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ABSTRACT We present numerical methods to enable accurate and robust level-set based simulation of
anisotropic wet etching and non-planar epitaxy for semiconductor fabrication. These fabrication techniques
are characterized by highly crystal orientation-dependent etch/growth rates, which lead to non-convex
Hamiltonians in their description by the level-set equation. As a consequence, instable surface propagation
may emerge, leading to unphysical results. We propose a calibration-free Stencil Lax-Friedrichs scheme
and an advanced adaptive time-stepping approach, tailored to the level-set speed functions associated with
anisotropic etching and epitaxy. The scheme calculates the numerical dissipation based on information
about the local geometry and the nature of the etch rates/growth function, which enables an optimized
trade-off between overly rounding of sharp geometric features and stable surface propagation. Furthermore,
we introduce the deposition top layer method, which allows for robust handling of multiple material regions
in non-planar epitaxy simulations. Both methods are demonstrated in a prototypical implementation, which is
used to validate the capability and accuracy of our approaches. In particular, two-dimensional wet etching and
three-dimensional epitaxy simulations are performed and characteristic geometry parameters are compared
to the ideally expected values, showing robustness and high accuracy.

INDEX TERMS Crystallographic etching, non-planar epitaxial growth, level-set method, non-convex

Hamiltonian, multi-material simulation.

I. INTRODUCTION

Fabrication techniques which exploit the crystalline nature
of semiconductor materials are highly important for
cutting-edge semiconductor technologies to enable intricate
device geometries. A widely used technique is the anisotropic
wet etching of silicon (Si), where wet etchants (e.g., potas-
sium hydroxide (KOH)) are used to remove the substrate
with highly different rates, depending on the crystallographic
direction of the etched material. The final geometry is charac-
terized by slowly etching crystallographic planes (i.e., facets),
which allows for predictable and precise topographies. While
anisotropic wet etching is the traditional fabrication technique
for cavities in microelectromechanical systems (MEMS) [1]
(Fig. 1a), further applications include patterned sapphire
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substrates for gallium nitride-based light emitting diodes [2]
and source-drain engineering for metal-oxide-semiconductor
field-effect transistors (MOSFETSs) on the nanoscale [3],
[4]. A similar fabrication process is epitaxial growth of
Si or silicon-germanium (SiGe) on non-planar substrates
(Fig. 1b). In order to enhance the device characteristics of
advanced-node semiconductor devices (e.g., FinFETs [5] and
stacked nanosheet devices [6], [7]), the exact geometry of
epitaxially grown Si or SiGe is crucial.

Both anisotropic etching and non-planar epitaxy require
precise control of the final topography. In the presence of
complex three-dimensional device geometries, it is beneficial
to guide the fabrication process with topography simulation
beforehand. Level-set methods, first presented by Osher and
Sethian [8], are particularly well suited to track the evo-
lution of the wafer surface, in particular, when topological
changes are expected [9]. The level-set method is based on
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FIGURE 1. (a) Cavity etch producing a free cantilever for sensor applications. The Si substrate is anisotropically etched with a wet etchant, e.g., KOH. The
etch rates along the (111) direction are significantly smaller than the rates along (100), resulting in a topography defined by {111} planes.
(b) Advanced-node stacked nanosheet geometry with epitaxially grown source and drain (red). Silicon crystal facets are labeled, showing the resulting

complex geometries due to the epitaxial growth [6], [7].

the description of a surface in the simulation domain 2 by the
zero level-set {x € Q| ¢(x) = 0} of the level-set function ¢.
The temporal evolution of the surface (also referred to as
front) is determined by the level-set equation [10]
% +H(V¢) =0, ey
ot
which assumes the form of a Hamilton-Jacobi equation. The
corresponding Hamiltonian H = V|| V¢||, where || - || denotes
the Euclidean norm, comprises a general speed function V
which determines the propagation of the front.

V introduces the information about the physical pro-
cess which enforces the change of the surface topography.
Anisotropic etch and growth processes are characterized by
etch/growth rates along certain crystallographic directions.
These rates are known from experiments to primarily depend
on the involved materials/etchants and on the process temper-
ature [11]-[13]. Speed functions V that reflect the experimen-
tal observations give rise to a non-convex Hamiltonian [15],
causing numerical problems at sharp corners.

The discretized level-set function inevitably introduces
inaccuracies in the calculation of the normal vector of the
front. Combined with the highly orientation-sensitive speed
function, instable front propagation and thus unphysical
results may emerge. The discretized level-set equation can
be stabilized by introducing numerical dissipation, which
results in dissipative schemes, such as the Lax-Friedrichs
scheme [16]. The additional numerical dissipation terms have
the detrimental effect of artificially rounding sharp geomet-
rical features. Thus, in order to achieve stability and sharp
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geometrical features, it is essential to add the appropriate
amount of numerical dissipation. In the case of speed func-
tions which can be analytically described, the appropriate dis-
sipation can be exactly calculated from the derivative of the
Hamiltonian [14]. In contrast, for general etching and growth
processes the speed function is not explicitly given. Hence,
the dissipation coefficients can be heuristically chosen [17],
or a numerical approximation of the derivative of the Hamil-
tonian is employed, as proposed by Montoliu ez al. [18]. How-
ever, the approximation presented by Montoliu et al. requires
anumerical calibration parameter which has to be determined
for every etching/growth condition. In this work, we present
a method to calculate the numerical dissipation based on
the nature of the speed function V and the local geometry
while not resorting to calibration parameters. Furthermore,
advanced adaptive time-stepping based on the introduced
numerical dissipation is employed. As a result, the time step
is appropriately chosen to enable a stable front propagation.

The high orientation sensitivity of wet etching and epitaxy
processes requires an accurate description of the zero level-
set. The local geometry is well known to play a decisive
role in anisotropic processing techniques, in particular in the
field of epitaxy [19], [20]. Furthermore, in a semiconductor
process simulation, multiple material regions are present and
the level-set framework must handle material interfaces and
thin layers robustly. Multi-level-set approaches have been
demonstrated to enable robust etching simulations [21] and
enable sub grid cell resolution for thin layers.

However, commonly used multi-level set approaches for
etching simulations are not suitable for selective growth
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processes due to the way the material regions are addi-
tively represented. As a consequence, the local convexity in
some regions is artificially altered, resulting in non-physical
growth. In this work, we propose the introduction of a depo-
sition top level-set function (deposition top layer), which
allows for robust and accurate simulations of anisotropic
epitaxy processes on non-planar substrates.

Our calibrarion-free Stencil Lax-Friedrichs scheme as well
as our multi-material scheme for selective deposition are
demonstrated with a prototypical implementation based on
the open source topography simulator ViennaTs$ [22].

This paper is organized as follows. In Section II we derive
our proposed numerical dissipation scheme for robust model-
ing of anisotropic etching and growth. Section III presents our
multi-level-set scheme to robustly model selective deposition
processes with sub grid resolution. In Section IV the simu-
lation setups and expected results are introduced. Section V
discusses results for these setups using our proposed methods.

Il. NUMERICAL DISSIPATION SCHEME

During an anisotropic process step, the crystalline nature of
the processed materials gives rise to strongly crystallographic
orientation-dependent etch rates. The kinetics of the chemical
reactions during etching or deposition establish significantly
differing etch/growth rates depending on the exposed crystal
facet [11]. Consequently, the speed function V is a function of
the surface normal vector, which locally defines the exposed
crystallographic directions. During a typical wet etching step,
the chemical properties of the etchant are actively controlled
to be uniform (e.g., by means of stirring) and the temperature
is held constant [12]. Under these conditions, we can neglect
the local impact of reactant transport! on the etching kinetics.
Consequently, the etch rate only depends on the exposed crys-
tallographic planes, resulting in a speed function (2) which is
a function of the local surface normal vector nn = [1*, n”, nZ]T

V =Vm*,n, nd. 2)

In general, (2) implies a temporal evolution of the surface
driven by the surface’s geometry with no further external
driving force. Etch and growth rates are typically measured
for certain crystallographic directions, given by Miller indices
(e.g., (100), (111}). In order to calculate the corresponding
rate for a general local surface normal, interpolation between
the measured rates for a set of given orientations is required.
Gosdlvez et al. [25] presented a comprehensive study on
the quality of different schemes (trilinear, triquadratic, etc.)
specifically for wet etching of Si. However, in the case
of selective epitaxy, deposition rates are usually only mea-
sured for three or four crystal directions. Therefore, one can
employ linear interpolation while accounting for the symme-
try introduced by the cubic crystal structure of Si, as proposed
by Hubbard [26]. Fig. 2 shows typical anisotropic speed
functions associated with etching and epitaxy. These speed

1A reactant transport model would introduce dependencies on flux distri-
butions, reactant adsorption/desorption, and particle (re-) emission.
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functions show the characteristically high ratio of maximum
and minimum speed values, which causes the issue of numer-
ical stability discussed in this work.

Within the level-set framework the surface normals are
calculated from the level-set function ¢

Vo
IVl

Consequently, the speed function and the resulting Hamilto-
nian are a function of the spatial derivatives of the level-set
function ¢, p € {x,y, z}

H = V|Vl = V@i, py, IV “

In general, the Hamiltonian H(¢y, ¢y, ¢,) is non-convex,
because the formal convexity condition

92H
Ay,

where ¢, refers to the partial derivative of ¢ with respect
to the spatial coordinate p, is not fulfilled. The non-convex
nature of the Hamiltonian is problematic if the front has
sharp corners. Along a front with high curvature (as depicted
in Fig. 3a) a non-convex speed function V() (illustrated in
the inset) is characterized by possibly multiple extrema. Due
to the limited spatial resolution, the speed of the front between
two grid points has to be estimated by a combination of the
speed at exactly these two grid points [15]. However, it is
not straightforward to choose a high quality combination,
because on the one hand the exact magnitude of the extrema
(c.f., Fig. 2) and on the other hand the spatial resolution
must be considered. Furthermore, after a time step At the
front has propagated by a small distance resulting in a new
set of front speed values at the grid points. Even though
the global shape of the corner does not significantly change
during Az, the set of front speed values associated with the
spatially constant grid points can be considerably different.
If the speed function of a certain grid point is changing con-
siderably between two time steps, the local advection speed
might change significantly in each time step. This situation is
illustrated in Fig. 3a, where the speed function takes values
close to the maximum value along (113). Depending on the
alignment of the front relative to the grid points, the directions
of the surface normals vary slightly, resulting in considerably
different speed values assigned to the grid points. As a con-
sequence, high frequency disturbances on the scale of spatial
resolution occur, resulting in propagating unphysical oscilla-
tions of the level-set function, which detrimentally affect the
global solution.

In the case of etching and epitaxial growth simulations,
the front generally evolves towards individual sharp corners,
i.e., planes forming the crystallographic facets. These regions
are depicted in Fig. 3b. While the speed values associated with
the active grid points (i.e., grid points close to the surface,
which are visited to solve the level-set equation) are small and
well-behaved, the sharp corners cause instable propagation,
which results in overly high etch or growth rates and thus

3)
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FIGURE 2. Typical etching and growth rate distributions for cubic crystals. (a) and (b) lllustration of the three-dimensional distributions
and slice paths (red line). (c) and (d) Visualization of the rates along the slice paths. The distribution functions originate from linear
interpolation between the crystallographic directions (100), (110), (113), and (111). The (-) notation refers to the set of equivalent
directions in the cubic crystal structure. Both distributions are characterized by a global minimum at (111) direction resulting in slowly

moving {111} planes.

leads to physically wrong results. In order to overcome this
problem, we employ the technique of artificially smoothing
out corners [16] and present in the next section a numeri-
cal dissipation scheme which takes the nature of V(i) (i.e,
the form and smoothness of V (7), as depicted in Fig. 2) into
account.

A. STENCIL LOCAL LAX FRIEDRICHS NUMERICAL
DISSIPATION SCHEME

Anisotropic etch and growth simulation discussed in this
work naturally involves sharp corners, which result in
non-differentiable level-set fields. Consequently, the physi-
cally relevant solution of the level-set equation is not smooth
and it is necessary to solve (1) in a more general way, resulting
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in the so-called viscosity solution. The viscosity solution is
defined as the weak solution to a partial differential equa-
tion and is obtained by the vanishing viscosity method [27].
A numerical scheme which employs this idea is the monotone
Lax-Friedrichs scheme, originally introduced by Crandall
and Lions [28]. The Lax-Friedrichs scheme is first-order in
space and is characterized by an additional linear numerical
dissipation term. For every active grid point P, the Hamilto-
nian in (1) is replaced by the numerical Hamiltonian

FI:H(¢;+¢; ¢ + o ¢z+¢j)
2 T 2 2

+_ —
_ Z al(‘Pl 2‘151)’ (©6)

lefx,y,z}
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FIGURE 3. (a) Highly anisotropic etch rates (inset) induce spatially strongly varying speed values assigned to active grid points. (b) A typical
wet etching simulation generates sharp corners (Region A) and flat surfaces (Region B).

where ¢l+ refers to the first-order forward and ¢; to the
backward discretization of the spatial derivative with respect
to [ € {x,y, z}. The dissipation coefficients ! are associated
with P and define the cumulated numerical dissipation

+_ -
p= Y al(%), ™
}

lefx,y.z

which allows to write the numerical Hamiltonian H in a com-
pact form as the difference of the Hamiltonian and numerical
dissipation.

H=H(p . ¢7)-D(¢¢) lelxyzt @B

The numerical dissipation is designed to be non-zero in
regions where the level-set function varies abruptly (e.g.,
sharp edges of the interface). Crandall and Lions proved
in 1984 that the first-order Lax-Friedrichs scheme, defined
by the explicit Euler time integration

=¢' — AtH (o7, ¢) 1efx,y2) &)

with the numerical Hamiltonian (8), is stable if the scheme
is monotone [28]. Therefore, it is possible to estimate
the general bounds of the dissipation coefficients «!: The
Lax-Friedrichs scheme is stable if it is non-decreasing in
every argument @; j k, @i+1,j,k» i,j+1,k» and @; j k+1, where i,
J» and k refer to the grid point indices.

¢I+Al

d¢f}!_km o o ot
>0 = At|l—+—+—)<1 10
d¢§,j,k (Ax Ay AZ) (10)
t+ At
% -0 = o= |H )
Ay )k X
t+At
% >0 = o> o (12)
de; v Iy
115410

g2 . |oH
— >0 = of x| — (13)
de; ; ra1 ¢,

This set of inequalities determines the conditions on the dis-
sipation coefficients ensuring a stable Lax-Friedrichs scheme
and has to be fulfilled at every grid point P. The first
inequality (10) states that there is an upper bound for
the dissipation coefficients, which is further discussed in
Section II-B. The remaining inequalities indicate a relation
between the dissipation coefficients and the partial deriva-
tives %, I € {x,y, z}, which one can calculate for a purely
surface normal-dependent Hamiltonian (4), employing the
chain rule of differentiation, as presented in the Appendix.

EYY%

= IV Oy

P Vo> ond ||Vl
Lpgef{x,y.z}, Il #p#q (14

(14) consists of a constant velocity term Vn! and three terms
involving 9V /dn!. The former is present even for constant
V(n) = Vy [16], while the latter considers the local nature of
the V(#) and the local geometry described by ¢.

In order to allow for a V (i7) of any complexity, 3V /dn can
be calculated numerically with a central difference scheme
proposed by Montoliu ef al. [18]

V. V(n"+ AN,n’,n*) — V(n* — AN, n”, n%)
on* 2AN

OH V&85 oV gy
dpr  on' | Va2

15)

and similar terms for % and % We use AN = s% V, with
¢ referring to the floating point accuracy, which balances the
truncation and roundoff error [29].

It is critical to choose the correct amount of numerical
dissipation, because pronounced dissipation causes over-
smoothing of the numerical solution of the Hamilton-Jacobi
equation. In the literature, several variations of the
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FIGURE 4. The Stencil Lax-Friedrichs scheme (16) employs the stencil S in
order to calculate the dissipation coefficients for every active grid point.

Lax-Friedrichs scheme have been studied, which provide var-
ious degrees of trade-off between instable front propagation
and over-smoothing. The approaches range from employing
the worst-case dissipation coefficients o/ = g—H[ found in
the entire domain [18] to only using the grid point which is
currently processed [16]. Furthermore, the final terms for ol
have been proposed to contain calibration factors which are
specifically determined for certain speed functions [17], [18],
or making use of analytical expressions [14].

We propose a scheme for the calculation of the dissipation
coefficients at grid point P, which is based on the Stencil
Lax-Friedrichs flux [16] and incorporates (14) and (15).

! = max 8—V¢5 +¢§—8—V b1 OV gt vil|,
pes |3nl |[VP|2  anP |[V@II>  dn? ||V|?

Lp,gel{x,y.z}, L #p#q (16)

S denotes a stencil composed of grid points around the
currently processed center grid point P. Fig. 4 illustrates
the stencil, which is considered for every active grid point.
In order to calculate o/, (14) and (15) are evaluated at 9 and
27 grid points for two- and three-dimensional simulation,
respectively. The evaluation of o! on § requires level-set
values on grid points which are not in close proximity to the
surface. These grid points are referred to as expanded grid
points. By using local information via the rectangular stencil,
a trade-off between numerical stability and overly rounding
of corners is achieved. While only considering the center grid
point might result in insufficient dissipation, evaluating o
for a larger number of grid points might cause non-physical
rounding.

Fig. 5 visualizes the dissipation scheme for a
two-dimensional V-shaped geometry (cf. Fig. 3b). The
dissipation coefficients «* and o” are depicted in
Fig. 5a and Fig. 5b, respectively, and are characterized with
values close to zero in the flat regions and larger values in
the proximity of the corner. Consequently, the corresponding
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numerical dissipation shown in Fig. 5c, is non-zero around
the corner. The dissipation values cancel out the artificially
high values imposed by the Hamiltonian (Fig. 5d). Hence,
the resulting numerical Hamiltonian (8) effectively reduces
the impact of the non-convex speed function and enables front
propagation with the corrected speed of the predominating
facets.

B. STENCIL LAX-FRIEDRICHS SCHEME WITH ADVANCED
ADAPTIVE TIME STEPPING

The Stencil Lax-Friedrichs scheme (16) is consistent with
(11)-(13). In order to ensure monotonicity, it is essential
that (10) has to be fulfilled as well. (10) assumes a form
which is very similar to the Courant-Friedrichs-Lewy (CFL)
condition [30]. The dissipation coefficients are related to the
temporal and spatial resolution, such as the front speed is
related to these quantities in the traditional CFL condition.
Unlike in the traditional case, there is no parameter analogous
to the CFL number.

In order to ensure the additional monotonicity condition,
(10) is checked for every grid point P processed (i.e., active
grid point in the sparse-field level-set implementation). If (10)
is violated, a new time step At, is consistently chosen accord-
ing to

o o i\ 7!
Aty =min| — + — + — , 17
" PeN(Ax+Ay+Az> a7

where N refers to the set of active grid points. At, is typically
smaller than the time step indicated by the traditional CFL
condition. Thus, it is possible to ensure a stable numerical
scheme, by fulfilling both the CFL and the monotonicity
condition (10).

In conclusion, for a speed function V of the form (2)
we construct a Stencil Lax-Friedrichs scheme with mono-
tonicity preserving dissipation coefficients (16) and time
steps (17). The scheme does not rely on calibration fac-
tors and thus can be employed for general speed functions
which are purely surface normal-dependent. The numerical
stabilization achieved by the Stencil Lax-Friedrichs scheme
and the time-stepping thus enable the simulation of complex
anisotropic processes.

Ill. MULTI-LEVEL-SET SCHEME FOR NON-PLANAR
EPITAXY

In topography simulations different materials with disparate
front propagation properties can be present. Within a level-set
framework multiple material regions can be treated by
defining multiple level-sets. A robust multi-material rep-
resentation, which enables the resolution of thin material
regions (i.e., thickness below the grid-spacing), has been
presented by Ertl and Selberherr [21]. The representation
is based on additive layers generated from sequential union
operations. Given a stack of K materials, represented by
the individual enclosing volumes My, the j-th layer L; is
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FIGURE 5. Dissipation coefficients (a) «* and (b) ¥ calculated for a V-shaped front (solid line). In the flat regions, the coefficients are
close to zero, while they reach their maximum values in proximity of the sharp corner. The resulting numerical dissipation (c) balances the
artificially elevated values of the Hamiltonian (d) close to the corner. The resulting numerical Hamiltonian (H — D) yields the small values
associated with the flat regions for all active grid points, which enables a stable front propagation.

defined as
J
L= | M. (18)
k=1

The topmost layer Lk unites all underlying materials and thus
is called top layer (TL). The level-set approach enables the
calculation of Boolean operations by employing minimum
and maximum operations on the level-set functions. Further-
more, the individual material regions are reconstructed from
the layers with sequential set-difference operations.

115412

When treating multiple materials, the limited spatial
resolution of the discretized level-set function plays an impor-
tant role. Under these circumstances the additive approach
results in a top layer which is potentially concave at interfaces
between two material regions (on the surface). The implicitly
imposed concavity works well with the intrinsic geometry
of a typical etching process, where a substrate is masked by
a material with negligible etch rate. The substrate region is
reduced and a concave surface is obtained. Hence, the multi-
level-set approach is highly robust for etching simulations.
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FIGURE 6. The convexity of an initial surface determines the epitaxial growth mode. The growth of convex initial geometries is dominated by
the slowly growing crystallographic planes (a), while the growth of concave surfaces is dictated by the fast planes (b).

In contrast, selective deposition processes add new mate-
rial regions to the domain and the intrinsic convexity depends
on the initial condition. Convex and concave growth is both
physically possible [20] and thus it is essential to ensure that
the initial surface representation does not introduce artifacts
caused by the limited spatial resolution. Fig. 6 illustrates
the significant sensitivity of the final geometry on the ini-
tial state. In the case of convex growth, the slowly grow-
ing facets (planes) are dominating the temporal evolution,
whereas the fast planes dominate for concave growth. Even
if the exact same crystallographic growth rate distribution is
used, i.e., the growth rate for every crystallographic direction
has exactly the same value, the qualitative geometric shapes
as shown in Fig. 6 can be observed. Thus, the time evolution
of the crystal growth is not exclusively determined by the
crystallographic directions.

In order to prevent the introduction of artifacts at material
interfaces, we divide the initial top layer TL;, defined prior
to a deposition step, into two subsets. One subset consists of
all material regions which allow selective growth - denoted
as E - and the other subset comprises regions associated with
the union of all material regions which do not allow growth,
referred to as mask M,

TL;i = EUM. (19)
We define the initial deposition top layer TL?ep ° as
D
TL, " = (Q\ TL) UM, (20)

where 2 denotes the entire computational domain. Fig. 7a
visualizes both top layers for a simple structure. In particular,
the surface orientation of TLPepO is inverted with respect
to TL;,

ensuring a consistent orientation of the deposition top
layer TLP®P° and the mask during the growth, which is
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essential for robust growth (Fig. 7b). After the surface advec-
tion the final top layer TLP P can be converted back to
the traditional wrapping of the top layer with the boolean
operation

TL; = (sz \ TL?‘“‘P") U TL;. Q1)

This conversion is performed after the epitaxial growth step,
to return to the original layer wrapping described in (18). This
is necessary, as other processing steps simulated subsequently
depend on this material representation.

The impact of the deposition is illustrated in the config-
uration depicted in Fig. 8. SiGe is epitaxially grown on Si
in order to fill a trench formed by oxide sidewalls. In this
case, E refers to the level-set representation of the mate-
rial regions which enable growth of SiGe. The mask M is
the oxide region. Fig. 8a illustrates the temporal evolution
if the initial top layer (dashed line, TL;) is constructed in
the traditional way (19). The concave nature of TL; causes
problems at the oxide sidewalls. The direction of the normal
vector associated with the grid point next to the corners
(marked ’i’ and ’ii’) is not unambiguously defined. Even
though a finite set of ambiguous level-set normals is generally
not problematic for the level-set method [16], the speed func-
tion introduces a strong sensitivity to the normal orientation.
At the initial time step, the normal at ’i’ is associated with
a slow growth rate, while the normal at ’ii” defines a growth
rate which is even larger than Rjgp. This asymmetry is due
to the non-symmetrical grid alignment which is the general
case in a level-set simulation.> Consequently, concave growth

2Non—symmetrical grid alignment refers to the front (zero level-set),
describing the cavity sidewalls, not being evenly spaced to the grid for both
sidewalls. If a symmetrical grid alignment with the traditional top layer is
enforced, the resulting topography evolution is symmetrical. However, front
propagation is still highly sensitive to the direction of the normal vector
associated with the grid point next to the corners (i’ and ’ii’).
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B Material Region
== Top Layer

—p Orientation Top Layer

TLe= Q\ TLY ™ UTL;

(b)

FIGURE 7. lllustration of the top layer approach for multiple regions during an epitaxial growth simulation. SiGe is heteroepitaxially grown
on Si, but not on the oxide. (a) The traditional initial top layer TL; circumscribes both Si and the oxide, while the deposition top layer

TLiD P excludes the oxide. Additionally, the orientation is flipped, ensuring consistent orientation of the deposition top layer TL?¢P° and

the mask. (b) TLiDe"0

representation TL¢ by applying boolean operations.

1.4 T T T T T T

1.2

1.0

0.8

0.6

0.4

0.2

Depo

enables robust growth and the final deposition top layer TL can be converted back to the traditional

1.4 T T T T T T

1.2+ 4

1.0

0.8

0.6

0.4

0.2

1.0 1.2 1.4 1.6 1.8 2.0

(b)

FIGURE 8. Temporal evolution of the simulated surface for hetereoepitaxial trenchfilling (growth rates SEG, as defined in Tab. 1) with (a) the
traditional initial top layer resulting in incorrect results and (b) the deposition top layer (t, = 0s, t, = 2s, t; = 15s, t; = 50s, and t5 = 67s,
Ax = 0.0045..m). The local convexity implied by the discretized level-set field is critical at the multi-material interfaces ‘i’ and "ii’. Distances

are given in um.

emerges, even though the physical initial situation requires
convex growth. On the contrary, the deposition top layer
TLiDepo, which is constructed employing (20), ensures convex
and symmetrical growth (Fig. 8b).

IV. SIMULATION SETUP

We assess the capability of the proposed Stencil
Lax-Friedrichs scheme by performing etching and non-
planar epitaxy simulations. In this section, we present
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the two- and three-dimensional problem cases, the con-
struction of the speed function, and describe the geome-
try parameters which are expected to emerge in the ideal
case. Furthermore, multiple speed functions (associated with
different etchants/growth conditions) are investigated. In
order to investigate and validate the capability of our meth-
ods, we assume a set of etch/growth rates which result
in realistic geometric shapes. The relative magnitude of
the rates are motivated from experimental observations
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and are used to construct speed functions which reflect
commonly applied processing conditions. This allows us
to define geometric parameters which are directly deter-
mined by the specified etch/growth rates as a reference
for an ideal surface propagation. These parameters, such
as the distance a crystal facet travels, have ideal val-
ues governed by the etch/growth rates and we compare
them with our simulation results in Section V. All sim-
ulations are performed using the sparse field level-set
based topography simulator ViennaTsS. The sparse field
level-set method is employed on a hierarchical run-length
encoded (HRLE) level-set data structure [24] to enable fast
and memory-efficient two- and three-dimensional topogra-
phy simulation. The domain is equidistantly discretized and
only grid points which are close to the interface (active
grid points) are updated. In order to solve the level-set
equation for all active grid points, the level-set values
of neighboring grid points are expanded using Manhatten
distance computations [21].

A. TWO-DIMENSIONAL WET ETCH

We evaluate the Stencil Lax-Friedrichs scheme by consid-
ering a planar two-dimensional wet etching configuration,
as illustrated in Fig. 9. The planar substrate (Si) is partially
masked leaving the substrate exposed to the wet chemical
etchant (e.g., KOH) in the mask opening. We model the
anisotropic etch rates using the linear Hubbard interpolation
(Section IT) between four etch rates along the crystallographic
directions (100), (110}, (111), and (113}, resulting in a purely
surface normal-dependent speed function of the form (2).
Here, we consider etchants characterized by global minima
in (111) directions, which is the case for the commonly used
etchants and etching conditions [25].

(111} s

[001]

[110]

FIGURE 9. Schematic illustration of the wet etching experiment. The
initially flat Si substrate (t,) is etched, where the mask has an opening.
The etchant (e.g., KOH) removes {111} planes with the slowest rate.
Consequently, these planes define a V-shaped profile at t,. For longer
etch times the {111} planes slowly progress (t, — t; — t;), defining a
mask undercut dyy and depth of the V-tip dy,.
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The temporal evolution shown in Fig. 9 starts from a planar
initial substrate (fp) and is characteristically defined by the
limiting slow etch rate Ry11, which results in the formation of
a V-shaped profile (#). Once the V-shaped profile is formed,
further etching proceeds very slowly (13 —t> > tp—t1). Never-
theless, the {111} planes are gradually advected, resulting in a
mask undercut dy and profile depth dy. These quantities are
important geometric parameters in wet etching experiments
and allow for the comparison of the simulation results with
the ideal values: Assuming an etchant with minimum etch
rates along (111) (Ry11) and a substrate oriented as given in
Fig. 9, two {111} planes are formed. The angle «'%?! between
the substrate surface and a {111} plane is arctan v/2 &~ 54.74°.
Elementary geometry operations provide the undercut dis-
tance after etch time ¢ for a rate in (111) direction Ry

: 1
didedl — Ryt~ 1.22Ryqt. (22)
Sin o

Furthermore, with the assumption that the V-shaped profile
has already been formed, the tip has moved by

d\i;leal _ Ri11t = 1.73 Ry1t. (23)

coso
We employ these distances and « to validate the accuracy of
the proposed Stencil Lax-Friedrichs scheme in Section V-A.

B. THREE-DIMENSIONAL NON-PLANAR EPITAXY

In order to demonstrate the deposition top layer, we consider a
three-dimensional fin structure, which forms the geometrical
basis of modern FinFETs [5]. A crucial process step during
the fabrication of a FInFET is heteroepitaxial growth of SiGe
on top of the Si fin. The initial Si fin is illustrated in Fig. 10a,
where half of the structure is shown. Similar to crystallo-
graphic wet etching, the growth rates of epitaxial SiGe are
strongly anisotropic. Depending on the growth conditions
(e.g., temperature, partial pressures), the relative magnitude
of the growth rates differs [11]. In the following, we assume
growth conditions resulting in a minimal growth rate along
(111) directions. Consequently, {111} facets dominate the
growth of the crystal (convex initial geometry of the fin,
c.f. Fig. 6) and a SiGe diamond on top of the Si fin is formed.
Fig. 10b shows the fully formed SiGe diamond, which is
characterized by the geometry parameters overgrowth height
dog and the lateral length dp. The ideal lateral length is
determined by the angle p between the substrate surface
and the bottom {111} planes (p = arctan /2 ~ 54.74°),
the growth rate R11 along (111), and the growth time .

ideal __
dp = =
sin p

Rijit = 1.22R 1t 24)

The ideal overgrowth height can be expressed in terms of
di%! and the fin length dpin.

dE = (drn/2 + di*) @n p (25)
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[001]

T< A0

(a)

(b)

FIGURE 10. (a) Three-dimensional fin structure (Ilength 10nm, width 80nm, and height 35nm) which is employed for epitaxial growth
simulations. (b) SiGe is heteroepitaxially grown on Si forming {111} facets. Distances are given in um.

TABLE 1. Etch rates and simulation results for two-dimensional 800s wet etching simulation (Fig. 9). The simulated mask undercut dy and the V tip shift
dy compared with the ideal values dbdf,al. In the case of the etchant SEG the V-shaped profile is not fully evolved before T = 83s. The spatial resolution

for the simulations is Ax = 0.0045.m.

Rates (um/ min)

Etch Times (s)

Distances (um) Relative Error

Etchant Rioo Ri1o Ri11 Ri13 T To du di[}ieal dv di\(/ieal Ady Ady
KOH 1.0 1.855 0.0073 1.801 800 O 0.122 0.119 0.172 0.169 0.587 0.830
SEG 0.5 0.2 0.05 0.25 800 83 0.732 0.731 1.035 1.033 0.321 0.321
T1 1.0 1.5 0.03 1.5 800 O 0.488 0.490 0.691 0.693 0.328 0.463
T2 1.0 0.6 0.05 0.9 800 O 0.815 0.816 1.152 1.155 0.392 0.554
T3 0.7 0.6 0.04 1 800 O 0.655 0.653 0.926 0.924 0.388 0.549

In Section V-C these geometry parameters serve as reference
to demonstrate the capability of the deposition top layer
approach.

V. RESULTS

In this section, we present simulation results for the
two-dimensional wet etching and the three-dimensional het-
eroepitaxy setup introduced in Section IV. Furthermore,
we discuss the impact of individual dissipation terms, the
spatial resolution, and the time-stepping on the front prop-
agation. Finally, we show the deposition top layer.

A. DISSIPATION TERMS AND SPATIAL RESOLUTION

The etching and epitaxy simulations considered in this study
adopt several speed functions which involve the etch/growth
rate combinations given in Tab. 1 and referred to as etchants
in the following. The magnitude of the rates is motivated
by experimental studies [11], [25], [31], which provides
a realistic picture of the typically encountered rate ratios
R111/R100, R111/R110, etc. for different directions. These
rates are only applied if the active material is Si. The etch rate
of the mask is negligible and thus set to zero in this study.
Fig. 11 visualizes the results of a 800s wet etching process
for the two-dimensional geometry presented in Section IV.
All etchants lead to the characteristic V-shaped-profile with
a specific mask undercut dy and tip depth dy. These dis-
tances are evaluated by extrapolating the final {111} lines and
intersecting the resulting straight lines with the mask-silicon
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1 1 1 1
0.5 1.0 1.5 2.0 2.5

FIGURE 11. Simulation results for the two-dimensional wet etching setup
(Fig. 9) employing several etchants (Tab. 1). The etch time is T = 800s and
the spatial resolution is Ax = 0.0045,m. The resulting geometry displays
the characteristic {111} planes, forming a V-shaped profile. Distances are
given in pm.

interface (dy) and with themselves (dy), respectively. The
results presented in Tab. 1 demonstrate the high accuracy
of the simulations, which is validated with the relative error
metric

|dideal _ dUl
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1.5 1.6 1.7 1.8 1.9 2.0
(a)

15 16 17 18 19 20 21 22 23

(b)

FIGURE 12. Comparison of the impact of the dissipation coefficients on the simulated etch front after 120s for (a) etchant KOH and (b) etchant SEG.
(16) results in high accuracy fronts (label A) with respect to the ideal profile. If only the elemental term Vn/ is considered the propagation is instable
resulting in noisy fronts (label B). This is the case even though the advanced adaptive time-stepping (17) is employed. The magnitude of the error
strongly depends on the etchant. (c) The Stencil Lax-Friedrichs scheme introduces rounding which extends over approximately 3 grid spacings. All

distances are given in gm.

and an equivalent definition for Ady. (26) measures the
cumulative spatial error of the wet etching test simulations,
which comprise more than 1000 time steps. Hence, a resulting
Ady,y smaller than 1.0, i.e., the spatial error is less than the
grid resolution, indicates excellent accuracy.

The high accuracy is made possible by the evaluation of all
terms associated with the partial derivative of the Hamiltonian
as given in (14). In particular, the terms involving 3V /dn' are
required to enable a stable front propagation, as demonstrated
in Fig. 12a and Fig. 12b. The dissipation terms added to
the Hamiltonian (8) introduce rounding of corners present
in the front. In order to study the rounding we compare
the simulated front directly beneath the mask for different

VOLUME 8, 2020

spatial resolutions ranging from Ax = 0.0205 to Ax =
0.0015. Fig. 12c demonstrates that the proposed dissipation
scheme causes rounding extending over roughly three grid
cells, which holds true for Ax — 0.

B. TIME STEPPING

In our implementation, we extend the calculation of the final
time step At for the explicit time integration (9). In the tradi-
tional implementation, the time step is calculated according
to

. C
AfF = min (LLA,
max |H |

AtL> ) 27)
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TABLE 2. Undercut and V-tip distances (dy and d\, respectively) for two-dimensional simulations of 800s wet etching. The results obtained from
traditional time-stepping (employing different CFL numbers C¢f; ) and from advanced adaptive time-stepping (17) are compared with the ideal distances
(relative error (26)). Entries indicated with * refer to simulations that drifted out of the simulation domain (due to severe instable front propagation).

Distances (um) Relative Error

Distances (um) Relative Error

Etchant CcrL dy dv Ady Ady Etchant Ccrr, dy dv Ady Ady

KOH 0.5 * * * * SEG 0.5 0.732 1.036  0.070 0.220

Ax =0.0105 0.3 0.611 0.886  46.850 68.280 Az =0.0105 0.3 0.731 1.035 0.030 0.160
0.1 0.247 0.353 12.153 17.519 0.1 0.731 1.035 0.001 0.110
0.05 0.133 0.189 1.356 1.918 0.05 0.731 1.035 0.001 0.110
0.03 0.135 0.191 1.543 2.182 0.03 0.731 1.034 0.010 0.100
0.01 0.122 0.173 0.295 0.421 0.01 0.731 1.034 0.010 0.100
Adaptive  0.118 0.166  0.159 0.225 Adaptive  0.731 1.036  0.060 0.200
Ideal 0.119 0.169 Ideal 0.731 1.039

KOH 0.5 * * * * T2 0.5 * * * *

Az =0.0045 03 0.622 0905 111.703 163.577 Az =0.0045 0.3 0.986 1.446 46.308 75.069
0.1 0.195 0.278 16.893 24.245 0.1 0.815 1.152 0.512 0.695
0.05 0.154 0.218 7.695 10.883 0.05 0.814 1.151 0.877 0.532
0.03 0.134 0.190 3.268 4.719 0.03 0.814 1.151 0.881 1.246
0.01 0.122 0.174 0.527 1.161 0.01 0.814 1.151 0.884 1.250
Adaptive  0.122  0.172  0.587 0.830 Adaptive  0.815 1.152  0.392 0.554
Ideal 0.119 0.169 Ideal 0.816  1.155

The first argument of the minimum operation is the CFL
condition [17], where the maximum value of H is evaluated
over the set of active grid points. This condition ensures that
the surface is advanced at most one grid spacing per time
step. AtL refers to a time step which ensures correct etching
simulation in presence of multiple layers [21]. In order to
satisfy the monotonicity condition (10), this calculation is
extended by evaluating (17), resulting in AzP. Thus, the
final At¢, fulfilling the traditional conditions and the mono-
tonicity condition, is

At = min (AIF, AtD) . (28)

Compared to the traditional implementation, (17) reduces
the effective time step in order to achieve stable front propa-
gation. We demonstrate the impact of the time step reduction
by investigating the results for simulations with and without
resorting to (17). In the first case, there is no associated CFL
parameter, thus we perform the simulations with the max-
imum CFL parameter values beneficial for the sparse field
method, i.e., Ccpr, = 0.5 [17]. Using this value enforces that
only the level-set values of active grid points can change their
sign during one time step, which leads to guaranteed robust
advection. In the latter case (i.e., without resorting to (17)),
we employ values for Ccpr, from 0.5 to 0.01, where smaller
values imply smaller time steps At. Tab. 2 demonstrates the
impact of the etchant, the spatial resolution, and Ccpr, on
the accuracy of the front propagation. The spatial accuracy
after an 800s etching simulation with the respective etchant
is assessed using the distances dy and dy (Fig. 9), which are
compared to the ideal distances by means of the relative error
metric (26).

Tab. 2 demonstrates the significance of the nature of the
speed function for the time-stepping. In the traditional time
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step calculation, the etchant KOH requires Ccpr = 0.01 to
fulfill the high accuracy criterion Ady,yv < 1.0. In contrast,
Ccrr. = 0.5 results in excellent accuracy for etchant SEG,
while etchant T2 requires Ccpr, = 0.1 for accurate results.
Consequently, the stability of the traditional implementation
can only be guaranteed if the appropriate Ccrr is known
a-priori which is not the case for general etchants, i.e., speed
function. The results indicated with Adaptive originate from
the implementation with the additional (17) and demon-
strate the capability of the proposed scheme to achieve high
accuracy.

We further investigate the time-stepping approach by ana-
lyzing the individual steps At taken during the test sim-
ulation. Fig. 13a depicts the distribution of At associated
with the etchant KOH and Ccpr, = 0.01 for the traditional
and the proposed adaptive implementation. The traditional
implementation shows a broad distribution of A¢ with two
distinctive peaks, while the adaptive scheme exhibits a signif-
icantly narrower distribution. The distribution of At over time
is illustrated in Fig. 13b and demonstrates that the traditional
scheme leads to strong fluctuations in Af. These can be
attributed to the non-convex nature of the speed function,
which causes fluctuations in the velocities associated with
the active grid points. The maximum velocity and hence At
(27) depends on the exact position of the front relative to the
grid, causing variations in A¢, which might span more than
three orders of magnitude. Furthermore, the two distinctive
peaks arise due to the structural change in the topography.
Before the V-shaped profile is formed (r < 1, in Fig. 9),
small time steps dominate, but as soon as the etch front slowly
undercuts the mask, fluctuations in the maximum velocity
arise. Hence, reducing the Ccpy, to considerably small values
does not resolve the root cause of the fluctuations. In contrast,
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FIGURE 13. (a) Distribution of the time step At in 800s wet etching simulations (KOH, Ax = 0.0045). N refers to the total number of time steps. The
traditional time-stepping (top) with a Ccgp which enables results of acceptable accuracy shows a broad distribution of At with two distinctive peaks.
By contrast, the advanced adaptive time-stepping (bottom) results in a narrow distribution. (b) Temporal evolution of At for the first 500s. The
traditional time-stepping (top) shows oscillations which originate from the strongly varying speed values in the proximity of the V-shaped corner
(Fig. 5d). By contrast, the advanced adaptive time-stepping (bottom) reduces the time step if high values of dissipation are needed. Thus,

the fluctuation of At is significantly reduced. Furthermore, the evolution of At shows divergent behavior for the first portion of the etching
simulations. This is caused by the gradual evolution of the V-shape and the mask undercut, which requires the formation of the acute angle of the
front beneath the Si-mask interface (shown in Fig. 12c). Once the acute angle is formed, the undercut proceeds in a regular way, with periodical
fluctuations in the advanced adaptive time steps (bottom) being caused by the grid periodicity.

the advanced adaptive time-stepping strongly reduces the
fluctuation of At¢, indicating that the front propagates in a
numerically stable way.

C. NON-PLANAR DEPOSITION USING THE DEPOSITION
TOP LAYER
In order to demonstrate the capability of the deposition top
layer, we consider the three-dimensional fin structure illus-
trated in Fig. 10a. The epitaxial growth of SiGe on Si is
modeled by employing the growth rates SEG, as given in
Tab. 1. The fin structure consists of two material regions,
oxide and Si. When determining the deposition top layer,
we incorporate the information that oxide does not allow
epitaxial growth of SiGe, in accordance with the discussion
in Section III. Hence, we employ (20) with M being the
oxide region. The resulting deposition top layer has qualita-
tively the same shape and orientation as the two-dimensional
schematic illustration in Fig. 7a. In particular, the deposi-
tion top layer comprises the interface between oxide and
Si. Furthermore, we use the Stencil Lax-Friedrichs scheme
with advanced adaptive time-stepping to enable a stable front
propagation. After the epitaxy process the final deposition top
layer (cf. Fig. 7b) is converted back to the conventional one.
The resulting topography, visualized as triangulated mesh
in Fig. 10b, shows the characteristic {111} facets formed by
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TABLE 3. Simulated and ideal angles and distances, as indicated in

Fig. 14, for a 10s hetereoepitaxy simulation employing SEG growth rates.
The ideal angles are obtained by calculating the angles between the ideal
{111} and {100} planes, while ideal distances are calculated using (24)
and (25).

Angles (°) Distances (um)
o 8 Y n d, dog
125.3 54.74 0.01 0.02

Ideal 109.5 70.53
Simulated | 109.5 70.53 125.3 54.73 0.01 0.02

the epitaxially grown SiGe. The temporal evolution is illus-
trated in Fig. 14 for two slices: one along the Si fin (Fig. 14a)
and one perpendicular to the fin (Fig. 14b). Starting from
the rectangular structure imposed by the Si fin, the slowly
growing {111} planes gradually dominate, until they are fully
formed at t = #4. The subsequent growth proceeds according
to Rq11, which results in effective lateral growth along the
oxide region analogously to the mask undercut in the etching
test case. The lateral growth distance after 5 = 10s is dp, =
0.01pm, yielding arelative spatial error of Ady, = 0.344. The
overgrowth height dog is 0.021um. Additionally, we assess
the quality of the simulated planes by comparing the angles
o, B, y, and § illustrated in Fig. 14 with the angles between
the ideal crystallographic facets. The results presented in
Tab. 3 show the high accuracy of the simulated facets.
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FIGURE 14. Temporal evolution of heteroepitaxial growth with the SEG growth rate model (Tab. 1). Slices of the topography (a) along the fin and
(b) perpendicular to the fin are depicted for a resolution of Ax = 6 x 10~%um, t; = 1s, t, = 25, t5 = 35, ; = 55, and t5 = 10s. The angles indicated
by «, B, ¥, and § are compared with the ideal values in Tab. 3. Distances are given in xm.

VI. SUMMARY

We presented numerical methods to enable accurate and
robust level-set based simulation of anisotropic wet etch-
ing and non-planar epitaxy. These semiconductor fab-
rication processes are characterized by highly crystal
orientation-sensitive etch/growth rates. The level-set equa-
tion describing the motion of the wafer surface involves
non-convex Hamiltonians which potentially cause insta-
ble front propagation. We proposed a stability-providing
Stencil Lax-Friedrichs scheme with dissipation coefficients
and advanced adaptive time-stepping, tailored to the purely
normal-dependent etching and epitaxy speed functions. The
scheme does not rely on numerical calibration parameters
and is thus applicable for a variety of etchants and mate-
rial combinations. Furthermore, we introduce the deposition
top layer approach which is a method to robustly handle
multiple material regions in non-planar epitaxy simulations.
The deposition top layer ensures that the discretized level-set
representation of the initial topography prior to an epitaxy
step respects the convexity of the initial configuration.

The capabilities of the Stencil Lax-Friedrichs scheme
and the deposition top layer approach have been demon-
strated by simulating two- and three-dimensional anisotropic
wet etching and non-planar epitaxy processes as used in
industry. The schemes have been implemented using the
open-source topography simulator ViennaTS. Simulations
of several etch/growth conditions resulting in different speed
functions, have performed. The final topographies have
been compared to the ideal geometries and the high accu-
racy of the results have been confirmed. Furthermore,
the impact of individual dissipation terms, the spatial reso-
lution, and the advanced adaptive time-stepping have been
investigated.
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APPENDIX A

DERIVATION OF EQUATION (14)

We calculate the partial derivative dH /d¢; with [ € {x, y, z}
under the assumption of a speed function of the form (2).
Hence, the speed function V' is a function of only the surface
normal vector components n'. In the level-set method the
normal vector can be expressed in terms of the spatial partial
derivatives of ¢, as presented in (3). Thus, n! can be written
in terms of ¢; as

1 o} o}

TV g srel

As a consequence, V has the form

V = V(" (¢x, ¢ya ¢2), 1 (¢, ‘pya @), n*(¢y, ¢ya ®2). (30)

In the following, we present the calculation of dH /d¢y. The
remaining expressions dH /d¢, and dH /d¢; can be derived
analogously. Applying the product rule of differentiation
yields

oH a av |Vl

= —VIVe| = VoIl +V———— (1)

0px 0 d¢px A
First, we consider dV /d¢, and employ the chain rule of
differentiation.

vV 9V on*
dpy  On* gy

(29)

LoV ow
Y Ay

LAV o
Nz Ay

(32)

The expressions dn'/d¢, can be evaluated by making use
of (29).

L P U4
S = TV4T [ 0] +92) = S buhy - anz¢x¢z}

an*
(33)
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Secondly, 3||V¢|| /¢, is expressed in terms of n*.

Vel _ ¢« _ o«

= ——= 34
d¢px Vol oY

We apply these intermediate results to (31), which yields

OH BV ¢ +¢7
I In* ||Vol2  on ||[Ve?

0V by IV P

—_— vn".
o iver "

(35)

The results of the analogous calculations for dH /d¢, and
0H /¢, have the same structure, leading to (14).
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