next up previous
Next: B.3 Three-Dimensional Shape Functions Up: B.2 Two-Dimensional Shape Functions Previous: B.2.1 Triangle

B.2.2 Rectangle

linear interpolation:

\resizebox{5.0cm}{!}{\includegraphics{/iue/a39/users/radi/diss/fig/shape/lin2Dq.eps}}

interpolating polynomial function:

u($\displaystyle \xi$,$\displaystyle \eta$) = $\displaystyle \alpha_{1}^{}$ + $\displaystyle \alpha_{2}^{}$$\displaystyle \xi$ + $\displaystyle \alpha_{3}^{}$$\displaystyle \eta$ + $\displaystyle \alpha_{4}^{}$$\displaystyle \xi$$\displaystyle \eta$      

shape functions:
N1($\displaystyle \xi$,$\displaystyle \eta$) = (1 - $\displaystyle \xi$)(1 - $\displaystyle \eta$)  
N2($\displaystyle \xi$,$\displaystyle \eta$) = $\displaystyle \xi$(1 - $\displaystyle \eta$)  
N3($\displaystyle \xi$,$\displaystyle \eta$) = $\displaystyle \xi$$\displaystyle \eta$  
N4($\displaystyle \xi$,$\displaystyle \eta$) = $\displaystyle \eta$(1 - $\displaystyle \xi$)  

quadratic interpolation:

\resizebox{5.0cm}{!}{\includegraphics{/iue/a39/users/radi/diss/fig/shape/lin2Dq_2.eps}}

interpolating polynomial function:

u($\displaystyle \xi$,$\displaystyle \eta$) = $\displaystyle \alpha_{1}^{}$ + $\displaystyle \alpha_{2}^{}$$\displaystyle \xi$ + $\displaystyle \alpha_{3}^{}$$\displaystyle \eta$ + $\displaystyle \alpha_{4}^{}$$\displaystyle \xi^{2}_{}$ +      
$\displaystyle \alpha_{5}^{}$$\displaystyle \xi$$\displaystyle \eta$ + $\displaystyle \alpha_{6}^{}$$\displaystyle \eta^{2}_{}$ + $\displaystyle \alpha_{7}^{}$$\displaystyle \xi^{2}_{}$$\displaystyle \eta$ + $\displaystyle \alpha_{8}^{}$$\displaystyle \xi$$\displaystyle \eta^{2}_{}$      

shape functions:
N1($\displaystyle \xi$,$\displaystyle \eta$) = (1 - $\displaystyle \xi$)(1 - $\displaystyle \eta$)(1 - 2$\displaystyle \xi$ - 2$\displaystyle \eta$)  
N2($\displaystyle \xi$,$\displaystyle \eta$) = - $\displaystyle \xi$(1 - $\displaystyle \eta$)(1 - 2$\displaystyle \xi$ + 2$\displaystyle \eta$)  
N3($\displaystyle \xi$,$\displaystyle \eta$) = - $\displaystyle \xi$$\displaystyle \eta$(3 - 2$\displaystyle \xi$ - 2$\displaystyle \eta$)  
N4($\displaystyle \xi$,$\displaystyle \eta$) = - $\displaystyle \eta$(1 - $\displaystyle \xi$)(1 + 2$\displaystyle \xi$ - 2$\displaystyle \eta$)  
N5($\displaystyle \xi$,$\displaystyle \eta$) = 4$\displaystyle \xi$(1 - $\displaystyle \xi$)(1 - $\displaystyle \eta$)  
N6($\displaystyle \xi$,$\displaystyle \eta$) = 4$\displaystyle \xi$$\displaystyle \eta$(1 - $\displaystyle \eta$)  
N7($\displaystyle \xi$,$\displaystyle \eta$) = 4$\displaystyle \xi$$\displaystyle \eta$(1 - $\displaystyle \xi$)  
N8($\displaystyle \xi$,$\displaystyle \eta$) = 4$\displaystyle \eta$(1 - $\displaystyle \xi$)(1 - $\displaystyle \eta$)  


next up previous
Next: B.3 Three-Dimensional Shape Functions Up: B.2 Two-Dimensional Shape Functions Previous: B.2.1 Triangle
Mustafa Radi
1998-12-11