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Abstract

The advancing miniaturization of metal-oxide semiconductor �eld e�ect transistors (MOS-
FETs) requires a profound understanding of degradation mechanism from a microscopic point
of view. The important phenomenon called bias temperature instability (BTI) associated with
charge traps has already been addressed by the four-state NMP model. A further issue that
becomes essential when approaching nanoscale devices is the stochastic nature of individual
dopants (referred to as variability), which is considered using random discrete dopant (RDD)
simulations. In this thesis the in�uence of RDD on the capture and emission times of indi-
vidual defects described by the four-state NMP model is investigated.

By setting up a simulation work �ow using the general purpose semiconductor device simulator
Minimos-NT, more than 35,000 discrete dopant distributions on a pMOSFET are analyzed in
order to guarantee statistical signi�cance. The in�uence of RDD is quanti�ed by developing a
data processing algorithm called lateral shift method that measures e�ective gate voltage shifts
in the emission/capture times characteristics calculated using the four-state NMP model and
in the transfer characteristics. The calculated gate voltage shifts are induced by the dopants'
variability and are analyzed for di�erent dopant distributions.

The gate voltage shifts are determined by comparing the results of RDD simulations to a ref-
erence simulation without RDD. To study the macroscopic and microscopic impact of RDD
on the device, drain current versus gate voltage (Id(Vg)) and capture/emission times versus
gate voltage (τc,e(Vg)) characteristics are analyzed. The former is observed to be not a�ected
by di�erent trap positions and only weakly by doping concentration, whereas the latter is
in�uenced by both. Furthermore, the gate voltage shifts calculated from τc,e(Vg) character-
istics are found to change their probability distribution when doping concentration or trap
positions are varied.
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1 Introduction

In microelectronics, the recently developed strongly miniaturized semiconductor devices with
geometrical dimensions of several tens of nanometers cause a variety of issues to be tackled.
The most important are reliability of a single device and variability of devices produced
using the same fabrication process. Concerning reliability, the origins of a phenomenon called
bias temperature instability (BTI), which is prevalent in metal-oxide-semiconductor �eld
e�ect transistors (MOSFETs), are still controversially discussed. Apart from that, the term
variability refers to the atomistic and therewith stochastic nature of semiconductor materials,
an unavoidable consequence of the production process. In order to enable a profound under-
standing, it is bene�cial to investigate the in�uence of device variability on BTI.

1.1 Scope of this Thesis

For both, reliability and variability, well-founded research in the �eld of simulation was carried
out at the Institute for Microelectronics [1�3]1. The reliability issue of bias temperature
instability has been addressed by the so-called four-state NMP (non-radiative multi-phonon)
model. This model is implemented in the semiconductor device simulator Minimos-NT and
allows to explain the characteristic capture and emission times observed from single traps in
MOSFETs' gate stacks. The target of this thesis is to study the impact of the stochastic
nature (variability) of the dopant distribution on the four-state NMP model (reliability) by
answering the following question: In how far does the stochastic and atomistic nature of
semiconductor materials in�uence the capture and emission times of single traps calculated
using the four-state NMP model?

1.2 Structure

To answer this central question, Chapter 2 describes the fundamental phenomenons asso-
ciated with the term BTI, both from a macroscopic and a microscopic point of view. In
Chapter 3 the essentials of the four-state NMP model and the approach to simulate random
discrete dopant (RDD) distributions are discussed. The quanti�cation of the in�uence of vari-
ability on the capture and emission times calculated using the four-state NMP model requires
a data processing algorithm (lateral shift method), which has been developed in the course
of this work and is discussed in detail in Chapter 4. Variability simulations demand a suf-
�ciently large number of individual simulation runs in order to enable statistical statements.
Therefore, an elaborate work �ow, which organizes the interaction between the general pur-
pose device simulator Minimos-NT, data extraction and post-processing has to be set up. In
Chapter 5 the chosen implementation is presented in detail and �nally in Chapter 6 the
results are discussed.

1The given references are only a small selection of the multitude of publications.
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2 Bias Temperature Instability

The performance of MOSFETs is a�ected by di�erent mechanisms. In this section 'bias
temperature instability' (BTI) is introduced and discussed in detail. Furthermore, the impact
of BTI on the transistor operating behavior and the experimental characterization of BTI is
presented.

2.1 Macroscopic Phenomena and De�nitions

In MOSFETs defects located in the gate stack or at the interface between the conducting
channel and the gate stack are responsible for non-ideal operational behavior. Macroscopi-
cally, a shift of di�erent MOSFET parameters, e.g., transconductance, channel mobility and
subthreshold slope is visible [3]. The phenomenon responsible for this non-ideal device be-
havior is called BTI. In particular, the MOSFETs' threshold voltage Vth is a�ected. Thus,
the degradation of MOSFETs is often characterized using the time dependent threshold
voltage shift ∆Vth(t) [4].

The inset of Fig. 1 shows the typical experimental setup, which illustrates the basic in�uence
of BTI. The drain, source and bulk terminals are set to zero, while a negative gate voltage
(negative stress, in this case Vg = −2 V) is applied. Fig. 1 illustrates the threshold voltage shift
as a function of time for a stress and relaxation cycle recorded on a large-area pMOSFET.
After the stress time of ts = 1000 s has elapsed a gate voltage near Vth is applied and the
device recovers (relaxation process). It is clearly visible that the threshold voltage shift
does not vanish, even after 1000 s ≈ 0.27 h of recovery. This leads to the distinction of a
recoverable (relaxation) and a nonrecoverable (permanent) component of BTI [5].

Fig. 1: Observed threshold voltage shift of a large-area pMOSFET after the device has been subjected to
NBTI stress. The �gure is taken from [5], Fig. 1.

The name bias temperature instability emphasizes the strong temperature dependence of
device degeneration. Higher temperatures lead to intensi�ed gate voltage shifts and therefore
accelerated degradation [5]. BTI also occurs in nMOSFETs, where the gate is typically
positively biased. This leads to a separation of the phenomenon BTI into negative BTI
(NBTI) and positive BTI (PBTI). PBTI is observed when positive stress voltages are
applied at the gate contact. NBTI corresponds to a negatively biased gate. For negatively
biased pMOSFET the threshold voltage shift associated with NBTI is the most pronounced,
as it is illustrated in Fig. 2 with measurement data from [6]. Even though minor degradation
is visible on nMOSFETs (PBTI) as well, most investigations are on NBTI in pMOSFET
devices, as carried out in Chapter 6.
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Fig. 2: Threshold voltage shift for di�erent MOSFETs and stress biases, taken from [6], Figure 2. A signi�-
cantly higher ∆Vth is achieved for pMOSFETs subjected to NBTI (Vg < 0, open squares) and PBTI (Vg > 0,
open circles) stress. In contrast, nMOSFETs show less degradation for both NBTI (�lled circles) and PBTI
(�lled squares).

2.2 Microscopic Mechanisms

From the microscopic point of view BTI is a consequence of charging and discharging of oxide
defects and interface states2, which exist due to structural imperfection. For classical MOS-
FET structures the silicon/silicon dioxide (Si/SiO2) material system is used. An insulating
oxide (SiO2) is grown on the Si-substrate to form a thin layer. In modern transistors the in-
sulating SiO2 layer is thinner than 5 nm. The perfect SiO2 structure is formed by tetrahedral
cells where every Si atom is bonded to four adjacent oxygen (O) atoms.

Variations of the ideal atomic structure of SiO2 give rise to the so-called border states

(slow states). One possible defect con�guration is the E' center3, where a silicon atom is only
bonded to three adjacent oxygen atoms resulting in an unpaired electron. Fig. 3 schematically
illustrates the defect con�guration. During normal device operation such E' centers can
capture a hole from the conducting channel, leading to an additional trapped charge inside
the oxide layer [3].

Fig. 3: The con�guration of the E' center shows the three oxygen atoms bonded to a Si atom. The fourth Si
bond remains unpaired. The illustration is taken from [3], Figure 3.7 a).

Nevertheless, defects located in the insulating oxide layer are not the only contributors to
trapped charges. At the Si/SiO2 interface the so-called interface states are present. These
states are the consequence of an abrupt junction between Si and SiO2 which are two materials
with di�erent lattices constants and thermal expansion coe�cients. Analogously to border
states, interface states can be possibly charged or discharged during device operation [1, 7].
In general, there are even further types of defects and charge traps whose microscopical details
are still controversially discussed. In particular, for (trapped) oxide chargse a phenomeno-
logical terminology has become established. Already in 1980 four oxide charge types were

2The term 'state' is used here in the quantum mechanical sense.
3As the microscopical details are still discussed, the E' center serves just as an exemplary illustration.
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introduced [8]. NBTI is attributed to two of them, interface trapped charge and oxide

trapped charge [4].4

The key mechanisms of trapped charge are the electron capture and emission process. The
simplest way to model the defect transitions is to describe the defect by two stable states:
neutral or positively/negatively charged. A defect is called donor-like when it can be pos-
itively charged, otherwise acceptor-like [1]. For NBTI studied in pMOSFETs donor-like
defects are of importance as holes are the majority carriers in p-type channel transistors.

To characterize the trapped charges' in�uence on MOSFET operation the transition rates k,
i.e., transition probability per unit time, are signi�cant. Transition probabilities are consid-
ered, because of the stochastic nature of charge trapping. For the simple model the quantity
τ = 1

k can be interpreted as the transition time constant. The time constants are in general
di�erent for the charge capture and emission process, leading to the frequently used capture
and emission times.

In case of charge capturing/emission a single charge carrier a�ects the threshold voltage in
MOSFETs, because the quasi-electrostatics of the device changes. The impact of such a charg-
ing/discharging process varies for di�erent device geometries. In Fig. 1 threshold voltage shift
∆Vth is illustrated for a large area device. As can be seen a continuous ∆Vth behavior is
observed. For nanoscale devices (width × length = 200 nm × 200 nm or smaller), however,
discrete threshold voltage shifts corresponding to single charge capture and emission events
can be measured (Fig. 4 top). This arises from the fact that in nanoscale devices the number
of defects is very small5, which allows to a measure the in�uence of individual traps on ∆Vth.
The time of a discrete voltage step to occur is referred to as the emission time τe. An-
other important parameter is the capture time τc. Pro�ting from the small number of traps
present in the nanoscale devices the so-called time dependent defect spectroscopy (TDDS) has
been introduced to study the charge capture/emission behavior of single traps [9, 10].

Fig. 4: Top: The recovery of nanoscale devices proceeds in discrete steps, i.e., the charge emission events
of the single traps. Bottom: The step heights and emission times are collected in the step height versus
emission time plane, called spectral map. The single emission events form clusters which are the �ngerprints
of single traps. Published in [10], Fig. 1.

4The remaining oxide charge types de�ned in [8] were oxide charge and mobile ionic charge.
5In modern devices we have a countable number with just a handful of defects [9].
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2.3 Measurement of Capture and Emission Times using TDDS

Within the framework of TDDS the discrete threshold voltage shifts of single defects present
in nanoscale devices are analyzed. An emission event of a defect results in a characteristic
∆Vth and a characteristic emission time τe, which is registered in a 2D histogram (referred to
as spectral map, Fig. 4 bottom and Fig. 5). Thus, the spectral map characterizes the entirety
of defects in the gate oxide which have been charged during the applied stress bias condition
and get uncharged during recovery at the applied recovery bias condition at a certain tempera-
ture. To achieve a statistically relevant amount of data stress/recovery cycles are recorded 100
times and all emission events are collected in the resulting spectral map. The resulting spectral
maps enable the identi�cation of di�erent traps with step di�erent heights and emission times.

Fig. 5: Two spectral maps for di�erent stress times of ts = 1 ms (top) and ts = 10 s (bottom) Quite
noteworthy, with increasing stress times the intensity of the clusters increase. As the number of emission
events is correlated to the cluster intensity it follows that with longer ts the probability of a single defect to
get charged during stress increases. The spectral maps are taken from [10], Fig. 2.

If a single defect is considered, the characteristic emission time τe can be directly cal-
culated as the mean value of the emission times obtained from each individual trap. The
capture time τc can be measured by increasing stress time and analyzing the consequentially
increasing number of emission events [10].

The capture and emission times are characteristical parameters for the charging dynamics of
single traps. Thus, their values directly in�uence device operation and degradation. To fur-
thermore describe the trapping kinetics the gate bias and temperature dependence of τc and
τe is of utmost importance. Fig. 6 shows τc,e-characteristics extracted at a certain tempera-
ture from measurement data for the pMOSFET transistor considered in Chapter 5 and 6. It
has to be noted that the investigated pMOSFET shows only one defect under the used stress
and recovery conditions. The transition times are plotted logarithmically, indicating a strong
sensitivity of capture times on gate bias over several decades in time, while emission times
are practically bias independent. Such traps are called �xed (charge) traps, further details
are discussed in Section 3.1.4.



6 2.3 Measurement of Capture and Emission Times using TDDS

Fig. 6: Measured gate voltage dependence of transition times for a pMOSFET. Data was obtained using
TDDS. The emission times appear to be independent of the recovery gate bias which is characteristic for so
called �xed (charge) traps. In contrast, a strong stress bias dependence of the capture time is visible.
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3 Outline of Four-State NMP Model and Random Discrete

Dopant Simulations

In this thesis two individually developed models are employed: The �rst one is the four-state
NMP model, which is used to describe the capture and emission times of single traps in the
context of BTI. The second approach is the introduction of random discrete dopants. In this
chapter the essentials of both models are discussed.

3.1 The Four-State NMP Model

3.1.1 Defect Modeling using Two States

To describe the characteristic capture and emission times of single traps an abstract approach
to modeling is required. The di�erent defect states and capture/emission processes discussed
in Section 2.2 can be described using Markov processes [1]. Fig. 7 shows the simplest possible
model. The defect is assumed to dwell in either a neutral or in a charged state.

1

neutral

2

charged

k12 = 1
τc

k21 = 1
τe

Fig. 7: Simple two-state transition diagram. The neutral defect state is assumed to be state 1, the charged
defect state is identi�ed with state 2. The transition rates are described by the time constants: capture time
τc and emission time τe.

The parameters of such a model are the transitions rates between di�erent states. The tran-
sition rate kAB is the probability that a transition from state A to state B takes place during
an unit time interval, typically given in units of s−1. Using the simple process of Fig. 7, it can
be shown that the transition rate can be alternatively characterized using the expectation
value of the time point when the transition takes place [1]:

E(τAB) =
1

kAB
. (1)

The capture and emission times, which are experimentally determined (Section 2.3), therefore,
can be employed to characterize the charge trapping process. However, it is not surprising
that model of such simplicity it not capable of describing all of BTI's main features [1, 9].

3.1.2 Metastable States

A key characteristic of the so far described two-state model was its stability in both states.
Stability refers to the defect's property to remain in this state even in equilibrium. On the
contrary, experimental results and theoretical considerations concerning random telegraph
noise and bias dependence of the capture/emission times suggest the existence of so-called
metastable states [1, 10, 11]. Metastable states are not occupied in equilibrium, but are of
utmost importance to correctly explain the bias dependence of transition rates.

3.1.3 Non-Radiative Multiphonon Transitions

The central feature of the four-state NMP model is the description of charge trapping not
as a solely charge transfer but as a process that involves electron-phonon coupling. The
transitions between stable and metastable states proceed in a non-radiative way. The energy
that is interchanged during charge trapping is supplied via phonons (i.e., quantized collective



8 3.2 Random Discrete Dopants

extinction of atoms or molecules). In the four-state NMP model non-radiative transitions,
which involve phonons, are assumed to take place. Hence, the abbreviation NMP for non-
radiative multiphonon (transition) emphasizes this distinctive conceptual element [1].

3.1.4 The Complete Four-State NMP Model

The four-state NMP model extends the simple description of Fig. 7 by adding two metastable
states. One of the metastable states is considered to be electrically charged (2'), while the
other one is neutral (1'). Fig. 8 illustrates the states and transitions of the complete four-state
NMP model. The charge capture process takes place via the pathway 1 - 2' - 2, therefore
including as an intermediate stage the charged metastable state. For emission two transition
pathways are possible, leading to a distinction between switching traps via the pathway 2
- 1' - 1 and �xed traps via the pathway 2 - 2' - 1. The �rst one is characterized by bias-

dependent emission times, whereas the second one shows no bias-dependence of its
emission times [1]. The trap shown in Fig. 6 displays bias independent emission times and
thus is a �xed trap.

1

2'τ12′

τ2′1

1'

τ11′

τ1′1

2

τ2′2

τ22′

τ21′

τ1′2

Fig. 8: The four-state NMP model's transition diagram consist of four states. (1) neutral stable, (2) charged
stable, (1') neutral metastable, (2') charged metastable. Every transition is characterized by the corresponding
transmission times. The diagram is reproduced from [9], Fig. 1.

The four-state NMP model's can correctly explain the transition times of single traps ob-
served from TDDS experiments. For this a set of twelve parameters is available. On one
hand device quantities like local electron concentration and electric potential are used, and on
the other hand empirical parameters such as capture cross sections are involved. The carrier
concentrations and potentials are provided by drift-di�usion based or quantum-corrected den-
sity gradient simulations. The necessity of empirical data is obvious as the four-state NMP
model is not fully derived from �rst principles.

3.2 Random Discrete Dopants

Usually in device simulations doping concentration is considered as continuously distributed
over the entire material. In reality, however, individual dopants are randomly distributed
inside the bulk material. As the information on the position of the individual dopants is not
available, a random distribution has to be assumed when performing variability simulations.
For structures with geometrical dimensions in the µm-regime the typical donor and acceptor
concentrations of more than 1017 cm−3 lead to very high numbers of individual dopants. To
give an example, an acceptor concentration of 1017 cm−3 for a cubical segment with a common
edge length of 1µm results in 105 dopants located in this segment. Such a large number of
dopants can be readily modeled by assuming a continuous distribution.
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However, the persistent progress in device scaling in MOS-technology pushed the continuous
treatment to a limit. The nanoscale SiGe high-k pMOSFET given in Fig. 9 has a channel
doped with a donor concentration of ND = 1017 cm−3 (central segment in Fig. 9). The drain
and source regions show a high number of acceptors (NA = 6 · 1019 cm−3). The channel's
geometrical dimensions are approximately 40 nm × 90 nm × 5 nm, resulting in an expected
number of individual donors inside the channel of only 1.8. Thus, the quasi-electrostatic
situation inside the channel is determined by one or two donor atoms which can obviously not
be adequately modeled using a continuous distribution that is spread over the whole channel.

Fig. 9: Channel dopant distribution for a SiGe high-k pMOSFET. The colored (red: donors, blue: acceptors)
spheres illustrate individual dopant positions. Surface coloring (with corresponding colorbar) indicates the
consequential approximated continuous acceptor concentration.

The previous example shows an essential consequence of miniaturization. As a stochastic
�uctuation of individual dopant positions between di�erent devices is unavoidably introduced
by process technology (doping process) the position and depth of acceptors and donors is a
stochastic quantity and has a considerable impact on device functionality. This circumstance
is termed variability and is of importance in semiconductor device fabrication. From the sim-
ulation point of view variability requires a statistical approach. It is not su�cient to simulate
device properties for only one dopant distribution. A statistically su�cient number of devices
that are macroscopically equivalent has to be taken into account. Thereby, the dopants' po-
sitions have to be generated randomly, giving rise to random discrete dopant simulations.

A natural approach to model discrete dopants within the drift-di�usion framework is to
describe the corresponding electric potential as being sharply located (much like Dirac's delta
function) and being assigned to the next grid point in the discretization scheme. Unfortu-
nately, this leads to unphysically strong carrier localization [2]. However, inordinate localiza-
tion can be avoid by splitting Coulomb potential in short-range and long-range parts and only
considering the latter. The choice of cut-o� points is critical here [12]. For the purpose of
this thesis (see also Chapter 5) the density gradient (DG) model is used, as it has the ability
to describe electric potential and consequent carrier concentrations in a very suitable way [2].

The varying positions of the RDD induce �uctuations in the quasi-electrostatics of the MOS-
FET. Considering transfer characteristics (drain current Id versus gate voltage Vg) for di�erent
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dopant distributions, a shift along the gate voltage axis for di�erent dopant distributions is
visible. Fig. 10 exemplarily shows the transfer characteristics (on a logarithmic scale) for
a pMOSFET. Compared to a continuous reference simulation (density gradient, no discrete
dopants), the Id(Vg) characteristics originating from two di�erent discrete dopant distribu-
tions clearly show a lateral shift. Macroscopically, this results in a threshold voltage shift
∆Vth. In Chapter 5 and 6 the quantity ∆Vth is used to quantify the in�uence of RDD on the
capture and emission times calculated with the four-state NMP model.

Fig. 10: |Id|(Vg) characteristics (transfer characteristics) for the pMOSFET shown in Fig. 14. The absolute
value of drain current is plotted on a logarithmic scale over gate voltage. Two distinctive dopant distributions
(RDD 1 and RDD 2) produce shifted versions of the transfer characteristics originating from continuous doping
concentrations on the same device. The drain potential VD is set to −0.1 V.
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4 Simulation Data Analysis

As presented in Section 3.2, di�erent discrete dopant distributions in a MOSFET lead to a
lateral shift (i.e., shift along gate voltage axis) of the transfer characteristics Id(Vg). In order
to enable statistical evaluations the gate voltage shift between two Id(Vg) data sets has to
be examined. Because of its importance for following considerations (Chapter 5 and 6) this
section's objective is to precisely formulate and the gate voltage shift problem and provide
a solution. As it turns out, a crucial sub-problem is curve �tting, which one commonly
encounters in data processing. Consequently, curve �tting is discussed �rst (Section 4.1).
Afterwards, a method for extracting gate voltage shifts which is employed in this thesis is
described (Section 4.2).

4.1 Fitting Functions to Data Points and the Least Squares Problem

First we consider a given set of experimentally obtained data, which is exemplarily shown in
Fig. 11. For the subsequent investigation usually the qualitative behavior (linear, quadratic, ...)
of the process that has created the data set is known, but the exact parameters are not.

Fig. 11: A second-order polynomial (solid line) is �tted to a set of data points.

For the data given in Fig. 11 a quadratic functional relation between y- and x-values is
considered. That means a second order polynomial p(x) = a0 +a1x+a2x

2, that approximates
the data points best has to be found. For polynomials of arbitrary degree the �tting problem
can be de�ned as follows.

De�nition 4.1 (Data Fit Problem for Polynomials)
Let D = {(x0, y0), (x1, y1), . . . , (xm−1, ym−1)} ⊆ R2 be a set of m data points and
p(x) = a0 + a1x+ . . .+ an−1x

n−1 =
∑n−1

i=0 aix
i a polynomial of degree n− 1. The problem

to �nd the coe�cients ai, i ∈ {0, 1, . . . , n− 1} in order that

yj ≈ p(xj), j ∈ {0, 1, . . . , n− 1}

is called data �t problem for a polynomial of degree n− 1.

De�nition 4.1 only clari�es that a good approximation is sought. Furthermore, a criterion is
necessary to measure the quality of an approximation. The most common approach is using
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the squared euclidean norm
∑m−1

j=0 (yj − p(xj))2, which is requested to be minimized during
the iterative �tting process. This approach leads to a special case of the general least squares
problem, which is formulated in the following de�nition [13].

De�nition 4.2 ((Non-linear) Least Squares Problem)
Find a local minimizer x∗ for

F (x) =
m−1∑
j=0

f2
j (x),

with given functions fj : Rn → R, j ∈ {0, . . . m− 1} and m ≥ n.

The function F : Rn → R is called cost function or score function. It is important to note that
a local minimizer and not a global minimizer is searched. These are de�ned as follows. [13]

De�nition 4.3 (Global and Local Minimizer)
Let F : Rn → R be the cost function of a minimization problem.

xg = arg min
x∈Rn

{F (x)}

is called global minimizer and

F (x∗) ≤ F (x) for ‖x− x∗‖ < δ

with small δ > 0 is called local minimizer. ‖ · ‖ denotes euclidean norm.

In general, the global minimizer is di�cult to �nd using numerical techniques. This is the
reason why the least squares problem (de�nition 4.2) only requires a local minimum of the
cost function. The search for a local minimum, on the other side, permits algorithms to be
restricted to work inside a certain �nite region (determined by δ).

For the data �t problem, de�nitions 4.1 and 4.2 imply that fj = yj − p(xj). The vector
to minimize x in terms of the cost function F (x) is in this case a vector containing the
polynomial's coe�cients, a = [a0, a1, . . . , an−1]T . The data �t problem for polynomials is
actually a linear least squares problem, as can be seen by expressing the cost function in
vector/matrix notation

m−1∑
j=0

(yj − p(xj))2 = ‖y − p‖2 = ‖y −Xa‖2, (2)

where

p =


p(x0)

p(x1)
...

p(xm−1)

 (3)
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and

X =


1 x0 x2

0 . . . xn−1
0

1 x1 x2
1 . . . xn−1

1
...

...
...

. . .
...

1 xm−1 x2
m−1 . . . xn−1

m−1

 (4)

is a constant Vandemonde matrix [14]. Consequently, p = Xa is a vector with entries
formed of linear combinations of p(x0), p(x1), . . . p(xm−1), giving rise to a linear least square
problem.
To solve this linear equation, specialized numerical methods and also an analytical solution
exist. Nevertheless, algorithms for non-linear least squares problems have been developed as
well. The most important is the Levenberg-Marquardt (LM) algorithm, which is based on the
Gauss-Newton method [13,15]. The LM algorithm is widely used in plotting and optimization
software for curve �tting. For example, the solid line in Fig. 11 is a quadratic polynomial
whose coe�cients have been calculated using gnuplot, which uses the LM method itself [16].

4.2 Determination of Lateral Shift between Series of Data Points

After de�ning the data �t problem in the previous section, the algorithm used to extract
gate voltage shifts is presented. In the following the presented procedure is called lateral shift
method. A central aspect is the satisfaction of the following prerequisite.

Prerequisite

Let R = {(x0, y0,r), (x1, y1,r), . . . , (xm−1, ym−1,r)} ⊆ R2 be the reference set of m data
points and D = {(x0, y0), (x1, y1), . . . , (xm−1, ym−1)} ⊆ R2 be the considered set of m
data points. The lateral shift method is only applicable if D de�nes a continuous function
ŷ(x) that is approximately a shifted version of the reference function ŷr(x) (deter-
mined by R), i.e,

∃h ∈ R such that ŷ(xi − h) ≈ ŷr(xi) ∀i ∈ {0, 1, . . . m− 1}.

Fig. 12 shows the data points for the considered data set (points) and the reference data set
(triangles). The discrete points an be interpreted as individual "measurement data points"
of an underlying continuous function (solid lines). Obviously, the two functions are not just
shifted versions of each other in a global sense. Especially around x = −1 and x = 0
the shape of the function changes. Consequently, an interval (e.g., in the underlying case
x ∈ [−0.8, −0.3]) has to be de�ned for the lateral shift method to be applied.
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Fig. 12: Reference (triangles) and considered data set (points). The solid lines are the result of fourth-order
polynomials �tted to the corresponding data values. As the y-axis is scaled logarithmically, the polynomials'
coe�cients are determined by �rst taking the decadic logarithm of the y-values and then using the least squares
method (logarithmic �tting). Within the interval [−0.8, −0.3] the obtained continuous approximations can
be considered to be shifted versions of each other.

The lateral shift method comprises of two steps:

1. Find the best continuous functions ŷr(x) and ŷ(x) that approximates the given data
set.

2. Find the lateral shift h∗ that transfers ŷ(x) into ŷr(x). In the ideal case ŷ(x−h∗) = ŷr(x).

Step 1 can be realized using the polynomial approximation of Section 4.1. The continuous
functions are then

ŷ(x) = p1(x) =
n−1∑
i=0

aix
i and ŷr(x) = p2(x) =

n−1∑
i=0

bix
i. (5)

The polynomials' degrees should be equal and the polynomial approximation should hold in
a distinctive �nite interval, i.e., x ∈ [e1, e2].

Step 2 relies on an appropriate quanti�cation of similarity between two functions. This
is realized using a cost function Cai,bi(h) which depends on the approximate polynomial's
coe�cients ai and bi, but is a function of the data polynomial's lateral shift. Therefore,
Cai,bi(h) is a real-valued one-dimensional function. The choice of the cost function provides
some degrees of freedom but the following de�nition states one possibility.

De�nition 4.4 (Cost Function for the Lateral Shift Method)

Let E = {e1, e1 + e2−e1
N , e1 + 2(e2−e1)

N + . . . + e2} be a linear subdivision (consisting of
N values) of the interval [e1, e2]. The cost function Cai,bi : R→ R measures the similarity
between the polynomial approximation of the reference data set p2(x) =

∑n−1
i=0 bix

i and the
shifted version of the considered data's polynomial approximation p1(x) =

∑n−1
i=0 aix

i.
(The shift is quanti�ed by h ∈ R.) It is de�ned as

Cai,bi(h) =
∑
xj∈E

(p2(xj)− p1(xj − h))2.
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Cai,bi(h) satis�es the necessary condition that it yields zero if two ideal replicas are compared.6

The cost function now enables a rigid de�nition of the lateral shift problem.

De�nition 4.5 (Lateral Shift Problem)
With the cost function Cai,bi from de�nition 4.4 the best lateral shift h∗ is given by

h∗ = arg min
h∈R

Cai,bi = arg min
h∈R

∑
xj∈E

(p2(xj)− p1(xj − h))2.

In Section 4.1 it was pointed out that a global minimizer is numerically di�cult to �nd.
Therefore, a practical requirement for a cost function is to have a local minimum at the
function argument of global minimum. In this case the global minimum is a local minimum
as well. If this prerequisite is satis�ed a weaker but more practical formulation can be given
using the term local minimizer of de�nition 4.3.

De�nition 4.6 (Weaker Formulation of the Lateral Shift Problem)
Find a local minimizer for

Cai,bi(h) =
∑
xj∈E

(p2(xj)− p1(xj − h))2.

with the cost function Cai,bi(h) given in de�nition 4.4.

Therewith, the lateral shift problem reduces to the following task: �nd the local minimum

of the real-valued scalar cost function. Because of the scalar nature, basic algorithms
as golden section search (GSS) which draws upon the same idea as binary search algorithm
can be used [17]. GSS works on a prede�ned interval und assumes unimodality, i.e., only
one minimum inside a certain interval. Additionally, there are iterative algorithms which are
actually designed for multi-dimensional functions available. One example is the Nelder Mead
(NM) algorithm [18], which requires an initial guess in order to start the iteration.

Fig. 13 exemplarily shows the cost function (left) for two data sets (right). It is clearly visible
that the global minimum at h1 ≈ −0.03 is at also a local minimum. Nonetheless, a second
local minimum at h2 ≈ −1 exists. This is very unpleasant for �nding the global minimum
numerically. Both above-mentioned algorithms (GSS and NM ) can yield h2 ≈ −1 when
either the interval or initial guess are close to h2, e.g., starting interval [−2,−0.5] for GSS or
−1.5 as initial guess for NM. Therefore, multiple runs under di�erent initial conditions and
subsequent comparison of the function values are required.

6The cost function's zeroes (or global minima) can possibly be ambiguous. This is the case for periodic
p1(x), p2(x).
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Fig. 13: Cost function (left) for the two data sets (right). The cost function has two local minima at
h1 ≈ −0.03 and h2 ≈ −1, but only h1 corresponds to on optimum shift h∗ as it is the global minimum as well.
Even at h1 ≈ −0.03 the cost functions is non-zero, because Cai,bi(−0.03) ≈ 0.6.
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5 RDD and NMP Simulations

The main task of this thesis is to implement a work �ow to study the impact of di�erent po-
sitions of dopant atoms on the capture and emission times calculated by the four-state NMP
model. Both, the four-state NMP model and the RDD approach is implemented in the general
purpose semiconductor device simulator Minimos-NT [19]. Thus, all simulations are carried
through using this particular simulator. Around Minimos-NT a framework of di�erent tools
that enable device generation, results analysis and visualization is steadily developed by Global
TCAD Solutions [20]. For the purpose of this thesis the device generation tool gtsstructure,
the visualization tool gtsvision and the auxiliary tool gtsinfo are used inside a work �ow
that is described in this section [21]. In order to realize the required �le management and
mathematical calculations four Python [22] scripts are implemented. The following discussion
starts from the creation of a pMOSFET device structure and explains the necessary steps to be
able to analyze the discrete dopants' in�uence on capture and emission times for a single trap.

5.1 The PMOSFET Device Structure

The pMOSFET structure which is considered throughout the following investigations is illus-
trated in Fig. 14, with geometrical dimensions of width × length = 150 nm × 100 nm and a
2.4 nm thin SiO2 insulation. As discussed in Section 2.2 for pMOSFETs with dimensions in
the nano-meter regime the recovery proceeds in a discrete manner. Thus, the device is suitable
for capture and emission time measurements of single defects using TDDS (Section 2.3). For
the considered device capture and emission times have been extracted and the four-state NMP
model parameter set was adjusted to reproduce the measured transition time characteristics
(Section 3.1.4). The observed transition times are presented in Fig. 6.

To investigate the in�uence of discrete dopants on the calculated τc,e characteristics various
random discrete dopant distributions are created with Minimos-NT. In Fig. 15 the position of
the individual discrete dopants and the underlying continuous donor concentration is shown.
It is important to emphasize that the discrete dopant distribution is actually generated based
on the continuous donor and acceptor concentrations.
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Fig. 14: Simulation structure for the pMOSFET structure. The colored segments of the pMOSFET schemat-
ically illustrate the materials which have been used for the transistor. All results presented in Chapter 6 were
obtained by investigating this particular structure.

Fig. 15: Dopant distribution for the pMOSFET given in Fig. 14. The colored (red: donors, blue: accep-
tors) spheres illustrate individual dopant positions. The transparent coloring visualizes the continuous donor
concentration which shows a steady decline towards bulk contact.

5.2 Simulation Work Flow

In the following the essential task of setting up a work �ow that provides e�cient simulations
and post processing is presented. It has to be noted that for variability simulations (involving
random discrete dopants) a large number of simulations is required to produce statistically
relevant results. Therefore, a large number (e.g., 1,000 to 5,000) of individual discrete dopant
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distributions has to be considered, leading to long simulation times. Apart from the device
simulations performed with Minimos-NT, post processing, data acquisition and visualisation
with a large dataset give rise to a variety of challenges.

The conceptual work �ow, which has been constructed during this work, is depicted in Fig. 16.
It can be separated into �ve subsequent tasks:

1. Device model initialization (block gtsstructure in Fig. 16)

2. Automated RDD and NMP simulations for 1,000 up to 5,000 dopant distributions
(dVthSim)

3. Post processing to extract transition times, drain currents and gate voltages (processDevice)

4. ∆Vg extraction using the approach of Chapter 4 (deltaVgExtraction)

5. Statistical analysis and visualization (batchStats)

The following sections individually discuss the approaches to solve these tasks.

extrude
2D

pMOS model
3D

pMOS model

gtsstructure

structure �le
structure.devbz

reference
ipdm �le

ipdm �le
Simulator settings

seed for RD generation
0 ... 5000

Minimos NT
NMP/RDD simulation

dVthSim

devbz �le
binary results

gtsinfo

deva �le
plain text results

parseDeva

deva �le parser

capture/emission times
drain current

(gate voltage steps)

processDevice

nmp_trap_out.crv
minimos_out.crv

deltaVgExtractionNMP

deltaVgExtractionID

deltaVgExtraction

nmpTimesOut.crv
idrainOut.crv

statsExtraction

batchStats

Results

statistical parameters
histograms

CDF

Fig. 16: The presented work �ow which was implemented during this thesis. The Elliptical nodes illustrate
�les or objects that serve as input / output �les of processes (rectangular nodes). The larger (outer) nodes
with blue background depict the main subtasks explained in sections 5.2.1 to 5.2.5. The scripts which were
developed within this thesis are printed in bold. Aside from gtsstructure, the outer nodes themselves
illustrate the four main Python scripts.

5.2.1 Device Model Initialization using gtsstructure

Semiconductor device simulations are mostly performed using 2D device structures. The es-
tablished process technology allows precise control of planar structure layering, supporting the
reduction of the 3D devices to simpli�ed 2D structures. Furthermore, a 2D model drastically
saves computation time because only a reduced set of grid points is used.
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By taking random dopant �uctuations into account a simple 2D structure model is not su�-
cient. Consequently, this thesis's work �ow (the �rst part is given in Fig. 17) starts with the
extrusion of the simpli�ed 2D device structure (Fig. 18) to the 3D model which is shown
in Fig. 14. The 2D model covers the geometry and the continuous doping distribution of the
considered device. The extrusion is carried out using gtsstructure, resulting in an output
�le (structure.devbz), which contains the device's geometry and doping information (in bi-
nary format).

extrude
2D

pMOS model
3D

pMOS model

gtsstructure

structure �le
structure.devbz

Fig. 17: Device initialization of the presented device, part of the entire work �ow given in Fig. 16.

Furthermore, the segments which should feature discrete dopants have to be de�ned in the
corresponding simulation setting �le (ipdm �le). In this particular case, only the substrate
segment (called semiconductor in Fig. 14) is con�gured to consider a random discrete dopant
distribution. Additionally, the parameter set for the four-state NMP model is de�ned
in a reference ipdm �le. The reference �le acts as template con�guration �le which is altered
during automatic simulations (see following section) in order to generate di�erent dopant
distributions.

Fig. 18: Original 2D model of the considered pMOSFET device. The coloring (the same as in Fig. 14)
illustrates the di�erent materials which form the individual segments.

5.2.2 Automated RDD and NMP Simulations

In this thesis all simulations were performed using Minimos-NT. When simulating nanoscale
devices quantum mechanical e�ects have to be considered. Quantum mechanical e�ects can
be described by adding additional empirical terms, giving rise to the density gradient (DG)
model. As mentioned in Section 3.2, the inclusion of discrete dopants requires the DG model.
This is because the RDD model has been initially calibrated to nanoscale pMOSFETs using
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the DG approach [2]. To select the DG iteration scheme for simulations the appropriate pa-
rameter has to be set in the corresponding ipdm �le.

In Minimos-NT, two �les are necessary to start a particular simulation: a structure �le (devbz)
and a simulation settings �le (ipdm). The creation of them is described in the previous sec-
tion. It has to be noted that the goal is to simulate 1,000 up to 5,000 di�erent randomly

created discrete dopant distributions (RDD simulations). Using Minimos-NT, a distinctive
distribution is created by a deterministic (pseudo-) random number generator based on a seed
(integer, value set by the user). Therefore, di�erent seeds lead to di�erent dopant distribu-
tions. The seed has to be set in the corresponding ipdm �le.

ipdm �le
Simulator settings

seed for RD generation
0 ... 5000

Minimos NT
NMP/RDD simulation

dVthSim

structure �le
structure.devbz

reference
ipdm �le

devbz �le
binary results

Fig. 19: Overview of the simulation procedure, part of work �ow given in Fig. 16. The Python script dVthSim
automated the simulation sequence involving Minimos-NT as central part.

The automated simulation process is realized by developing a Python script called dVthSim.
Fig. 19 shows the conceptual work �ow for one simulation corresponding to one seed. Actually,
for every integer in the range from 0 to 5,000 (or 1,000) the reference ipdm �le was altered by
setting the seed to the according value. Together with the structure �le (structure.devbz) it
is passed to Minimos-NT to perform the simulation. In that way 5,001 (or 1,001) simulations
are subsequently started and carried out. As gate voltage shift extraction requires a gate
voltage sweep in order to obtain drain current and NMP transition time characteristics (see
Fig. 6 and Fig. 10) every single simulation e�ectively consisted of 40 simulation steps. The
seed value 0 turns RDD o� and thus corresponds to a continuous dopant distribution [19].
The continuous simulation results are used as reference (see Section 5.2.4) to calculate the
gate voltage shifts.

Apart from ipdm �le creation, dVthSim manages the output folder structure and the mem-
orization of the resulting output �les (devbz). As mentioned above, every individual step
during the gate voltage sweep produces one distinctive output �le. It is important to point
out, that the output devbz �les contain the entire simulation results including potential, elec-
tron concentration, work function and much more. The extraction of the relevant parameters
is the target of the next section.

5.2.3 Post-Processing

Minimos-NT provides a multitude of resulting physical quantities from the simulations. For
the calculation of gate voltage shifts only gate voltage, drain current and capture/emission
times are required. The output �les, which contain those quantities, are saved in a binary
�le format. Unfortunately, no parser allowing direct extraction of the parameters has been
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available and thus a workaround has to be employed.

Using the tool gtsinfo the binary devbz output �le was converted to a plain text deva �le.
A deva �le is simply a human-readable representation of the underlying data structure. Since
Minimos-NT uses an advanced cascaded pointer-to-pointer data management, parsing the
resulting deva �le is rather complicated. Supported by Global TCAD Solutions the Python
script parse_deva has been successfully implemented.

The script parse_deva is capable of extracting any scalar parameters like 'potential' from
distinctive segments like 'bulk'. In addition, the exact position of the acceptors and donors
can be extracted. By being capable of these features, parse_deva actually provides more
�exibility than essentially needed for gate voltage shift extraction. Thus, this script can be
recommended for further investigations.

The so far discussed subtasks have been integrated in a Python script called processDevice.
In Fig. 20 the procedure of post-processing work �ow is illustrated. The script's main ob-
jective is to construct two output crv �les for every seed (namely nmp_trap_out.crv and
minimos_out.crv, see Fig. 20). The crv �les contain the capture/emission times or the drain
current as a function of gate voltage, respectively.

gtsinfo

deva �le
plain text results

parseDeva

deva �le parser

capture/emission times
drain current

(gate voltage steps)

processDevice

devbz �le
binary results

nmp_trap_out.crv
minimos_out.crv

Fig. 20: Illustration of the post processing procedure, part of work �ow given in Fig. 16. It is implemented
by the Python script procesDevice.

5.2.4 ∆Vg Extraction

After the processing described in the previous section the produced crv �les have to be statis-
tically evaluated. As can be seen in Fig. 21 a lateral shift of the Id(Vg) and the τc,e(Vg) char-
acteristics is obtained when RDD are considered during our simulations. The assumption
that RDD causes a lateral shift of the reference characteristics, however, is only true in a
de�ned �nite interval. Especially the capture time characteristics deviate from the reference's
shape for Vg < −1 V. It is important to note that the capture and emission times can only be
reasonably analyzed inside those intervals, where experimental data points are available (see
Fig. 6). A further detailed knowledge of τc,e(Vg) characteristics would require more experi-
mental investigations. Therefore, for the application of the lateral shift method is it su�cient
that the prerequisite of Section 4.2 is ful�lled inside the interval −3 V < Vg < −1 V for cap-
ture times and −1 V < Vg < 1 V for emission times. Fig. 21 show that this is the case, thus
the lateral shift method can be applied.
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Fig. 21: Left: Using di�erent random discrete dopant distributions produces a set of Id(Vg) curves (red)
which are shifted relatively to the one originating from assuming a continuous doping distribution (black).
Right: The gate voltage dependence of the capture times shows di�erent lateral shifts for di�erent RDD
distributions.

The lateral shift method is implemented by two Python scripts called deltaVgExtractionNMP,
deltaVgExtractionId, which allowed automated extraction and both are summarized in
Fig. 22 as deltaVgExtraction.

deltaVgExtractionNMP

deltaVgExtractionID

deltaVgExtraction

nmp_trap_out.crv
minimos_out.crv

nmpTimesOut.crv
idrainOut.crv

Fig. 22: The ∆Vg extraction procedure is part of work �ow given in Fig. 16. The Python scripts
deltaVgExtractionNMP and deltaVgExtractionId implement the lateral shift method described in detail in
Section 4.2.

The extraction scripts strictly implement the lateral shift method. Thus, polynomial �ts (on
logarithmic scale), the cost function and the golden section search are included. The minimum
of the cost function is searched by two golden section search iterations (one with halved
starting interval) and another additional call of scipy's [23] function fmin. The Python

implementation of fmin uses the Nelder-Mead method and needs an initial guess, which is
chosen close to zero [24]. By evaluating the cost function at the three obtained minima, the
best gate voltage shift is found. Three di�erent search runs are carried out to minimize the
possibility of falsely yielding a local minimum. Extracts from deltaVgExtractionNMP are
given below.

Listing (deltaVgExtractionNMP)

def interpolated_log(vg, tauc , fitInterval , order):

xv = [ ], yv = [ ]

for i, v in enumerate(vg):

if v >= fitInterval [0] and v <= fitInterval [1]:

xv += [ v ]

yv += [ log10(tauc[i]) ]
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#return coefficients of polynomial: a_n , ... a_2 , a_1 , a_0

return polyfit(xv , yv , order)

def polynomial(x, coeff ):

poly_value = 0

deg = poly_degree(coeff)

for i, c in enumerate(coeff):

poly_value += coeff[deg - i - 1] * x**i

return poly_value

#score function = cost function

def scorefunction(deltaVg , coeffSim , coeffRef , fitInterval ):

STEP_N = 250

error = 0

x = linspace(fitInterval [0], fitInterval [1],

num=STEP_N ). tolist ()

for i in x:

error += (polynomial(i, coeffRef) -

polynomial(i - deltaVg , coeffSim ))**2

return error

def calculateVgShift(referencePath , simPath ):

.

.

.

#fit polynomial to log tauc inside measurement data interval

fitInterval = (-2.4, -1)

coeffRef = interpolated_log(vgR , taucRef , fitInterval , 4)

coeffSim = interpolated_log(vgR , taucSim , fitInterval , 4)

#find minimum

#gss ... golden section search

deltaVg_g = gss(scorefunction , -2, 2,

fargs = (coeffSim , coeffRef , fitInterval ))

deltaVg_l = gss(scorefunction , -1, 1,

fargs = (coeffSim , coeffRef , fitInterval ))

initialGuess = 0.1

deltaVg_n = fmin(scorefunction , initialGuess ,

args = (coeffSim , coeffRef , fitInterval ))[0]

f_g = scorefunction(deltaVg_g , coeffSim , coeffRef , fitInterval)

f_n = scorefunction(deltaVg_n , coeffSim , coeffRef , fitInterval)

f_l = scorefunction(deltaVg_l , coeffSim , coeffRef , fitInterval)

As illustrated in Fig. 22, the extraction process produces output crv �les, which contain the
seed value and the corresponding ∆Vg value. The subsequent statistical analysis is described
in the next section.

5.2.5 Statistical Analysis and Visualization

For the purpose of statistical analysis the Python script batchHistogram (see Fig. 23) is
implemented. It is capable of

• extracting the statistical parameters (mean, standard deviation, skew(ness)),
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• generating histograms and

• plotting the empirical cumulative distribution function (eCDF).

statsExtraction

batchStats

nmpTimesOut.crv
idrainOut.crv

Results

histograms
statistical parameters

CDF

Fig. 23: ∆Vg statistical analysis as part of the work �ow given in Fig. 16. The Python script batchStats

calculates statistical parameters and creates histograms and eCDFs by using gnuplot.

The statistical parameters are extracted directly from the (output) crv �les nmpTrapOut.crv
or idrainOut.crv) using the sample mean

∆Vg =
1

N

N∑
i=1

∆Vg,i, (6)

the sample standard deviation

s(∆Vg) =

√√√√ 1

N − 1

N∑
i=1

(∆Vg,i −∆Vg)2 (7)

and the sample skewness [25]

g(∆Vg) =

√
(N − 1)N

N − 2

1
N

∑N
i=1(∆Vg,i −∆Vg)3(

1
N

∑N
i=1(∆Vg,i −∆Vg)2

)3/2
, (8)

where N is the number of simulations with di�erent discrete dopant distributions.

The histograms are plotted using gnuplot. It has to be noted that histograms generally
are signi�cant only if the width of the bins is suitably chosen. Since a-priori estimation of
the appropriate bin width is di�cult in automated histogram generation, additionally the
empirical cumulative distribution function (eCDF) is plotted. The eCDF is de�ned as [26]

F̂ (∆Vg) =
1

N

N∑
i=1

I(−∞,∆Vg](∆Vg,i), (9)

where I denotes the indicator function, given by

IA(x) :=

{
1 if x ∈ A,
0 if x /∈ A

. (10)

When using eCDFs no a-priori choices have to be made. However, cumulative distribution
functions are not always easy to interpret. A possible auxiliary tool is the probit function,
which is further discussed in Chapter 6.
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6 Results

The simulation and post-processing work �ow described in Chapter 5 shows the entire pro-
cess �ow used to get information on how RDD in�uence macroscopic Id(Vg) and microscopic
τc,e(Vg) characteristics of single traps. In Section 2 it is presented that the study of NBTI is
a major issue regarding device reliability. Fig. 14 shows the model for an actual pMOSFET
which has been experimentally investigated using TDDS (see Section 2.3). The experiments
resulted in capture and emission time versus gate voltage characteristics τc,e(Vg) as depicted
in Fig. 6. It is important to note that the acquired emission times τe of a single trap showed
no gate voltage dependence, a behavior we link to so called �xed traps. Based on the experi-
mental results the four-state NMP model has been calibrated to reproduce the experimental
time characteristics. The �nal con�guration of the four-state NMP model's parameters is
presented in Appendix A.

With the four-state NMP model being calibrated, the τc,e(Vg) and additionally Id(Vg) char-
acteristics in presence of discrete dopants can be simulated and analyzed using the procedure
presented in Section 5.2.4. In the following the impact of channel doping and trap position
on the ∆Vg distribution is presented and discussed. It has to be noted that ∆Vg distributions
are equivalent to threshold voltage shift (∆Vth) distributions.

6.1 Normal Trap at Fixed Position

In Chapter 5 the investigated pMOSFET structure is presented (Fig. 14). Since the impact of
RDD distributions is determined by the prevalent acceptor or donor concentration, a strong
doping dependence of ∆Vg distributions is expected. For the discussed pMOSFET the contin-
uous acceptor and donor distribution model is appropriately chosen to obtain the same global
operational properties as the investigated structure has shown in experiment. The resulting
distributions are shown in Fig. 24. In a pMOSFETs, the channel interaction with the oxide is
de�ned by donor concentration, which has in the underlying case a peak value of 1018 cm−3.
The doping distribution given in Fig. 24 is therefore called '1018 cm−3-doping' in the following.

Fig. 24: Left: Acceptor concentration and Right: donor concentration for the considered pMOSFET.

To characterize the basic RDD distribution in�uence on the capture and emission times, the
simple case of a single trap is considered �rst. Two di�erent simulation settings are set up.
One with a single trap located at the center point of the channel and another one with
the defect near the source contact.
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6.1.1 Single Fixed Trap located at Center of Gate Oxide

For the �rst investigations, a single defect is placed at the geometric center of gate oxide
region, as illustrated in Fig. 25). It is has to be noted that this particular and all further
traps are positioned 0.354 nm above semiconductor-oxide interface. This position is given by
the four-state NMP model and is a crucial parameter when simulated capture and emission
times are adjusted to experimental data. The doping concentration is set to the distribution
depicted in Fig. 24.

Fig. 25: Illustration of the 3D model of the used structure. The red sphere indicates the position of the single
trap. Along the y-axis the trap is located at distance of 0.354 nm away from semiconductor-oxide interface
towards the gate, which is a result of the four-state NMP model.

For gate voltage shift extraction 5,000 di�erent discrete dopant distributions have been simu-
lated and processed with the methods described in Chapter 5. The resulting histograms can
be seen in Fig. 26. The ∆Vg values obtained from the Id(Vg) characteristics are found to be
normally distributed (Fig. 26b). As expected based on the fact that the individual discrete
dopant distributions are derived from continuous distributions, the mean value is close to zero.

(a) (b)

Fig. 26: Gate voltage shift histograms for a single �xed trap located at the center point of gate oxide and for
a donor concentration of 1018 cm−3. a) ∆Vg extracted from τc,e(Vg) characteristics, b) ∆Vg obtained from
transfer characteristics. The drain-source voltage VDS is set to constant −0.1 V.

The gate voltage shifts obtained from τc,e(Vg) characteristics, do not show a normal distribu-
tion, but are possibly Weibull distributed, see Fig. 26a. To eliminate possible misinterpreta-
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tions arising from the binning of the histogram, empirical cumulative distribution functions
(eCDFs) (9) are calculated and plotted in Fig. 27. eCDFs provide a further analysis method,
which is based on quantile or inverse cumulative distribution functions. To test if an un-
derlying data set is normally distributed, the inverse cumulative distribution function of the
standard normal distribution (which is called probit function)

P (p) =
√

2 erf−1(2p− 1) (11)

is calculated. If the tested distribution is normally distributed X ∼ N (µ, σ2) with Mean µ
and variance σ2 the cumulative distribution function is given by

Φ(x) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]
. (12)

The function composition (P ◦ Φ)(x) = P (Φ(x)) yields

Φ(x) =
√

2 erf−1

[
1− 1 + erf

(
x− µ
σ
√

2

)]
=
x− µ
σ

, (13)

which is a linear function. In Fig. 28 the probit function was plotted for the eCDFs from
Fig. 27. The ∆Vg values obtained from Id(Vg) characteristics clearly transforms to a linear
function, con�rming a normally distributed data set. In contrast, the eCDFs originating from
τc,e(Vg) characteristics do not transform to a linear function. Thus, the gate voltage shifts
obtained from the τc,e(Vg) characteristics can not be described by a simple normal distribution.

(a) (b)

Fig. 27: The empirical cumulative distribution functions (eCDFs, eqn. 9) for a single �xed trap located at the
center of the gate oxide and a donor concentration of 1018 cm−3. a) ∆Vg extracted from τc,e(Vg) characteristics
and b) ∆Vg obtained from transfer characteristics.
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(a) (b)

Fig. 28: The probit functions (eqn. 11) applied on the empirical cumulative distribution functions (eCDFs)
for a single �xed trap located at the center of the gate oxide and a donor concentration of 1018 cm−3. a) ∆Vg

extracted from τc,e(Vg) characteristics, b) ∆Vg obtained from transfer characteristics. As b) represents nearly
a perfect straight line, this distribution can be considered normally distributed. In contrast, the distribution
from a) cannot be described by a normal distribution.

For the next simulations the bulk doping concentration is altered. More precisely, the donor
concentration is pointwise reduced or raised by the factor of 10. The resulting histograms
are compared in Fig. 29. The ∆Vg values extracted from the calculated capture and emission
time are very noticeable. Fig. 29a clearly shows an elevated doping concentration depen-
dence. For donor concentration ND = 1017 cm−3 the ∆Vg distribution shows a sharp peak
located around ∆Vg = 0 V. This means that the impact of RDD on capture and emission
times is negligible. An increased donor concentration (ND = 1019 cm−3) leads to signi�cant
broadening of the ∆Vg distribution. Furthermore, the gate voltage shifts for this doping
concentration can be considered normally distributed.

The ∆Vg distribution based on transfer characteristics maintains the normal distributed shape
and show a broadening with rising donor concentration (Fig. 29b). Most surprisingly, a
mean value shift towards negative values, is clearly observable. The statistical parameters
for the distributions shown in Fig. 29 are summarized in Tab. 1 and Tab. 2.

(a) (b)

Fig. 29: Gate voltage shift histograms for a single �xed trap located at the center of the gate oxide for
di�erent donor concentrations. a) ∆Vg extracted from τc,e(Vg) characteristics and b) ∆Vg obtained from
transfer characteristics.
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ND in cm−3 µ in V σ in V g

1017 1.65-04 5.25e-03 6.33

1018 2.83e-03 2.06e-02 1.25

1019 -5.21e-03 7.05e-02 0.35

Tab. 1: Statistical parameters mean µ, standard deviation σ and skewness g for di�erent donor concentration
ND. The gate voltage shift distributions were obtained from the τc,e(Vg) characteristics and the corresponding
histograms are given in Fig. 29a.

ND in cm−3 µ in V σ in V g

1017 3.79e-04 1.43e-02 3.25e-02

1018 -6.45e-03 1.82e-02 1.27e-02

1019 -2.93e-02 1.96e-02 8.26e-02

Tab. 2: Statistical parameters mean µ, standard deviation σ and skewness g for di�erent donor concentration
ND. The gate voltage shift distributions were obtained from the Id(Vg) characteristics and the corresponding
histograms are shown in Fig. 29b.

6.1.2 Single Fixed Trap near the Source Side of the Channel

Next we want to account for the dependence of the ∆Vg distribution on the trap position.
Therefore, the trap is placed near the source side of the channel, highlighted by the green
square in Fig. 30. For the sake of completeness, the central trap position considered in Sec-
tion 6.1.1 is marked with a violet square.

Source Gate Drain

0 67 104.5 117 129.5 142 154.5 167 234

125

100

75

50

25

Fig. 30: Schematic top view of the di�erent trap position investigated for the pMOSFET. The violet square
illustrates the trap located at the center point as discussed in Section 6.1.1, the green square indicates the
trap located at the source side of the channel (Section 6.1.2). The circles denote the positions investigated
in Section 6.2, red: Fig. 34, blue: Fig. 35. The violet circle indicates that this position is included in both
(Fig. 34 and Fig. 35). All dimensions are given in nm.

For the trap located at the source side of the channel 5,000 simulations are carried out and
the resulting histograms for a donor concentration of ND = 1018 cm−3 are shown in Fig. 31.
Whereas the transfer characteristics show the same ∆Vg distributions obtained from the trap
located in the center of the device, a di�erent and noteworthy ∆Vg distribution for the capture
and emission times is visible, see Fig. 31. Apart from the dominating peak around zero, an
additional small side peak can be observed.
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Varying the donor concentration leads to the histograms shown in Fig. 32. By comparing
Fig. 32b and Fig. 29b it is visible that a change of trap position does not alter the ∆Vg

distributions associated with Id(Vg) characteristics. The ∆Vg distributions obtained from
τc,e(Vg) characteristics, see Fig. 32a, remain unchanged for the considered donor concen-
trations. The statistical quantities listed in Tab. 3 support this �ndings. It is imported to
note that the acceptor doping which predominantly a�ects source region has not been al-

tered. Based on the observation that the ∆Vg distribution does not change with varying
donor concentration we conclude that the statistical variation of the donor atoms is negligi-
ble. However, the capture and emission times are seriously determined by the electrostatic
potential present within the channel. For the trap located at the source side electrostatics is
dominated by the high acceptor concentration of the source region.

(a) (b)

Fig. 31: Gate voltage shift histograms for a single �xed trap located near the source side of the channel for
the pMOSFET with a donor concentration of 1018 cm−3. a) ∆Vg extracted from τc,e(Vg) characteristics and
b) ∆Vg obtained from transfer characteristics.

(a) (b)

Fig. 32: Gate voltage shift histograms for the pMOSFET with a single �xed trap located near the source
side of the channel and varying donor concentrations. a) ∆Vg extracted from τc,e(Vg) characteristics and
b) ∆Vg obtained from transfer characteristics.
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ND in cm−3 µ in V σ in V Skewness g

1017 2.19e-02 2.38e-01 1.11

1018 2.24e-02 2.38e-01 1.11

1019 3.00e-02 2.31e-01 1.15

Tab. 3: Statistical parameters mean µ, standard deviation σ and skewness g for di�erent donor concentration
ND. The gate voltage shift distributions were obtained from the τc,e(Vg) characteristics and the corresponding
histograms are visible in Fig. 32a.

So far the ∆Vg distributions extracted from Id(Vg) and τc,e(Vg) characteristics have been
analyzed separately. In order to check for a possible statistical correlation between both
distributions, correlation plots are created and shown in Fig. 33. As can be seen, a weak
correlation is visible for the data from the trap located at the center point of the pMOSFET's
channel. To quantify a possible linear correlation the correlation coe�cient

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(14)

is evaluated. The correlation coe�cient for the trap located in the center is r = 0.337 and
for the trap located near the source side r = −0.004. In the �rst case only a weak linear
correlation is thereby present, whereas in the second case no linear correlation is prevalent.
It is important to note that a non-linear correlation can not be excluded, as it would require
further investigations [26].

(a) (b)

Fig. 33: Correlation diagrams for one single �xed trap located a) at the center point of gate oxide and b)
near the source side of the channel. The donor concentration is for both cases set to ND = 1018 cm−3.

6.2 In�uence of Trap Position

The observed strong position dependence of ∆Vg distributions suggest further investigations.
For that 25 additional trap positions are simulated. In Fig. 30 the di�erent investigated trap
positions are indicated by the intersection of the gray lines inside gate region. The donor
concentration is set to constant ND = 1018 cm−3 and for each trap position 1,000 simulations
are carried out. The subsequent simulation data analysis is based on the same techniques
described in the previous sections. A characteristical behavior when altering the position
horizontally (between source and gate) and vertically can be observed.

The positions that are marked with red circles in Fig. 30 (including the violet circle) are con-
sidered �rst to study the horizontal trap position dependence an the ∆Vg distributions.
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The corresponding histograms can be seen in Fig. 34. For the ∆Vg distributions based on
τc,e(Vg) characteristics essentially a Weibull distribution is observable for all positions. The
closer the trap is located to the drain side of the channel, the narrower and more pronounced
is the peak. The ∆Vg values obtained from transfer characteristics, however, do not change
along horizontal variation.

The investigations of the vertical trap position dependence are shown in Fig. 35, where
it can be seen that the histograms only change slightly. These results suggest that on one
hand the transfer characteristics remain una�ected by position variation, while on the other
hand the distance between source/drain regions and trap position hugely a�ects τc,e(Vg) char-
acteristics.

(a) (b)

Fig. 34: ∆Vg distributions for di�erent trap positions which are visible as red circles in Fig. 30. The horizon-
tal variation of the trap position has a impact on the ∆Vg distribution calculated from a) τc,e(Vg) charac-
teristics. In contrast the b) Id(Vg) characteristics appear una�ected by the varying trap position. The donor
concentration is set to ND = 1018 cm−3.

(c) (d)

Fig. 35: ∆Vg distributions for di�erent trap positions which are visible as red circles in Fig. 30. The vertical
variation of the trap position has a only a negligible impact on both the ∆Vg distribution calculated from a)
τc,e(Vg) characteristics and b) Id(Vg) characteristics The donor concentration is set to ND = 1018 cm−3.
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7 Summary and Outlook

In this thesis the interaction between two individually developed and implemented models,
namely the four-state NMP model and the random discrete dopants (RDD) approach, was
investigated. Both models are implemented in the established general purpose semiconductor
device simulator Minimos-NT developed at the Institute for Microelectronics. A data pro-
cessing algorithm called lateral shift method enabled a quanti�cation of that interaction by
calculating gate voltage shifts ∆Vg, which are equivalent to the threshold voltage shifts ∆Vth.
The following results were obtained from analyzing a pMOSFET structure with geometrical
dimensions of width × length = 150 nm× 100 nm and one single �xed trap placed inside the
gate oxide:

• Gate voltage shifts ∆Vg obtained from the macroscopic transfer characteristics are
normally distributed. Mean value and standard deviation are independent from trap
position and donor concentration. In particular, varying trap positions do not cause a
change of those statistical parameters.
An increase of the donor concentration causes a shift of the mean value of ∆Vg towards
more negative values.

• Gate voltage shifts derived from the microscopic capture and emission time char-
acteristics (calculated by employing the initially calibrated four-state NMP model) are
very sensitive to both, trap position and donor concentration. For the former, the dis-
tance between the trap position and source or drain region is essential. If the trap is
located close to the source/drain side of the channel, the capture and emission times do
not depend on donor concentration, but are determined by acceptor concentration,
which predominantly de�ne electrostatics there.
For a trap placed at the center of the gate oxide variation of donor concentration leads
to a alteration of the underlying probability distribution (listed in Tab. 4).

• In the case of traps located near source or drain, the resulting ∆Vg distributions ex-
tracted from capture/emission time characteristics surprisingly show a second peak
(Fig. 31a).

• The analysis if any correlation between ∆Vg distributions obtained from transfer charac-
teristics and ∆Vg distributions from capture and emission time characteristics is present
reveals a weak linear correlation for traps located at the center traps and no linear
correlation for traps located near the source side of the channel.

Donor Concentration ND in cm−3 Probability Distribution

1017 Delta Distribution located at ∆Vg = 0

1018 Weibull

1019 Gaussian

Tab. 4: Summary of ∆Vg probability distributions obtained from τc,e(Vg) characteristics for di�erent donor
concentrations. The corresponding histograms are shown in Fig. 29a

In an extensive study the impact of RDD on the capture and emission times calculated
using the four-state NMP model was investigated. To strengthen the �ndings in this work
a larger number of traps with di�erent four-state NMP model parameter sets relying on
experimental data of di�erent defects have to be analyzed. The origins of the prevalent
second peak in the gate voltage shift distributions for traps located near source or drain have
to be further investigated. Additionally, di�erent MOSFET technologies, for instance high-k
gate oxide structures, have to be studied. As noted within this work, RDD weakly in�uence



35

the capture and emission time characteristics. This would lead to slightly di�erent four-state
NMP model parameters for di�erent dopant distributions, a circumstance not considered so
far. Furthermore, a more re�ned trap position variation analysis is also required. Finally,
based on further investigations a more complex understanding of the trapping kinetics and
interplay between device physics and device reliability can be achieved.
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A Appendix

Extracts from the ipdm �le used to con�gure Minimos-NT.

#include <defaults.ipd >

Device : ~DeviceDefaults

{

.

.

Phys

{

+bandGapNarrowing = "";

+quantumCorrection = "";

+Gate

{

Contact

{

Ohmic

{

Ew = -0.07 "eV"; //0.2 "eV";

}

}

}

+Semiconductor

{

randomDopantGeneration = "Grid";

RandomDopantGeneration

{

Grid

{

randSeed = 1;

}

}

}

nmp = "*";

+Oxide

{

nmpTunneling = "Simple";

NmpTunneling

{

Simple

{

tunnelMass_e = 0.3;

tunnelMass_h = tunnelMass_e;

}

}

nmpTrap = "FourState";

NmpTrap

{

FourState

{

// optimized values , fs235 , Waltl 21.10.2015

E1_mean = -0.544908934440235 "eV";

E1p_mean = 0.249999999994772 "eV";

singleTrapInput = true;

xPos = 117e-09 "m";

yPos = 3.5421307942866e-10 "m";

zPos = 75e-09 "m";
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captureCrossSection = 1.392604400379e-14 "m^2";

captureCrossSection_metal = 1.61137127020717e-18 "m^2";

attemptFrequency = 10000000000000.0 "1/s";

trapType = "Hole";

R12p_mean = 0.553921262571387;

S12p_mean = 1.30836092232229;

R1p2_mean = 1.0;

S1p2_mean = 50.0;

EpsT2_mean = 0.430469829727224 "eV";

Eps1p1_mean = 0.4 "eV";

Eps2p2_mean = 0.424122660327096 "eV";// 0.5 //0.3 "eV";

bandEdgeApproximation = false;

tunnelingSegments = "Gate , Semiconductor";

}

}

}

}

+Source = 0.0 "V";

+Gate = step(1 "V",-3 "V", 0.10 "V") ;

+Drain = -0.1 "V";

+Bulk = 0.0 "V";

}

Iterate : IterateDefaults

{

Scheme : SchemeDefaults.DG

{

}

}

Curve : CurveDefaults

{

Response

{

+VSource = output("Device", "V", "Source");

+ISource = output("Device", "I", "Source");

+VGate = output("Device", "V", "Gate");

+IGate = output("Device", "I", "Gate");

+VDrain = output("Device", "V", "Drain");

+IDrain = output("Device", "I", "Drain");

+VBulk = output("Device", "V", "Bulk");

+IBulk = output("Device", "I", "Bulk");

}

}

.

.

.

Solve : SolveDefaults

{

T = 398 K;

}
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