next up previous contents
Next: List of Publications Up: Dissertation Hossein Karamitaheri Previous: 7. Summary and Conclusions   Contents

{\bibname}

url@rmstyle =0pt 4 =2plus 3minus 4 [2]l@#1 =l@#1 #2

1
M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, and G. Chen, ``Perspectives on Thermoelectrics: From Fundamentals to Device Applications,'' Energy Environ. Sci., vol. 5, pp. 5147-5162, 2012.

2
T. Seebeck, ``Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz,'' Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, pp. 265-373, 1823.

3
G. Nolas, J. Sharp, and H. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments. Germany: Springer, 2001.

4
T. Harman, P. Taylor, M. Walsh, and B. LaForge, ``Quantum Dot Superlattice Thermoelectric Materials and Devices,'' Science, vol. 297, no. 5590, pp. 2229-2232, 2002.

5
H. Goldsmid, Introduction to Thermoelectricity.Springer, 2010.

6
Z.-G. Chena, G. Hana, L. Yanga, L. Chenga, and J. Zou, ``Nanostructured Thermoelectric Materials: Current Research and Future Challenge,'' Progress in Natural Science: Materials International, vol. 22, no. 6, pp. 535-549, 2012.

7
C. Wood, ``Materials for Thermoelectric Energy Conversion,'' Reports on Progress in Physics, vol. 51, no. 4, p. 459, 1988.

8
G. Slack, CRC Handbook of Thermoelectrics.CRC Press, 1995.

9
L. D. Hicks and M. S. Dresselhaus, ``Thermoelectric Figure of Merit of a One-Dimensional Conductor,'' Phys. Rev. B, vol. 47, p. 16631, 1993.

10
M. S. Dresselhaus, Y. M. Lin, S. B. Cronin, O. Rabin, M. R. Black, G. Dresselhaus, and T. Koga, ``Quantum Wells and Quantum Wires for Potential Thermoelectric Applications,'' Proc. Natl. Acad. Sci., vol. 41, p. 1, 2001.

11
G. D. Mahan and J. O. Sofo, ``The Best Thermoelectric,'' Proc. Natl. Acad. Sci. USA, vol. 93, p. 7436, 1996.

12
K. Kim, Y. Zhao, H. Jang, S. Lee, J. Kim, K. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. Hong, ``Large-scale pattern growth of graphene films for stretchable transparent electrodes,'' Nature, vol. 457, pp. 706-710, 2009.

13
D. A. Wright, ``Thermoelectric Properties of Bismuth Telluride and Its Alloys,'' Nature, vol. 181, p. 834, 1954.

14
W. Kim, S. L. Singer, A. Majumdar, D. Vashaee, Z. Bian, A. Shakouri, G. Zeng, J. E. Bowers, J. M. O. Zide, and A. C. Gossard, ``Cross-Plane Lattice and Electronic Thermal Conductivities of ErAs:InGaAs/InGaAlAs Superlattices,'' Appl. Phys. Lett., vol. 88, p. 242107 (3 pp), 2006.

15
G. Zeng, J.-H. Bahn, J. Bowers, J. M. O. Zide, R. Singh, A. Shakouri, W. Kim, S. L. Singer, and A. Majumdar, ``ErAs:(InGaAs){\ensuremath{_{1-x}}} (InAlAs){\ensuremath{_x}} Alloy Power Generator Modules,'' Appl. Phys. Lett., vol. 91, p. 263510, 2007.

16
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, ``Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit,'' Nature, vol. 413, no. 6856, pp. 597-602, 2001.

17
A. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. Goddard, and J. Heath, ``Silicon Nanowires as Efficient Thermoelectric Materials,'' Nature, vol. 451, no. 7175, pp. 168-171, 2008.

18
D. Li, Y. Wu, R. Fang, P. Yang, and A. Majumdar, ``Thermal Conductivity of Si/Ge Superlattice Nanowires,'' Appl. Phys. Lett., vol. 83, no. 15, pp. 3186-3188, 2003.

19
H. Sevincli and G. Cuniberti, ``Enhanced Thermoelectric Figure of Merit in Edge-Disordered Zigzag Graphene Nanoribbons,'' Phys. Rev. B, vol. 81, p. 113401 (4 pp), 2010.

20
A. Hochbaum, R. Chen, R. Delgado, W. Liang, E. Garnett, M. Najarian, A. Majumdar, and P. Yang, ``Enhanced Thermoelectric Performance of Rough Silicon Nanowires,'' Nature, vol. 451, no. 7175, pp. 163-167, 2008.

21
A. L. Moore, S. K. Saha, R. S. Prasher, and L. Shi, ``Phonon Backscattering and Thermal Conductivity Suppression in Sawtooth Nanowires,'' Appl. Phys. Lett., vol. 93, p. 083112, 2008.

22
K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, and I. Grigorieva, ``Electric Field Effect in Atomically Thin Carbon Films,'' Science, vol. 306, p. 666, 2004.

23
J.-H. Chen, C. Jang, S. Xiao, M. Ishighami, and M. Fuhrer, ``Band gap engineering in graphene and hexagonal BN antidot lattices: A first principles study,'' Nature Nanotech., vol. 3, no. 4, pp. 206-209, 2008.

24
J. Seol, I. Jo, A. Moore, L. Lindsay, Z. Aitken, M. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. Ruoff, and L. Shi, ``Two-Dimensional Phonon Transport in Supported Graphene,'' Science, vol. 328, no. 5975, pp. 213-216, 2010.

25
M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, ``Energy Band-Gap Engineering of Graphene Nanoribbons,'' Phys. Rev. Lett., vol. 98, p. 206805 (4 pp), 2007.

26
T. G. Pedersen, C. Flindt, J. Pedersen, A.-P. Jauho, N. A. Mortensen, and K. Pedersen, ``Optical Properties of Graphene Antidot Lattices,'' Phys. Rev. B, vol. 77, p. 245431 (6pp), 2008.

27
A. Zhang, H. Teoh, Z. Dai, Y. Feng, and C. Zhang, ``Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO{\ensuremath{_2}},'' Appl. Phys. Lett., vol. 98, p. 023105 (3 pp), 2011.

28
A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. Lau, ``Superior Thermal Conductivity of Single-Layer Graphene,'' Nano Lett., vol. 8, no. 3, pp. 902-907, 2008.

29
J. Hone, M. Whitney, C. Piskoti, and A. Zettl, ``Thermal Conductivity of Single-Walled Carbon Nanotubes,'' Phys. Rev. B, vol. 59, pp. R2514-R2516, 1999.

30
R. Kim, S. Datta, and M. S. Lundstrom, ``Influence of Dimensionality on Thermoelectric Device Performance,'' J. Appl. Phys., vol. 105, p. 034506 (6 pp), 2009.

31
J. C. Slater and G. F. Koster, ``Simplified LCAO Method for the Periodic Potential Problem,'' Phys. Rev., vol. 94, p. 1498, 1954.

32
S. Datta, Quantum Transport: Atom to Transistor.Cambridge: Cambridge University Press, 2005.

33
A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, ``Quasiparticle dynamics in graphene,'' Nature Physics, vol. 3, no. 1, pp. 36-40, 2007.

34
D. Gunlycke and C. T. White, ``Tight-Binding Energy Dispersions of Armchair-Edge Graphene Nanostrips,'' Phys. Rev. B, vol. 77, p. 115116 (6 pp), 2008.

35
L.-H. Ye, B.-G. Liu, D.-S. Wang, and R. Han, ``Ab Initio Phonon Dispersions of Single-Wall Carbon Nanotubes,'' Phys. Rev. B, vol. 69, no. 23, p. 235409 (10 pp), 2004.

36
J.-W. Jiang, B.-S. Wang, and J.-S. Wang, ``First Principle Study of the Thermal Conductance in Graphene Nanoribbon with Vacancy and Substitutional Silicon Defects,'' Appl. Phys. Lett., vol. 98, no. 11, p. 113114 (3 pp), 2011.

37
C. Lobo and J. Martins, ``Valence Force Field Model for Graphene and Fullerenes,'' Z. Phys. D, vol. 39, pp. 159-164, 1997.

38
S. Kusminskiy, D. Campbell, and A. C. Neto, ``Lenosky's Energy and the Phonon Dispersion of Graphene,'' Phys. Rev. B, vol. 80, p. 035401, 2009.

39
A. Paul, M. Luisier, and G. Klimeck, ``Modified Valence Force Field Approach for Phonon Dispersion: From Zinc-Blende Bulk to Nanowires,'' J. Comput. Electron., vol. 9, pp. 160-172, 2010.

40
L. Wirtz and A. Rubio, ``The Phonon Dispersion of Graphite Revisited,'' Solid-State Commun., vol. 131, no. 3-4, pp. 141-152, 2004.

41
H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, ``Vibrational Properties of Graphene and Graphene Layers,'' J. Raman Spectrosc., vol. 40, pp. 1791-1796, 2009.

42
R. Saito, M. Dresselhaus, and G. Dresselhaus, Rysical Properties of Carbon Nanotubes.London: Imperial College Press, 1998.

43
M. Mohr, J. Maultzsch, E. Dobardzic, S. Reich, I. Milosevic, M. Damnjanovic, A. Bosak, M. Krisch, and C. Thomsen, ``Phonon Dispersion of Graphite by Inelastic X-Ray Scattering,'' Phys. Rev. B, vol. 76, no. 3, p. 035439 (7 pp), 2007.

44
T. B. Boykin, G. Klimeck, and F. Oyafuso, ``Valence Band Effective-Mass Expressions in the sp3d5s* Empirical Tight-Binding Model Applied to a Si and Ge Parametrization,'' Phys. Rev. B, vol. 69, no. 11, p. 115201, 2004.

45
Z. Sui and I. P. Herman, ``Effect of Strain on Phonons in Si, Ge, and Si/Ge Heterostructures,'' Phys. Rev. B, vol. 48, pp. 17938-17953, 1993.

46
P. Vogl, H. P. Hjalmarson, and J. D. Dow, ``A Semi-Empirical Tight-Binding Theory of the Electronic Structure of Semiconductors,'' J. Phys. Chem. Solids, vol. 44, no. 5, pp. 365-378, 1983.

47
N. Neophytou, Quantum and Atomistic Effects in Nanoelectronic Transport Devices.Electrical and Computer Engineering, Purdue University, 2008.

48
P. N. Keating, ``Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure,'' Phys. Rev., vol. 145, pp. 637-645, 1966.

49
G. Nilsson and G. Nelin, ``Study of the Homology between Silicon and Germanium by Thermal Neutron Spectrometry,'' Phys. Rev. B, vol. 6, no. 10, pp. 3777-3786, 1972.

50
L. Rego and G. Kirczenow, ``Quantized Thermal Conductance of Dielectric Quantum Wires,'' Phys. Rev. Lett., vol. 81, pp. 232-235, 1998.

51
R. Landauer, ``Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction,'' IBM J. Res. Dev., vol. 1, p. 223 (9pp), 1957.

52
C. Jeong, R. Kim, M. Luisier, S. Datta, and M. Lundstrom, ``On Landauer Versus Boltzmann and Full Band versus Effective Mass Evaluation of Thermoelectric Transport Coefficients,'' J. Appl. Phys., vol. 107, p. 023707 (7 pp), 2010.

53
C. Kittel, Introduction to Solid State Physics.Wiley, 2005.

54
W. Zhang, T. Fisher, and N. Mingo, ``The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport,'' Numerical Heat Transfer, Part B, vol. 51, no. 4, pp. 333-349, 2007.

55
R. Golizadeh-Mojarad, A. N. M. Zainuddin, G. Klimeck, and S. Datta, ``Atomistic Non-Equilibrium Green’s Function Simulations of Graphene Nano-Ribbons in the Quantum Hall Regime,'' J. Comp. Electronics, vol. 7, no. 3, pp. 407-410, 2008.

56
M. Sancho, J. Sancho, J. Sancho, and J. Rubio, ``Highly Convergent Schemes for the Calculation of Bulk and Surface Green Functions,'' J. Phys. F: Met. Phys., vol. 15, pp. 851-858, 1985.

57
C. Jeong, S. Datta, and M. Lundstrom, ``Thermal Conductivity of Bulk and Thin-Film Silicon: A Landauer Approach,'' J. Appl. Phys., vol. 111, p. 093708, 2012.

58
Y. Ouyang and J. Guo, ``A Theoretical Study on Thermoelectric Properties of Graphene Nanoribbons,'' Appl. Phys. Lett., vol. 94, p. 263107 (3 pp), 2009.

59
T. Markussen, ``Surface Disordered Ge–Si Core–Shell Nanowires as Efficient Thermoelectric Materials,'' Phys. Rev. Lett., vol. 12, no. 9, pp. 4698-4704, 2012.

60
G. Srivastava, The Physics of Phonons.Adam Hilger-IOP, 1990.

61
J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids .Oxford University Press, 1960.

62
J. A. Pascual-Gutierrez, J. Y. Murthy, and R. Viskanta, ``Thermal Conductivity and Phonon Transport Properties of Silicon Using Perturbation Theory and the Environment-Dependent Interatomic Potential,'' J. Appl. Phys., vol. 106, p. 063532, 2009.

63
A. Zhang, Y. Wu, S.-H. Ke, Y. Feng, and C. Zhang, ``Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO{\ensuremath{_2}},'' arXiv:1105.5858, 2011.

64
T. Pedersen, C. Flindt, J. Pedersen, N. Mortensen, A.-P. Jauho, and K. Pedersen, ``Graphene Antidot Lattices: Designed Defects and Spin Qubits,'' Phys. Rev. Lett., vol. 100, no. 13, p. 136804 (4 pp), 2008.

65
J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, ``Graphene Nanomesh,'' Nature Nanotech., vol. 5, p. 190, 2010.

66
Y. M. Zuev, W. Chang, and P. Kim, ``Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene,'' Phys. Rev. Lett., vol. 102, p. 096807, 2009.

67
P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, ``Anomalous Thermoelectric Transport of Dirac Particles in Graphene,'' Phys. Rev. Lett., vol. 102, p. 166808, 2009.

68
Z. Guo, D. Zhang, and X.-G. Gong, ``Thermal Conductivity of Graphene Nanoribbons,'' Appl. Phys. Lett., vol. 95, p. 163103 (3 pp), 2009.

69
H. Zhang, G. Lee, A. F. Fonseca, T. L. Borders, and K. Cho, ``Isotope Effect on the Thermal Conductivity of Graphene,'' J. of Nanomaterials, vol. 2010, p. 537657 (5pp), 2010.

70
W. Evans, L. Hu, and P. Keblinski, ``Thermal Conductivity of Graphene Ribbons from Equilibrium Molecular Dynamics: Effect of Ribbon Width, Edge Roughness, and Hydrogen Termination,'' Appl. Phys. Lett., vol. 96, p. 203112 (3 pp), 2010.

71
F. Mazzamuto, J. Saint-Martin, V. H. Nguyen, C. Chassat, and P. Dollfus, ``Thermoelectric Performance of Disordered and Nanostructured Graphene Ribbons using Green's Function Method,'' J. Comput. Electron., vol. 11, no. 1, pp. 67-77, 2012.

72
D. L. Nika, A. S. Askerov, and A. A. B. *†, ``Anomalous Size Dependence of the Thermal Conductivity of Graphene Ribbons,'' Nano Lett., vol. 12, no. 6, pp. 3238-3244, 2012.

73
Y. Yang and R. Murali, ``Impact of Size Effect on Graphene Nanoribbon Transport,'' IEEE Electron Device Lett., vol. 31, no. 3, pp. 237-239, 2010.

74
A. Yazdanpanah, M. Pourfath, M. Fathipour, H. Kosina, and S. Selberherr, ``A Numerical Study of Line-Edge Roughness Scattering in Graphene Nanoribbons,'' IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 433-440, 2012.

75
A. D. Liao, J. Z. Wu, X. Wang, K. Tahy, D. Jena, H. Dai, and E. Pop, ``Thermally Limited Current Carrying Ability of Graphene Nanoribbons,'' Phys. Rev. Lett., vol. 106, p. 256801, 2011.

76
Y. A. Kosevich and A. V. Savin, ``Reduction of Phonon Thermal Conductivity in Nanowires and Nanoribbons with Dynamically Rough Surfaces and Edges,'' EPL, vol. 88, no. 1, p. 14002, 2009.

77
D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, ``Phonon Thermal Conduction in Graphene: Role of Umklapp and Edge Roughness Scattering,'' Phys. Rev. B, vol. 79, p. 155413, 2009.

78
A. Savin, Y. Kivshar, and B. Hu, ``Suppression of Thermal Conductivity in Graphene Nanoribbons with Rough Edges,'' Phys. Rev. B, vol. 82, p. 195422 (9 pp), 2010.

79
Z. Aksamija and I. Knezevic, ``Lattice Thermal Conductivity of Graphene Nanoribbons: Anisotropy and Edge Roughness Scattering,'' Appl. Phys. Lett., vol. 98, no. 14, p. 141919 (3 pp), 2011.

80
Z. Aksamija and I. Knezevic, ``Thermal Transport in Graphene Nanoribbons Supported on SiO2,'' Phys. Rev. B, vol. 86, p. 165426, 2012.

81
J. Wu, ``Simulation of Non-Gaussian Surfaces with FFT,'' Tribol. Int., vol. 37, no. 4, pp. 339-346, 2004.

82
S. Ghosh, I. Calizo, D. Teweldebrahn, E. Pokatilov, D. Nika, A. Balandin, W. Bao, F. Miao, and C. Lau, ``Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits,'' Appl. Phys. Lett., vol. 92, p. 151911 (3 pp), 2008.

83
H. Karamitaheri, M. Pourfath, R. Faez, and H. Kosina, ``Geometrical Effects on the Thermoelectric Properties of Ballistic Graphene Antidot Lattices,'' J. Appl. Phys., vol. 110, no. 5, p. 054506, 2011.

84
J. Furst, J. Pedersen, C. Flindt, N. Mortensen, M. Brandbyge, T. Pedersen, and A.-P. Jauho, ``Electronic Properties of Graphene Antidot Lattices,'' New J. Phys., vol. 11, p. 095020, 2009.

85
D. K. C. Macdonald, Thermoelectricity: An Introduction to the Principles.Dover Pubns, 2006.

86
J. Hone, I. Ellwood, M. Muno, A. Mizel, M. L. Cohen, and A. Zettl, ``Thermoelectric Power of Single-Walled Carbon Nanotubes,'' Phys. Rev. Lett., vol. 80, p. 1042, 1998.

87
M. Vanevic, V. M. Stojanovic, and M. Kindermann, ``Character of Electronic States in Graphene Antidot Lattices: Flat Bands and Spatial Localization,'' Phys. Rev. B, vol. 80, p. 045410 (8pp), 2009.

88
D. Areshkin, D. Gunlycke, and C. White, ``Ballistic Transport in Graphene Nanostrips in the Presence of Disorder: Importance of Edge Effects,'' Nano Lett., vol. 7, no. 1, pp. 204-210, 2007.

89
D. Bahamon, A. Pereira, and P. Schulz, ``Third Edge for a Graphene Nanoribbon: A Tight-Binding Model Calculation,'' Phys. Rev. B, vol. 83, no. 7, p. 155436 (6 pp), 2011.

90
J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, and M. Batzill, ``An Extended Defect in Graphene as a Metallic Wire,'' Nature Nanotech., vol. 5, pp. 326-329, 2010.

91
D. J. Appelhans, L. D. Carr, and M. T. Lusk, ``Embedded Ribbons of Graphene Allotropes: An Extended Defect Perspective,'' New J. Phys., vol. 12, p. 125006 (21pp), 2010.

92
M. T. Lusk, D. T. Wu, and L. D. Carr, ``Graphene Nanoengineering and the Inverse Stone-Thrower-Wales Defect,'' Phys. Rev. B, vol. 81, p. 155444 (9 pp), 2010.

93
V. M. Pereira, F. Guinea, J. M. B. L. dos Santos, N. M. R. Peres, and A. H. C. Neto, ``Disorder Induced Localized States in Graphene,'' Phys. Rev. Lett., vol. 96, p. 036801 (4 pp), 2006.

94
N. Neophytou, D. Kienle, E. Polizzi, and M. P. Anantram, ``,'' Appl. Phys. Lett., vol. 88, p. 242106 (3 pp), 2006.

95
M. U. Kahaly, S. P. Singh, and U. V. Waghmare, ``Carbon Nanotubes with an Extended Line Defect,'' Small, vol. 4, no. 12, pp. 2209-2213, 2008.

96
G. J. Snyder and E. S. Toberer, ``Complex Thermoelectric Materials,'' Nature Materials, vol. 7, pp. 105-114, 2008.

97
N. Neophytou and H. Kosina, ``Effects of Confinement and Orientation on the Thermoelectric Power Factor of Silicon Nanowires,'' Phys. Rev. B, vol. 83, p. 245305 (16 pp), 2011.

98
I. Ponomareva, D. Srivastava, and M. Menon, ``Thermal Conductivity in Thin Silicon Nanowires: Phonon Confinement Effect,'' Nano Lett., vol. 7, pp. 1155-1159, 2007.

99
N. Yang, G. Zhang, and B. Li, ``Ultralow Thermal Conductivity of Isotope-Doped Silicon Nanowires,'' Nano Lett., vol. 8, pp. 276-280, 2008.

100
S.-C. Wang, X.-G. Liang, X.-H. Xu, and T. Ohara, ``Thermal Conductivity of Silicon Nanowire by Nonequilibrium Molecular Dynamics Simulations,'' J. Appl. Phys., vol. 105, p. 014316, 2009.

101
M. Liangraksa and I. K. Puri, ``Lattice Thermal Conductivity of a Silicon Nanowire Under Surface Stress,'' J. Appl. Phys., vol. 109, p. 113501, 2011.

102
J. H. Oh, M. Shin, and M.-G. Jang, ``Phonon Thermal Conductivity in Silicon Nanowires: The Effects of Surface Roughness at Low Temperatures,'' J. Appl. Phys., vol. 111, p. 044304, 2012.

103
N. Mingo, ``Calculation of Si Nanowire Thermal Conductivity using Complete Phonon Dispersion Relations,'' Phys. Rev. B, vol. 68, p. 113308, 2003.

104
X. Lu and J. Chu, ``,'' J. Appl. Phys., vol. 100, p. 014305, 2006.

105
M.-J. Huang, W.-Y. Chong, and T.-M. Chang, ``,'' J. Appl. Phys., vol. 99, p. 114318, 2006.

106
P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, ``Impact of Phonon-Surface Roughness Scattering on Thermal Conductivity of Thin Si Nanowires,'' Phys. Rev. Lett., vol. 102, p. 125503, 2009.

107
A. Paul, M. Luisier, and G. Klimeck, ``Shape and Orientation Effects on the Ballistic Phonon Thermal Properties of Ultra-Scaled Si Nanowires,'' J. Appl. Phys., vol. 110, p. 114309, 2011.

108
T. Thonhauser and G. D. Mahan, ``,'' Phys. Rev. B, vol. 69, p. 075213, 2004.

109
X. Lu, J. H. Chu, and W. Z. Shen, ``,'' J. Appl. Phys., vol. 93, pp. 1219-1229, 2003.

110
J. Zou and A. Balandin, ``Phonon Heat Conduction in a Semiconductor Nanowire,'' J. Appl. Phys., vol. 89, p. 2932, 2001.

111
T. Markussen, A.-P. Jauho, and M. Brandbyge, ``Heat Conductance Is Strongly Anisotropic for Pristine Silicon Nanowires,'' Nano Lett., vol. 8, no. 11, pp. 3771-3775, 2008.

112
Z. Aksamija and I. Knezevic, ``Anisotropy and Boundary Scattering in the Lattice Thermal Conductivity of Silicon Nanomembranes,'' Phys. Rev. B, vol. 82, p. 045319, 2010.

113
H. Karamitaheri, N. Neophytou, M. K. Taheri, R. Faez, and H. Kosina, ``Calculation of Confined Phonon Spectrum in Narrow Silicon Nanowires Using the Valence Force Field Method,'' J. Electron. Mater., vol. DOI: 10.1007/s11664-013-2533-z, 2013.

114
N. Neophytou and H. Kosina, ``Hole Mobility Increase in Ultra-Narrow Si Channels under Strong (110) Surface Confinement,'' Appl. Phys. Lett., vol. 99, p. 092110, 2011.

115
N. Neophytou and G.Klimeck, ``Design Space for Low Sensitivity to Size Variations in [110] PMOS Nanowire Devices: The Implications of Anisotropy in the Quantization Mass,'' Nano Lett., vol. 9, no. 2, pp. 623-630, 2009.

116
N. Neophytou and H. Kosina, ``Large Thermoelectric Power Factor in p-type Si (110)/[110] Ultra-Thin-Layers Compared to Differently Oriented Channels,'' J. Appl. Phys., vol. 112, p. 024305, 2012.

117
W. S. Hurst and D. R. Frankl, ``Thermal Conductivity of Silicon in the Boundary Scattering Regime,'' Phys. Rev., vol. 186, no. 3, pp. 801-810, 1969.

118
M. G. Holland, ``Analysis of Lattice Thermal Conductivity,'' Phys. Rev., vol. 132, no. 6, pp. 2461-2471, 1963.

119
M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. P. Zhernov, A. V. Inyushkin, A. Taldenkov, V. I. Ozhogin, K. M. Itoh, and E. E. Haller, ``Thermal Conductivity of Germanium Crystals with Different Isotopic Compositions,'' Phys. Rev. B, vol. 56, no. 15, p. 9431, 1997.

120
N. Mingo and D. A. Broido, ``Length Dependence of Carbon Nanotube Thermal Conductivity and the "Problem of Long Waves",'' Nano Lett., vol. 5, no. 7, pp. 1221-1225, 2005.

121
L. Hu, W. J. Evans, and P. Keblinski, ``One-Dimensional Phonon Effects in Direct Molecular Dynamics Method for Thermal Conductivity Determination,'' J. Appl. Phys., vol. 110, p. 113511, 2011.

122
D. Donadio and G. Galli, ``Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires,'' Nano Lett., vol. 10, no. 3, pp. 847-851, 2010.

123
N. Mingo, L. Yang, D. Li, and A. Majumdar, ``Predicting the Thermal Conductivity of Si and Ge Nanowires,'' Nano Lett., vol. 3, no. 12, pp. 1713-1716, 2003.

124
K. Termentzidis, T. Barreteau, Y. Ni, S. Merabia, X. Zianni, Y. Chalopin, P. Chantrenne, and S. Volz, ``Modulated SiC Nanowires: Molecular Dynamics Study of Their Thermal Properties,'' Phys. Rev. B, vol. 87, p. 125410, 2013.

125
J. Wang and J.-S. Wang, ``Dimensional Crossover of Thermal Conductance in Nanowires,'' Appl. Phys. Lett., vol. 90, p. 241908, 2007.

126
L. Lindsay, D. A. Broido, and N. Mingo, ``Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Beyond the Relaxation Time Approximation and Phonon-Phonon Scattering Selection Rules,'' Phys. Rev. B, vol. 80, p. 125407, 2009.

127
C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, ``Breakdown of Fourier's Law in Nanotube Thermal Conductors,'' Phys. Rev. Lett., vol. 101, p. 075903, 2008.

128
G. Wu and J. Dong, ``Anomalous Heat Conduction in a Carbon Nanowire: Molecular Dynamics Calculations,'' Phys. Rev. B, vol. 71, p. 115410, 2005.

129
S. Lepri, R. Livi1, and A. Politi, ``Heat Conduction in Chains of Nonlinear Oscillators,'' Phys. Rev. Lett., vol. 78, p. 1896, 1997.

130
T. Hatano, ``Heat Conduction in the Diatomic Toda Lattice Revisited,'' Phys. Rev. E, vol. 59, pp. R1-R4, 1999.

131
X. Lu, ``Lattice Thermal Conductivity of Si Nanowires: Effect of Modified Phonon Density of States,'' J. Appl. Phys., vol. 104, p. 054314, 2008.

132
A. J. H. McGaughey, E. S. Landry, D. P. Sellan, and C. H. Amon, ``Size-Dependent Model for Thin Film and Nanowire Thermal Conductivity,'' Appl. Phys. Lett., vol. 99, p. 131904, 2011.

133
J. E. Turney, A. J. H. McGaughey, and C. H. Amon, ``In-Plane Phonon Transport in Thin Films,'' J. Appl. Phys., vol. 107, p. 024317, 2010.

134
Z. Tian, K. Esfarjani, J. Shiomi, A. S. Henry, and G. Chen, ``On the Importance of Optical Phonons to Thermal Conductivity in Nanostructures,'' Appl. Phys. Lett., vol. 99, p. 053122, 2011.

135
W. Liu and M. Asheghi, ``Thermal Conduction in Ultrathin Pure and Doped Single-Crystal Silicon Layers at High Temperatures ,'' J. Appl. Phys., vol. 98, p. 123523, 2005.

136
X. Lu, ``Longitudinal Thermal Conductivity of Radial Nanowire Heterostructures,'' J. Appl. Phys., vol. 106, p. 064305, 2009.

137
M. Luisier, ``Atomistic Modeling of Anharmonic Phonon-Phonon Scattering in Nanowires,'' Phys. Rev. B, vol. 86, p. 245407, 2012.

138
S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, ``Dimensional Crossover of Thermal Transport in Few-Layer Graphene,'' Nature Materials, vol. 9, pp. 555-558, 2010.

139
M. Maldovan, ``Thermal Conductivity of Semiconductor Nanowires from Micro to Nano Length Scales,'' J. Appl. Phys., vol. 111, p. 024311, 2012.

140
S. G. Volz and G. Chen, ``Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires,'' Appl. Phys. Lett., vol. 75, p. 2056, 1999.

141
Y. Chen, D. Li, J. R. Lukes, and A. Majumdar, ``Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity,'' J. Heat Transfer, vol. 127, p. 1129, 2005.

142
J. Tang, H.-T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell, and P. Yang, ``Holey Silicon as an Efficient Thermoelectric Material,'' Nano Lett., vol. 10, no. 10, pp. 4279-4283, 2010.

143
N. Neophytou and H. Kosina, ``Effects of Confinement and Orientation on the Thermoelectric Power Factor of Silicon Nanowires,'' Phys. Rev. B, vol. 83, p. 245305, 2011.

144
N. Neophytou and H. Kosina, ``Large Enhancement in Hole Velocity and Mobility in P-type [110] and [111] Silicon Nanowires by Cross Section Scaling: An Atomistic Analysis,'' Nano Lett., vol. 10, no. 12, pp. 4913-4919, 2010.

145
E. B. Ramayya, L. N. Maurer, A. H. Davoody, and I. Knezevic, ``Thermoelectric Properties of Ultrathin Silicon Nanowires,'' Phys. Rev. B, vol. 86, p. 115328, 2012.

146
S. Jin, M. V. Fischetti, and T. Tang, ``Modeling of Electron Mobility in Gated Silicon Nanowires at Room Temperature: Surface Roughness Scattering, Dielectric Screening, and Band Nonparabolicity,'' J. Appl. Phys., vol. 102, p. 083715, 2007.

147
N. Neophytou and H. Kosina, ``On the Interplay between Electrical Conductivity and Seebeck Coefficient in Ultra-Narrow Silicon Nanowires,'' J. Electron. Mater., vol. 41, no. 6, pp. 1305-1311, 2012.

148
P. N. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, ``Reduced Thermal Conductivity in Nanoengineered Rough Ge and GaAs Nanowires,'' Nano Lett., vol. 10, no. 4, pp. 1120-1124, 2010.

149
R. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. Yang, and A. Majumdar, ``Thermal Conductance of Thin Silicon Nanowires,'' Phys. Rev. Lett., vol. 101, p. 105501 (4pp), 2008.

150
T. Markussen, A.-P. Jauho, and M. Brandbyge, ``Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics,'' Phys. Rev. Lett., vol. 103, p. 055502, 2009.

151
N. Mingo and L. Yang, ``Phonon Transport in Nanowires Coated with an Amorphous Material: An Atomistic Green's Function Approach,'' Phys. Rev. B, vol. 68, p. 245406, 2003.



H. Karamitaheri: Thermal and Thermoelectric Properties of Nanostructures