previous up next contents Previous: 2.1.1 The Boltzmann Equation Up: 2.1 The Boltzmann Poisson Next: 2.1.3 Dimensional Reduction

2.1.2 Poisson Equation

By definition the potential $ V$ fulfills

$\displaystyle {\mathbf{E}} = -\nabla V   .$ (2.7)

By Maxwell's equations we have

$\displaystyle {\mathbf{D}} = \varepsilon \varepsilon_0 {\mathbf{E}}   .$ (2.8)

and

$\displaystyle \nabla \cdot {\mathbf{D}}= \rho   .$ (2.9)

Here $ \varepsilon_0$ is the electrical permittivity of free space and the dimensionless dielectric constant $ \varepsilon$ is a material dependent parameter. In our case the charge density $ \rho$ is given by

$\displaystyle \rho = q(M_0 - C)   ,$ (2.10)

with $ q$ the (negative) elementary charge, $ M_0$ the zeroth moment, that is, the particle density, and $ C$ the net doping.

previous up next contents Previous: 2.1.1 The Boltzmann Equation Up: 2.1 The Boltzmann Poisson Next: 2.1.3 Dimensional Reduction


R. Kosik: Numerical Challenges on the Road to NanoTCAD