Next: List of Publications
Up: Dissertation Hossein Karamitaheri
Previous: 7. Summary and Conclusions
Contents
- url@rmstyle
=0pt
4
=2plus
3minus
4
[2]l@#1
=l@#1
#2
- 1
-
M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, and G. Chen,
``Perspectives on Thermoelectrics: From Fundamentals to Device
Applications,'' Energy Environ. Sci., vol. 5, pp. 5147-5162, 2012.
- 2
-
T. Seebeck, ``Magnetische Polarisation der Metalle und Erze durch
Temperatur-Differenz,'' Abhandlungen der Deutschen Akademie der
Wissenschaften zu Berlin, pp. 265-373, 1823.
- 3
-
G. Nolas, J. Sharp, and H. Goldsmid, Thermoelectrics: Basic Principles
and New Materials Developments.
Germany: Springer, 2001.
- 4
-
T. Harman, P. Taylor, M. Walsh, and B. LaForge, ``Quantum Dot Superlattice
Thermoelectric Materials and Devices,'' Science, vol. 297, no.
5590, pp. 2229-2232, 2002.
- 5
-
H. Goldsmid, Introduction to Thermoelectricity.Springer, 2010.
- 6
-
Z.-G. Chena, G. Hana, L. Yanga, L. Chenga, and J. Zou, ``Nanostructured
Thermoelectric Materials: Current Research and Future Challenge,''
Progress in Natural Science: Materials International, vol. 22,
no. 6, pp. 535-549, 2012.
- 7
-
C. Wood, ``Materials for Thermoelectric Energy Conversion,'' Reports
on Progress in Physics, vol. 51, no. 4, p. 459, 1988.
- 8
-
G. Slack, CRC Handbook of Thermoelectrics.CRC Press, 1995.
- 9
-
L. D. Hicks and M. S. Dresselhaus, ``Thermoelectric Figure of Merit of a
One-Dimensional Conductor,'' Phys. Rev. B, vol. 47, p. 16631, 1993.
- 10
-
M. S. Dresselhaus, Y. M. Lin, S. B. Cronin, O. Rabin, M. R. Black,
G. Dresselhaus, and T. Koga, ``Quantum Wells and Quantum Wires for Potential
Thermoelectric Applications,'' Proc. Natl. Acad. Sci., vol. 41,
p. 1, 2001.
- 11
-
G. D. Mahan and J. O. Sofo, ``The Best Thermoelectric,'' Proc. Natl.
Acad. Sci. USA, vol. 93, p. 7436, 1996.
- 12
-
K. Kim, Y. Zhao, H. Jang, S. Lee, J. Kim, K. Kim, J.-H. Ahn, P. Kim, J.-Y.
Choi, and B. Hong, ``Large-scale pattern growth of graphene films for
stretchable transparent electrodes,'' Nature, vol. 457, pp.
706-710, 2009.
- 13
-
D. A. Wright, ``Thermoelectric Properties of Bismuth Telluride and Its
Alloys,'' Nature, vol. 181, p. 834, 1954.
- 14
-
W. Kim, S. L. Singer, A. Majumdar, D. Vashaee, Z. Bian, A. Shakouri, G. Zeng,
J. E. Bowers, J. M. O. Zide, and A. C. Gossard, ``Cross-Plane Lattice and
Electronic Thermal Conductivities of ErAs:InGaAs/InGaAlAs Superlattices,''
Appl. Phys. Lett., vol. 88, p. 242107 (3 pp), 2006.
- 15
-
G. Zeng, J.-H. Bahn, J. Bowers, J. M. O. Zide, R. Singh, A. Shakouri, W. Kim,
S. L. Singer, and A. Majumdar, ``ErAs:(InGaAs)
(InAlAs) Alloy Power Generator Modules,'' Appl. Phys.
Lett., vol. 91, p. 263510, 2007.
- 16
-
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, ``Thin-Film
Thermoelectric Devices with High Room-Temperature Figures of Merit,''
Nature, vol. 413, no. 6856, pp. 597-602, 2001.
- 17
-
A. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. Goddard, and J. Heath,
``Silicon Nanowires as Efficient Thermoelectric Materials,'' Nature,
vol. 451, no. 7175, pp. 168-171, 2008.
- 18
-
D. Li, Y. Wu, R. Fang, P. Yang, and A. Majumdar, ``Thermal Conductivity of
Si/Ge Superlattice Nanowires,'' Appl. Phys. Lett., vol. 83, no. 15,
pp. 3186-3188, 2003.
- 19
-
H. Sevincli and G. Cuniberti, ``Enhanced Thermoelectric Figure of Merit in
Edge-Disordered Zigzag Graphene Nanoribbons,'' Phys. Rev. B, vol. 81,
p. 113401 (4 pp), 2010.
- 20
-
A. Hochbaum, R. Chen, R. Delgado, W. Liang, E. Garnett, M. Najarian,
A. Majumdar, and P. Yang, ``Enhanced Thermoelectric Performance of Rough
Silicon Nanowires,'' Nature, vol. 451, no. 7175, pp. 163-167, 2008.
- 21
-
A. L. Moore, S. K. Saha, R. S. Prasher, and L. Shi, ``Phonon Backscattering
and Thermal Conductivity Suppression in Sawtooth Nanowires,'' Appl.
Phys. Lett., vol. 93, p. 083112, 2008.
- 22
-
K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, and
I. Grigorieva, ``Electric Field Effect in Atomically Thin Carbon Films,''
Science, vol. 306, p. 666, 2004.
- 23
-
J.-H. Chen, C. Jang, S. Xiao, M. Ishighami, and M. Fuhrer, ``Band gap
engineering in graphene and hexagonal BN antidot lattices: A first principles
study,'' Nature Nanotech., vol. 3, no. 4, pp. 206-209, 2008.
- 24
-
J. Seol, I. Jo, A. Moore, L. Lindsay, Z. Aitken, M. Pettes, X. Li, Z. Yao,
R. Huang, D. Broido, N. Mingo, R. Ruoff, and L. Shi, ``Two-Dimensional
Phonon Transport in Supported Graphene,'' Science, vol. 328, no.
5975, pp. 213-216, 2010.
- 25
-
M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, ``Energy Band-Gap Engineering of
Graphene Nanoribbons,'' Phys. Rev. Lett., vol. 98, p. 206805 (4 pp),
2007.
- 26
-
T. G. Pedersen, C. Flindt, J. Pedersen, A.-P. Jauho, N. A. Mortensen, and
K. Pedersen, ``Optical Properties of Graphene Antidot Lattices,''
Phys. Rev. B, vol. 77, p. 245431 (6pp), 2008.
- 27
-
A. Zhang, H. Teoh, Z. Dai, Y. Feng, and C. Zhang, ``Intrinsic and Extrinsic
Performance Limits of Graphene Devices on SiO,''
Appl. Phys. Lett., vol. 98, p. 023105 (3 pp), 2011.
- 28
-
A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. Lau,
``Superior Thermal Conductivity of Single-Layer Graphene,'' Nano
Lett., vol. 8, no. 3, pp. 902-907, 2008.
- 29
-
J. Hone, M. Whitney, C. Piskoti, and A. Zettl, ``Thermal Conductivity of
Single-Walled Carbon Nanotubes,'' Phys. Rev. B, vol. 59, pp.
R2514-R2516, 1999.
- 30
-
R. Kim, S. Datta, and M. S. Lundstrom, ``Influence of Dimensionality on
Thermoelectric Device Performance,'' J. Appl. Phys., vol. 105, p.
034506 (6 pp), 2009.
- 31
-
J. C. Slater and G. F. Koster, ``Simplified LCAO Method for the Periodic
Potential Problem,'' Phys. Rev., vol. 94, p. 1498, 1954.
- 32
-
S. Datta, Quantum Transport: Atom to Transistor.Cambridge: Cambridge University Press, 2005.
- 33
-
A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, ``Quasiparticle
dynamics in graphene,'' Nature Physics, vol. 3, no. 1, pp. 36-40,
2007.
- 34
-
D. Gunlycke and C. T. White, ``Tight-Binding Energy Dispersions of
Armchair-Edge Graphene Nanostrips,'' Phys. Rev. B, vol. 77, p. 115116
(6 pp), 2008.
- 35
-
L.-H. Ye, B.-G. Liu, D.-S. Wang, and R. Han, ``Ab Initio Phonon Dispersions of
Single-Wall Carbon Nanotubes,'' Phys. Rev. B, vol. 69, no. 23, p.
235409 (10 pp), 2004.
- 36
-
J.-W. Jiang, B.-S. Wang, and J.-S. Wang, ``First Principle Study of the
Thermal Conductance in Graphene Nanoribbon with Vacancy and Substitutional
Silicon Defects,'' Appl. Phys. Lett., vol. 98, no. 11, p. 113114 (3
pp), 2011.
- 37
-
C. Lobo and J. Martins, ``Valence Force Field Model for Graphene and
Fullerenes,'' Z. Phys. D, vol. 39, pp. 159-164, 1997.
- 38
-
S. Kusminskiy, D. Campbell, and A. C. Neto, ``Lenosky's Energy and the Phonon
Dispersion of Graphene,'' Phys. Rev. B, vol. 80, p. 035401, 2009.
- 39
-
A. Paul, M. Luisier, and G. Klimeck, ``Modified Valence Force Field Approach
for Phonon Dispersion: From Zinc-Blende Bulk to Nanowires,'' J.
Comput. Electron., vol. 9, pp. 160-172, 2010.
- 40
-
L. Wirtz and A. Rubio, ``The Phonon Dispersion of Graphite Revisited,''
Solid-State Commun., vol. 131, no. 3-4, pp. 141-152, 2004.
- 41
-
H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, ``Vibrational Properties of
Graphene and Graphene Layers,'' J. Raman Spectrosc., vol. 40, pp.
1791-1796, 2009.
- 42
-
R. Saito, M. Dresselhaus, and G. Dresselhaus, Rysical Properties of
Carbon Nanotubes.London: Imperial
College Press, 1998.
- 43
-
M. Mohr, J. Maultzsch, E. Dobardzic, S. Reich, I. Milosevic, M. Damnjanovic,
A. Bosak, M. Krisch, and C. Thomsen, ``Phonon Dispersion of Graphite by
Inelastic X-Ray Scattering,'' Phys. Rev. B, vol. 76, no. 3, p. 035439
(7 pp), 2007.
- 44
-
T. B. Boykin, G. Klimeck, and F. Oyafuso, ``Valence Band Effective-Mass
Expressions in the sp3d5s* Empirical Tight-Binding Model Applied to a Si and
Ge Parametrization,'' Phys. Rev. B, vol. 69, no. 11, p. 115201, 2004.
- 45
-
Z. Sui and I. P. Herman, ``Effect of Strain on Phonons in Si, Ge, and Si/Ge
Heterostructures,'' Phys. Rev. B, vol. 48, pp. 17938-17953,
1993.
- 46
-
P. Vogl, H. P. Hjalmarson, and J. D. Dow, ``A Semi-Empirical Tight-Binding
Theory of the Electronic Structure of Semiconductors,'' J. Phys. Chem.
Solids, vol. 44, no. 5, pp. 365-378, 1983.
- 47
-
N. Neophytou, Quantum and Atomistic Effects in Nanoelectronic Transport
Devices.Electrical and Computer
Engineering, Purdue University, 2008.
- 48
-
P. N. Keating, ``Effect of Invariance Requirements on the Elastic Strain
Energy of Crystals with Application to the Diamond Structure,'' Phys.
Rev., vol. 145, pp. 637-645, 1966.
- 49
-
G. Nilsson and G. Nelin, ``Study of the Homology between Silicon and Germanium
by Thermal Neutron Spectrometry,'' Phys. Rev. B, vol. 6, no. 10, pp.
3777-3786, 1972.
- 50
-
L. Rego and G. Kirczenow, ``Quantized Thermal Conductance of Dielectric
Quantum Wires,'' Phys. Rev. Lett., vol. 81, pp. 232-235, 1998.
- 51
-
R. Landauer, ``Spatial Variation of Currents and Fields Due to Localized
Scatterers in Metallic Conduction,'' IBM J. Res. Dev., vol. 1, p. 223
(9pp), 1957.
- 52
-
C. Jeong, R. Kim, M. Luisier, S. Datta, and M. Lundstrom, ``On Landauer Versus
Boltzmann and Full Band versus Effective Mass Evaluation of Thermoelectric
Transport Coefficients,'' J. Appl. Phys., vol. 107, p. 023707 (7 pp),
2010.
- 53
-
C. Kittel, Introduction to Solid State Physics.Wiley, 2005.
- 54
-
W. Zhang, T. Fisher, and N. Mingo, ``The Atomistic Green's Function Method: An
Efficient Simulation Approach for Nanoscale Phonon Transport,''
Numerical Heat Transfer, Part B, vol. 51, no. 4, pp. 333-349, 2007.
- 55
-
R. Golizadeh-Mojarad, A. N. M. Zainuddin, G. Klimeck, and S. Datta,
``Atomistic Non-Equilibrium Green’s Function Simulations of Graphene
Nano-Ribbons in the Quantum Hall Regime,'' J. Comp. Electronics,
vol. 7, no. 3, pp. 407-410, 2008.
- 56
-
M. Sancho, J. Sancho, J. Sancho, and J. Rubio, ``Highly Convergent Schemes for
the Calculation of Bulk and Surface Green Functions,'' J. Phys. F:
Met. Phys., vol. 15, pp. 851-858, 1985.
- 57
-
C. Jeong, S. Datta, and M. Lundstrom, ``Thermal Conductivity of Bulk and
Thin-Film Silicon: A Landauer Approach,'' J. Appl. Phys., vol. 111,
p. 093708, 2012.
- 58
-
Y. Ouyang and J. Guo, ``A Theoretical Study on Thermoelectric Properties of
Graphene Nanoribbons,'' Appl. Phys. Lett., vol. 94, p. 263107 (3 pp),
2009.
- 59
-
T. Markussen, ``Surface Disordered Ge–Si Core–Shell Nanowires as Efficient
Thermoelectric Materials,'' Phys. Rev. Lett., vol. 12, no. 9, pp.
4698-4704, 2012.
- 60
-
G. Srivastava, The Physics of Phonons.Adam Hilger-IOP, 1990.
- 61
-
J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in
Solids .Oxford University Press,
1960.
- 62
-
J. A. Pascual-Gutierrez, J. Y. Murthy, and R. Viskanta, ``Thermal Conductivity
and Phonon Transport Properties of Silicon Using Perturbation Theory and the
Environment-Dependent Interatomic Potential,'' J. Appl. Phys., vol.
106, p. 063532, 2009.
- 63
-
A. Zhang, Y. Wu, S.-H. Ke, Y. Feng, and C. Zhang, ``Intrinsic and Extrinsic
Performance Limits of Graphene Devices on SiO,''
arXiv:1105.5858, 2011.
- 64
-
T. Pedersen, C. Flindt, J. Pedersen, N. Mortensen, A.-P. Jauho, and
K. Pedersen, ``Graphene Antidot Lattices: Designed Defects and Spin
Qubits,'' Phys. Rev. Lett., vol. 100, no. 13, p. 136804 (4 pp), 2008.
- 65
-
J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, ``Graphene Nanomesh,''
Nature Nanotech., vol. 5, p. 190, 2010.
- 66
-
Y. M. Zuev, W. Chang, and P. Kim, ``Thermoelectric and Magnetothermoelectric
Transport Measurements of Graphene,'' Phys. Rev. Lett., vol. 102, p.
096807, 2009.
- 67
-
P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, ``Anomalous Thermoelectric
Transport of Dirac Particles in Graphene,'' Phys. Rev. Lett., vol.
102, p. 166808, 2009.
- 68
-
Z. Guo, D. Zhang, and X.-G. Gong, ``Thermal Conductivity of Graphene
Nanoribbons,'' Appl. Phys. Lett., vol. 95, p. 163103 (3 pp), 2009.
- 69
-
H. Zhang, G. Lee, A. F. Fonseca, T. L. Borders, and K. Cho, ``Isotope Effect
on the Thermal Conductivity of Graphene,'' J. of Nanomaterials, vol.
2010, p. 537657 (5pp), 2010.
- 70
-
W. Evans, L. Hu, and P. Keblinski, ``Thermal Conductivity of Graphene Ribbons
from Equilibrium Molecular Dynamics: Effect of Ribbon Width, Edge Roughness,
and Hydrogen Termination,'' Appl. Phys. Lett., vol. 96, p. 203112 (3
pp), 2010.
- 71
-
F. Mazzamuto, J. Saint-Martin, V. H. Nguyen, C. Chassat, and P. Dollfus,
``Thermoelectric Performance of Disordered and Nanostructured Graphene
Ribbons using Green's Function Method,'' J. Comput. Electron.,
vol. 11, no. 1, pp. 67-77, 2012.
- 72
-
D. L. Nika, A. S. Askerov, and A. A. B. *†, ``Anomalous Size Dependence of
the Thermal Conductivity of Graphene Ribbons,'' Nano Lett., vol. 12,
no. 6, pp. 3238-3244, 2012.
- 73
-
Y. Yang and R. Murali, ``Impact of Size Effect on Graphene Nanoribbon
Transport,'' IEEE Electron Device Lett., vol. 31, no. 3, pp.
237-239, 2010.
- 74
-
A. Yazdanpanah, M. Pourfath, M. Fathipour, H. Kosina, and S. Selberherr, ``A
Numerical Study of Line-Edge Roughness Scattering in Graphene Nanoribbons,''
IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 433-440, 2012.
- 75
-
A. D. Liao, J. Z. Wu, X. Wang, K. Tahy, D. Jena, H. Dai, and E. Pop,
``Thermally Limited Current Carrying Ability of Graphene Nanoribbons,''
Phys. Rev. Lett., vol. 106, p. 256801, 2011.
- 76
-
Y. A. Kosevich and A. V. Savin, ``Reduction of Phonon Thermal Conductivity in
Nanowires and Nanoribbons with Dynamically Rough Surfaces and Edges,''
EPL, vol. 88, no. 1, p. 14002, 2009.
- 77
-
D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, ``Phonon
Thermal Conduction in Graphene: Role of Umklapp and Edge Roughness
Scattering,'' Phys. Rev. B, vol. 79, p. 155413, 2009.
- 78
-
A. Savin, Y. Kivshar, and B. Hu, ``Suppression of Thermal Conductivity in
Graphene Nanoribbons with Rough Edges,'' Phys. Rev. B, vol. 82, p.
195422 (9 pp), 2010.
- 79
-
Z. Aksamija and I. Knezevic, ``Lattice Thermal Conductivity of Graphene
Nanoribbons: Anisotropy and Edge Roughness Scattering,'' Appl. Phys.
Lett., vol. 98, no. 14, p. 141919 (3 pp), 2011.
- 80
-
Z. Aksamija and I. Knezevic, ``Thermal Transport in Graphene Nanoribbons
Supported on SiO2,'' Phys. Rev. B, vol. 86, p. 165426, 2012.
- 81
-
J. Wu, ``Simulation of Non-Gaussian Surfaces with FFT,'' Tribol.
Int., vol. 37, no. 4, pp. 339-346, 2004.
- 82
-
S. Ghosh, I. Calizo, D. Teweldebrahn, E. Pokatilov, D. Nika, A. Balandin,
W. Bao, F. Miao, and C. Lau, ``Extremely High Thermal Conductivity of
Graphene: Prospects for Thermal Management Applications in Nanoelectronic
Circuits,'' Appl. Phys. Lett., vol. 92, p. 151911 (3 pp), 2008.
- 83
-
H. Karamitaheri, M. Pourfath, R. Faez, and H. Kosina, ``Geometrical Effects on
the Thermoelectric Properties of Ballistic Graphene Antidot Lattices,''
J. Appl. Phys., vol. 110, no. 5, p. 054506, 2011.
- 84
-
J. Furst, J. Pedersen, C. Flindt, N. Mortensen, M. Brandbyge, T. Pedersen, and
A.-P. Jauho, ``Electronic Properties of Graphene Antidot Lattices,''
New J. Phys., vol. 11, p. 095020, 2009.
- 85
-
D. K. C. Macdonald, Thermoelectricity: An Introduction to the
Principles.Dover Pubns, 2006.
- 86
-
J. Hone, I. Ellwood, M. Muno, A. Mizel, M. L. Cohen, and A. Zettl,
``Thermoelectric Power of Single-Walled Carbon Nanotubes,'' Phys.
Rev. Lett., vol. 80, p. 1042, 1998.
- 87
-
M. Vanevic, V. M. Stojanovic, and M. Kindermann, ``Character of Electronic
States in Graphene Antidot Lattices: Flat Bands and Spatial Localization,''
Phys. Rev. B, vol. 80, p. 045410 (8pp), 2009.
- 88
-
D. Areshkin, D. Gunlycke, and C. White, ``Ballistic Transport in Graphene
Nanostrips in the Presence of Disorder: Importance of Edge Effects,''
Nano Lett., vol. 7, no. 1, pp. 204-210, 2007.
- 89
-
D. Bahamon, A. Pereira, and P. Schulz, ``Third Edge for a Graphene Nanoribbon:
A Tight-Binding Model Calculation,'' Phys. Rev. B, vol. 83, no. 7, p.
155436 (6 pp), 2011.
- 90
-
J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, and M. Batzill, ``An Extended
Defect in Graphene as a Metallic Wire,'' Nature Nanotech., vol. 5,
pp. 326-329, 2010.
- 91
-
D. J. Appelhans, L. D. Carr, and M. T. Lusk, ``Embedded Ribbons of Graphene
Allotropes: An Extended Defect Perspective,'' New J. Phys., vol. 12,
p. 125006 (21pp), 2010.
- 92
-
M. T. Lusk, D. T. Wu, and L. D. Carr, ``Graphene Nanoengineering and the
Inverse Stone-Thrower-Wales Defect,'' Phys. Rev. B, vol. 81, p.
155444 (9 pp), 2010.
- 93
-
V. M. Pereira, F. Guinea, J. M. B. L. dos Santos, N. M. R. Peres, and A. H. C.
Neto, ``Disorder Induced Localized States in Graphene,'' Phys. Rev.
Lett., vol. 96, p. 036801 (4 pp), 2006.
- 94
-
N. Neophytou, D. Kienle, E. Polizzi, and M. P. Anantram, ``,'' Appl.
Phys. Lett., vol. 88, p. 242106 (3 pp), 2006.
- 95
-
M. U. Kahaly, S. P. Singh, and U. V. Waghmare, ``Carbon Nanotubes with an
Extended Line Defect,'' Small, vol. 4, no. 12, pp. 2209-2213, 2008.
- 96
-
G. J. Snyder and E. S. Toberer, ``Complex Thermoelectric Materials,''
Nature Materials, vol. 7, pp. 105-114, 2008.
- 97
-
N. Neophytou and H. Kosina, ``Effects of Confinement and Orientation on the
Thermoelectric Power Factor of Silicon Nanowires,'' Phys. Rev. B,
vol. 83, p. 245305 (16 pp), 2011.
- 98
-
I. Ponomareva, D. Srivastava, and M. Menon, ``Thermal Conductivity in Thin
Silicon Nanowires: Phonon Confinement Effect,'' Nano Lett., vol. 7,
pp. 1155-1159, 2007.
- 99
-
N. Yang, G. Zhang, and B. Li, ``Ultralow Thermal Conductivity of Isotope-Doped
Silicon Nanowires,'' Nano Lett., vol. 8, pp. 276-280, 2008.
- 100
-
S.-C. Wang, X.-G. Liang, X.-H. Xu, and T. Ohara, ``Thermal Conductivity of
Silicon Nanowire by Nonequilibrium Molecular Dynamics Simulations,''
J. Appl. Phys., vol. 105, p. 014316, 2009.
- 101
-
M. Liangraksa and I. K. Puri, ``Lattice Thermal Conductivity of a Silicon
Nanowire Under Surface Stress,'' J. Appl. Phys., vol. 109, p. 113501,
2011.
- 102
-
J. H. Oh, M. Shin, and M.-G. Jang, ``Phonon Thermal Conductivity in Silicon
Nanowires: The Effects of Surface Roughness at Low Temperatures,'' J.
Appl. Phys., vol. 111, p. 044304, 2012.
- 103
-
N. Mingo, ``Calculation of Si Nanowire Thermal Conductivity using Complete
Phonon Dispersion Relations,'' Phys. Rev. B, vol. 68, p. 113308,
2003.
- 104
-
X. Lu and J. Chu, ``,'' J. Appl. Phys., vol. 100, p. 014305, 2006.
- 105
-
M.-J. Huang, W.-Y. Chong, and T.-M. Chang, ``,'' J. Appl. Phys.,
vol. 99, p. 114318, 2006.
- 106
-
P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, ``Impact of Phonon-Surface
Roughness Scattering on Thermal Conductivity of Thin Si Nanowires,''
Phys. Rev. Lett., vol. 102, p. 125503, 2009.
- 107
-
A. Paul, M. Luisier, and G. Klimeck, ``Shape and Orientation Effects on the
Ballistic Phonon Thermal Properties of Ultra-Scaled Si Nanowires,'' J.
Appl. Phys., vol. 110, p. 114309, 2011.
- 108
-
T. Thonhauser and G. D. Mahan, ``,'' Phys. Rev. B, vol. 69, p. 075213,
2004.
- 109
-
X. Lu, J. H. Chu, and W. Z. Shen, ``,'' J. Appl. Phys., vol. 93, pp.
1219-1229, 2003.
- 110
-
J. Zou and A. Balandin, ``Phonon Heat Conduction in a Semiconductor
Nanowire,'' J. Appl. Phys., vol. 89, p. 2932, 2001.
- 111
-
T. Markussen, A.-P. Jauho, and M. Brandbyge, ``Heat Conductance Is Strongly
Anisotropic for Pristine Silicon Nanowires,'' Nano Lett., vol. 8,
no. 11, pp. 3771-3775, 2008.
- 112
-
Z. Aksamija and I. Knezevic, ``Anisotropy and Boundary Scattering in the
Lattice Thermal Conductivity of Silicon Nanomembranes,'' Phys. Rev.
B, vol. 82, p. 045319, 2010.
- 113
-
H. Karamitaheri, N. Neophytou, M. K. Taheri, R. Faez, and H. Kosina,
``Calculation of Confined Phonon Spectrum in Narrow Silicon Nanowires Using
the Valence Force Field Method,'' J. Electron. Mater., vol. DOI:
10.1007/s11664-013-2533-z, 2013.
- 114
-
N. Neophytou and H. Kosina, ``Hole Mobility Increase in Ultra-Narrow Si
Channels under Strong (110) Surface Confinement,'' Appl. Phys. Lett.,
vol. 99, p. 092110, 2011.
- 115
-
N. Neophytou and G.Klimeck, ``Design Space for Low Sensitivity to Size
Variations in [110] PMOS Nanowire Devices: The Implications of Anisotropy in
the Quantization Mass,'' Nano Lett., vol. 9, no. 2, pp. 623-630,
2009.
- 116
-
N. Neophytou and H. Kosina, ``Large Thermoelectric Power Factor in p-type Si
(110)/[110] Ultra-Thin-Layers Compared to Differently Oriented Channels,''
J. Appl. Phys., vol. 112, p. 024305, 2012.
- 117
-
W. S. Hurst and D. R. Frankl, ``Thermal Conductivity of Silicon in the
Boundary Scattering Regime,'' Phys. Rev., vol. 186, no. 3, pp.
801-810, 1969.
- 118
-
M. G. Holland, ``Analysis of Lattice Thermal Conductivity,'' Phys.
Rev., vol. 132, no. 6, pp. 2461-2471, 1963.
- 119
-
M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. P. Zhernov, A. V.
Inyushkin, A. Taldenkov, V. I. Ozhogin, K. M. Itoh, and E. E. Haller,
``Thermal Conductivity of Germanium Crystals with Different Isotopic
Compositions,'' Phys. Rev. B, vol. 56, no. 15, p. 9431, 1997.
- 120
-
N. Mingo and D. A. Broido, ``Length Dependence of Carbon Nanotube Thermal
Conductivity and the "Problem of Long Waves",'' Nano Lett., vol. 5,
no. 7, pp. 1221-1225, 2005.
- 121
-
L. Hu, W. J. Evans, and P. Keblinski, ``One-Dimensional Phonon Effects in
Direct Molecular Dynamics Method for Thermal Conductivity Determination,''
J. Appl. Phys., vol. 110, p. 113511, 2011.
- 122
-
D. Donadio and G. Galli, ``Temperature Dependence of the Thermal Conductivity
of Thin Silicon Nanowires,'' Nano Lett., vol. 10, no. 3, pp.
847-851, 2010.
- 123
-
N. Mingo, L. Yang, D. Li, and A. Majumdar, ``Predicting the Thermal
Conductivity of Si and Ge Nanowires,'' Nano Lett., vol. 3, no. 12,
pp. 1713-1716, 2003.
- 124
-
K. Termentzidis, T. Barreteau, Y. Ni, S. Merabia, X. Zianni, Y. Chalopin,
P. Chantrenne, and S. Volz, ``Modulated SiC Nanowires: Molecular Dynamics
Study of Their Thermal Properties,'' Phys. Rev. B, vol. 87, p.
125410, 2013.
- 125
-
J. Wang and J.-S. Wang, ``Dimensional Crossover of Thermal Conductance in
Nanowires,'' Appl. Phys. Lett., vol. 90, p. 241908, 2007.
- 126
-
L. Lindsay, D. A. Broido, and N. Mingo, ``Lattice Thermal Conductivity of
Single-Walled Carbon Nanotubes: Beyond the Relaxation Time Approximation and
Phonon-Phonon Scattering Selection Rules,'' Phys. Rev. B, vol. 80, p.
125407, 2009.
- 127
-
C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, ``Breakdown of
Fourier's Law in Nanotube Thermal Conductors,'' Phys. Rev. Lett.,
vol. 101, p. 075903, 2008.
- 128
-
G. Wu and J. Dong, ``Anomalous Heat Conduction in a Carbon Nanowire: Molecular
Dynamics Calculations,'' Phys. Rev. B, vol. 71, p. 115410, 2005.
- 129
-
S. Lepri, R. Livi1, and A. Politi, ``Heat Conduction in Chains of Nonlinear
Oscillators,'' Phys. Rev. Lett., vol. 78, p. 1896, 1997.
- 130
-
T. Hatano, ``Heat Conduction in the Diatomic Toda Lattice Revisited,''
Phys. Rev. E, vol. 59, pp. R1-R4, 1999.
- 131
-
X. Lu, ``Lattice Thermal Conductivity of Si Nanowires: Effect of Modified
Phonon Density of States,'' J. Appl. Phys., vol. 104, p. 054314,
2008.
- 132
-
A. J. H. McGaughey, E. S. Landry, D. P. Sellan, and C. H. Amon,
``Size-Dependent Model for Thin Film and Nanowire Thermal Conductivity,''
Appl. Phys. Lett., vol. 99, p. 131904, 2011.
- 133
-
J. E. Turney, A. J. H. McGaughey, and C. H. Amon, ``In-Plane Phonon Transport
in Thin Films,'' J. Appl. Phys., vol. 107, p. 024317, 2010.
- 134
-
Z. Tian, K. Esfarjani, J. Shiomi, A. S. Henry, and G. Chen, ``On the
Importance of Optical Phonons to Thermal Conductivity in Nanostructures,''
Appl. Phys. Lett., vol. 99, p. 053122, 2011.
- 135
-
W. Liu and M. Asheghi, ``Thermal Conduction in Ultrathin Pure and Doped
Single-Crystal Silicon Layers at High Temperatures ,'' J. Appl.
Phys., vol. 98, p. 123523, 2005.
- 136
-
X. Lu, ``Longitudinal Thermal Conductivity of Radial Nanowire
Heterostructures,'' J. Appl. Phys., vol. 106, p. 064305, 2009.
- 137
-
M. Luisier, ``Atomistic Modeling of Anharmonic Phonon-Phonon Scattering in
Nanowires,'' Phys. Rev. B, vol. 86, p. 245407, 2012.
- 138
-
S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A.
Balandin, ``Dimensional Crossover of Thermal Transport in Few-Layer
Graphene,'' Nature Materials, vol. 9, pp. 555-558, 2010.
- 139
-
M. Maldovan, ``Thermal Conductivity of Semiconductor Nanowires from Micro to
Nano Length Scales,'' J. Appl. Phys., vol. 111, p. 024311, 2012.
- 140
-
S. G. Volz and G. Chen, ``Molecular Dynamics Simulation of Thermal
Conductivity of Silicon Nanowires,'' Appl. Phys. Lett., vol. 75, p.
2056, 1999.
- 141
-
Y. Chen, D. Li, J. R. Lukes, and A. Majumdar, ``Monte Carlo Simulation of
Silicon Nanowire Thermal Conductivity,'' J. Heat Transfer, vol. 127,
p. 1129, 2005.
- 142
-
J. Tang, H.-T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell, and P. Yang,
``Holey Silicon as an Efficient Thermoelectric Material,'' Nano
Lett., vol. 10, no. 10, pp. 4279-4283, 2010.
- 143
-
N. Neophytou and H. Kosina, ``Effects of Confinement and Orientation on the
Thermoelectric Power Factor of Silicon Nanowires,'' Phys. Rev. B,
vol. 83, p. 245305, 2011.
- 144
-
N. Neophytou and H. Kosina, ``Large Enhancement in Hole Velocity and
Mobility in P-type [110] and [111] Silicon Nanowires by Cross Section
Scaling: An Atomistic Analysis,'' Nano Lett., vol. 10, no. 12, pp.
4913-4919, 2010.
- 145
-
E. B. Ramayya, L. N. Maurer, A. H. Davoody, and I. Knezevic, ``Thermoelectric
Properties of Ultrathin Silicon Nanowires,'' Phys. Rev. B, vol. 86,
p. 115328, 2012.
- 146
-
S. Jin, M. V. Fischetti, and T. Tang, ``Modeling of Electron Mobility in Gated
Silicon Nanowires at Room Temperature: Surface Roughness Scattering,
Dielectric Screening, and Band Nonparabolicity,'' J. Appl. Phys.,
vol. 102, p. 083715, 2007.
- 147
-
N. Neophytou and H. Kosina, ``On the Interplay between Electrical Conductivity
and Seebeck Coefficient in Ultra-Narrow Silicon Nanowires,'' J.
Electron. Mater., vol. 41, no. 6, pp. 1305-1311, 2012.
- 148
-
P. N. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, ``Reduced Thermal
Conductivity in Nanoengineered Rough Ge and GaAs Nanowires,'' Nano
Lett., vol. 10, no. 4, pp. 1120-1124, 2010.
- 149
-
R. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. Yang, and A. Majumdar,
``Thermal Conductance of Thin Silicon Nanowires,'' Phys. Rev. Lett.,
vol. 101, p. 105501 (4pp), 2008.
- 150
-
T. Markussen, A.-P. Jauho, and M. Brandbyge, ``Surface-Decorated Silicon
Nanowires: A Route to High-ZT Thermoelectrics,'' Phys. Rev. Lett.,
vol. 103, p. 055502, 2009.
- 151
-
N. Mingo and L. Yang, ``Phonon Transport in Nanowires Coated with an Amorphous
Material: An Atomistic Green's Function Approach,'' Phys. Rev. B,
vol. 68, p. 245406, 2003.
H. Karamitaheri: Thermal and Thermoelectric Properties of Nanostructures