', 90 keV and B: 7x10l3 cm-2, 40 
keV. 

Fig. 9. Transient behavior of the positive space charge density which is 
defined as the maximum of 0 and n -p+  N, - N, for the process of 
Fig. 8. 
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Fig. 10.  Time dependence of arsenic, boron  and the electrostatic poten- 
tial due  to the models P and Q for an inert diffusion at 1oOO"C at a 
depth of 0.12 pm. 
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Fig. 11. Arsenic, boron, and the electrostatic potential due to the mod- 
els P and Q for an inert diffusion at 1000°C: after 30 s. 

For a diffusion-controlled process we would  expect the 
800°C process to be retarded by a factor 100 compared.to 
the 950°C process. But,  because the first period is  field- 
controlled we have to modify our retardation factor. The 
relation between the field  flux and the diffusion flux can _be 
chosen to estimate the time dependence in the.fi'r$ period. 
If we confine our interest to the viciiiity of the'p-n  junction 

ni, some algebra leads to JF: JD = ni. Since n i  
evaluates to 4.4X 10l8 cm-3 and d ;5$X(1@'8 c m W 3  at 950" 
and 800"C, respectlvely,  we, tnerefore, expect  all diffusion 
processes to  be retarded by a factor 100 whereas the field 
controlled processes are only retarded by a factor of 100/3 
= 33. Furthermore, the effects of field-controlled dopant 
migration should be more distinct. 

Our simulations confirm our rough estimations. For 
800°C the space charge shows its maximum at 1700 s in 
contrast to  the 50 s of Fig. 6 for the 950°C step. The 
dopant distnit ions in the vicinity of the junction  at 300, 
1000, and 3000 s for the 800°C process are similar to the 
distributions at 10, 30, and 100 s for the 950°C step. The 
qualitative behavior of the two processd differs little. 
The last example confirms that even at low temperatures, 
the  quasi-neutral approximation describes the dopant 
migration qualitatively well in the vicinity of a p-n junction 
and excellently in the other domains. The :small  differences 
at  the  junction  are probably not sufficiently large to cause 
considerable effects on the electrical behavior of the device. 

As a simple example of our two-dimensional  code we 
have simulated a coupled arsenic boron diffusion. Equa- 
tions (4) and ( 5 )  are the continuity equations for boron and 
arsenic, respectively, and (6) represents Poisson's equation. 
The diffusion coefficients are modeled as given  by  (7) and 

We simulate an inert annealing step at 1.00O"C tempera- 
ture. As initial state we assume a homogeneously doped 
boron, substrate cmP3) implanted with arsenic 
cmP2, 130  keV, LSS, Gaussian) through a mask  (35 nm) 

and assume that CAS = CB, DAs << D ,  a d  CAS: CB << 2 .  

(8). 
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Fig. 12. Two-dimensional distribution of the electrostatic potential id'ter 
an inert diffusion of 10 s at 1OOO"C. 

Fig. 14. Two-dimensional boron distribution after an inert diffusion of 
100 s at 1OOO"C. 
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Fig. 15. Two-dimensional boron distribution after an inert diffusion of 
500 s at 1OOO"C. 

Fig. 13. Two-dimensional distribution of the boron dopants afte' an 
inert diffusion of 10 s of 1OOO"C. 

with an infinitely steep  edge  to  field  oxide (at t t ,  origixt  of 
the  coordinate axis  in the following  figures). 

The influence of the  electrical  field on the boron  prclile 
is the  main  purpose of this simulation. Since the arsenic 
concentration exceeds the intrinsic number and the bcmn 
concentration by  several orders of magnitude we do riot 
expect noticable effects of the  electrical  field on the  slmpe 
of the arsenic profile.  The  diffusion of the arsenic profil,: is, 
therefore, of minor interest and we concentrate on 1,he 
discussion of the electrostatic potential and the boron 
profile. 

Fig. 12 shows the electrostatic potential. at the beginrmg 
of  the diffusion. The field  term in the continuity equa:l~on 
for boron causes a flux of doping  atoms in the direction of 
positive gradients of the potential. Fig. 13 indicates that in 
the beginning of the diffusion the boron profile forn:u; a 
U-shaped  maximum of increased concentrations at Ithe 
surface and  in the bulk. 

The maximum near to the surface is  smaller than the 
maximum in the bulk. This is caused  by the less ];~'I:o- 
nounced gradient of the electrostatic potential at the 
surface. Since the ambient condition at the surface (Jl;c,ron 
= 0) inhibits a flux of boron perpendicular to the surl'ilce 
the concentration of boron is  relatively  strongly deplete13 in 
this region. At the edge of the U-shaped maximum the 
boron profile is depleted.  The  minima of the boron prcdile 
are caused by the gradients of the potential in lateral md 
vertical direction at the origin of the coordinate system. 

Fig. 16. Two-dimensional distribution of the electrostatic potential after 
an inert diffusion of 1500 s at 1OOO"C. 

The  potential profile spreads with  increasing  diffusion 
time  corresponding to the spreading arsenic profile  as 
indicated in Figs. 12 and 16. The maximum of the boron 
profile close to the surface  is,  therefore,  reduced  (Fig. 14) 
and vanishes finally (Figs. 15 and 17), whereas the maxi- 
mum in  the  bulk increases and spreads. It should  be 
mentioned  that the minimum of the boron profile  remains 
at  the surface next to the mask  edge  (origin of the coordi- 
nate system)  caused  by the lateral field  controlled  flux of 
boron. Affected by the field in vertical and lateral direc- 
tion, the boron profile  forms a distinct peak  value  with 
increasing diffusion time.  This  extreme  accumulation of 
boron  atoms  can only be explained  by a two-dimensional 
simulation. The  shape of the potential causes lateral and 
vertical fluxes of boron which accumulate the dopants in a 
center and cause the peak  values. After 1500 s diffusion 
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Fig. 17. Two-dimensional  distribution of the boron  concentration  after 
an inert diffusion of 1500 s at 1000°C. 

time  no significant change in the qualitative behavior of 
diffusion will take place. 

An experimental verification of this fairly simple exam- 
ple is, most unfortunately, not possible,  since the resolution 
of even the most modern, e.g., SIMS equipment is too 
coarse for that purpose. However, we have certainly veri- 
fied the numerical accuracy of our program with problems 
whose solutions are known. 

IV. ARSENIC CLUSTER MODELS 

Arsenic impurities in silicon  have a temperature depen- 
dent solubility, e.g., [4] or [ 5 ] .  Arsenic concentrations below 
this solubility limit are electrically  active.  Beyond  this limit 
they form clusters and/or precipitate and become  electri- 
cally inactive. Therefore, the electrically  measured profiles 
(e.g., spreading resistance measurements) differ from at- 
omistic measurements (e.g., SIMS measurements). The 
usage of shallow high dose As implantations for the fabri- 
cation of MOS source and  drain regions in VLSI  devices 
necessitates dynamic cluster models for process simulation. 

A fair amount of work has been done to evaluate equi- 
librium solubilities but relatively  few experiments have 
been done recently to determine the transient behavior of 
clustering and declustering. We have investigated the ex- 
periments published in [SI and [6]. 

In [ 5 ]  measurements and simulations of typical  MOS 
source fabrication processes are simulated: An implanta- 
tion of 2 X 10l6 ern-?, arsenic with an energy of 140 keV 
through a 25-nm oxide  followed  by an annealing step of  20 
min at 1000°C (+ a further annealing step at 800°C for 60 
min). The physical model  used for the simulation is  well 
described in [5 ] ,  ((11)-(14) and (6)) allowing  us to proceed 
with the simulation and test the abilities of our code. The 
only difference from t,he  model of [5] is the use of the exact 
Poisson equation instead of the quasi-neutral approxima- 
tion. The exchange of the arsenic diffusivity from (10) to 
(14) offers no problems and causes  only minimal modifica- 
tions of the code. 

m .As+ + k .  e- + Cl('"-k)+ (11) 
-- 'As 

at 
- div( DAs. grad CAS + pAs* CAS. grad $J) 

+ k,.C,,- k,.C,",.nk (12) 

102' 

i 
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Fig. 18. Measured  and computed data of the  total and electrically  active 
arsenic  concentration after a 20-min  annealing step at 1000°C. 

Fig. 19. Transient dependence of the  electrically  active  arsenic during  a 
20 min  annealing  step at 1000°C. 

m.-=- accl k,eCc, + k,.C,",.nk 
at 

DAs = 22.9 exp 
-,4.1 eV l + l O O . n / n i  ( kT )*mr cm2.s-'. 

(14) 

In (13) and (14) k, and kc have  to be corrected by a 
factor m to be consistent with the formulas in [5 ] .  The only 
parameter to be matched  has  been the intrinsic number 
which equals 7.2 X l0ls cm-3 at 1000°C in our calculation. 
Fig. 18 shows the result after the first annealing step which 
coincides well with the measured data and the published 
results in [5 ] .  

Figs. 19  and 20  show the transient dependence of the 
active and  the clustered  arsenic. Clustering and decluster- 
ing  are very fast processes compared to diffusion at 1000°C. 
Fig. 19 reveals that the equilibrium between the active and 
the clustered arsenic has well  been obtained after 20 min. 
The cluster concentration shows a significant  maximum 
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Fig. 20. Transient dependence of the  clustered  arsenic concentration 
during a 20-min annealing step at 1000°C. 
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Fig. 21. Total  and electrically  active  arsenic concentrations aftelr I:WO 
annealing  steps. 

after 30 s of annealing and can  easily be explained. In Ithe 
first 30 s, clustering is the dominating process and rec;ults 
in increasing cluster concentrations. Then the diffusioll of 
the active arsenic leads to decreasing  active concentrat~ons 
which are immediately compensated by  declustering. ‘:%is 
leads  to  a decrease of the cluster concentration. 

The flat profiles in the active  arsenic concentralion 
results from the fact that the change of CAS with  tin].: is 
proportional to the deviations from the equilibrium (con- 
centration. 

The simulation of the following 800°C annealing r:lep 
for 60 min is  shown in Figs. 21 and 22. The results cointide 
again well with the experimental data and the res  Jlts 
obtained by [ 5 ] .  

The descending slope of C,, in Fig. 22 indicates that the 
equilibrium between  clustered and active arsenic has not 
yet been achieved. The use of a static instead of a dynalnic 
cluster model would  have  resulted in too  small  aclive 
arsenic  concentration. 

One difference between  the code presented in [5] and lour 
,code is worth being discussed more carefully. In [5]  i is 
stated  that “clustering effects are computed individua~il’y” 

Fig. 22. Transient dependence of the  electrically  active  arsenic during a 
60-min annealing step at 800°C. 

and “concentrations are updated with  small  time intervals.” 
This indicates that (12)-(14) are evaluated in two steps (a 
diffusion step followed  by a clustering step). To the con- 
trary,  our code solves (12) to (14) simultaneously.  Clearly 
the differences between the two methods become  negligible 
if the time and space discretization is  sufficiently  small. 
Nevertheless, we  believe our method to be the better one 
from  a physical and mathematical point of view. The 
differences will occur when the grid  width in space and 
time is increased, in order to obtain a faster and less 
memory intensive program. We also  want to pronounce 
that  a dynamic phase transformation, such as the arsenic 
clustering, has not to be “implemented” into the code but 
represents a typical physical  effect for which our code has 
been developed. 

The model of Tsai is  based on experiments  using  only 
thermal treatment of the wafer to investigate the clustering 
of arsenic. It seems interesting to compare this  model to 
experiments which  have  been published in [6 ] .  These  ex- 
periments use laser annealing after the implantation to be 
sure  that all arsenic rests on lattice sites and is  electrically 
active. Further thermal treatment by a CW C0,-laser and 
conventional furnace is performed to investigate the tran- 
sient behavior of the clustering. 

The experimental results are shown in Fig. 23. The 
x-axis shows the annealing time in a logarithmic scale, the 
y-axis the sheet carrier concentration per cm-2 surface. We 
have chosen the impurity distribution after the laser an- 
nealing as the initial solution for our calculation and have 
simulated the annealing experiments taking into account 
diffusion as well as clustering. The dashed lines show the 
simulated results using the model of [5] for 900”, 800”, and 
700°C. Unfortunately measurements and simulation differ 
greatly. This may  be  caused by the different annealing 
methods applied to the wafers after implantations and/or 
by the different thermal post treatment. The different total 
arsenic concentration of the two  experiments  (ca. 2 X lo2’ 
cm-3 in [ 5 ]  and 4 X  lo2’ cm-3 in [6 ] )  will cause different 
values of the stable active arsenic concentration. This is 
strongly pronounced in the linear scale of the sheet carrier 



JUNGLING et al. : SIMULATION OF IC FABNCATION PROCESSES 165 

0 900°C 

10s I 0' 1 0 2  10' 10' 185 
ANNEALING TIME Isecl 

Fig. 23. Measured data of the sheet carrier concentration of [6] at  four 
temperatures. Results due to the cluster model of [5] and an optimal fit 
to measured data. 

concentration  in Fig.  23. The differences  reveal that the 
dynamic  properties of arsenic clustering are not yet  fully 
understood in terms of developing a model  which  covers a 
wide range of processes and  can be installed in general 
process simulation programs. We have  used our code to 
find values for k c  and -k,  to agree  with measurements 
optimally. Our computations reveal that the value of the 
minimum is mainly affected by the ratio of k c / k ,  and 
that  the time dependence of the minimum can be con- 
trolled by modifying k ,  and k ,  in the same way by a 
factor. It is worth noting that the slope is nearly indepen- 
dent of k c  and k ,  and yields far too steep lines for m = 3 
and k = 1. After several attempts m = 7 and k = 1 yields 
the  best results. The values of k ,  and k,, = k,/k,  used 
for  the  optimal fit of  tlhe measured data  in Fig.  23 are listed 
below. 

T ("C) kD (s-l> keq (cm21> 

700 1.089 X 5.500 X 
800 3.366 x 4.000 X 10 - 143 

900  6.335 X 1 0 - ~  4.792 X 

The  temperature dependence of the values of keq, k,, and 
kc can  be described by Arrhenius laws. 

The 1000°C process could not be optimized due to the 
shortage of experimental data. The poor agreement at the 
beginning of the annealing step is  most  likely  caused by a 
very simple initial solution. We have  assumed that all of 
the arsenic was activated by the laser annealing step. 

Our  computations, using the measured data of Fig.  23, 
indicate a trend  to larger cluster sizes.  Since the values of rz 
nearly equals that of CAS, we could have also set m = 6, 
k = 2; m = 5 ,  k = 3 or m = 4, k = 4 without changing the 
term C z . n k  and, therefore, the dynamics of (12)  or (13). 

V. SOME MATHEMATICAL AND NUMERICAL ASPECTS 

A high level of sophistication on  the numerical side is 
necessary to produce a code which  is  useful for the investi- 

gations of physical problems.  Since the ]main purpose of 
our code is  the investigation of physical  models, we try to 
free the user from as many mathematical problems as 
possible, e.g., the mesh in space and time is created and 
adapted automatically. The creation and modifications of 
the grid are mainly influenced by the idea to minimize the 
truncation errors. In the space domain this  implies optimal 
distribution of the gridpoints, in the time domain the steps 
have to be sufficiently small. The decisiions in both do- 
mains are critical and represent a compromise  between 
accuracy and the computer capabilities. The distribution of 
the grid points is controlled by the following three criteria. 

a) Quasi-uniformity: (only in the 1-D code) In [ll] it is 
shown that  the spatial truncation error of a quasi-uniform 
mesh reduces proportional to the square of the grid dis- 
tances if the maximum ratio between two adjacent dis- 
tances minus unity is  small compared to unity. 

b)  The minimization of the second  derivative of the 
physical quantities. 

c) The maximum ratio/difference criterion. 
The use of a quasi-uniform mesh  combines the ad- 

vantage of the small discretization error of a uniform mesh 
and the possibility to accumulate gridpoints at domains of 
physical interest. The high dynamic range of the diffusion 
problem in device fabrication steps (dopant concentrations 
of interest are in the range from 1O1O cm-3 to loz2 ~ m - ~ )  
leads to problems in the design of a spatial mesh.  On the 
one  hand, dose constancy is required even at long  time 
diffusions, on the other hand the dopant distribution in the 
vicinity of a p-n  junction is of special interest for the 
electrical performance of the device. Calculations revealed 
that  b) creates a grid  which permits long time inert diffu- 
sions without any loss of dopants. Unfortunately this crite- 
rion ignores the low concentration domaim which are very 
often the domains of electrical interest. Criterion c)  sets 
points  in  the vicinity of steep gradients and close to the p-n 
junctions ( m u .  difference criterion for the potential) and 
compensates the disadvantages of criterion b). A minimum 
mesh length has been invoked to avoid  too fine grids near 
discontinuities (e.g., initial solution of a predeposition). 

Since the dopant migration during a diffusion step leads 
to strongly varying  profiles, a rigid  grid  seems to be 
unsuitable  for an advaneed simulation program. Our  mesh 
is automatically modified during the diffusion step. Ob- 
servations during simulations reveal that deviations from 
the initial doses mainly occur during grid modifications. If 
the grid contains enough points to fulfill  all criteria the 
variations  turn  out to be statistical deviati.ons and do not 
augment beyond the specified  values. 

For the computation of the time step we use  backward 
differentiation formulas (BDF) similar to those proposed 
in [12]. In the one dimensional code we  use BDF of sixth 
order to obtain  an optimal transient behavior of our com- 
putation. In the two-dimensional program limited com- 
puter resources constrain us to use BDF of third order. 
Here again the wide dynamic range off interest in the 
physical quantities necessitates modifications of the com- 
monly proposed model. The original error estimation in 
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[12] turns  out to be far  too  restrictive  to  yield reason,[hle 
time steps. 

In  the following table the number of time steps, .[,he 
number of newton iterations, the number of newton  it  :ra- 
tions per time step and the computation times are listeil For 
the  computations in Fig.  23. The spatial grid consist:; of 
approximately 120 points, the parameter is the accu.lacy 
for the transient integration. 

number of number of 
number of Newton iterations computatio~l 
time steps iterations per  time step time  in sec 

47  147 3.12  265 
54 159 2.94  291 
74  192 2.54  357 

105 197 1.87  3 84 
115 215 1.86  419 

. -_ 

The numbers in the table indicate that there is no li year 
relation between the number of time  steps and the corllpu- 
tation time and that a less accurate transient integril tion 
does not significantly decrease the computation times.. The 
larger time steps lead to less accurate predictions for the 
initial solution of the Newton iteration. This in turn nt:c:es- 
sitates more Newton iterations steps and compensateu. the 
intended reduction of computation time  by  using v,ider 
time steps. 

For the discretization of the space operators we USE: the 
methods of finite differences. Equations identical to (:I>I to 
(3) are used in device simulation. We have, therelore, 
implemented a great deal of sophisticated numerical meth- 
ods developed for device simulation into our Code. The 
formulae  for the discretization of  (1)-(3) have  been  txl’ren 
from [ll]. An exponential fitting factor for the discre:  ::i.sa- 
tion of the flux relation (2), which has been successli~lly 
applied in the device simulation, has also  been  used. ’The 
Newton linearisation of the discretization formulas lea(:.>; to 
a block-tridiagonal (1-D)  or a block-pentagonal (;!‘.D) 
equation system which  is  solved  by Gaussian elimin,;ltion 
(1-D) and  an iterative solver  (2-D),  respectively. An ir (:re- 
ment damping method  developed  by Deufelhard [l . I  i is 
implemented to avoid detrimental overshooting  effects  dur- 
ing  the  iteration process. 

VI. SUMMARY AND CONCLUSIONS 

This  paper presents a scientific  general purpose pro2;ram 
for process simulations in one and two dimensions. ‘The 
number  and kind of physical quantities to be simulatd is 
specified by a few parameter definitions. This allows  l’or a 
wide range of applications and simple modifications o the 
physical models under consideration. 

First applications reveal that the quasi-neutral ap- 
proximation seems  to  be an excellent approach to des1::I:ibe 
the field enhanced diffusion in  engineering programs, ‘The 

differences between the quasi-neutral approximation and 
the exact Poisson equation are small in the vicinity of p-n 
junctions and negligible  elsewhere. The differences  become 
smaller with increasing duration of the diffusion step and 
with increasing process temperature. We can, therefore, 
recommend the use of the quasi-neutral approximation 
whenever fast performance and limited  memory  resources 
necessitate simplifications of physical  models. In our code 
we  will, nevertheless, use the Poisson equation and in- 
vestigate occasionally the differences  between the two 
models at various applications. 

A second application deals  with the phenomenon of 
arsenic clustering. The comparison with published results 
reveals that our program can accurately simulate up-to-date ’ 

models for dynamic arsenic clustering without exceeding 
its specifications. The strong deviations of time dependent 
measurements reveal that the physical background of ar- 
senic clustering/precipitation is not yet understood and 
necessitates further investigations. The commonly pro- 
posed cluster models [ 5 ] ,  [8], or,[9] are well established but 
do  not lead to a concentration rndependent CAS as it was 
pointed  out  in, e.g.,  [4]. On the contrary [lo] proposes that 
precipitation is the physical  effect responsible for the dif- 
ferences between electrically  active and the total arsenic 
concentration. This model  would  lead to a doping indepen- 
dent active arsenic concentration. Furthermore, the in- 
fluence of different annealing methods on the dynamics of 
arsenic has not been  investigated satisfactorily. The time 
dependent measurements of [6] and [7]  reveal contradictory 
results for the dynamics of clustering after laser annealing 
using different techniques. Our simulations of laser anneal- 
ing process indicate that cluster  sizes  between  5 to 7 atoms 
lead to  a  betltl agreement  between  measured and com- 
puted  data  than  a cluster  size of 3 atoms. 

From  the numerical point of view the first applications 
of our code clearly reveai  that a nrgh level of numerical and 
mathematical sophistication is absolutely necessary for a 
scientific process simulation program. An optimal discreti- 
zation of the  partial differential equations and  mtomati- 
cally generated grid in space and time guarantee minimal 
discretization errors and fine resolutions of spatial and 
transient domains of interest. 
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