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Zusammenfassung

In den letzten Jahren werden beim Design von modernen Halbleiterbauelementen
immer mehr dreidimensionale Layouts verwendet. Die Zahl der Probleme, die mit
einer zweidimensionalen oder symmetrischen Simulation angenähert werden kön-
nen, nimmt ab. In vielen Fällen ist eine komplette dreidimensionale Simulation
notwendig um die Halbleiterbauelemente zu entwickeln. Dies erhöht den Druck auf
die Rechenleistung der Simulationsmethoden noch weiter. Ein wichtiger Prozess
in der Halbleiterherstellung ist das Ätzen. Ein wesentlicher Teil der Ätzsim-
ulation ist die Berechnung der von einer Partikelquelle kommenden Flussraten
auf der Ober�äche einer Geometrie. Diese Flussberechnung ist typischerweise
der zeitaufwändigste Teil der Ätzsimulation. Diese Arbeit beschäftigt sich mit
der direkten Flussratenberechnung einer dreidimensionalen Geometrie mit Intels
Raytracing-Bibliothek Embree. Im Kontrast zum klassischen Ansatz, Strahlen
an der Simulationsgrenze neu zu berechnen, werden die Randbedingungen durch
Instanziierung, wie es in der Computergraphik verwendet wird, modelliert. Wir
implementieren eine di�use und verschiedene gerichtete Strahlenquellen um prak-
tische Relevanz sicherzustellen. Um einen Richtwert für die Leistung zu geben,
werden verschiedene Testfälle präsentiert und der Ein�uss von Instanziierung,
Strahlenquelle und Geometrie auf die Simulationszeit diskutiert. Zusätzlich wird
das Rauschen der Flussraten, welches durch das Monte Carlo Sampling verursacht
wird, analysiert. Die Ergebnisse zeigen, dass das Modellieren von Randbedingun-
gen mittels Instanziierung ein attraktiver Ansatz ist, der eine erhebliche Beschle-
unigung der Ätzsimulation bietet.



Abstract

In the past years, the design of advanced semiconductor devices increasingly em-
ploys three-dimensional layouts. Situations where the problem of interest could be
approximated with a two-dimensional or symmetric simulation are decreasing. In
many cases, a full three-dimensional simulation is necessary to design the devices.
This increases the pressure on the computational performance of the simulation
methods even more. An important process in semiconductor fabrication is etching.
An integral part of an etching simulation is the calculation of the �ux rates on the
surface of the geometry originating from a particle source. This �ux calculation
is typically the most time consuming part in the etching simulation. This thesis
focuses on the calculation of the direct (primary) �ux rates of a three-dimensional
geometry using Intel's ray tracing library Embree. The boundary conditions are
modeled using instancing as used in computer graphics in contrast to the classic
approach to recalculate the rays at the simulation boundary. We implement a
di�use and various directed ray sources to ensure practical relevance. To give an
indication for the performance, di�erent test cases are presented and the in�uence
of instancing, ray source and geometry on the simulation time are discussed. Addi-
tionally, the noise of the �ux rates due to Monte Carlo sampling is analyzed. The
results show that using instancing to model boundary conditions is an attractive
approach that o�ers substantial speed-up of the etching simulation.
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1 Introduction

In recent years the miniaturization of semiconductor technology is approaching
physical boundaries leading to more complex structures. Therefore, sophisticated
semiconductor product development uses numerical models to analyze and pre-
dict process and device characteristics. This �eld of modeling is referred to as
Technology Computer-Aided Design (TCAD) and is widely used in the semicon-
ductor industry by engineers in the design process. TCAD tools allow it to get a
deeper understanding of the technology and lower costs of development and man-
ufacturing [1].

In the beginning of TCAD, simulations were limited to one- or two-dimensional
models due to the lack of computing power and memory. With the progress in
processing capabilities of computer hardware, three-dimensional (3D) TCAD was
made available, making it possible to better analyze and understand technology
through simulation. On the other hand, the vast advances in the semiconductor
industry and the increasingly complex structures are demanding a full 3D simu-
lation as two-dimensional representations give insu�cient results and symmetry
approximations are often not possible [2].

Today's 3D TCAD applications have high accuracy requirements and are large
scale, demanding a lot of computing power, thus slowing down the development
process. To keep the design time at a reasonable level, simulation time needs to
be decreased while accuracy and resolution has to be at least maintained.

Within TCAD, process simulation is used to predict the device fabrication steps.
The thus generated device is then used to determine the electrical characteristics
via device simulations [2]. In turn, the characteristics are forwarded to circuit
simulations to predict the behavior of an ensemble of devices. This work operates
within the �eld of process simulation, as such as the here presented �ndings will
allow to accelerate parts of the essential surface evolution simulations required for,
e.g., etching simulations [3].
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1.1 Plasma Etching - Physical Process

A key part in the fabrication of modern semiconductor devices is plasma etching
as it allows e�ciently to produce anisotropic etch pro�les with a high yield. The
general concept of plasma etching is that chemically reactive plasma discharges are
used to alter the surface of materials. There are various kinds of etching processes
that di�er in directionality, selectivity, etch rate and yield [4].

Some commonly used plasma processes to remove material from surfaces are il-
lustrated in Figure 1.1 [5]. Sputtering, shown in Figure 1.1a, is the process of
atom ejection due to bombardment with energetic ions. Chemical plasma etching
(Figure 1.1b) uses gas-phase neutral atoms supplied by the plasma discharge that
react with the surface material forming volatile etch products and leading to the
removal of material from the surface. Ion enhanced etching, illustrated in Fig-
ure 1.1c, is the combination of both, chemical reactions with neutral atoms and
bombardment with ions [6].

(a) sputtering (b) chemical (c) ion enhanced

Figure 1.1: Plasma etching processes

1.2 Plasma Etching - Simulation

The process of plasma etching can be modeled as ballistic transport of particles
that hit the geometry surface. This causes a reaction at the surface element and
depending on the materials leads to a local etchrate on the surface. This evolving
of the surface is modeled in timesteps as illustrated in Figure 1.2. Due to the
assumption of ballistic sources, the particles can be represented by rays allowing
similar ray tracing methods as are used in computer graphics [7]. The rays emitted
by the sources are referred to as primary or direct rays. In the process of plasma
etching the particles can be reemitted after hitting the surface. These are modeled
as re�ections and are referred to as secondary rays. As the surface changes, a new
�ux calculation is performed for each timestep, making it very time consuming as
the �ux calculation is the bottleneck of the simulation [8].
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Figure 1.2: Schematic of three geometries (mask and bulk) corresponding to three
timesteps in an etching simulation. A di�use planar source is indicated
with the bold line and the rays at the top. The dotted line indicates
the area where the �ux has to be computed.

In Figure 1.3, the simulation �ow is illustrated. After the setup of ray sources,
geometry, and material models, a loop is entered where �rst the �ux for all surface
elements is calculated. With this information and the material model, the reac-
tion of the surface elements is calculated. After that, the surface representation is
updated and the loop starts again. For each timestep the loop is run through and
after a speci�ed number of steps the �nal surface representation is the result [9].
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Figure 1.3: Simulation of an etching process. Starting with an initial setup, the
main loop calculates the �ux distribution and surface reaction for all
surface elements, and updates the surface representation. After n time
steps, the �nal surface representation is generated.

1.3 Geometric Boundary Conditions

Geometric boundary conditions describe what happens when a ray exits the bound-
aries of the simulation domain. The two general types are the re�ective and the
periodic boundary conditions. With the periodic boundary condition, the rays are
reemitted with the same direction on the opposite side of the domain, as illustrated
in Figure 1.4a. With the re�ective boundary condition, illustrated in Figure 1.4b,
the rays are re�ected at the boundary.

The classical approach is to recalculate the ray direction and position at each
intersection with the boundary. Instead of this recalculation, this thesis evaluates
an approach to use instancing to model the boundaries of the domain. The initial
geometry is extended by placing instances according to the boundary conditions.
The rays, which all start above the initial geometry, are traced against the extended
geometry and do not have to be recalculated at the intersection with the boundary.

To enable an instancing approach for re�ective and periodic boundary conditions
the simulation boundary box has to be rectangular. Otherwise, depending on
the geometry, only one of the boundary conditions or none can be modeled using
instancing. The instancing approach is described in more detail in Section 2.2.
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(a) Periodic (b) Re�ective

Figure 1.4: Di�erent boundary conditions. a) Periodic: Exiting rays reenter do-
main at the opposite side of the domain with same direction. b) Re-
�ective: Exiting rays are re�ected into the domain.

Furthermore, the surface is de�ned to be explicitly represented as a triangle mesh.
Generally a surface can be represented implicitly, typically using a level set, or
explicitly, where a common choice is a triangle mesh [10]. To be able to utilize the
implementations of modern ray tracing frameworks (e.g. Embree [11]) we use a
triangle mesh in this work.

The source is modeled as a plane above the surface. The secondary rays are
not considered in this thesis, only the direct (primary) �ux is simulated.

With this de�nition the input parameters of this problem are:

� A triangulated mesh of the surface with a rectangular boundary box

� The boundary condition

� The ray source and the number of rays

The output of the simulation is:

� The direct �ux rate for each triangle

5



1.4 Outline of the Thesis

In Section 2, the implementation of the ray sources is described and the approach
to model boundary conditions using instancing is introduced and explained. Intel's
ray tracing library Embree and the Visualization Toolkit (VTK) along with the
main functions from these frameworks used in this thesis are described in Section 3.
Section 4 presents and discusses the ray distribution and the direct �ux results.
The consequences of noise on the direct �ux rates are analyzed. The impact of
instancing, di�erent ray sources and number of triangles on the performance of the
simulation is discussed in Section 5. The summary in Section 6 gives an overview
over the main results of this thesis.
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2 Methods

In this section the main methods are described. First, di�erent ray sets are im-
plemented to be able to simulate reasonable test cases. Second, it is described
how instancing can be used to model the periodic and re�ective boundary condi-
tions. Finally, the direct �ux calculation is explained and the absolute, relative
and normalized �ux rates are de�ned.

Figure 2.1: Algorithm for direct �ux simulation. Ray calculation and tracing can
be done in parallel as indicated in loop.
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To give an overview, the simulation algorithm is presented in Figure 2.1. The
�rst step of the simulation is to read the simulation setup and the geometry mesh.
That includes information about boundary condition, ray source, number of rays
and the size and form of the instance extension. After importing the triangulated
geometry mesh, transformation and rotation matrices for instancing are computed
and the scene with all instances is built. Next the time consuming simulation
loop is entered. For each loop run the origin and the direction of a ray are deter-
mined. A ray tracing algorithm is used to calculate if and where the ray hits the
geometry mesh. The information of ray hits is later used for the �ux calculation.
Depending on the available hardware and methods used the ray tracing loop can
be run sequentially or using multiple compute units in parallel. When all rays
are processed the direct �ux rates are calculated and optionally the results can be
processed further (e.g. statistical analysis).

2.1 Ray Source Modeling

In general, there are two approaches to get the �ux contribution of the source
towards each surface element: a) The bottom-up approach shown in Figure 2.2a
and b) the top-down approach illustrated in Figure 2.2b and 2.2c.

In the bottom-up approach the visibility of the sources is viewed from the per-
spective of the surface element and the �ux is determined by integration over the
solid angle in which the source is visible.
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(a) Bottom-up (b) Top-down with di�use

source

(c) Top-down with di-

rected source

Figure 2.2: Di�erent methods and di�erent source types for direct �ux calculation.
a) In the bottom-up approach, for each surface point, the source con-
tribution is integrated over the visible solid angle. b) In the top-down
approach, the source is sampled using a MC approach and the contri-
butions are detected on the surface elements. c) When the source is
highly directed, the �ux rates change abruptly when entering a shad-
owed region.

The accuracy can be controlled locally by changing the sample resolution of the
direction. The top-down approach, as used in this thesis, is a MC technique that
samples the angular distribution of the source using a high number of rays.

2.1.1 Monte Carlo Sampling

With MC sampling the areal source is sampled with a large number of rays. The
trajectory of the rays has to be calculated and the �rst surface intersection has to
be determined. The direct �ux is determined by the number of hits the surface
element gets and the accuracy is controlled by the total number of rays. The
emission characteristics of the source determine the origins and directions of the
rays. As MC sampling is a numerical approximation there is a noise that depends
on the number of rays and on the spatial resolution of the geometry. A higher
number of rays reduces the noise, whereas a higher number of triangles increases
it [12]. The e�ect of the noise on the direct �ux rate is presented in Section 4.3.
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2.1.2 Ray Sets

To be able to simulate a variety of problems a couple of di�erent ray sets were
analyzed: a parallel ray set, a di�use ray set and a power cosine ray set. The rays
were implemented as areal sources where the origins are placed randomly with a
uniform distribution across the source plane. The di�use and power cosine ray
set were additionally implemented as a point source where all rays share the same
origin. As we assume a rectangular simulation boundary box the source plane is
a rectangular area as big as the geometry's horizontal outline. The position of
the source plane is usually close to the highest point of the geometry so that the
number of required instances is kept at a minimum.

In the following, we de�ne the vertical direction to be the z-axis and the hori-
zontal plane to coincide with the xy-plane.

Parallel Ray Set

The parallel ray set is straight forward. All rays have the same direction and the
origins are distributed as described above. An illustration of this ray set is given
in Figure 2.2c where all emitted rays have the same direction. it also shows the
e�ect of shadowing where due the parallel direction some areas cannot be reached
by the rays.
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Di�use Ray Set

In the di�use ray sets the rays are emitted in every direction with equal probabil-
ity. In Figure 2.2b, the di�use ray set is illustrated originating from one point of
the surface. The implementation of this is the same problem as picking a random
point on a surface of a sphere. George Marsaglia provided a method to solve this
problem using two independent uniform distributions to create a single uniform
distribution on the surface of a unit sphere [13]. This method was used for the
analysis.

Formally the di�use and also the power cosine ray set can be described with
the cumulative distribution function F or the probability density function f . We
de�ne θ to be the polar angle (angle between the z-axis and the ray) and ϕ to
be the azimuth angle (angle between the xy-projection of the ray and the x-axis).
Then, the distribution of the di�use ray set regarding θ is:

Fθ(θ) = 1− cos(θ) (2.1)

fθ(θ) = sin(θ) (2.2)

The distribution regarding φ is uniform.

Power Cosine Ray Set

The power cosine ray set has a uniform distribution regarding ϕ, but has a di�erent
more directed distribution regarding θ:

Fθ(θ) = 1− cos(θ)n+1 (2.3)

fθ(θ) = (n+ 1) · sin(θ) · cos(θ)n (2.4)

The variable n is a positive integer. A higher value means the distribution is more
focused. To implement the power cosine ray set an algorithm derived by [14] was
used.

2.1.3 Ray Set Distribution Test

To evaluate the distribution of the di�use and power cosine ray sets a test case
regarding θ and one regarding φ were implemented. In both test cases, the origin
of all rays is the point with the coordinates (0,0,-1) and a triangulated disk at
z = 0 with the center in the axis origin was used as a geometry to detect the ray
hits.
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Theta (θ) Distribution Test

Figure 2.3 shows the projection of the rays originated in (0,0,-1) onto the xy-plane
with the corresponding angle and radius relation.

Figure 2.3: Structure of the θ distribution test. The source origin is on the z-axis
at distance 1 above the xy-plane. Rays emitted with the polar angle θ
hit the plane at radius ρ = tan(θ).

The cumulative distribution function can be calculated as the number of hits within
the radius ρ ≤ tan(θ) divided by the total number of rays:

F (θ) =
hits(ρ ≤ tan(θ))

total number of rays
(2.5)

With this relation the distributions of the implemented ray sets can be compared
to their corresponding cumulative distribution functions. As a triangulated mesh
is used the circles are not perfectly circular and the resolution is limited due to
the size and number of triangles.

Phi (ϕ) Distribution Test

To test the uniform distribution regarding ϕ the circular plane was cut into k same
sized circular arcs as shown in Figure 2.4. As the rays are uniformly distributed
regarding ϕ the number of hits of each circular arc is expected to be the same.

Fk(i) =
hits in circular arc i
total number of rays

=
1

k
,with k ∈ N, i = 1, .., k (2.6)
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Figure 2.4: Structure of the ϕ distribution test. The disk is cut into same sized
circular arcs with the angle ϕ.

The results of these two test cases for the di�use and power cosine ray set are
discussed in Section 4.

2.2 Instancing

Instancing is a method commonly used in computer graphics to make copies, so
called instances, of an object without actually copying an object's data but by just
providing a transformation and rotation matrix [15].

To model boundary conditions using instancing, instances of the geometry are
put next to each other. Depending on the boundary condition they are either
periodic or mirror symmetric towards each other. Using this extension of the do-
main, rays that exit the original domain do not need to be recalculated as they
are traced further till they hit an instance of the geometry. The geometry with all
it's instances form a scene. The source plane is still limited to the boundary box
of the geometry as extending the source plane would model a di�erent problem
than the initial one. Every instance of a geometry triangle contributes to it's �ux
rate as the resulting �ux rate is the sum over all its instances.
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The two approaches that were analyzed to extend the scene with instances are: a)
A rectangular extension where rectangular rings of instances are added and b) a
circular extension where a radius determines how many instances are made. The
number instances required depends on the distribution of the rays and the form
of the geometry. A focused beam, for example, will require less instances then a
di�use source.

Figure 2.5 gives an illustration of the resulting scene of a asymmetric pole ge-
ometry using rectangular extension with a periodic boundary condition and using
circular extension with a re�ective boundary condition.

As we assume a rectangular boundary, putting instances of the geometry and
their mirrored representation next to each other is straight forward for re�ective
boundary conditions. For periodic boundary condition opposite sides of the ge-
ometry have to �t together. This can easily be extended to model the periodic
boundary condition with any periodic structure that has this characteristic. For a
re�ective boundary condition using instancing is limited to a few mirror symmetric
extendable boundaries of geometries (e.g. rectangle or isosceles right triangle).

(a) Periodic with rectangular extension (b) Re�ective with circular extension

Figure 2.5: Instancing with a asymmetric one pole geometry that has a continuous
periodic boundary. Colors indicate the identi�er (ID) of the instance
used in the implementation.
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2.3 Direct Flux Calculation

In the simulation loop, the number of hits for each triangle is computed. The �ux
rate is de�ned by number of rays per area. As the triangles have di�erent area
sizes the number of hits does not represent the �ux rate. Therefore, �rst the area
is calculated with Equation 2.7 using vector analysis from [16].

triangle area =
1

2
‖
−→
AB ×

−→
AC‖ (2.7)

Figure 2.6 illustrates a cutout of a triangulated mesh with a triangle represented
by the vertices A, B and C. It's area is highlighted in gray.

Figure 2.6: Triangulated surface representation

In this thesis we distinguish between the absolute, a relative and a normalized
direct �ux rate:

absolute =
hits

triangle area
(2.8)

(2.9)

relative =
hits

triangle area
1

total number of rays
(2.10)

(2.11)

normalized =
hits

triangle area
1

planar element �ux
(2.12)

The planar element �ux is de�ned as the absolute �ux that a planar area element
would receive when it is fully exposed to the source.

15



3 Tools

For instancing and ray tracing, we used the open source ray tracing framework
Embree [11], in contrast to, e.g., NVIDIA's ray tracing engine OptiX [17], which
is not open source. For data exchange and visualization we used the open source
VTK [18].

3.1 Instancing and Ray Tracing with Embree

Embree is an at Intel developed collection of high performance ray tracing kernels
[11] that are optimized for the x86 architecture. It provides highly optimized low
level kernels for Bounding Volume Hierarchy (BVH) construction, ray traversal
and ray-triangle intersection. The kernels can be accessed within an application
by a high level Application Programming Interface (API) allowing it to be used
with minimal programming e�ort. The implementation provides optimization for
di�erent Instruction Set Architecture (ISA) [19]. In the following, the utilized key
functions provided by the Embree library are introduced. Their names start with
rtc, which stands for ray tracing core.

Figure 3.1: Structure of the implementation of the simulation algorithm.
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The implemented simulation algorithm starts, as shown in Figure 3.1, with the
setup of the simulation. That includes the import of simulation information as
boundary condition, ray source type and number of rays, and the calculations of
transformation and rotation matrices for instancing. After that, the scene for the
geometry is built as in Listing 3.1.

1 int main ( int argc , char * argv [])

2 {

3 // Setup with variable declarations and initialization

4 ...

5

6 // Register operation recommended by Embree

7 _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);

8 _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);

9

10 // Create a device

11 RTCDevice device = rtcNewDevice (..);

12

13 // Create container for geometry

14 RTCScene scene0 = rtcDeviceNewScene(device , ..);

15

16 //Add a triangulated mesh object

17 unsigned geomID = rtcNewTriangleMesh(scene0 , ..);

18

19 //Fill array of vertex positions

20 Vertex *v = (Vertex *) rtcMapBuffer(scene0 , geomID , ..);

21 fillVertexBuffer (..);

22 rtcUnmapBuffer(scene0 , geomID , RTC_VERTEX_BUFFER);

23

24 //Fill array of triangle vertices

25 Triangle *t = (Triangle *) rtcMapBuffer(scene0 , geomID , ..);

26 fillTriangleBuffer (..);

27 rtcUnmapBuffer(scene0 , geomID , RTC_INDEX_BUFFER);

28

29 // Indicate that scene description is finished

30 rtcCommit(scene0);

Listing 3.1: Creating an Embree scene using a triangle mesh and triggering the
generation of the BVH structure using the rtcCommit() call (Line 30).

The scene, a container for the triangulated geometry, is created and �lled with
the geometry data. The rtcDeviceNewScene() (Line 14) call creates a container
for the surface geometry. Depending on the �ags set it can be among others
optimized for a static or dynamic scene and for coherent or incoherent rays. After
�lling the scene with information rtcCommit() (Line 30) triggers internal data
structure building operations. These operations are already parallelized internally
by Embree.

17



As next step, a new scene for the geometry and all its instances is created (List-
ing 3.2). For each instance an instance object of the geometry stored in scene0 is
created in scene. After it is transformed accordingly the kernel is noti�ed about
a geometry change before the scene is committed.

31 // Create container for instances

32 RTCScene scene = rtcDeviceNewScene(device , ..);

33

34 for(int i = 0; i < numberOfInstances; i++)

35 {

36 //Add instance object of scene0 in scene

37 unsigned int instance = rtcNewInstance(scene , scene0);

38

39 // Transform instance

40 rtcSetTransform(scene , instance , .., transformationMatrix[i]);

41

42 // Inform that geometry has changed

43 rtcUpdate(scene , instance);

44 }

45

46 rtcCommit(scene);

47

48 // Compute ray tracing for all rays

49 rayTracingLoop (..);

50

51 // Calculate flux rates and write results

52 writeResults (..);

53

54 // Destroy scenes , device and its contents

55 rtcDeleteScene(scene0);

56 rtcDeleteScene(scene);

57 rtcDeleteDevice(device);

58

59 return 0;

60 }

Listing 3.2: Creating an Embree scene using transformed instances of an existing
scene. The rayTracingLoop() (Line 49) is shown seperately in
Listing 3.3.

The parallelizable ray tracing loop (Line 49) is shown in Listing 3.3. In each itera-
tion a ray is generated and intersected with the scene. Embrees rtcIntersect()
call (Line 9 in Listing 3.3) delivers the results by modifying the ray structure ray.
This information is stored to calculate the �ux rates. With the determined hit
information the �ux rates are calculated.

18



The rtcIntersect() call (Line 9), that delivers the closest hit of the ray segment
with the scene, supports parallelization: It is up to the user to parallelize the ray
tracing loop, which can be implemented via, for instance, a straight forward par-
allel for loop construct (cf. Section 5.3).

1 void rayTracingLoop (..)

2 {

3 for(int i = 0; i < totalNumberOfRays; i++)

4 {

5 // Generate a ray according the simulation information

6 RTCRay ray = getRay (..);

7

8 //Find closest hit of a ray segment with the scene

9 rtcIntersect(scene , ray);

10

11 // Store intersection information for later processing

12 storeHitInfo(ray);

13 }

14 }

Listing 3.3: Ray tracing loop.

The most important parameters of the RTCRay datastructure are:

Vec3f org: ray origin
Vec3f dir: ray direction
float tnear: start of ray segment
float tfar: end of ray segment, set to hit distance after intersection
int geomID: ID of hit geometry
int primID: ID of hit primitive (triangle ID)
int instID: ID of hit instance

The rays are de�ned as ray segments, which means that they have a start and
end point. Vec3f is a structure of three float variables. Embree delivers the
information at what distance on the ray segment which triangle in which instance
of which geometry is hit. For �ux calculation only the triangle ID primID is used
as all instances contribute towards the �ux rate and only one geometry is used.
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Two features of Embree that could improve the simulation speed [20], but are not
analyzed in this thesis are:

� Intersect a bundle of rays at once using the functions RTCintersect4, RTCintersect8

or RTCintersect16 (which functions are supported depends on the ISA).

� The distinction between RTC_SCENE_COHERENT and RTC_SCENE_INCOHERENT

rays during scene building.

3.2 Visualization and Debugging with VTK

VTK is an open-source toolkit for 3D computer graphics, image processing, and
visualization [18] that began as a companion software to [21] and is now a general-
purpose system used in numerous applications. It provides, among other features,
a variety of data representations, readers and writers to exchange data with other
applications [22]. Some of them were used in this thesis for read and write op-
erations of triangulated geometry and ray data stored in obj and vtp �les. An
example on how a triangulated mesh was read from an obj is Listing 3.4.

1 vtkio :: TriangleMesh readobjmesh(std:: string const &FileName)

2 {

3 // Initialize reader

4 vtkSmartPointer <vtkOBJReader > reader = vtkSmartPointer <

vtkOBJReader >::New();

5 reader ->SetFileName(FileName.c_str());

6 reader ->Update ();

7

8 //Get file data

9 vtkPolyData* polydata = reader ->GetOutput ();

10

11 //Get information about triangle mesh size

12 int numpoints = polydata ->GetNumberOfPoints ();

13 int numtriangles = polydata ->GetNumberOfCells ();

14

15 // Create triangle mesh object with corresponding size

16 vtkio :: TriangleMesh mesh = vtkio :: TriangleMesh(numpoints ,

numtriangles);

17

18 //Fill the mesh object with the read data

19 fillMeshWithReadData(mesh , polydata);

20

21 return mesh;

22 }

Listing 3.4: Read geometry data from obj �le using VTK.

20



ParaView

ParaView is a data analysis and visualization application [23] based on VTK [24]
developed to deal with extremely large datasets [25]. It is used in this thesis
to visualize the geometry, instances, rays and the calculated direct �ux rates for
debugging purposes. ParaView provides a number of �lter and plotting functions
to analyze the resulting �ux rates.
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4 Simulation Results

In this section, the results of the ray set distribution tests are discussed in Sec-
tion 4.1. An example problem for the direct �ux rates is presented in Section 4.2
and the noise due to the MC sampling is analyzed in Section 4.3.

4.1 Ray Set Distribution

In the following, the results of the two test cases introduced in Section 2.1.3, to
evaluate the ray set distribution, are presented for a power cosine ray set with the
degree of n = 2 for 104 rays and 106 rays.

Theta (θ) Distribution

In Figure 4.1, the cumulative distribution and probability density functions of
the ray sets theta distribution for 104 rays, 106 rays and the theoretical values as
de�ned in Section 2.1.3 are presented. As the cumulative distribution functions
show almost no visible di�erence only the theoretical graph is shown. The density
function for 104 rays has visible �uctuations regarding the expected function. The
density function for 106 rays shows only few deviations.

This validates that the implemented ray set follows the theoretical θ distribu-
tion. The �uctuation is explained by the e�ect of MC-sampling described in Sec-
tion 2.1.1. A higher number of rays lets the graphs approach the theoretical curves,
whereas a higher θ resolution increases the �uctuations. The density function nat-
urally has higher �uctuations as it represents the slope of the cumulative function.
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Figure 4.1: θ cumulative distribution F (θ) and probability density f(θ) of a power
cosine source with n = 2

Phi (ϕ) Distribution

As the ϕ distribution is expected to be constant, the di�erence to the theoretical
value of each slice was calculated. The resolution was chosen to be ∆φ = 2◦, which
means, that the circle was divided into 180 slices. Figure 4.2 shows the histogram
of the deviations of the number of rays in each φ-slice. The x-axis indicates the
di�erence to the theoretical value in percent and the y-axis relates to the number
of slices with the respective di�erence.

To provide quantities information for the �uctuations we introduce the mean µ
and the standard deviation σ. Let ∆n be the error in per cent and k the total
number of slices then µ and σ are calculated for this discrete set as followed:

µ =

∑k
i=1 ∆ni
k

(4.1)

σ =

√√√√1

k

k∑
i=1

(∆ni − µ)2 (4.2)
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The area under the curve represents the number of slices which is the same for all
three. The test with 106 rays shows the most �uctuations (σ = 1.40%), the test
with 107 rays shows less (σ = 0.43%) and the test with 108 rays shows the least
�uctuations (σ = 0.16%). All three are inside of 5% deviations to the theoretical
value.

The implemented ray set follows the expected theoretical distribution, but contains
a noise due to the MC-sampling. The question of how many rays are necessary for
a particular resolution of the direct �ux simulation is discussed in Section 4.3.

Figure 4.2: ϕ deviation distribution of a power cosine source with n = 2
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4.2 Direct Flux Rates

As an example problem for the direct �ux simulation we introduce an asymmetric
tower geometry of about 50k triangles. The tower is in the center of the left upper
quadrant of a 2x2 square plane and is 1 length unit high as shown in Figure 4.3
and Figure 4.4.

Figure 4.3: Topview of the asymmetric tower geometry

This geometry was simulated with a power cosine ray set with a degree of n = 2
with 108 rays. The surface source was set 0.1 length units above the highest point
of the geometry as shown in Figure 4.4.

Figure 4.4: Sideview of the asymmetric tower geometry and simulation setup
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The simulation is run once without instancing, once with a re�ective and once with
a periodic boundary condition. The extension of the instances for the boundary
conditions is circular with a radius of r = 20. The resulting direct �ux rate is
evaluated as a cut along the y = −0.5 line of the geometry. The line is marked in
Figure 4.3 as a dashed line.

Figure 4.5 shows the normalized �ux rates along the interface, which stem from
cutting the domain with a plane at y = −0.5 from left to right. The projected
length is the length the line runs through. At the bottom and the top it is the
x-length and at the wall it is the z-length.

Figure 4.5: Direct �ux rates along the y = −0.5 slice with a power cosine ray set
with a degree of n = 2 with 108 rays and a circular extension with an
radius r = 20 for the re�ective and periodic boundary condition.
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All three have a normalized �ux rate of about 1 at the top, but at the walls and
at the bottom the simulation with no instancing has lower rates. The simulations
with instancing have similar rates at the walls and at the top, but di�er in the
area around the edges at the bottom. On the left side at the bottom the periodic
boundary condition causes the highest rate whereas on the right side the re�ective
causes the highest rate. Both the rates with periodic boundary condition and the
result without instancing show a decline towards the edge on the right side. At
the wall the rate with no instancing shows a signi�cant decline approaching the
bottom. The two rates with instancing show only a little decrease whereas the one
with periodic boundary condition has a slightly bigger one.

The simulation with no instancing has a lower normalized �ux rate at the bot-
tom and at the wall as rays that exit the boundary are not taken into account.
The rate at the top is similar to that of the other two as rays that exit the bound-
ary contribute only very few to the rate at the top. The decline at the wall is due
to the increasing spatial angle towards the bottom. With instancing this e�ect is
very small for this geometry. The di�erence at the edges of the two results with
instancing is because of the di�erent shadows the tower causes depending on the
boundary condition.

4.3 Noise

As described in Section 2.1.1 the MC-sampling causes unwanted �uctuations of
the direct �ux rate. To analyze this noise for an example problem we introduce a
rotationally symmetrical cylinder geometry as shown in Figure 4.6.

Figure 4.6: Cylinder geometry
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The cylinder is placed in the center of a 2x2 square plane. It is 1 length unit high
and has a diameter of 1. For the simulation the ray source is again placed 0.1
length units above the highest point of the geometry. As it is a surface geometry
it can be used as a hole as well as a pole by simple �ipping it upside down.

For the simulation, the geometry was cut into rotationally symmetrical bins as
illustrated in Figure 4.7. The bins on the bottom and top plane form anuli and
the bins at the wall form cylinder rings. The light areas at the corners of the big
plane are not evaluated in the following as they are not rotationally symmetri-
cal. The width of the bins around two to three triangles wide so that there is a
representative number of triangles in a bin, but the averaging e�ect is not too big.

Figure 4.7: Slicing the cylinder surface geometry into rotationally symmetrical bins
creating anuli at the planes and cylinder rings at the wall

Each triangle in a bin is expected to have the same �ux if the ray source is as
well rotationally symmetrical around the rotation axis of the geometry, but due
to the noise of the ray source there are �uctuations in the bins. In the following
the normalized �ux rates of these bins are plotted against the projected length.
The projected length is the length of the bold line in Figure 4.6 and runs through
and represents the width of the bins. At the �at planes it represents the radius of
the anuli and at the wall the height of the cylinder rings. It always starts at the
center of the geometry and thus at the anuli with the smallest radius. It then goes
up from the bottom when it is a hole or down from the top when it is a pole and
ends at the anuli with the biggest radius.
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Figure 4.8: Noise of the cylinder geometry as a pole with around 260k triangles for
a power cosine ray set with a degree of n = 2 and a circular extension
of instances with radius r = 20. For 107, 5 · 107, 108 and 5 · 108 rays.

Figure 4.8 shows the normalized �ux rate for the cylinder geometry as a pole with
around 260k triangles for 107, 5 · 107, 108 and 5 · 108 rays. The x-axis represents
the bold line from Figure 4.6. The solid graph represents the �ux rate of the bins
and the other lines represent the maximum and minimum �ux rate of a triangle
in the respective bin for the di�erent number of rays. The normalized �ux of the
bins is for all four �gures almost the same. Therefore only one average is shown
in Figure 4.8. It is almost steady with 1 at the top, has a little decline at the
wall towards the bottom and rises at the bottom plane towards the edge. The
maximum and minimum rates of triangles inside the bins vary the most with 107

rays and decrease with a rising number of rays. The steady �ux at the top is
because the ray source hits the whole top equally.
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On the wall is a much lower �ux because of the directed distribution of the power
cosine source. The slight decrease of the �ux towards the bottom of the wall is
explained with the decreasing visible solid angle from a surface point towards the
source. The rise at the bottom towards the edge is because the farther away from
the pile the more of the ray source is visible for the triangles. The normalized �ux
rates of the bins almost doesn't vary with the number of rays because the bins
contain many triangles thus forming an average over the triangles and reducing
the noise. However, the �uctuations of a single triangle inside the bins is still very
high with 107 rays. By increasing the number of rays the noise of the triangle can
be decreased. With 5 · 108 rays the maximum and minimum �ux rate deviations
inside the bins are already very low. The minimum �ux rate deviations depends
on the problem being analyzed.

Figure 4.9 shows the e�ect of increasing the number of triangles of the cylinder
geometry as a hole on the noise of the �ux rate.

Figure 4.9: Noise of the cylinder geometry as a hole with 108 rays and with 64k,
260k, 1042k and 4182k triangles.
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The x-axis again represents the bold line from Figure 4.6 but this time the geom-
etry is �ipped upside down. The solid line, that again represents the normalized
�ux rates of the bins is almost the same for all four, therefore only one average
is shown. The maximum and minimum rates of a triangles in the bins, however,
increase with the number of triangles. The hole shows a steady �ux rate at the top,
a decreasing rate at the wall towards the bottom and an increase at the bottom
towards the middle.

The �ux rate at the top is steady as the rays hit the top equally, because there
are no shadows. The �ux rates on the bottom and on the wall is due to the solid
angle in which the source is visible. The horizontal plane sees a higher amount
of the source then the vertical wall. The behavior of the noise is as expected. A
higher number of triangles increases the resolution of the geometry and demands
a higher number of rays to keep the noise steady.

For an etch simulation, it is necessary that the �uctuations are in a given range to
provide a certain statistical accuracy [7]. Figure 4.10 shows the maximum �ux de-
viations of triangles inside bins of the hole geometry with 260k triangles depending
on the number of rays.

Figure 4.10: Maximum �ux deviations of the hole geometry with 260k triangles
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The maximum local di�erence is the highest deviation of any triangle's �ux rate
to its local bin �ux rate. A less stricter criteria is the maximum relative di�erence,
which is the highest deviation of any triangle's �ux rate relative to the maximum
bin �ux rate. Additionally, as another measurement for noise, the standard devi-
ation for each bin relative to its mean �ux rate was analyzed and the maximum
relative standard deviation of all bins is shown in Figure 4.10. To be able to visu-
alize a broader range of rays the scale is double logarithmic.

The maximum di�erence graphs decrease roughly linearly with the number of
rays. For this simulation setup they are approximately proportional to each other.
Both are way over 100% when using 106 ray, but decrease steadily and at 109 rays
the maximum local di�erence is around 14% and the maximum relative di�erence
is around 6%.

Some potential reasons for the remaining noise and errors in the simulations, which
provide future research directions, are:

� One reason why the �uctuation doesn't reach zero could be the use of a single
precision �oating point representation, as it is used by Embree during the
ray tracing. This could cause some triangles being hit more often then their
neighboring triangles leading to a �uctuation that would not decrease with
a higher number of rays.

� Another reason could be the size and position of the bins. When the �ux rate
has a high slope across the bin width, triangles on one border have a di�erent
�ux rate than triangles on the other border, leading to noise inside the bin
that doesn't decrease with a higher number of rays. Therefore, the bin width
has to be chosen small enough. An extreme example for this are the bins of
the edges which can contain triangles from the higher �ux horizontal region
and the lower �ux vertical region. This leads to a �uctuation inside the bin
that doesn't decrease with an increasing number of rays.

� A third reason for this could be a bad ray distribution. When the random
number generator used for the ray generation doesn't have a perfect uniform
distribution. This could lead to arti�cial noise in the source distribution and
consequently also arti�cial noise in the �ux rates of the triangles.

� Another possibility is that the geometry is not perfectly rotationally sym-
metrical. When, for example, some triangles inside a bin are more inclined
then others, they can have a di�erent visible solid angle of the source, which
would lead to a remaining noise. The angle of inclination with respect to the
ray source has a big impact on the �ux rate.
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5 Performance Results

In this section, the performance of the intersection loop is analyzed. In Section 5.1
an indicator for the performance is given. The e�ect of source properties and of
the number of triangles are discussed. The cost of instancing for power cosine
rays, and for vertical and horizontal traversing rays is investigated in Section 5.2.
Results of parallelizing the intersection loop with OpenMP are presented in Sec-
tion 5.3.

The simulations were run in a virtual machine with 6 GB main memory on an
Intel Core i5-4210U processor (2 cores).

5.1 Ray Tracing Performance

We use the cylinder geometry introduced in Section 4.3 to analyze the ray tracing
performance. The ray source placement is identical to Figure 4.6. The setup was
simulated for various numbers of triangles and using two ray sets: a parallel ray
set, and a power cosine ray set with n = 2. The time of the intersection loop and
the time to generate the rays were measured.

The performance for both ray sets declines with an increasing number of triangles.
The performance for the parallel ray set decreases faster. When comparing the
performances without the ray generation (solid lines in Figure 5.1) the parallel ray
set is higher at �rst but with more triangles the power cosine ray set has a better
performance than the parallel ray set. This could be explained by the fact that all
parallel rays hit the geometry, but only around 72% of the power cosine source do.
Embree uses the BVH in any case, but if the rays do not even enter the topmost
bounding box the tracing ends right away. This is, of course, computationally
cheaper than a deep traversal of the bounding box hierarchy.
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The time how long the ray is traversed through the bounding boxes depends on
the origin and direction of the ray. When the geometry is made of less triangles
The parallel ray set has without ray generation a higher performance than the
power cosine set, even though more rays hit the geometry. The reason could be
that tracing for parallel ray hits is easier than for hits from the power cosine ray
set.

Figure 5.1: Performance of the intersection loop with and without ray-generation
for a parallel and a power cosine n = 2 ray source. The cylinder surface
(Figure 4.6) is used as geometry (without instancing). For the parallel
ray set 100% and for the power cosine ray set around 72% rays hit the
geometry.

The performance graphs for the parallel ray source are closer to each other because
its ray generation is less computationally intense. The reason for the general
decline is that the BVH structure gets bigger when the number of triangles increase.
Thus the ray tracing for rays that hit the geometry needs more time.
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5.2 Cost of Instancing

The performance of the intersection loop with ray-generation in dependence of the
number of instances is analyzed for power cosine rays, and vertical and horizontal
traversing rays. The instances are extended circularly.

5.2.1 Power Cosine Source

The cost of instancing is analyzed for the same cylinder geometry as in Section 5.1,
for a power cosine n = 2 ray set. The results for di�erent numbers of triangles are
shown in Figure 5.2.

Figure 5.2: In�uence of the number of instances on the ray tracing performance
when using a power cosine n = 2 ray set on the cylinder geometry
(Figure 4.6). The source domain is the same size as the geometry
domain.
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For all four the performance drops with the number of hits. This is plausible as
rays that hit the scene are more computationally intense than nohits. At around
100 instances more than 99,9% of rays hit the scene. A further increase of the
number of instances does not change the performance of the intersection loop.
This is as expected. There should be no overhead as it is assumed that Embree is
optimized and doesn't overlap top level bounding boxes.

The drop of the performance from 0 instances to over 100 instances is for 15k
triangles about −27%, for 64k about −31% and for 260k about −36%. For 1024k
triangles it is −38%.

5.2.2 Vertical Traversal

The in�uence of instancing for vertical traversal is analyzed for the tower geometry
that is introduced in Section 4.2. The problems were analyzed for a varying num-
ber of instances that are extended circularly. For the vertical traversal a parallel
ray source was used with rays parallel to the z-axis. The position of the source is
identical to the setup in Figure 4.4.

Figure 5.3 shows the results of the simulation for: a) The ray source domain
is the same as the geometry domain (2x2) and b) the dimensions of the source
domain are 50x50. The solid lines represent the performance of the loop with
ray-generation and the dashed lines represent the number of geometry hits.

For a) there is a drop of performance by about −27%. This is unexpected as
the number of hits stays steady. All rays hit the initial geometry. A steady perfor-
mance independent of the number of instances would be expected for an optimal
ray tracing algorithm.
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Figure 5.3: In�uence of the number of instances on the ray tracing performance
when using a parallel ray set on the tower geometry, as in Figure 4.3.
The ray source domain is for a) identical to the geometry domain (2x2)
and for b) with the dimensions 50x50.

Concerning the increase of the domain to 50x50 - b): The scene under the ray
source growths with an increasing number and with around 4k instances surpasses
the size of the ray source. The time of the intersection loop increases until the
instances cover the full area under the source. When all rays hit the instanced
geometry an increase of instances does not e�ect the performance. However, the
resulting performance for the loop is about 25% lower than of a) in Figure 5.3.
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5.2.3 Horizontal Traversal

To test the performance for horizontal traversal the same geometry as for vertical
traversal (Section 5.2.2) was used. The source was, similar to a lighthouse, a point
source that emits horizontally in all directions. It was placed at half height of the
tower at the z-axis of the geometry. The result is shown in Figure 5.4.

Figure 5.4: Intersection loop performance dependence of the number of instances
for the tower geometry (Figure 4.3) with a horizontal lighthouse source
at 0.5 height at the z-axis.

The time for the intersection loop is similar as the result for the vertical test. The
performance of the intersection loop decreases with the number of hits. In the
beginning there is drop as most rays hit one of the nearest 1k instances. After that
there is still a steady decrease in performance with a rising number of instances.
This could be because there are still rays that even with a high number of instances
do not hit the geometry. These rays have to be traversed through a high number
of instances.
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5.3 OpenMP

The intersection loop was parallelized with OpenMP. To show that it is possible
to trace rays in parallel, the tower geometry was used with the setup as described
in Figure 4.4. For this simulation vertical rays with starting points placed on a
regular xy-grid were used.

Figure 5.5: Time of the intersection loop with and without OpenMP with about
50k triangle tower geometry. Sequential performance is around 3.5 ·106

and parallel performance is about 6.8 ·106 rays per second. The source
is a parallel ray set generated without a random number generator.

Figure 5.5 shows the performance for sequential and parallel ray tracing. The
simulation with two threads has a performance of about 6.8 · 106 rays per second.
This is around 5% less of twice the sequential performance which is about 3.5 · 106

rays per second. The scheduling attribute of OpenMP has been varied between
dynamic and static in a range from 10 and 100000, but no substantial performance
di�erence was detected.
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6 Summary and Outlook

This section gives a summary about the results of the di�erent problems that were
analyzed.

In Section 2.1, a parallel, a di�use, and a power cosine ray set are introduced
and two test cases to validate their distribution are described. The results of these
are discussed in Section 4.1 and show that the implemented ray sets follow the the-
oretical behavior, except for an expected noise, introduced by the MC sampling.

This noise is analyzed in Section 4.3. The e�ects of a changing number of rays and
a change in the spatial resolution on the noise is evaluated for a rotationally sym-
metric, cylinder geometry. A higher number of rays decreases the noise whereas
a higher number of triangles increases the �uctuations. For a cylinder geometry
with about 260k triangles about 109 rays are necessary to lower the maximum
local error to under 15%.

In Section 2.2, it is described how to use instancing to model the re�ective and
periodic boundary condition. In Section 2.3, the calculation of the direct �ux is
explained. The implementation of the direct �ux simulation algorithm with Em-
bree is described in Section 3.1. The result of a direct �ux rate simulation for a
tower geometry is presented in Section 4.2. E�ects of instancing and re�ective and
boundary conditions on the direct �ux rate are shown.

In Section 5, results for the performance of the intersection loop are presented
for di�erent problems. The performance of the ray intersection loop, which is the
most time consuming part of the simulation, is determined mainly by two parts:
a) the ray generation operation which depends on the type of the ray source and
its implementation and b) the ray tracing algorithm which depends on the BVH
structure and the direction and position of the rays. The BVH structure built
with Embree depends on the geometry investigated, the number of triangles and
the number of instances.
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In Section 5.1, results for the performance depending on the ray set and the num-
ber of triangles are presented. A performance of about 1.5 ·106 rays per second for
the whole loop and 2 ·106 rays per second for the loop without ray generation were
measured. A cylinder geometry with about 260k triangles without instancing was
investigated.

Section 5.2 provides results for the performance depending on the number of in-
stances. Redundant instances that are not hit do not e�ect the executionspeed of
the loop. It was observed that the size of the ray source domain does e�ect the
intersecting loop substantially. In Section 5.3, results for parallelizing the inter-
section loop with OpenMP are shown. An almost perfect speed up of about 1,95
was achieved with two cores.

Future work will focus on integrating this boundary condition instancing method
into a simulator for process TCAD and compare the results and performance to
the classical approach to recalculate the rays at the simulation boundary. Further,
optimization possibilities provided by Embree will be implemented to improve the
performance of the simulation. The general direction will be to improve the per-
formance of the etch simulation, while at least keeping the MC sampling noise in
a given range to provide a certain statistical accuracy.
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