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Zusammenfassung

In den letzten Jahren sind Mehrzweck-Gra�kberechnungs Beschleuniger (auf En-
glisch "General Purpose Graphics Processing Units" - GPGPU) und Coprozes-
soren auf Basis von vielen integrierten Prozessor Kernen (auf Englisch "Many In-
tegrated Cores" - MIC) rapide entwickelt und verbreitet worden. Diese modernen
Vielkern-Plattformen bringen ein enormes Potenzial an Parallelisierung mit sich,
welches wiederum die Möglichkeit bietet, numerische Simulation um ein Vielfaches
zu beschleunigen. Diese Arbeit gibt einen Überblick, wie diese neuen Ressourcen
für Partikel basierte Monte Carlo Simulationen, wie den Open-Source Ensemble
Wigner Monte Carlo Simulator in ViennaWD, verwendet werden können. Ein
groÿer Teil der wissenschaftlichen Simulatoren verwenden heute das sogenannte
Message Passing Interface (MPI) um die Rechenaufgaben auf eine groÿe Anzahl
von Berechnungs-Knoten zu verteilen. Aufgrund dessen soll in dieser Arbeit ein
Überblick gegeben werden, wie Gra�kkarten und Coprozessoren in den einzelnen
Berechnungs-Knoten verwendet werden können, insbesondere auch innerhalb einer
MPI Umgebung, welches das Potenzial für weitere Simulations-Beschleunigung
erhöht. Die Parallelisierungssprachen OpenMP und CUDA werden verglichen,
konkret im Aufwand, der benötigt wird um existierenden Code zu parallelisieren
und in der Flexibilität verschiedene Plattformen zu unterstützten. Am Beispiel
einer vereinfachten, aber doch aussagekräftigen, Monte Carlo Simulation auf MPI
Basis wird der Vergleich präsentiert und es wird untersucht wie die Implemen-
tierung auf den unterschiedlichen parallelen Plattformen unterstützt wird. Die
Ergebnisse zeigen klar, dass die Verwendung von hybrider Parallelisierung ein
wichtiger und mit angemessenem Aufwand erreichbarer Schritt ist, um die moder-
nen Plattformen von morgen zu unterstützen.



Abstract

In recent years General Purpose Graphics Processing Units (GPGPUs) and Co-
processors based on Many Integrated Cores (MIC) were rapidly developed and
widely distributed. These modern many-core computing platforms hold enormous
potential for parallelism, which o�ers the opportunity to speed-up numerical simu-
lations signi�cantly. This thesis gives an overview how particle based Monte Carlo
simulations can utilize these new resources for their typical large computational
workloads, such as the free open-source ensemble Wigner Monte Carlo simulator
shipped with ViennaWD. Usually, scienti�c simulators in general use the so-called
Message Passing Interface (MPI) to distribute computational tasks to a number of
distributed compute nodes. Therefore, this thesis additionally compares di�erent
approaches to utilize many-core processors on single compute nodes in combina-
tion with using the MPI for hybrid parallelization, to further increase the potential
simulation speed-up. The parallel programming languages OpenMP and CUDA
are compared with respect to programming e�ort to parallelize existing code and
�exibility to support di�erent platforms. To that end, a simpli�ed yet representa-
tive example problem of a Monte Carlo simulation, which is distributed over MPI,
is presented and di�erent hybrid parallelization approaches are discussed. The re-
sults clearly show that utilizing hybrid parallelization techniques is an important
and reasonably achievable e�ort for particle Monte Carlo simulators to e�ciently
utilize today's and tomorrow's computing platforms.
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1 Introduction

Since the 1970s the increasing use of computer simulations in physics has started
a disruption of the classical division of physics into theoretical and experimental
physics. Computer simulations can be seen as a third branch next to the two clas-
sical ones [1]. Analytical problems with many degrees of freedom can often not be
solved without a number of approximations. Information gathered by experiments
sometimes does not lead to conclusive answers because some conditions of the ex-
perimental sample are not exactly known or unknown impurity e�ects occur [2].
The fundamental advantage of computer simulations is that it is easy to re-run
a new simulation-based experiment with adapted parameters. Repeating regular
laboratory experiments, often requires a de�ned surrounding controlled via, for in-
stance, clean rooms - which are extremely expensive to operate and investigations
might take a long time and man-power.

One of the major computer simulation techniques are so-called Monte Carlo sim-
ulations, which are widely used in statistical physics [1]. Monte Carlo methods
are used in a variety of scienti�c �elds from �nancial modelling, population biol-
ogy, computer vision to interacting particle approximations. Particle based Monte
Carlo simulations are used to, for instance, calculate electron, neutron and photon
transport often within a certain geometrical con�guration of cells [3]. These cells
are used to have a discrete location grid on which the particles can move. Interact-
ing mechanisms between particles and between particle and cell, e.g., scattering,
absorption, local emission, and annihilation must be simulated on the cells.

Deterministic methods solve problems for the average particle behaviour. How-
ever, the Monte Carlo method simulates millions of particles and their individual
history through the material [3]. By summation of particles at a given point and
normalization the probability density of particles is calculated. The probability
distribution resulting from a stimulation step is statistically sampled to describe
the total phenomenon [4]. Probability distributions are randomly sampled using
transport data to determine the quantities of interest for each simulation step.
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This thesis gives an introduction into programming techniques necessary to per-
form Monte Carlo Simulations on today's available hardware and analyses the
e�ort involved. The range of available computing resources reaches from stand-
alone Personal Computers (PCs) to cluster systems with thousands of processors
[5]. In recent years, GPGPUs and MIC coprocessor cards extended the variety of
available computing platforms [6].

In Chapter 2, the available hardware is introduced and compared. Chapter 3
focuses on the di�erent programming approaches to parallelize Monte Carlo algo-
rithms. An example simulation problem, based on ViennaWD's ensemble Wigner
Monte Carlo simulator [7], is presented in Chapter 4. The required changes to
run this example on various hardware platforms and with di�erent parallelization
strategies are discussed. The conclusion presented in Chapter 5 compares the nec-
essary changes which acts as a basis for estimating the required e�ort to utilize
the analysed computing platforms.
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2 Overview of Computing

Platforms

Today, the number of transistors per chip still keeps doubling every 18 months as
Moore's Law predicted [8]. In 2004 multi-core scaling began to change the proces-
sor landscape. As single-core processors reached their physical limits of chip level
power and thermal implications the chip clock rate nearly saturated and could
only be marginally increased [9]. The race for clock rate increases came to an end
and other ways to improve processing power had to be found. Multi-core archi-
tectures enabled chip manufacturers to further increase the number of transistors
on their processors. New technologies as dynamic voltage and frequency scaling
were introduced to reduce the chip temperature. While the improvement of micro
architectures has led to minor increases in processing power, the increasing number
of cores was the reason for major performance increases [10]. The number of cores
per die started rising with every new processor generation. Traditional parameters
as per transistor speed or microcode e�ciency rose far slower than the number of
cores. Modern Central Processing Units (CPUs) with 18 cores are on the market
now and the number of cores will keep increasing.

Graphics Processing Units (GPUs) have been originally designed to accelerate
graphics related to professional graphics-focused applications as well as computer
games [11]. With increasing realism the number of polygons per second processed
on the cards kept rising continuously. Graphics calculations are computationally
very extensive and in the early 2000s research software engineers started to uti-
lize the massive computing potential of GPUs for their simulation problems. The
term GPGPU was shaped. The raw throughput of primarily �oating point-heavy
operations exceeded the throughput of CPUs drastically. Extensions to high level
programming languages founded the basis of Nvidia's Compute Uni�ed Device Ar-
chitecture (CUDA) platform (Chapter 2.3) which is widely used in scienti�c sim-
ulations today. Aside from Nvidia's CUDA platform, OpenCL is an open source
alternative to allow uni�ed and high level access to multi- and many-core comput-
ing platforms, such as CPUs and GPUs, but is not further considered in this work.
However, e�ort of developing in OpenCL and CUDA are comparable and thus the
CUDA �ndings presented in this work apply to a large extent to OpenCL as well.
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Coprocessors, such as Intel's Xeon Phi, are the third branch of modern paral-
lel computing platforms next to general purpose CPUs and GPGPU accelerator
cards. These devices put over 40 in-order execution cores on a single Peripheral
Component Interconnect Express (PCIe) card [12]. The aim, similar to GPGPU,
is to equip workstations or compute nodes with signi�cant additional parallel com-
puting capabilities. To utilize the potential performance, however, large amounts
of parallel operations have to be executed.

Figure 2.1 shows the di�erent hardware topologies to illustrate the number of data
processing units on each type of device.The multi-core CPU contains a number of
general purpose out-of-order execution cores and extensions as vector math units
[13]. The coprocessor is based on simpler in-order execution cores with extended
vector processing capabilities. The GPU consists of a huge number of streaming
multiprocessors, which are placed in groups on di�erent hierarchy levels. As the
number of cores in CPUs keeps rising with every generation the segregation of
multi-core CPUs and coprocessors might end in the near future.

Core 1

1

Core 2 Core 3 Core 4

Core 5 Core 6 Core 7 Core 8

4

2

2 3 4 5 6 7

Multi-core CPU Coprocessor GPU

Figure 2.1: Compute core granularity in di�erent compute resources [14]
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Many scienti�c high performance cluster systems use GPGPU cards or copro-
cessors to boost the performance of the overall system [15]. Table 2.1 shows
the number of systems in the Top 500 super computers list using coprocessors
or GPGPU accelerators. 20,8% of the systems use hybrid parallelization. The
Tianhe-2 system at the Chinese National Super Computer Center in Guangzhou
is the world's fastest system in November 2015 and uses Intel Xeon Phi Knights
Corners coprocessors [16]. The number 2 system Titan at DOE/SC/Oak Ridge
National Laboratory in the United States uses Nvidia Kepler accelerators. These
numbers show that hybrid systems are very popular with supercomputing centres,
especially if economic costs / Floating Point Operations Per Second (FLOPS) and
power consumption / FLOPS are the primary goals.

Table 2.1: Accelerators in TOP500 List from November 2015 [16]
Coprocessor / Accelerator Architecture Number of Installations
Nvidia Kepler 52
Nvidia Fermi 14
Xeon Phi 29
ATI Radeon 3
Nvidia Kepler & Xeon Phi 4
PEZY_SC 2

2.1 Multi-Core Processors

The shrinking of transistor size from 130nm (e.g. Intel Pentium 4) to 14nm (e.g. In-
tel Skylake) shows the progress in chip manufacturing in recent years [17]. Despite
all predictions the manufacturers were able to optimize their processes continu-
ously till the current 14nm technology [18]. Physical limitations are increasingly
manifesting themselves and for the �rst time Intel had to change its fast-pacing
tick-tock scheme of micro architecture improvements and fabrication process im-
provements because the next step from 14nm to 10nm is delayed. After years of
constant progress the shrinking process is slowing down.

Intel has continuously increased its dominance in the server CPU market in recent
years with a peak market share of 99% in 2015 [19]. AMD is not o�ering com-
petitive products to Intel Xeon E5 and Xeon E7 processors, however, AMD has
scheduled a new product line in 2017 with the ZEN architecture.
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Contrary to Intel's x86 CPU architecture, IBM's Power architecture is used in
23 clusters in the TOP500 supercomputing list (November 2015) [16]. The Power8
architecture was �rst presented in 2013 and allows up to 96 threads per socket [20].
IBM has launched the OpenPOWER initiative in 2013 with partners like Nvidia
and Google to promote the use of Power processors in combination with Nvidia
Tesla accelerators in High Performance Computing (HPC) environments to create
an alternative to Intel based systems.

In recent years, clusters using ARM processors have been built to demonstrate
the potential of modern mobile computing cores [21]. Power consumption is be-
coming a limiting resource in HPC. Mobile computing cores used in smart phones
and tablet computers have drastically increased their computational power in re-
cent years while being optimized for low power demand. These cores can be used
for higher packaging density and lower cost per processor core chips. ARM added
fully pipelined double precision �oating point units in the Cortex A15 family to
enable fast computation of complex problems. Furthermore, the NEON Single
Instruction Multiple Data (SIMD) extension was designed to process multiple nu-
merical operations in parallel to make ARM systems appealing to customers out
of the mobile chip sector. While there might be potential for ARM based HPC
clusters, they are mostly being used in storage appliances and database systems
which are very I/O depending and do not require very high peak computing per-
formance [22]. However, starting from this niche ARM based severs could gain
market share in HPC in the next years.

Characteristics all these multi-core architectures have in common:

� Out-of-order execution of processor instructions to optimize the usage of
available hardware resources on the chip

� Branch prediction to process branches while e�ciently using pipelines

� Multiple Arithmetic Logical Units (ALUs) for �oating point and integer
arithmetic

� Di�erent pipelines for di�erent instructions

Figure 2.2 shows Intel's Silvermont Core architecture. This out-of-order execu-
tion core represents the lower end of Intel's current product range [23]. It has all
the characteristics mentioned above and is used in tablet computers and low end
laptops.
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Figure 2.2: Core Block Diagram Intel Silvermont [23]

Current generations of high end multi-core processors have up to 22 cores [24].
Additionally, modern Xeon cores have additional functionality, like Intel Advanced
Vector Extension (AVX) 2 which is especially of interest to accelerate SIMD prob-
lems. Therefore, these are very complex cores with out-of-order execution and
scheduling on chip level.

2.2 Xeon Phi Many-Core Coprocessors

The �rst Xeon Phi (Knights Corner) coprocessors were introduced in 2012 as
reaction to GPGPU accelerator cards by Nvidia and AMD [25]. Similar to GPGPU
accelerators, the initial Xeon Phi coprocessor cards are connected to the host CPU
via a PCIe interface and have their own separate memory on the card. The �rst
generation of coprocessors cannot directly access the system's main memory and
o�ered up to 64 cores.
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Figure 2.3: Block Diagram Intel Xeon Phi Core [12]

Figure 2.3 shows the block diagram of one single Xeon Phi Core. The core's
complexity is reduced drastically compared to an standard CPU core, as shown in
Figure 2.2. The main hardware characteristics of the Xeon Phi cores are [25]:

� Modi�ed version of P54C design which was used in the �rst Pentium designs

� In-order execution

� 4-way simultaneous multi-threading per core

� 512 bit SIMD units

� 32 KB instruction cache

� Coherent Level 2 cache (512 KB per core)

� Ultra wide ring bus to connect memory and cores
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2.3 Nvidia CUDA Accelerator Cards

Nvidia's Tesla architecture started changing the processing possibilities of GPUs
drastically when it was introduced in November 2006 [26] [27]. The architecture
uni�ed vertex and pixel processors and extended the programmability. Previous
GPUs consisted of graphics pipelines with separate stages. Vertex processors exe-
cuted vertex shader programs and pixel fragment processors executed pixel shader
programs. By unifying these elements into one functional unit non-graphics re-
lated parallel tasks are easier processed by the cards. Nvidia introduced the CUDA
programming model and thus enabled utilizing the cards via an extended C pro-
gramming language.

Nvidia's latest Tesla generation is the P100 GPU accelerator series with Nvidia's
Pascal architecture [28]. These accelerators are optimized for HPC and deep learn-
ing applications. The Graphics Double Data Rate (GDDR) memory was replaced
with second generation High Bandwidth Memory (HBM2). This memory is con-
nected via Chip-on-Waver-on-Substrate to minimize the length of data paths. Fur-
thermore, the accelerators are not only available with a PCIe interface but also
with a NVLink interface which is promised to speed up the data link between two
accelerators for up to �ve times. Calculations with half precision (16 bit �oating
point numbers) are now possible. This is expected to further boost applications
like deep learning applications where throughput is more important than precision.
A GP100 accelerator consists of an array of Graphics Processing Clusters (GPCs),
Texture Processing Clusters (TPCs), and Streaming Multiprocessors (SMs) [29].

The hardware characteristics of one GP100 accelerator are:

� 6 GPCs per accelerator

� 10 SMs per GPC

� 64 single precision CUDA cores and 4 TPCs per SM

� Total 3850 single precision CUDA cores per accelerator

� Total 240 texture units per accelerator

� 4096 KB Level 2 Cache per accelerator
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Figure 2.4: Block Diagram of a GPC [29]

Figure 2.4 shows the hierarchy of elements on the GP100 accelerator [29]. One
GPC consists of ten SMs. Each of these consists of 64 CUDA cores and 4 TPCs.
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3 Parallel Programming

Approaches

Soon after scientists started using computer simulations to verify theories the sim-
ulation problems started to exceed the memory and/or computing capabilities of a
single workstation. The next step was to use multiple workstations to distribute the
workload. ARCNET was the �rst commercially available cluster solution launched
in 1977 [30]. Approaches to run software on di�erent computing nodes had to be
found. Distribution of software, synchronisation between nodes, and collection of
results had to be de�ned. Di�erent approaches were in use when the standardiza-
tion of MPI started in 1992 [31]. The MPI enables to conveniently exchange data
between compute nodes which work together to solve a computational problem.
Due to the distributed-memory nature of the MPI, the developer is forced to care-
fully consider the structuring, decomposition, movement, and placement of data
in the development phase to achieve e�cient parallel implementations.

Multi-threading led to new concepts of parallelism on a single computer using
a shared-memory approach, where all the threads of the thread-group can access
the same memory address space (in contrast to MPI, where the MPI processes
do not have access to each others memories). Utilizing multiple physical cores
to work on a single task required new approaches designed for multi-core com-
puters: POSIX threads (Pthreads) became a standard in 1995 whereas in 1997
the OpenMP standard was introduced [32]. OpenMP allows programmers to use
parallel sections in software at a high level of abstraction, making it easier to de-
velop parallel programs. OpenMP reduces the complexity of developing parallel
programs drastically and is therefore widely used in modern simulations.

Hybrid parallelization typically uses MPI to realise communication between di�er-
ent compute nodes but on individual nodes the tasks are assigned to the available
cores using, for instance, a shared-memory OpenMP approach or o�oaded to a
coprocessors or GPGPU accelerator (e.g. Nvidia Tesla accelerator) [33]. OpenMP
o�ers a range of scheduling mechanisms with the aim to keep the utilization of the
single cores as high as possible.
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If a local compute node has a coprocessor or an accelerator card the computation
tasks have to be realised using, for example, o�oad-OpenMP or CUDA program-
ming [34]. Furthermore, coprocessors and accelerators have their own memory
spaces. Therefore, data locality, reducing communication, and synchronisation is
critical for achieving e�ciently parallelized applications.

In Chapter 3.1, the basic concepts, topologies, and usage of MPI are presented.
Chapter 3.2 gives on overview over shared memory multi-thread programming
using OpenMP. In Chapter 3.2.2, the traditional multi-core OpenMP model is ex-
tended and approaches to utilize coprocessors using o�oad and hybrid OpenMP
are presented. Finally, Chapter 3.3 focuses on the usage of GPGPU accelerator
cards using the CUDA programming language.

3.1 MPI

The MPI was designed with the goal to unify syntax and precise semantics of
message passing libraries [31]. The standardization began in 1992 and the initial
version 1.0 of the standard was released in 1994. MPI is a message-passing Ap-
plication Programming Interface (API). There are many implementations of the
MPI standard of which several are free open-source projects and several commer-
cial software packages.

The main reasons for using the MPI are [35]:

� Standardization: The MPI is the only message passing library that can be
considered a standard that is supported on virtually all HPC platforms.

� Portability: When using a di�erent platform that supports the MPI standard
there is little to no need to modify source code.

� Performance Opportunities: Vendor implementations can use native hard-
ware features to increase the MPI transmission speed.

� Functionality: There are over 430 MPI routines in MPI3 which cover nearly
every use case. Most simple MPI programs can be written with about 10
MPI routines.
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3.1.1 Structure of MPI Programs

The MPI uses objects called communicators and groups to de�ne which collections
of processes can communicate with each other. For larger and more complex prob-
lems it can be very useful to group and name processes to increase the readability
of source code. Furthermore, every MPI process has a unique integer identi�er
called rank. The rank is an integer value within a communicator and can be used
to assign certain tasks to speci�c MPI processes (e.g. if(rank==0),{...}). This
is useful when, for instance, rank 0 is used as master process which reads data
and sends computing tasks to the remaining processes following a master/slave
approach. Then every process does a number of calculations processing a subset
of the initial problem and ultimately sends the sub-results back to rank 0 for post-
processing.

Figure 3.1 shows the structure of an MPI program. The essential MPI calls using
the C programming language are discussed in the following [36].

MPI Program Structure

MPI include file

Declarations, prototypes, etc.

Program begins

Do work & make message 

passing calls

Terminate MPI environment

Initialize MPI environment Parallel code begins 

Parallel code ends 

Program ends

...

...

Figure 3.1: Structure of a MPI program [35]
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Initializing the MPI environment:

� MPI_Init( int *argc, char ***argv ): Initializes the MPI environment.
Must be called before any other MPI function.

� MPI_Comm_size( MPI_Comm comm, int *size ): Returns the number of
processes in the speci�ed communicator (e.g. MPI_COMM_WORLD)

� MPI_Comm_rank( MPI_Comm comm, int *rank ): Returns the rank (integer
value) of the process within the speci�ed communicator

After initializing the MPI environment the communication between di�erent pro-
cesses can be started. There are two types of communication in MPI: point-to-
point message passing (e.g. MPI_Send) and collective (global) operations (e.g.
MPI_Bcast). Point-to-point messages can be blocking or non-blocking. When
using blocking calls the program waits until the data transfer is �nished and pro-
ceeds afterwards. Non-blocking operations are sending and receiving data in the
background while the process still executes other operations which introduces the
potential for overlapping communication with computation, albeit in reality this
is not always achieved [37]. Common point-to-point and collective operations:

� MPI_Send(const void *buf, int count, MPI_Datatype datatype, int

dest, int tag, MPI_Comm comm): Blocking send only returns after the
data is stored in the send bu�er and it is safe to write more data there.

� MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status): Blocking receive returns
after the data arrived and is ready-to-use by the process

� MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int

dest, int tag, MPI_Comm comm, MPI_Request *request): Non-blocking
send returns almost immediately, i.e., the MPI does not wait for any calls
or messages that con�rm the data transmission. To ensure a correct data
transfer status and wait mechanisms have to be used.

� MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Request *request): Non-blocking receive
returns almost immediately and starts receiving data in the background.

� MPI_Wait(MPI_Request *request, MPI_Status *status): Waits for all
non-blocking communications to be �nished

� MPI_Bcast( void *buffer, int count, MPI_Datatype datatype, int root,

MPI_Comm comm ): Sends a broadcast message from the process with rank
number root to all other processes in the communicator.
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� MPI_Barrier( MPI_Comm comm): Synchronizes processes in the communica-
tor. All processes are blocked until every process reaches the barrier.

After the MPI program �nished the MPI environments needs to be appropriately
shut down:

� MPI_Finalize( void ): Finalizes the MPI environment. No more MPI
calls must be made after this command.

If errors or unde�ned conditions occur during the process execution the whole MPI
program needs to be aborted.

� MPI_Abort(MPI_Comm comm, int errorcode): Terminates all MPI processes
in the speci�ed communicator. A simple exit() call would only end one pro-
cess while the rest of the processes keep running. To avoid this unde�ned
state MPI_Abort is used.

The presented set of commands constitutes a subset of the provided API features,
however, already with this small set it is possible to set up many MPI programs
for various purposes. In general, communication between processes should be
as limited as possible because it causes overhead and slows down the program
execution. Often communication is responsible for limiting the parallel scalability
and ultimately the execution performance.

3.1.2 MPI Implementations

The MPI standard describes the protocol and the semantics which have to be
covered by a MPI implementation [38]. The behaviour of di�erent MPI imple-
mentations should be as similar as possible to allow for portability. There are two
widely used and free open-source MPI implementations at the moment: MPICH
[39] and OpenMPI [40].

MPICH is a high quality open-source implementation of the latest MPI stan-
dard [41]. MPICH is used as base for a number of derivative implementations,
e.g., Intel MPI, MVAPICH, Cray MPI, and IBM MPI. These implementations
provide some specializations, for instance, the Intel MPI implementation provides
optimized support for Xeon Phi coprocessors used within MPI environments. [42].

OpenMPI is an open-source MPI implementation based on the code of LAM/MPI,
LA-MPI and FT-MPI [43]. It is widely used by the Top 500 supercomputers. One
design goal was to support all widely used interconnects as TCP/IP, shared mem-
ory systems, Myrinet, Quadrics and In�niBand. OpenMPI's process manager
ORTE o�ers some advantages over the MPICH's Hydra process manager [44].
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3.2 OpenMP

OpenMP was developed to be an industry standard API for shared memory pro-
gramming [32]. Its �rst release for Fortran 1.0 was in 1997. Scalable applications
need scalable hardware and software. Since the �rst multiprocessor architectures
emerged the number of cores and the available memory increased with every new
chip generation. This requires software to scale with the available hardware with-
out software adjustments. Scalable hardware support and cache coherence are the
basis of scalable shared memory multiprocessor architectures [37]. In these architec-
tures every processor has direct memory access and can read and write every access
of the memory. The �rst proprietary programming tools for such systems were not
standardized and therefore not portable. One of the main OpenMP design goals
was to bring software portability to scalable shared memory architectures without
using message passing [45].

Message passing requires programmers to partition the simulation data explicitly
[46]. On multiprocessor and multi-core systems with cache coherence data parti-
tioning is not needed in that extent. Pthreads is too low level for many scienti�c
simulations although it is a well established parallel execution model to provide
task parallelism in low level software. Furthermore, applications must be designed
with the aim of parallelism from the beginning to allow Pthreads to work properly.
OpenMP allows incremental parallelism for existing software, in particular, it is
tailored to accelerate compute-intensive loops which are predominant in scienti�c
computing applications. [32].

More concretely, OpenMP is a set of compiler directives and callable runtime li-
brary routines. The directives extend the C, C++, and Fortran standard. Among
the primary aims of OpenMP is to enable an easy access to shared memory parallel
programming, which was very successful over the years as OpenMP is nowadays
widely used in science and industry.

OpenMP provides directives to let the software developer indicate code regions
to the complier which are intended to be executed in parallel [46]. In the way
the instructions can be distributed among threads which will execute the code.
OpenMP directives are instructions that are only understood by OpenMP sup-
ported compilers. For a regular compiler these directives look like comments and
will be ignored thus also being backward compatible: Every OpenMP program
can be built and run on any non-OpenMP-supporting platform, a property not
supported by, for instance, MPI programs.
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3.2.1 Structure of OpenMP Programs

The structure of an OpenMP program is called the fork-join model. When a
parallel section starts, the master thread forks a number of slave threads and
divides tasks among them. All threads run concurrently in the program process.
However, unlike multiple processes running in parallel, all threads share the same
memory space, heap, global variables, and shared memory. Therefore, resources
and data used by multiple threads have to be locked to avoid race conditions and
unde�ned program states.

OpenMP Program Structure

OpenMP include file

Declarations, prototypes, etc.

Program begins

Thread 

2

}

#pragma omp parallel {

Serial code

Parallel code begins 

Parallel code ends 

Program ends

Serial code

...

...

Thread 

3

Thread 

1

...

Figure 3.2: Fork-join structure of an OpenMP program [46]

Figure 3.2 shows the so-called fork-join structure of a typical OpenMP program.
The most important directives used in the example program will be presented in
the following.
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All OpenMP directives used in a C program need to start with #pragma omp.
A valid OpenMP instruction needs to appear after the pragma and before any
clauses. For example:

� #pragma omp parallel default(shared) private(beta,pi)

The parallel region is the fundamental OpenMP construct. It is a block of in-
structions executed by multiple threads. When a parallel block starts one thread
becomes the master thread with thread id 0. After the end of the parallel region
only the master thread will be executed.

� #pragma omp parallel { }: Directive to start and end a parallel region.

� omp_set_num_threads(int num_threads): Sets the number of threads to
be started within the parallel region. The number can alternatively be de-
�ned using the OMP_NUM_THREADS environment variable.

� int omp_get_num_threads(void): Returns the number of threads in a par-
allel region.

� int omp_get_thread_num(void): Returns the thread id of the calling thread.
Threads are numbered from 0 (master) to omp_get_num_threads()-1.

For loops are ideal blocks to be run in parallel. The big restriction of parallel
for loops is that the program must not depend on the chronological order of the
executed iterations.

� #pragma omp for { }: Directive to execute iterations of a for loop parallel

� #pragma omp for schedule (static,dynamic) {}: Allows to set the schedul-
ing to di�erent policies, such as, dynamic or static. Static scheduling di-
vides the iteration space into (near)equal parts while dynamic scheduling
distributes the iteration space into smaller chunks, gradually feeding those
to threads once a thread is �nished with processing the previous one. Static
scheduling has less overhead but is only suitable to problems where the com-
putational e�ort for each iteration remains nearly constant. On the contrary,
dynamic scheduling allows to handle varying computational e�ort per itera-
tion better and is thus typically used for load-unbalanced situations.
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3.2.2 OpenMP on Coprocessors

OpenMP is the primary programming model to utilize the parallelization capabil-
ities of Intel Xeon Phi coprocessors [12]. The programs can either be compiled to
run solely on the coprocessor or a combination of CPU and coprocessor can be
used. Figure 3.3 shows three di�erent approaches of OpenMP on Intel Xeon Phi
coprocessors.

Coprocessor

Serial Code 

Serial Code 

#pragma omp parallel 

Parallel 

Code 

CPU Coprocessor

Serial Code 

Serial Code 

#pragma offload target (mic:0) 

Parallel 

Code 

CPU Coprocessor

Serial Code 

Serial Code 

#pragma omp single nowait

{offload();} 

Parallel 

Code 

#pragma omp parallel 

Native OpenMP 

on Coprocessor

Offload OpenMP on 

Coprocessor

Heterogenous OpenMP on 

CPU and Coprocessor 

Figure 3.3: Types of OpenMP parallelism on Coprocessors [47]

Native OpenMP

Intel's MIC architecture is designed to natively support X86 code [48]. Thus,
the coprocessor can be used to run X86 programs directly without changes of the
source code. Intel designates Xeon Phi cards as coprocessors and not accelerators
because they are very closely related to Intel's CPUs. Unlike GPUs, no vendor
speci�c kernels or other device speci�c code needs to be added. It is good practice
to �rst optimize OpenMP code on standard CPUs until the expected speed-up
is measured [49]. In a second step, the program should be run on Xeon Phi
coprocessors and be further optimized there. As the number of available cores can
therefore quadruple further code optimizations are usually necessary.
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O�oad OpenMP

In o�oad mode, OpenMP uses the combination of a classical CPU with an copro-
cessor to accelerate applications [50]. The OpenMP directive #pragma offload

target (mic) o�oads a block of instructions onto a coprocessor, i.e., the parallel
block is executed on the Xeon Phi. There common OpenMP directives can be used.
Obviously, moving the data to and from the coprocessor creates overhead intro-
duced by the latency and bandwidth limitations of the connecting bus. Therefore,
compute intense program blocks should be processed by the coprocessor. When
a coprocessor card is added to an existing hardware setup o�oad OpenMP is the
easiest way to use the compute potential of the coprocessor.

Heterogeneous OpenMP

Heterogeneous OpenMP programs run calculations on di�erent hardware at the
same time [51]. When o�oading is used, the main CPU is not needed for the most
compute intense blocks of codes. But with modern CPUs with up to 20 cores the
CPU also has signi�cant parallel computing power. Therefore, the heterogeneous
approach is to run a number of threads on the CPU while the rest of the threads
runs on the coprocessor (cf. Figure 3.3, right). The parallel region is started on
the CPU and with a #pragma omp single nowait {offload();} call the mas-
ter thread o�oads work to the coprocessor. When the threads exchange data in
shared memory this can lead to signi�cant overhead as the coprocessor has its
own memory on the device. If heterogeneous OpenMP is used optimization and
detailed performance analyses is necessary to avoid bottlenecks in the program
execution. Although requiring signi�cant e�ort to implement an e�cient hetero-
geneous OpenMP program, it allows to utilize the entire computational processing
power of a particular compute node, i.e., CPUs and coprocessors.
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3.3 CUDA C

GPUs are massively parallel processors which support thousands of active threads
(up to 20480 on GP100) [52]. This highly parallel computing platform requires
a specialized programming model to e�ciently express that kind of parallelism
(most important data parallelism). Nvidia's CUDA represents such a tailored
model. CUDA is a co-evolved hardware and software architecture which allows
HPC developers to utilize the resources in a familiar programming environment
[53]. The CUDA programming language extends the classical C language by sev-
eral new instructions.

When scientists started to use GPUs for GPGPU computing they �rst used graph-
ics programming APIs, such as OpenGL [53]. This approach limited the �exibility
of the developed software and was an obstacle to HPC software developers who
were often not familiar with graphics-focused programming. Nvidia's CUDA ar-
chitecture enabled programming in C-like syntax and semantics, which was one of
the primary reason for its success due to the broad C user base. Today, all current
Nvidia GPUs can be accessed via CUDA. The Tesla product line is speci�cally
developed for the HPC �eld and gained signi�cant market share as accelerator for
scienti�c simulations [54].

In real world applications where CUDA on accelerator cards is used speed-ups
from 10x to 100x compared to conventional approaches are achieved [53]. Medical
imaging was one of the �rst topics where performance increase of this magnitude
changes the way diagnostics are used [55]. Today, GPGPU is of interest to all ar-
eas of compute-intensive science and engineering applications, such as mechanical-,
chemical-, and electrical engineering as well as �uid dynamics, meteorology etc.

To clarify if program parts are executed on the compute node's CPU or the accel-
erator Nvidia introduced following de�nitions in its CUDA documentation [56]:

� Host: CPU of the compute node on which the accelerator is installed

� Device: accelerator

� Kernel: parallel parts of an application executed on the accelerator. Only
one kernel is executed at a time. Many threads execute each kernel.
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3.3.1 CUDA Execution Model

CUDA C allows the programmer to write straightforward C code that is run by
thousands of parallel threads [53]. The C function which is executed on the GPU
is called the kernel. The kernel is started usually on more than 10000 threads and
the large number of threads (about ten times the number of CUDA cores) enables
the SMs to schedule threads e�ectively to compensate the long latency of memory
accesses and the shorter latency of ALU operations using pipelines. There are three
re�nements to running kernel functions across many parallel threads: hierarchical
thread blocks, shared memory and barriers.
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Figure 3.4: CUDA execution model [57]

Figure 3.4 shows the execution model of CUDA [58]. The kernel is called in
the C program on the host CPU and then launched on the GPU. The array of
threads is separated in thread blocks. One thread block can execute up to 512
threads (GP100 architecture, previous architectures 128 and 256 threads). Within
a thread block cooperation and synchronisation of threads is possible. This is done
via a shared memory mechanism of the thread block and barriers. A thread block
is launched on a SM and does not migrate from there after launch.
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The thread blocks are organized in a grid. A kernel is executed by a grid of
thread blocks. The organisation of threads in thread blocks and grids allows the
programmer to �ne tune the parallelism to a speci�c problem. On low cost, low
power GPUs one thread block with all synchronisation and shared memory can
be run while on high end Tesla cards dozens of thread blocks are executed at the
same time.

3.3.2 Structure of CUDA Programs

Programs using CUDA code that is run on accelerators are spilt in classic C func-
tions and CUDA kernels [59]. The subroutines using CUDA C calls have to be
compiled with Nvidia's CUDA compiler. The remainder of the code can be com-
piled with other compilers. Afterwards the compiled program parts (CUDA and
non-CUDA) are linked together to form the actual application.

CUDA include file

Declarations, prototypes, etc.

Program begins

}

Kernel<<num grid,num_threads>>{

Regular code

Kernel function begins

Kernel function ends

Program ends

Regular code

Thread

block
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Thread
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Thread
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Thread
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Program compiled with gcc, executed on CPU Function compiled with CUDA 
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Copy input data to GPU

Copy result data from GPU

Host Accelerator

Figure 3.5: CUDA program structure [57]
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Figure 3.5 schematically depicts the structure of a CUDA program. The execu-
tion starts on the host and before the parallel executed kernel can be started the
input data has to be moved from the hosts' memory to the accelerator. This is
achieved using cudaMalloc(), cudaMemcopy() and cudaFree() calls [59].

The programmer writes regular C code in the kernel for one sequential thread
[60]. Parallelism is determined explicitly only by the dimensions of the thread
blocks and the grid when launching the kernel. Thread creation, scheduling and
thread termination are handled entirely by the underlying system. This is a more
accessible approach to parallelism than using vector operations or other classical
SIMD programming structures because vector operations are realized for single
elements on thread level instead of a global scale.
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4 Example Problem

In this chapter, a simpli�ed implementation of a particle based simulation is pre-
sented. This code is used as a platform for comparing di�erent parallelization
approaches based on di�erent languages and models. The individual peculiarities
are identi�ed as well as the parts of code, which have to be adopted or rewrit-
ten. The simulation is written in standard sequential C code. Afterwards di�erent
parallelization approaches, such as MPI and OpenMP are used to compare the re-
quired e�ort of parallelizing the code with the respective parallelization approach.
Hybrid techniques with OpenMP o�oading to coprocessors and o�oading of the
compute intense parts to GPUs is discussed at the end of the chapter.

The simulation is based on a two-dimensional �nite grid within which particles
are distributed. Each particle has an discrete spatial (i.e. x and y) coordinate
and a non-discrete energy value. The simulation loop computes the new position
and energy values of the particles at each iteration. This structure follows typical
setups of particle Monte Carlo codes and, although simpli�ed, allows to establish
the basic work-�ow with reduced complexity enabling to put the focus of the in-
vestigation on the di�erent parallelization approaches. The code of the simulation
loop is as follows.

Start

global_memory_allocation()

particle_stack_init()

simulation_loop()

End

Figure 4.1: Structure of the example problem's serial implementation
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1 void simulation_loop(particle_t * stack , int size_x , int size_y ,

int num_particles , int num_steps) {

2

3 int local_stacksize = num_particles;

4 //Loop running number of steps of the simulation

5 for(int iter = 0; iter < num_steps; iter ++)

6 {

7 double sum = 0;

8 //Loop computing position and energy of every particle on grid

9 for(int i=0; i < local_stacksize; i++)

10 {

11 stack[i].posx= (stack[i].posx + (rand() % size_x)) % size_x;

12

13 stack[i].posy= (stack[i].posy + (rand() % size_y)) % size_y;

14

15 stack[i]. energy= sqrt( stack[i].posx + stack[i].posy );

16 // Summing up energy of all particles on grid

17 sum = sum + stack[i]. energy;

18 }

19 } return;

20 }

For each iteration the simulation loop adds a random number to the x and y coor-
dinates of the particles on the grid, to arbitrarily distribute the particles within the
simulation domain. A modulo operation afterwards ensures that the particles stay
within the grid. Afterwards the particle's energy is calculated from the x and y
position on the grid. Energy in this example is no energy in the physical meaning,
but a physically meaningless place-holder for further computations. Finally, the
loop sums up the energy of all particles in the grid.

The particle_t datatype is a typedef structure which contains the parameters of
one particle. There are the following three parameters:

� int posx: x position on the grid

� int posy: y position on the grid

� double energy: energy of the particle

The main program allocates memory for the particles. Afterwards, the function
particle_stack_init() is called which assigns a random position to every par-
ticle on the grid and an random energy value. Then the simulation loop is started
and the computation begins. Before shutting down in the end of the program the
allocated memory is freed.
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1 int main(int argc , char* argv [])

2 {

3 particle_t * global_particle_stack = NULL;

4

5 // Global stack is generated with number of particles

6 global_particle_stack = global_memory_allocation(num_particles);

7 // Global stack is filled with random data

8 particle_stack_init(global_particle_stack , num_particles);

9 // Start simulation loop with number of particles and domain size

10 simulation_loop(global_particle_stack , maxX , maxY , num_particles

, num_iterations);

11

12 free(global_particle_stack);

13

14 return 0;

15 }

There are two main parameters in the main program which de�ne the simulated
environment and the simulation e�ort:

� num_particles: number of particles placed on the grid

� num_iterations: number of iterations of the simulation loop

4.1 MPI

In this section, the MPI is used to enable parallel execution of the example prob-
lem. The code of the simulation loop remains unchanged but the main program is
adapted to initialize the MPI environment and to distribute the particles among
the MPI processes.

After the initialization of the MPI environment the MPI rank and size is requested.
The process with MPI rank 0 is declared the master process. The particles are
sent to the slave processes from the master process. As the particle_t datatype
is no standard datatype it has to be registered with the MPI environment.
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1 int mpi_size , mpi_rank;

2 const int mpi_master = 0;

3

4 // initialize the MPI environment

5 MPI_Init (&argc , &argv);

6

7 // retrieve the number of MPI processes in the execution

8 // as well as the MPI rank (i.e. id) of the current process

9 MPI_Comm_size(MPI_COMM_WORLD , &mpi_size);

10 MPI_Comm_rank(MPI_COMM_WORLD , &mpi_rank);

11

12 // Register the particle struct with the MPI Backend

13 MPI_Datatype MPI_PARTICLE;

14 particle_t particle;

15 mpi_register_particle (&particle , &MPI_PARTICLE);

The master process allocates memory for the global particle stack holding all par-
ticles and initializes those. Afterwards, the global particle stack is split up into
substacks. Figure 4.2 shows the spatial domain decomposition strategy used [61].
The following code snippet shows how the local particle stacks are �lled with data
from the global stack via the stackSplit() function. After splitting up the stack
the data is sent to the slave processes via MPI_Isend call. The slave processes need
to know how much memory they have to allocate for the incoming particle stack
data. Therefore, the master sends out the local stack parameters via MPI_Bcast

to all MPI processes.

Global particle stack

Dimensions maxX x maxY 

Local stack 

1
Local stack 

2

Local stack 

3

Local stack 

4

Figure 4.2: Spatial domain decomposition [62]
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1 for(i = 0; i < mpi_size; i++) {

2 // Allocate memory for the particle sub -stack of each sub -domain

3 subStack[i] = calloc( substack_maxsize , sizeof(particle_t) );

4 // Check which , and how many , particles in the global stack

belong to this substack

5 subStackSize[i] = stackSplit(global_particle_stack , subStack[i],

startIndex_globalStack , stopIndex_globalStack ,

substack_maxsize);

6 }

7 //Send substacks to each of the helper processes:

8 MPI_Request sub_particles_send_requests[mpi_size -1];

9

10 for(int w = 1; w < mpi_size; w++) {

11 MPI_Isend(subStack[w],subStackSize[w], MPI_PARTICLE , w,

MPI_TAG_PARTICLESUBSTACK , MPI_COMM_WORLD ,

12 &sub_particles_send_requests[w-1]);

13 }

14

15 int parameter_array[SIZE_PARAMETER_ARRAY ];

16 parameter_array [0] = maxX / mpi_size; //Size in X direction

17 parameter_array [1] = maxY; //Size in Y direction

18 parameter_array [2] = NUM_PARTICLES / mpi_size; //Size of substack

19 parameter_array [3] = NUM_ITERATIONS; // Number of iterations

20 // Transfer the parameters to the helper processes

21 MPI_Bcast( parameter_array , SIZE_PARAMETER_ARRAY , MPI_INT , 0,

MPI_COMM_WORLD);

After sending the information to the slave processes the master process starts the
simulation loop function and processes its own substack.

The slave processes, presented in the next code snippet, receive parameters de�ning
their own share of work via MPI_Bcast. With this information the slave processes
allocate memory for their local particle stacks. After MPI_Irecv() has received
all particles the simulation loop is started. The simulation loop itself remains un-
changed to the initial serial program.
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1 int parameter_array[SIZE_PARAMETER_ARRAY ];

2 // Recieve general information for all processes via broadcast

3 MPI_Bcast( parameter_array , SIZE_PARAMETER_ARRAY , MPI_INT , 0,

MPI_COMM_WORLD);

4 // Create local particle stack

5 particle_t *local_particle_stack = calloc( parameter_array [2],

sizeof(particle_t) );

6 // Recieve local particle stack from master process

7 MPI_Request receive_request;

8 MPI_Irecv(local_particle_stack , parameter_array [2], MPI_PARTICLE ,

mpi_master , MPI_TAG_PARTICLESUBSTACK , MPI_COMM_WORLD , &

receive_request);

9 //Wait for MPI transmission to end

10 MPI_Wait (& receive_request , &status);

11

12 //

13 // Worker process starts its work

14 //

15 local_MAX_X = parameter_array [0]; //Size in X Direction

16 local_MAX_Y = parameter_array [1]; //Size in Y Direction

17 local_stacksize = parameter_array [2]; //Size of Substack

18 local_num_iterations = parameter_array [3]; // Number of Iterations

19 simulation_loop(local_particle_stack , local_MAX_X , local_MAX_Y ,

local_stacksize , local_num_iterations);

This simple example shows the e�ort a MPI implementation requires. The serial
main function with 19 lines of code was replaced by the MPI main function with 187
lines of code. Additionally, the functions stackSplit() and registerParticle()

added 59 more lines of code.

The big advantage of the MPI implementation is that, in principal, it supports
MPI computing platforms of arbitrary sizes. When more processing power is
needed the simulation can use more CPU cores if the cluster has available re-
sources. As already indicated, the MPI requires the programmer to think about
data locality from the beginning which, although requires initially a lot more e�ort
as compared to, for instance, OpenMP, this initial e�ort usually pays o� in the
long run as proper data handling is one of the key ingredients for achieving high
parallel e�ciency on large core numbers.

30



4.2 OpenMP

The implementation of the OpenMP parallelization is only done in the simulation
loop subroutine, as it hosts the central compute-intensive loop over the particle
stack. The initial serial main program remains unchanged. On a side note, the
MPI main program can also be used to use MPI for the distribution over multiple
computing nodes and OpenMP for parallelism on the local shared memory node,
paving the way for a hybrid MPI-OpenMP approach.

The following code snippet shows the OpenMP-parallelized implementation of the
simulation loop. After the beginning of the parallel section (Line 3) the global
particle stack is split into local particle stacks; one for each thread. This is done to
ensure proper data placement, particularly important for Non-Uniform Memory
Access (NUMA) systems: Each thread has its performance critical local substack
within its memory domain, ensuring fast read and write access [37]. That being
said, another e�ective but ine�cient approach would be for all threads to work on
the same master thread-owned global particle stack, albeit with expected reduced
e�ciency on NUMA systems: As all non-master-threads will have to access data
in the master threads memory domain, overall performance will su�er from band-
width and latency issues imposed by the memory links connecting the individual
NUMA regions.

1 void simulation_loop(particle_t * particle_stack , int size_x , int

size_y , int num_particles , int num_steps) {

2 #pragma omp parallel firstprivate (size_x , size_y , num_steps)

3 { // Begin parallel section

4 int local_stacksize = ceil (num_particles

5 / omp_get_num_threads ());

6 int thread_num = omp_get_thread_num ();

7 printf("[simulation_loop ]: Threadnumber: %d\n",thread_num);

8 particle_t * local_stack = malloc(sizeof(particle_t)

9 * local_stacksize);

10 memcpy(local_stack , &particle_stack[thread_num

11 *local_stacksize], local_stacksize * sizeof(particle_t));

12 for(int iter = 0; iter < num_steps; iter ++)

13 {

14 double sum = 0;

15 #pragma omp for schedule (static , local_stacksize)

16 for(int i=0; i < local_stacksize; i++)

17 {

18 local_stack[i].posx = (local_stack[i].posx +

19 (rand() % size_x)) % size_x;

20 local_stack[i].posy = (local_stack[i].posy +

21 (rand() % size_y)) % size_y;
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22 local_stack[i]. energy = sqrt( local_stack[i].posx +

23 local_stack[i].posy );

24 sum = sum + local_stack[i]. energy;

25 }

26 }

27 } //End parallel section

28 return;

29 }

The OpenMP implementation adds 14 lines of code relative to the initial serial
implementation. As already indicated, basic OpenMP functionality could also
be achieved with just the two #pragma calls. But due to the already discussed
NUMA-related data locality issues, it is usually useful to accept the extra overhead
of replicating compute-critical data into local memory domains which is why this
case is primarily considered in this investigation.

4.3 OpenMP on Xeon Phi

The OpenMP implementation running on a coprocessor is realized via OpenMP of-
�oading routines. The normal OpenMP implementation from the previous section
is extended to run on a coprocessor.

1 #pragma omp parallel firstprivate (size_x , size_y , num_steps)

2 { // Begin parallel section

3 int local_stacksize = ceil (num_particles

4 / omp_get_num_threads ());

5 int thread_num = omp_get_thread_num ();

6 printf("[simulation_loop ]: Threadnumber: %d\n",thread_num);

7 particle_t * local_stack = malloc(sizeof(particle_t)

8 * local_stacksize);

9 memcpy(local_stack , &particle_stack[thread_num

10 *local_stacksize], local_stacksize * sizeof(particle_t));

11 #pragma offload target(mic) // Offload to coprocessor

12 inout(local_stack: length(local_stacksize))

13 for(int iter = 0; iter < num_steps; iter ++) {

14 double sum = 0;

15 #pragma omp for schedule (static , local_stacksize)

16 for(int i=0; i < local_stacksize; i++) {

17 local_stack[i].posx = (local_stack[i].posx + ...

18 local_stack[i].posy = (local_stack[i].posy + ...

19 local_stack[i]. energy = sqrt( local_stack[i].posx + ...

20 sum = sum + local_stack[i]. energy;

21

32



The di�erence to the standard OpenMP implementation is the offload clause
(Line 11-12). This call o�oads the contained code to the coprocessor. The inout()
part speci�es which data is copied to and from the coprocessor. The offload call
is placed there and not in the beginning of the parallel section for performance
reasons. Splitting up the global particle stack and copying the data is typically
faster on the CPU than on the coprocessor. The local particle stacks and their
computation is then o�oaded to the coprocessor.

This implementation can be called from the serial main routine or the MPI coun-
terpart, again underlining the potential for an extension towards hybrid paral-
lelization.

4.4 CUDA C

The CUDA C implementation of the simulation requires the serial simulation code
to be exchanged by a function calling the CUDA kernel. The CUDA kernel is in a
separate function run only on the GPU. The new simulation loop function allocates
memory on the accelerator card and copies the data to the device memory.

1 __host__

2 void simulation_loop(particle_t * particle_stack , int size_x , int

size_y , int num_particles , int num_steps) {

3 int N = num_particles;

4 #define THREADS_PER_BLOCK 128

5 // Device copy of particle stack

6 particle_t * dev_particle_stack;

7 // Allocate device copie of particle stack

8 cudaMalloc( (void **)& dev_particle_stack , num_particles *

sizeof(particle_t) );

9

10 //Copy data to device

11 cudaMemcpy(dev_particle_stack , particle_stack , num_particles *

sizeof(particle_t), cudaMemcpyHostToDevice);

12 kernel <<< N/THREADS_PER_BLOCK ,THREADS_PER_BLOCK >>> (

dev_particle_stack , size_x , size_y , num_particles , num_steps);

13

14 cudaMemcpy(particle_stack , dev_particle_stack , num_particles *

sizeof(particle_t), cudaMemcpyDeviceToHost);

15

16 cudaFree(dev_particle_stack);

17 return;

18 }
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The __host__ statement de�nes that this function is only run on the host. This
function and the kernel have to be compiled using the Nvidia CUDA compiler. The
kernel call with �Gridsize, Blocksize� launches the kernel on the accelerator.
The blocksize is �xed with 128 threads to allow the program to be executed on
older CUDA accelerators, which had a maximum number of 128 threads. Modern
accelerators increased this number to 256 or 512 threads per block. The gridsize
is calculated from the number of particles in the simulation. The kernel is a new
function and the __global__ statement de�nes that it can be called from the host
or the device.

1 __global__

2 void kernel( particle_t * particle_stack , int size_x , int size_y ,

int num_particles , int num_steps)

3 {

4 int iter;

5 double sum;

6 int index = threadIdx.x + blockIdx.x * blockDim.x;

7 //Set up random number generator curand. Calling function rand()

from kernel is not easily possible and verly slowly

8 curandState state;

9 curand_init (( unsigned long long)clock () + index , index , 0, &

state);

10

11 for(iter = 0; iter < num_steps; iter ++)

12 {

13 double rand1 = curand_uniform_double (&state);

14 double rand2 = curand_uniform_double (&state);

15 particle_stack[index ].posx = (particle_stack[index].posx + (int)

rand1 % size_x)% size_x;

16 particle_stack[index ].posy = (particle_stack[index].posy + (int)

rand2 % size_x)% size_x;

17 particle_stack[index ]. energy = sqrt((float) ( particle_stack [

index ].posx + particle_stack [index].posy) );

18 sum = sum + particle_stack[index]. energy;

19 __syncthreads ();

20 }

21 }
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The standard rand() function is not available on the GPU, therefore, the cu-
Rand random number generator is used to create random numbers.

The serial simulation loop implementation has 15 lines of code whereas the CUDA
implementation requires 39 lines of code. To enable data processing on the accel-
erator data has to be copied to and from the GPU via CUDA memcpy calls.

The CUDA C implementation of the simulation loop can be called from the serial
main or the MPI main. MPI can be used to distribute data to the computing
nodes and the single nodes use GPU accelerators to compute the simulation re-
sults, again showing the support for hybrid parallelization. Exchanging data is
more di�cult because the simulation data is being processed on the GPU. Nvidia
presented CUDA-aware MPI to address this problem and make synchronisation
and data exchange easier on HPC clusters using GPU accelerators, however, for
the sake of portability and clarity this is not further investigated in this work.
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5 Conclusion and Outlook

This �nal chapter summarizes and analyses the results of the previous chapters and
gives an outlook to the future of parallelization. In Chapter 5.1 the programming
e�ort and portability of the di�erent example problem implementations are dis-
cussed. Finally, Chapter 5.2 gives an overview over expected future developments
in many-core programming.

5.1 Comparison of Programming E�ort

The �ve implementations of the example problem in Chapter 4 are compared in
programming e�ort. The chosen metric is lines of code, which is a straightforward
way to describe the programming e�ort. Table 5.1 shows the lines of code needed
for the di�erent implementations.

Table 5.1: Lines of code in di�erent implementations
main routine simulation loop further code

Serial implementation 19 15 0
MPI implementation 187 15 59
OpenMP (with MPI) 19 (187) 29 0 (59)
OpenMP o�oad (with MPI) 19 (187) 31 0 (59)
CUDA (with MPI) 19 (187) 39 0 (59)

Evaluation of the di�erent implementations and the gathered implementation
e�ort:

� MPI: The MPI implementation requires the biggest development e�ort. If a
HPC cluster has to be used for simulations there is basically no way around
MPI to distribute data and exchange messages between the nodes. MPI can
also be used on single multi-core compute nodes, making the MPI a versatile
parallelization platform. However, depending on the degree of communi-
cation of an application, the speed-up achieved by adding further compute
nodes will saturate at a certain point because of the communications over-
head, which depends highly on the implementation.
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� OpenMP: Parallelization of existing code with OpenMP requires compara-
tively less e�ort, however, signi�cant optimization e�ort has to be considered
to reach high parallel e�ciency. OpenMP can be used to e�ectively and ef-
�ciently extend serial code step by step by parallel counterparts.

� O�oad OpenMP: When OpenMP code is supposed to be o�oaded to a co-
processor the OpenMP code should be �rst optimized on a regular CPU host,
before moving tuning to a coprocessor system. The signi�cant increase in
the core numbers of a coprocessor will make further optimizations necessary
to signi�cantly outperform a HPC CPU-only host.

� CUDA C: Utilizing GPU accelerators requires the computations to be rewrit-
ten in CUDA C. GPUs have di�erent functionalities than CPUs and therefore
many routines cannot be used directly. The separate device memory requires
the programmer to think about data locality and communication overheads.

� Hybrid implementations: As clusters with coprocessors and accelerators have
already a large market share in the HPC market programmers have to be-
come familiar with hybrid parallelization. Using MPI on a high level to
communicate between compute nodes and OpenMP or CUDA C on the lo-
cal node to utilize available coprocessors or accelerators is a viable option to
utilize heterogeneous compute platforms..

MPI and OpenMP o�er vendor-independent implementations. Both are available
for all HPC clusters and stand-alone workstations. O�oad OpenMP on coproces-
sors and CUDA C for Nvidia GPUs support only speci�c hardware. Therefore,
implementations using those approaches are in a so-called vendor lock, meaning
that the implementations cannot be used on other platforms outside the vendors
hardware ecosystem. This fact might become problematic to research software
developers as they might become dependent on the availability of a speci�c type
of compute environment, especially as a lack of manpower and funding in research
software projects renders repeated code porting to new platforms highly challeng-
ing and often simply not possible.
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5.2 Future Developments and Outlook

In the near future, many-core applications will be more and more used to fol-
low the hardware trend towards increasing core numbers. Medical imaging and
other computationally challenging scienti�c simulations will rely more and more
on these highly parallel platforms. However, to increase the usability new, more
accessible language approaches, like OpenACC are being developed [63]. Using
directives similar to OpenMP should make it easier for programmers new to the
�eld of many-core programming to utilize accelerators and co-processors . On the
contrary, OpenMP was extended to support o�oading to coprocessors in speci�-
cation 4.0 [64]. Researchers are working on approaches to run C code with o�oad
OpenMP code on GPUs, to further the reach of OpenMP beyond CPUs and co-
processors.

Hybrid parallelization has a big chance of becoming a standard for future im-
plementations of scienti�c simulators. Today's high end multi core CPUs have
more than 20 cores on a single chip (e.g. Intel Broadwell-EX). The gap to copro-
cessors is closing and there is no way around parallelization techniques to utilize
this potential. This trend is expected to continue: The processor roadmaps predict
rising core numbers and a transition from the multi core architecture to many core
architectures [65]. For research software developers hybrid parallelization will have
to become a standard method for utilizing all available, heterogeneous computing
resources on single workstations or on clusters to support the ongoing quest for
more accurate and faster computer simulations.
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