Notation

$ x$ ... scalar
$ \ensuremath{\boldsymbol{\mathrm{x}}}$ ... vector
$ \ensuremath{\boldsymbol{\mathrm{e}}}_x$ ... unity vector in direction $ \boldsymbol{\mathrm{x}}$
$ \ensuremath{\underline{X}}$ ... matrix
$ \ensuremath{\widetilde{X}}$ ... tensor
     
$ \ensuremath{\boldsymbol{\mathrm{x}}} \ensuremath{\cdot}\ensuremath{\boldsymbol{\mathrm{y}}}$ ... scalar (in) product
$ \ensuremath{\boldsymbol{\mathrm{x}}} \ensuremath{\times}\ensuremath{\boldsymbol{\mathrm{y}}}$ ... vector (ex) product
$ \ensuremath{\boldsymbol{\mathrm{x}}} \ensuremath{\otimes}\ensuremath{\boldsymbol{\mathrm{y}}}$ ... tensor product
     
$ \ensuremath{\ensuremath{\boldsymbol{\mathrm{\nabla}}}}$ ... nabla operator
$ \ensuremath{\ensuremath{\ensuremath{\boldsymbol{\mathrm{\nabla}}}}\ensuremath{\cdot}\ensuremath{\widetilde{X}}}$ ... divergence of $ \ensuremath{\widetilde{X}}$
$ \ensuremath{\ensuremath{\ensuremath{\boldsymbol{\mathrm{\nabla}}}}\ensuremath{\times}\ensuremath{\widetilde{X}}}$ ... curl of $ \ensuremath{\widetilde{X}}$
$ \ensuremath{\ensuremath{\ensuremath{\boldsymbol{\mathrm{\nabla}}}}\, \ensuremath{\widetilde{X}}}$ ... gradient of $ \ensuremath{\widetilde{X}}$
$ \ensuremath{\ensuremath{\ensuremath{\boldsymbol{\mathrm{\nabla}}}}\ensuremath{...
...ath{\ensuremath{\boldsymbol{\mathrm{\nabla}}}}\, }} = \ensuremath{\nabla^2} \, $ ... LAPLACE operator
     
$ \ensuremath{\text{sign} \left\{ \cdot \right\} }$ ... signum function
$ \ensuremath{\mathcal{B} \left( \cdot \right) }$ ... BERNOULLI function
$ \ensuremath{\Gamma \left( \cdot \right) }$ ... gamma function
$ \ensuremath{\partial_{t} \, (\cdot)}$ ... partial derivative with respect to $ t$
$ \ensuremath{\langle \cdot \rangle}$ ... statistical average
$ \ensuremath{\int_{\ensuremath{\mathcal{ B }}} (\cdot) \,\, \ensuremath{\mathrm{d}}^3 k}$ ... integral over the first BRILLOUIN zone
$ \ensuremath{\oint_{\partial \ensuremath{\mathcal{ B }}} (\cdot) \,\, \ensuremath{\mathrm{d}}A_k}$ ... integral over the boundary of the first BRILLOUIN zone
$ \ensuremath{\int_{\ensuremath{\mathcal{ V }}_i} (\cdot) \,\, \ensuremath{\mathrm{d}}V}$ ... integral over the control volume
$ \ensuremath{\oint_{\partial \ensuremath{\mathcal{ V }}_i} (\cdot) \,\, \ensuremath{\mathrm{d}}A}$ ... integral over the boundary of the control volume
     
$ \ensuremath{\widetilde{\delta}}$ ... unity tensor
$ \delta_{ij}$ ... KRONECKER symbol

$ f(\ensuremath{\boldsymbol{\mathrm{r}}}, \ensuremath{\boldsymbol{\mathrm{k}}}, t)$ ... distribution function
$ f_\mathrm{M}$ ... MAXWELL distribution function
$ f_\mathrm{sM}$ ... shifted MAXWELL distribution function
$ f_\mathrm{aM}$ ... anisotropic MAXWELL distribution function
$ f_\mathrm{saM}$ ... shifted anisotropic MAXWELL distribution function
$ f_\mathrm{S}$ ... symmetric function
$ f_\mathrm{A}$ ... antisymmetric function
     
$ \mathcal{Q}(f)$ ... collision operator
$ \mathcal{R}(f)$ ... net recombination rate in $ \boldsymbol{\mathrm{k}}$-space
     
$ \ensuremath{\widetilde{\phi}}_j$ ... weight function of order $ j$
$ \ensuremath{\widetilde{M}}_j$ ... $ j$-th moment of the distribution function

M. Gritsch: Numerical Modeling of Silicon-on-Insulator MOSFETs PDF