Notation

$ x$ ... Scalar
$ x^\ast$ ... Complex conjugate of $ x$
$ {\mathbf{x}}$ ... Vector
$ \ensuremath{{\underline{A}}}$ ... Matrix
$ A_{ij}$ ... Elements of the matrix $ {\underline{A}}$
$ \ensuremath{{\underline{A}}}^+$ ... Conjugate transposed matrix: $ A_{ij} = A_{ji}^\ast$
$ \mathbf{e}_x$ ... Unity vector in direction x
$ \mathbf{x} \cdot \mathbf{y}$ ... Scalar (in) product
$ \partial_t(\cdot)$ ... Partial derivative with respect to $ t$
$ \ensuremath{{\mathbf{\nabla}}}$ ... Nabla operator
$ \ensuremath{{\mathbf{\nabla}}}\mathbf{x}$ ... Gradient of $ {\mathbf{x}}$
$ \ensuremath{{\mathbf{\nabla}}}\cdot \mathbf{x}$ ... Divergence of $ {\mathbf{x}}$
$ \ensuremath{{\mathbf{\nabla}}}\cdot \ensuremath{{\mathbf{\nabla}}}= \ensuremath{{\mathbf{\nabla}}}^2$ ... LAPLACE operator
$ \Gamma(\cdot)$ ... Gamma function
$ \Gamma_i(\cdot,\cdot)$ ... Incomplete gamma function
$ \langle\cdot\rangle$ ... Statistical average
$ f(\mathbf{r},\mathbf{k},t)$ ... Distribution function
$ \mathcal{Q}(f)$ ... Collision operator
$ \ensuremath{{\underline{H}}}$ ... HAMILTONian operator
$ \ensuremath{{\underline{G}}}$ ... GREEN's function
$ \ensuremath{{\underline{I}}}$ ... Unity matrix
$ \ensuremath{{\underline{T}}}$ ... Transfer matrix
$ \ensuremath{\mathrm{det}}(\cdot)$ ... Determinant of a matrix
$ \mathcal{F}_i$ ... FERMI integral of order $ i$
$ \ensuremath{\mathrm{Ai}}(\cdot)$, $ \ensuremath{\mathrm{Bi}}(\cdot)$ ... AIRY functions
$ \ensuremath{\mathrm{Ai'}}(\cdot)$, $ \ensuremath{\mathrm{Bi'}}(\cdot)$ ... Derivative of the AIRY functions

A. Gehring: Simulation of Tunneling in Semiconductor Devices