References
-
[1]
-
D. Bimberg, Ed., Semiconductor Nanostructures.1em plus 0.5em
minus 0.4emBerlin: Springer, 2008.
- [2]
-
S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8-THz Quantum Cascade
Laser Operating Significantly Above the Temperature of ω/kB,”
Nature Physics, vol. 7, no. 2, pp. 166–171, 2011.
- [3]
-
B. Williams, S. Kumar, Q. Hu, and J. Reno, “Operation of Terahertz
Quantum-Cascade Lasers at 164 K in Pulsed Mode and at 117 K in
Continuous-Wave Mode,” Opt. Express, vol. 13, no. 9, pp. 3331–3339,
2005.
- [4]
-
B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz
Quantum Cascade Laser Based on Longitudinal-Optical-Phonon Scattering for
Depopulation,” Appl. Phys. Lett., vol. 82, no. 7, pp. 1015–1017,
2003.
- [5]
-
M. Tacke, “New Developments and Applications of Tunable IR Lead Salt
Lasers,” Infrared Physics & Technology, vol. 36, no. 1, pp.
447–463, 1995.
- [6]
-
S. E. Rosenbaum, B. K. Kormanyos, L. M. Jelloian, M. M. A. S. Brown, L. E.
Larson, L. D. Nguyen, M. A. Thompson, L. P. Katehi, and G. M. Rebeiz, “155-
and 213-GHz AlInAs/GaInAs/InP HEMT MMIC Oscillators,” IEEE Trans.
Microwave Theory Tech., vol. 43, no. 4, pp. 927–932, 1995.
- [7]
-
X. Cai, A. B. Sushkov, R. J. S. M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti,
R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and
M. Fuhrer, “Sensitive Room-Temperature Terahertz Detection via the
Photothermoelectric Effect in Graphene,” Nature Nanotech., vol. 9,
no. 10, pp. 814–819, 2014.
- [8]
-
Y. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn,
D. Kim, and P. C. M. Planken, “Plasmon Enhanced Terahertz Emission from
Single Layer Graphene,” Nano Lett., vol. 8, no. 9, pp. 9089–9096,
2014.
- [9]
-
L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari,
W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene
Field-Effect Transistors as Room-Temperature Terahertz Detectors,”
Nature Mater., vol. 11, no. 10, pp. 865–871, 2012.
- [10]
-
A. V. Muraviev, S. L. Rumyantsev, G. Liu, A. A. Balandin, W. Knap, and M. S.
Shur, “Plasmonic and Bolometric Terahertz Detection by Graphene
Field-Effect Transistor,” Appl. Phys. Lett., vol. 103, no. 18, p.
181114 (4pp), 2013.
- [11]
-
D. Spirito1, D. Coquillat, S. L. D. Bonis, A. Lombardo, M. Bruna, A. C.
Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High
Performance Bilayer-Graphene Terahertz Detectors,” Appl. Phys.
Lett., vol. 104, no. 6, p. 061111 (5pp), 2014.
- [12]
-
R. Musah, S. Y. Mensah, and S. S. Abukari, “Terahertz Generation and
Amplification in Graphene Nanoribbons in Multi-Frequency Electric Fields,”
Physica E, vol. 61, pp. 90–94, 2014.
- [13]
-
C. C. Sirtori, S. Barbieri, and R. Colombelli, “Wave Engineering with THz
Quantum Cascade Lasers,” Nature Photo., vol. 7, no. 9, pp. 691–701,
2013.
- [14]
-
M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, P. Filloux, C. Sirtori,
J. Lampin, G. Ferrari, S. P. Khanna, E. H. Linfield, H. E. Beere, D. A.
Ritchie, and S. Barbieri, “Stabilization and Mode Locking of Terahertz
Quantum Cascade Lasers,” IEEE J. Select. Topics Quantum Electron.,
vol. 19, no. 1, p. 8501011 (11pp), 2013.
- [15]
-
S. Barbieri AND M. Ravaro P. Gellie AND G. Santarelli C. Manquest AND C.
Sirtori AND S. P. Khanna AND E. H. Linfield A. G. Davies, “Coherent
Sampling of Active Mode-Locked Terahertz Quantum Cascade Lasers and Frequency
Synthesis,” Nature Photo., vol. 5, no. 5, pp. 306–313, 2011.
- [16]
-
A. W. M. Lee, S. B. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable
Terahertz Quantum Cascade Lasers with External Gratings,” Opt.
Express, vol. 35, no. 7, pp. 910–912, 2010.
- [17]
-
A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk,
G. Strasser, and K. Unterrainer, “Resonant Metamaterial Detectors Based on
THz Quantum-Cascade Structures,” Sci. Rep., vol. 4, no. 1, pp.
1–10, 2014.
- [18]
-
A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L.
Reno, “Magnetic-Field-Assisted Terahertz Quantum Cascade Laser Operating up
to 225 K,” Nature Photo., vol. 3, no. 1, pp. 41–45, 2009.
- [19]
-
M. T. Amanti, M. Fischer, G. S. M. Beck, and J. Faist, “Low-Divergence
Single-Mode Terahertz Quantum Cascade Laser,” Nature Photo., vol. 3,
no. 10, pp. 586–590, 2009.
- [20]
-
E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews,
W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically Emitting Terahertz
Quantum Cascade Ring Lasers,” Appl. Phys. Lett., vol. 95, no. 1, p.
011120 (3pp), 2009.
- [21]
-
N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri,
C. Sirtori, S. P. Khanna, E. H. L. A. G. Davies, and J. Tignon, “Terahertz
Amplifier Based on Gain Switching in a Quantum Cascade Laser,” Nature
Photo., vol. 3, no. 12, pp. 715–719, 2009.
- [22]
-
B. S. Williams, “Terahertz Quantum-Cascade Lasers,” Nature Photo.,
vol. 1, no. 9, pp. 517–525, 2007.
- [23]
-
M. Moradinasab, M. Pourfath, and H. Kosina, “Performance Optimization and
Instability Study in Ring Cavity Quantum Cascade Lasers,” IEEE J.
Quantum Electron., vol. 51, no. 1, pp. 1–7, 2015.
- [24]
-
K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos,
I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin
Carbon Films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
- [25]
-
K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva,
S. Dubonos, and A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions
in Graphene,” Nature (London), vol. 438, no. 7065, pp. 197–200,
2005.
- [26]
-
G. Seol and J. Guo, “Assessment of Graphene Nanomesh and Nanoroad Transistors
by Chemical Modification,” in IEEE International Electron Devices
Meeting (IEDM), 2011, pp. 2.3.1–2.3.4.
- [27]
-
Z. Wang, Q. Li, Q. Shi, X. Wang, J. Yang, J. Hou, and J. Chen, “Chiral
Selective Tunneling Induced Negative Differential Resistance in Zigzag
Graphene Nanoribbon: A Theoretical Study,” Appl. Phys. Lett.,
vol. 92, no. 13, p. 133114 (3pp), 2008.
- [28]
-
H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen,
“High-Quality Graphene p-n Junctions via Resist-Free Fabrication and
Solution-Based Noncovalent Functionalization,” ACS Nano, vol. 5,
no. 3, pp. 2051–2059, 2011.
- [29]
-
M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb Carbon: A Review of
Graphene,” Chemical Reviews, vol. 110, no. 1, pp. 132–145, 2010.
- [30]
-
X. Du, I. Skachko, A. Barker, and E. Andrei, “Approaching Ballistic Transport
in Suspended Graphene,” Nature Nanotech., vol. 3, no. 8, pp.
491–495, 2008.
- [31]
-
K. Bolotin, K. Sikesb, Z. Jianga, M. Klimac, G. Fudenberga, J. Honec, P. Kima,
and H. Stormera, “Ultrahigh Electron Mobility in Suspended Graphene,”
Solid-State Commun., vol. 146, no. 9-10, pp. 351–355, 2008.
- [32]
-
J.-H. Chen, C. Jang, S. Xiao, M. Ishighami, and M. Fuhrer, “Intrinsic and
Extrinsic Performance Limits of Graphene Devices on SiO2,” Nature
Nanotech., vol. 3, no. 4, pp. 206–209, 2008.
- [33]
-
F. Schwierz, “Graphene Transistors,” Nature Nanotech., vol. 5,
no. 7, pp. 487–496, 2010.
- [34]
-
Semiconductor Industry Association, “International Technology Roadmap for
Semiconductors - 2013 Edition,” 2013.
- [35]
-
P. Tassin, T. Koschny, and C. M. Soukoulis, “Graphene for Terahertz
Applications,” Science, vol. 341, pp. 620–621, 2013.
- [36]
-
N. Tombros, C. Jozsa, M. Popinciuc, H. Jonkman, and B. van Wees, “Electronic
Spin Transport and Spin Precession in Single Graphene Layers at Room
Temperature,” Nature (London), vol. 448, no. 7153, pp. 571–574,
2007.
- [37]
-
S. Cho, Y.-F. Chen, and M. Fuhrer, “Gate-Tunable Graphene Spin Valve,”
Appl. Phys. Lett., vol. 91, no. 12, p. 123105 (3pp), 2007.
- [38]
-
M. Freitag, “Graphene: Nanoelectronics Goes Flat Out,” Nature
Nanotech., vol. 3, no. 8, pp. 455–457, 2008.
- [39]
-
X. Li, L. Zhang, S. Lee, and H. Dai, “Chemically Derived, Ultrasmooth
Graphene Nanoribbon Semiconductors,” Science, vol. 319, no. 5867,
pp. 1229–1232, 2008.
- [40]
-
M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, “Pecular Localized
States at Zigzag Graphite Edge,” J. Phys. Soc. Jap., vol. 65, no. 7,
pp. 1920–1923, 1996.
- [41]
-
K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Edge State in
Graphene Ribbons: Nanometer Size Effect and Edge Shape Dependence,”
Phys. Rev. B, vol. 54, no. 24, pp. 17 954–17 961, 1996.
- [42]
-
M. Moradinasab, H. Nematian, M. Pourfath, M. Fathipour, and H. Kosina,
“Analytical Models of Approximations for Wave Functions and Energy
Dispersion in Zigzag Graphene Nanoribbons,” J. Appl. Phys., vol.
111, no. 7, p. 318 (9pp), 2012.
- [43]
-
S. C. Jeon, Y. S. Kim, and D. K. Lee, “Fabrication of a Graphene Nanoribbon
with Electron Beam Lithography Using a XR-1541/PMMA Lift-Off Process,”
Trans. Electr. and Elec. Materials, vol. 11, no. 4, pp. 190–193,
2010.
- [44]
-
L. P. Biró and P. Lambin, “Nanopatterning of Graphene with Crystallographic
Orientation Control,” Carbon, vol. 48, no. 10, pp. 2677–2689, 2010.
- [45]
-
N. Gorjizadeh and Y. Kawazoe, “Chemical Functionalization of Graphene
Nanoribbons,” Nanomaterials, vol. 2010, p. 513501 (7pp), 2010.
- [46]
-
H. Sevincli, M. Topsakal, and S. Ciraci, “Superlattice Structures of
Graphene-based Armchair Nanoribbons,” Phys. Rev. B, vol. 78, no. 24,
p. 245402 (8pp), 2008.
- [47]
-
H. Teong, K.-T. Lam, S. B. Khalid, and G. Liang, “Shape Effects in Graphene
Nanoribbon Resonant Tunneling Diodes: A Computational Study,” J.
Appl. Phys., vol. 105, no. 8, p. 084317 (6pp), 2009.
- [48]
-
T. Mueller, F. Xia, and P. Avouris, “Graphene Photodetectors for High-Speed
Optical Communications,” Nature Photonics, vol. 4, no. 5, pp.
297–301, 2010.
- [49]
-
M. Moradinasab, M. Pourfath, M. Fathipour, and H. Kosina, “Numerical Study of
Graphene Superlattice-Based Photodetectors,” vol. PP, no. 99, pp. 1–1,
2015.
- [50]
-
S. Rakheja and A. Naeemi, “Graphene Nanoribbon Spin Interconnects for
Nonlocal Spin-Torque Circuits: Comparison of Performance and Energy per Bit
with cmos Interconnects,” IEEE Trans. Electron Devices, vol. 59,
no. 1, pp. 51–59, 2012.
- [51]
-
S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón,
“Tight-Binding Description of Graphene,” Phys. Rev. B, vol. 66,
no. 3, p. 035412 (5pp), 2002.
- [52]
-
R. S. Deacon, K. C. Chuang, R. J. Nicholas, K. S. Novoselov, and A. K. Geim,
“Cyclotron Resonance Study of the Electron and Hole Velocity in Graphene
Monolayers,” Phys. Rev. B, vol. 76, no. 8, p. 081406 (4pp), 2007.
- [53]
-
J. C. Slater and G. F. Koster, “Simplified lcao method for the periodic
potential problem,” Phys. Rev., vol. 94, no. 6, pp. 1498–1524, 1954.
- [54]
-
A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
“The Electronic Properties of Graphene,” Rev. Mod. Phys.,
vol. 81, no. 1, pp. 109–162, 2009.
- [55]
-
A. Roberts, D. Cormode, C. Reynolds, T. Newhouse-Illige, B. J. Leroy, and A. S.
Sandhu, “Response of Graphene to Femtosecond High-Intensity Laser
Irradiation,” Appl. Phys. Lett., vol. 99, no. 5, p. 051912 (3pp),
2011.
- [56]
-
X. Wang, Z. Shen, J. Lu, and X. Ni, “Laser-Induced Damage Threshold of
Silicon in Millisecond, Nanosecond, and Picosecond Regimes,” J. Appl.
Phys., vol. 108, no. 3, p. 033103 (7pp), 2010.
- [57]
-
A. Garg, K. Avinashi, and K. N. Tripathi, “Laser-Induced Damage Studies in
GaAs,” Optics & Laser Technology, vol. 35, no. 1, pp. 21–24,
2003.
- [58]
-
E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov,
“Coherent Nonlinear Optical Response of Graphene,” Phys. Rev.
Lett., vol. 105, no. 9, p. 097401 (4pp), 2010.
- [59]
-
H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and
P. Kockaert, “Z-Scan Measurement of the Nonlinear Refractive Index of
Graphene,” Opt. Lett., vol. 37, no. 11, pp. 1856–1858, 2012.
- [60]
-
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth,
T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant
Defines Visual Transparency of Graphene,” Science, vol. 320, no.
5881, p. 1308 (1pp), 2008.
- [61]
-
T. Ando, Y. Zheng, and H. Suzuura, “Dynamical Conductivity and Zero-Mode
Anomaly in Honeycomb Lattices,” Journal of the Physical Society of
Japan, vol. 71, no. 5, pp. 1318–1324, 2002.
- [62]
-
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual Microwave
Response of Dirac Quasiparticles in Graphene,” Phys. Rev. Lett.,
vol. 96, no. 25, p. 256802(4pp), 2006.
- [63]
-
A. K. Geim and K. S. Novoselov, “The Rise of Graphene,” Nature
Mater., vol. 6, no. 3, pp. 183–191, 2007.
- [64]
-
A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal
Optical Conductance of Graphite,” Phys. Rev. Lett., vol. 100,
no. 11, p. 117401 (4pp), 2008.
- [65]
-
Q. Bao and K. P. Loh, “Graphene Photonics, Plasmonics, and Broadband
Optoelectronic Devices,” ACS Nano, vol. 6, no. 5, pp. 3677–3694,
2012.
- [66]
-
F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen,
“Gate-Variable Optical Transitions in Graphene,” Science, vol.
320, no. 5873, pp. 206–209, 2008.
- [67]
-
L. G. D. Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou,
“Continuous, Highly Flexible, and Transparent Graphene Films by Chemical
Vapor Deposition for Organic Photovoltaics,” ACS Nano, vol. 4,
no. 5, pp. 2865–2873, 2010.
- [68]
-
Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large Area, Continuous,
Few-Layered Graphene as Anodes in Organic Photovoltaic Devices,”
Appl. Phys. Lett., vol. 95, no. 6, p. 063302 (3pp), 2009.
- [69]
-
Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, “Graphene:
Interface Engineering of Layer-by-Layer Stacked Graphene Anodes for
High-Performance Organic Solar Cells,” Advanced Materials,
vol. 23, no. 13, pp. 1475–1475, 2011.
- [70]
-
F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene Photonics and
Optoelectronics,” Nature Photo., vol. 4, no. 9, pp. 611–622, 2010.
- [71]
-
D. S. Hecht, L. Hu, and G. Irvin, “Emerging Transparent Electrodes Based on
Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,”
Advanced Materials, vol. 23, no. 13, pp. 1482–1513, 2011.
- [72]
-
S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei,
H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H.
Hong, and S. Iijima, “Roll-to-Roll Production of 30-inch Graphene Films for
Transparent Electrodes,” Nature Nanotech., vol. 5, no. 8, pp.
574–578, 2010.
- [73]
-
P. Avouris, “Graphene: Electronic and Photonic Properties and Devices,”
Nano Lett., vol. 10, no. 11, pp. 4285–4294, 2010.
- [74]
-
C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene Photodetectors
with Ultra-Broadband and High Responsivity at Room Temperature,”
Nature Nanotech., vol. 9, no. 4, pp. 273–278, 2014.
- [75]
-
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics.1em
plus 0.5em minus 0.4emWiley, 2009, ch. Semiconductor Photon Detectors,
pp. 784–803.
- [76]
-
Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso,
D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,”
ACS Nano, vol. 4, no. 2, pp. 803–810, 2010.
- [77]
-
J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana,
M. G. Spencer, D.Veksler, and Y. Chen, “Measurement of the Optical
Absorption Spectra of Epitaxial Graphene from Terahertz to Visible,”
Appl. Phys. Lett., vol. 93, no. 13, p. 131905 (3pp), 2008.
- [78]
-
A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced Optical Conductivity of
Bilayer Graphene Nanoribbons in the Terahertz Regime,” Phys. Rev.
Lett., vol. 103, no. 20, p. 207401 (4pp), 2009.
- [79]
-
F. T. Vasko and V. Ryzhii, “Photoconductivity of Intrinsic Graphene,”
Phys. Rev. B, vol. 77, no. 19, p. 195433 (8pp), 2008.
- [80]
-
J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of Photocurrent Generation
and Collection in Single-Layer Graphene,” Nano Lett., vol. 9, no. 5,
pp. 1742–1746, 2009.
- [81]
-
F. Xia, T. Mueller, R. G.-M. M. F. Y. Lin, J. Tsang, V. Perebeinos, and
P. Avouris, “Photocurrent Imaging and Efficient Photon Detection in a
Graphene Transistor,” Nano Lett., vol. 9, no. 3, pp. 1039–1044,
2009.
- [82]
-
F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast
Graphene Photodetector,” Nature Nanotech., vol. 4, no. 12, pp.
839–843, 2009.
- [83]
-
Y. Kang, H. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid,
A. Pauchard, Y. Kuo, H. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C.
McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Germanium/Silicon
Avalanche Photodiodes with 340 GHz Gain-Bandwidth Product,” Nature
Photo., vol. 3, no. 1, pp. 59–63, 2009.
- [84]
-
E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern,
“Contact and Edge Effects in Graphene Devices,” Nature Nanotech.,
vol. 3, no. 8, pp. 486–490, 2008.
- [85]
-
A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and
T. Mueller, “CMOS-Compatible Graphene Photodetector Covering All Optical
Communication Bands,” Nature Photo., vol. 7, no. 11, pp. 892–896,
2013.
- [86]
-
X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen,
“Photo-Thermoelectric Effect at a Graphene Interface Junction,”
Nano Lett., vol. 10, no. 2, pp. 562–566, 2010.
- [87]
-
M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S.
Levitov, and C. Marcus, “Gate-Activated Photoresponse in a Graphene p-n
Junction,” Nano Lett., vol. 11, no. 10, pp. 4134–4137, 2010.
- [88]
-
G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G.
de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid Graphene-Quantum Dot
Phototransistors with Ultrahigh Gain,” Nature Nanotech., vol. 7,
no. 6, pp. 363–368, 2012.
- [89]
-
J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg,
M. S. Fuhrer, and H. D. Drew, “Dual-Gated Bilayer Graphene Hot-Electron
Bolometer,” Nature Nanotech., vol. 7, no. 7, pp. 472–478, 2012.
- [90]
-
B. Lax, Proceedings of the International Symposium on Quantum
Electronics.1em plus 0.5em minus 0.4emColumbia University
Press, 1960, p. 428.
- [91]
-
R. Paiella, Intersubband Transitions In Quantum Structures.1em
plus 0.5em minus 0.4emMcGraw-Hill, 2006.
- [92]
-
R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson,
“Coherent Light Emission From GaAs Junctions,” Phys. Rev. Lett.,
vol. 9, no. 9, pp. 366–368, 1962.
- [93]
-
Z. I. Alferov, V. M. Andreev, E. L. Portnoi, and M. K. Trukan, “AlAs-GaAs
Heterojunction Injection Lasers with a Low Room-Temperature Threshold,”
Fiz. Tekh. Poluprovodn, vol. 3, pp. 1328–1332, 1969.
- [94]
-
I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction Lasers Which
Operate Continuously at Room Temperature,” Appl. Phys. Lett.,
vol. 17, no. 3, pp. 109–111, 1970.
- [95]
-
A. Cho, Molecular Beam Epitaxy.1em plus 0.5em minus 0.4emNew York: AIP Press, Woodbury, 1994.
- [96]
-
L. Esaki and R. Tsu, “Superlattice and Negative Differential Conductivity in
Semiconductors,” IBM Journal of Research and Development, vol. 14,
no. 1, pp. 61–65, 1970.
- [97]
-
R. F. Kazarinov and R. A. Suris, “Possibility of Amplification of
Electromagnetic Waves in a Semiconductor with a Superlattice,”
Fizika i Tekhnika Poluprovodnikov, vol. 5, no. 4, pp. 797–800,
1971.
- [98]
-
R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco,
A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-Infrared
Surface-Plasmon Quantum-Cascade Lasers at 21.5 µm and 24 µm
Wavelengths,” Appl. Phys. Lett., vol. 78, no. 18, pp. 2620–2622,
2001.
- [99]
-
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. Linfield, A. G. Davies,
D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz
Semiconductor-Heterostructure Laser,” Nature, vol. 417, no. 6885,
pp. 156–159, 2002, cited By (since 1996)1583.
- [100]
-
J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S. G. Chu, and A. Y. Cho,
“Short Wavelength (λ ∼ 3.4 µ m) Quantum Cascade Laser Based
on Strained Compensated InGaAs/AlInAs,” Appl. Phys. Lett., vol. 72,
no. 6, pp. 680–682, 1998.
- [101]
-
S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, “1.9 THz
Quantum-Cascade Lasers with One-Well Injector,” Appl. Phys. Lett.,
vol. 88, no. 12, p. 121123 (3pp), 2006.
- [102]
-
C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, S. N. Chu,
and A. Y. Cho, “Noncascaded Intersubband Injection Lasers at λ
≈ 7.7µ m,” Appl. Phys. Lett., vol. 73, no. 26, pp.
3830–3832, 1998.
- [103]
-
F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L.
Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New Frontiers in
Quantum Cascade Lasers and Applications,” IEEE J. Select. Topics
Quantum Electron., vol. 6, no. 6, pp. 931–947, 2000.
- [104]
-
A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully Automatized
Quantum Cascade Laser Design by Genetic Optimization,” Appl. Phys.
Lett., vol. 101, no. 2, p. 021103, 2012.
- [105]
-
J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser,
“Bound-to-Continuum and Two-Phonon Resonance, Quantum-Cascade Lasers for
High Duty Cycle, High-Temperature Operation,” IEEE J. Quantum
Electron., vol. 38, no. 6, pp. 533–546, 2002.
- [106]
-
Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta,
M. Yamanishi, and H. Kan, “High Performance Quantum Cascade Lasers Based on
Three-Phonon-Resonance Design,” Appl. Phys. Lett., vol. 94, no. 1,
p. 011103 (3pp), 2009.
- [107]
-
Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi,
“Highly Temperature Insensitive Quantum Cascade Lasers,” Appl.
Phys. Lett., vol. 97, no. 25, p. 251104 (3pp), 2010.
- [108]
-
C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent Progress in
Quantum Cascade Lasers and Applications,” Rep. Prog. Phys., vol. 64,
no. 11, pp. 1533–1601, 2001.
- [109]
-
J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L.
Hutchinson, S. G. Chu, and A. Y. Cho, “High Power Mid-Infrared (λ
∼ 5 µ m) Quantum Cascade Lasers Operating Above Room Temperature,”
Appl. Phys. Lett., vol. 68, no. 26, pp. 3680–3682, 1996.
- [110]
-
C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, R. Köhler, A. L.
Hutchinson, and A. Y. Cho, “Dependence of the Device Performance on the
Number of Stages in Quantum-Cascade Lasers,” IEEE J. Select. Topics
Quantum Electron., vol. 5, no. 3, pp. 808–816, 1999.
- [111]
-
C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Cho,
“Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum
Electron., vol. 34, no. 9, pp. 1722–1729, 1998.
- [112]
-
G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco,
and A. Y. Cho, “High-Power Infrared (8-Micrometer Wavelength) Superlattice
Lasers,” Science, vol. 276, no. 5313, pp. 773–776, 1997.
- [113]
-
J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S.
Hybertsen, and A. Y. Cho, “Quantum Cascade Lasers without Intersubband
Population Inversion,” Phys. Rev. Lett., vol. 76, no. 3, pp.
411–414, 1996.
- [114]
-
M. Helm, “Infrared Spectroscopy and Transport of Electrons in Semiconductor
Superlattices,” Semiconductor Science and Technology, vol. 10,
no. 5, p. 557, 1995.
- [115]
-
J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho,
“Laser Action by Tuning the Oscillator Strength,” Nature, vol.
387, no. 6635, pp. 777–782, 1997.
- [116]
-
C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y.
Cho, “Bidirectional Semiconductor Laser,” Science, vol. 286, no.
5440, pp. 749–752, 1999.
- [117]
-
R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and
A. Leitenstorfer, “How Many-Particle Interactions Develop After Ultrafast
Excitation of an Electron-Hole Plasma,” Nature, vol. 414, no. 6861,
pp. 286–289, 2001.
- [118]
-
R. Torre, P. Bartolini, and R. Righini, “Structural Relaxation in Supercooled
Water by Time-Resolved Spectroscopy,” Nature, vol. 428, no. 6980,
pp. 296–299, 2004.
- [119]
-
P. Loza-Alvarez, C. T. A. Brown, D. T. Reid, W. Sibbett, and M. Missey,
“High-Repetition-Rate Ultrashort-Pulse Optical Parametric Oscillator
Continuously Tunable From 2.8 to 6.8 µm,” Opt. Lett., vol. 24,
no. 21, pp. 1523–1525, 1999.
- [120]
-
W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum
Dynamics: The Dream is Alive,” Science, vol. 259, no. 5101, pp.
1581–1589, 1993.
- [121]
-
H. Okamoto and M. Tasumi, “Generation of Ultrashort Light Pulses in the
Mid-Infrared (3000−800 cm−1) by four-wave mixing,” Optics
Communications, vol. 121, no. 1–3, pp. 63–68, 1995.
- [122]
-
T. Udem, R. Holzwarth, and T. W. Hansch, “Optical Frequency Metrology,”
Nature, vol. 416, no. 6877, pp. 233–237, 2002.
- [123]
-
C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A.
Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song,
S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-Locked
Pulses from Mid-Infrared Quantum Cascade Lasers,” Opt. Express,
vol. 17, no. 15, pp. 12 929–12 943, 2009.
- [124]
-
C. Gmachl, D. L. Sivco, R. Colombelli, and F. C. A. Y. Cho, “Ultra-Broadband
Semiconductor Laser,” Nature, vol. 415, no. 6874, pp. 883–887,
2002.
- [125]
-
C. Y. Wang, L. Diehl, A. Gordon, C. Jirauschek, F. X. Kärtner, A. Belyanin,
D. Bour, S. Corzine, G. Höfler, M. Troccoli, J. Faist, and F. Capasso,
“Coherent Instabilities in a Semiconductor Laser with Fast Gain
Recovery,” Phys. Rev. A, vol. 75, no. 3, p. 031802, 2007.
- [126]
-
A. Gordon, C. Y. Wang, L. Diehl, F. X. K. a, A. Belyanin, D. Bour, S. Corzine,
G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Trocolli, J. Faist, and
F. Capasso, “Multimode Regimes in Quantum Cascade Lasers: From Coherent
Instabilities to Spatial Hole Burning,” Phys. Rev. A, vol. 77,
no. 5, p. 053804, 2008.
- [127]
-
H. Choi, T. B. Norris, T. Gresch, M. Giovannini, J. Faist, L. Diehl, and
F. Capasso, “Femtosecond Dynamics of Resonant Tunneling and Superlattice
Relaxation in Quantum Cascade Lasers,” Appl. Phys. Lett., vol. 92,
no. 12, p. 122114 (3pp), 2008.
- [128]
-
H. A. Haus, “Mode-Locking of Lasers,” IEEE J. Select. Topics
Quantum Electron., vol. 6, no. 6, pp. 1173–1185, 2000.
- [129]
-
A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, “Electronic
Structure of Monolayer Hexagonal Boron Nitride Physisorbed on Metal
Surfaces,” Phys. Rev. Lett., vol. 75, no. 21, p. 3918 (4pp), 1995.
- [130]
-
T. Wehling, K. Novoselov, S. Morozov, E. Vdovin, M. Katsnelson, A. Geim, and
A. Lichtenstein, “Molecular Doping of Graphene,” Nano Lett.,
vol. 8, no. 1, pp. 173–177, 2008.
- [131]
-
F. Zheng, K.-I. Sasaki, R. Saito, W. Duan, and B.-L. Gu, “Edge States of
Zigzag Boron Nitride Nanoribbons,” J. Phys. Soc. Jpn., vol. 78,
no. 7, pp. 074 713–1–074 713–6, 2009.
- [132]
-
Y. Ding, Y. Wang, and J. Ni, “Electronic Properties of Graphene Nanoribbons
Embeded in Boron Nitride Sheets,” Appl. Phys. Lett., vol. 95, p.
123105 (3pp), 2009.
- [133]
-
X. Gao, Z. Zhou, Y. Zhao, S. Nagase, S. B. Zhang, and Z. Chen, “Comparative
Study of Carbon and BN Nanographenes: Ground Electronic States and Energy Gap
Engineering,” J. Phys. Chem. C, vol. 112, no. 33, p. 12677 (6pp),
2008.
- [134]
-
L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang,
K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic Layers of
Hybridized Boron Nitride and Graphene Domains,” Nature Mater.,
vol. 9, no. 5, pp. 430–435, 2010.
- [135]
-
G. Seol and J. Guo, “Bandgap Opening in Boron Nitride Confined Armchair
Graphene Nanoribbon,” Appl. Phys. Lett., vol. 98, no. 14, p. 143107
(3pp), 2011.
- [136]
-
H. Nematian, M. Moradinasab, M. Pourfath, M. Fathipour, and H. Kosina,
“Optical Properties of Armchair Graphene Nanoribbons Embedded in Hexagonal
Boron Nitride Lattices,” J. Appl. Phys., vol. 111, no. 9, p. 512
(6pp), 2012.
- [137]
-
T. van Mourik, M. Bühl, and M. P. Gaigeot, “Density Functional Theory
Across Chemistry, Physics and Biology,” Philosophical transactions.
Series A, Mathematical, physical, and engineering sciences, vol. 372, pp.
1–5, 2011.
- [138]
-
F. N. Ajeel, A. M. Khudhair, and A. A. Mohammed, “Density Functional Theory
Investigation of the Physical Properties of Dicyano Pyridazine Molecules,”
International Journal of Science and Research (IJSR), vol. 4, no. 1,
pp. 2334–2339, 2015.
- [139]
-
H. N. Najeeb, “Density Functional Theory and Semi-Empirical Investigations of
Amino Tetrahydrofuran Molecules,” Physics and Materials Chemistry,
vol. 1, no. 2, pp. 21–26, 2013.
- [140]
-
H. Dorsett and A. White, Overview of Molecular Modelling and Ab Initio
Molecular Orbital Methods Suitable for Use with Energetic Materials.1em plus 0.5em minus 0.4emAustralia: DSTO Aeronautical and Maritime
Research Laboratory, 2000.
- [141]
-
M. Orio, A. Dimitrios, D. A. Pantazis, and F. Neese, “Density Functional
Theory,” Photosynthesis research, vol. 102, no. 2-3, pp. 443–453,
2009.
- [142]
-
E. Engel and R. M. Dreizler, Density Functional Theory.1em plus
0.5em minus 0.4emSpringer, 2011.
- [143]
-
J. B. Staunton, “The Electronic Structure of Magnetic Transition Metallic
Materials,” Reports on Progress in Physics, vol. 57, no. 12, p. 1289
(57pp), 1994.
- [144]
-
P. Elliott and K. Burke, “Non-Empirical Derivation of the Parameter in the
B88 Exchange Functional,” Canadian Journal of Chemistry, vol. 87,
no. 10, pp. 1485–1491, 2009.
- [145]
-
J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, and
G. I.Csonka, “Prescription for the Design and Selection of Density
Functional Approximations: More Constraint Satisfaction with Fewer Fits,”
The Journal of Chemical Physics, vol. 123, no. 6, p. 062201 (9pp),
2005.
- [146]
-
C. Fiolhais, F. Nogueira, and M. A. L. Marques, Eds., A Primer in
Density Functional Theory.1em plus 0.5em minus 0.4emSpringer
Berlin Heidelberg, 2003.
- [147]
-
J. P. Perdew, J. A. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. J.
Singh, and C. Fiolhais, “Atoms, Molecules, Solids, and Surfaces:
Applications of the Generalized Gradient Approximation for Exchange and
Correlation,” Phys. Rev. B, vol. 46, no. 11, pp. 6671–6687, 1992.
- [148]
-
A. D. Becke, “Density-Functional Exchange-Energy Approximation with Correct
Asymptotic Behavior,” Phys. Rev. A, vol. 38, no. 6, pp. 3098–3100.
- [149]
-
D. C. Langreth and M. J. Mehl, “Beyond the Local-Density Approximation in
Calculations of Ground-State Electronic Properties,” Phys. Rev. B,
vol. 28, no. 4, pp. 1809–1834, 1983.
- [150]
-
P. T. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and
Materials Properties.1em plus 0.5em minus 0.4emBerlin:
Springer, 2001.
- [151]
-
H. Hsu and L. E. Reichl, “Selection Rule for the Optical Absorption of
Graphene Nanoribbons,” Phys. Rev. B, vol. 76, no. 4, p. 045418
(5pp), 2007.
- [152]
-
J. M. Soler, E. Artacho, J. D. Gale, A. García,
J. Junquera1, P. Ordejón, and
D. Sánchez-Portal, “The SIESTA Method for Ab Initio
Order-N Materials Simulation,” J. Phys.: Condens. Matter, vol. 14,
pp. 2745–2779, 2002.
- [153]
-
R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical Properties of
Carbon Nanotubes.1em plus 0.5em minus 0.4emLondon: Imperial
College Press, 1998.
- [154]
-
Y. Hancock, A. Uppstu, K. Saloriutta, A. Harju, and M. J. Puska, “Generalized
Tight-Binding Transport Model for Graphene Nanoribbon-Based Systems,”
Phys. Rev. B, vol. 81, p. 245402 (6pp), 2010.
- [155]
-
D. Gunlycke and C. White, “Tight-Binding Energy Dispersions of Armchair-Edge
Graphene Nanostrips,” Phys. Rev. B, vol. 77, p. 115116 (6pp), 2008.
- [156]
-
M. Freitag, Y. Martin, J. Misewich, R. Martel, and P. Avouris,
“Photoconductivity of Single Carbon Nanotubes,” Nano Lett.,
vol. 3, no. 8, pp. 1067–1071, 2003.
- [157]
-
S. Tasaki, K. Maekawa, and T. Yamabe, “π-Band Contribution to the
Optical Properties of Carbon Nanotubes: Effects of Chirality,” Phys.
Rev. B, vol. 57, no. 15, pp. 9301–9318, 1998.
- [158]
-
A. Grüneis, R. Saito, G. G. Samsomidze, T. Kimura, M. A. Pimenta, A. Jorio,
A. G. S. Filho, G. D. Dresselhaus, and M. S. Dresselhaus, “Inhomogeneous
Optical Absorption Around the K Point in Graphite and Carbon Nanotubes,”
Phys. Rev. B, vol. 67, p. 165402 (7pp), 2003.
- [159]
-
M. Pourfath, Non-Equilibrium Green’s Function Method for Nanoscale
Device Simulation.1em plus 0.5em minus 0.4emVienna: Springer,
2014.
- [160]
-
L. E. Henrickson, “Nonequilibrium Photocurrent Modeling in Resonant Tunneling
Photodetectors,” J. Appl. Phys., vol. 91, no. 10, pp. 6273–6281,
2002.
- [161]
-
D. A. Stewart and F. Leonard, “Photocurrents in Nanotube Junctions,”
Phys. Rev. Lett., vol. 93, no. 10, p. 107401, 2004.
- [162]
-
G. Dresselhaus and M. S. Dresselhaus, “Fourier Expansion for the Electronic
Energy Bands in Silicon and Germanium,” Phys. Rev., vol. 160, no. 3,
pp. 649–679, 1967.
- [163]
-
T. G. Pedersen, K. Pedersen, and T. B. Kriestensen, “Optical Matrix Elements
in Tight-Binding Calculations,” Phys. Rev. B, vol. 63, p. 201101
(4pp), 2001.
- [164]
-
U. Aeberhard and H. Morf, “Microscopic Momequilibrium Theory of Quantum Well
Solar Cells,” Phys. Rev. B, vol. 77, p. 125343 (9pp), 2008.
- [165]
-
R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, “Single and Multiband
Modeling of Quantum Electron Transport Through Layered Semiconductor
Devices,” J. Appl. Phys., vol. 81, no. 12, pp. 7845–7869, 1997.
- [166]
-
D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy:
Introduction to Vibrational and Electronic Spectroscopy.1em plus
0.5em minus 0.4emCourier Dover Publications, 1989.
- [167]
-
S. V. Goupalov, “Optical Transitions in Carbon Nanotubes,” Phys. Rev.
B, vol. 72, p. 195403 (5pp), 2005.
- [168]
-
H. Zheng, Z. Wang, T. Luo, Q. Shi, and J. Chen, “Analytical Study of
Electronic Structure in Armchair Graphene Nanoribbons,” Phys. Rev.
B, vol. 75, no. 16, p. 165414 (6pp), 2007.
- [169]
-
K. i. Sasaki, K. Kato, Y. Tokura, K. Oguri, and T. Sogawa, “Theory of Optical
Transitions in Graphene Nanoribbons,” Phys. Rev. B, vol. 84, p.
085458 (11pp), 2011.
- [170]
-
H. C. Chung, M. H. Lee, C. P. Chang, and M. F. Lin, “Exploration of
Edge-Dependent Optical Selection Rules for Graphene Nanoribbons,”
Opt. Express, vol. 19, no. 23, pp. 23 350–23 363, 2011.
- [171]
-
M. Pourfath, O. Baumgartner, S. Kosina, and S. Selberherr, “Performance
Evaluation of Graphene Nanoribbon Infrared Photodetectors,” in
Proceedings of the 9th International Conference on Numerical
Simulation of Optoelectronic Devices, Gwangju, 2009, pp. 13–14, Talk:
Numerical Simulation of Optoelectronic Devices (NUSOD).
- [172]
-
K. Wakabayashi, K. I. Sasaki, T. Nakanishi, and T. Enoki, “Electronic States
of Graphene Nanoribbons and Analytical Solutions,” , vol. 11, p.
054504 (18pp), 2010.
- [173]
-
A. K. Gupta, O. E. Alon, and N. Moiseyev, “Generation and Control of
High-Order Harmonics by the Interaction of an Infrared Laser with a Thin
Graphite Layer,” Phys. Rev. B, vol. 68, p. 205101 (13pp), 2003.
- [174]
-
L. Esaki and L. L. Chang, “New Transport Phenomenon in a Semiconductor
"Superlattice",” Phys. Rev. Lett., vol. 33, no. 8, pp. 495–498,
1974.
- [175]
-
L. L. Chang, L. Esaki, and R. Tsu, “Resonant Tunneling in Semiconductor
Double Barriers,” Appl. Phys. Lett., vol. 24, no. 12, pp. 593–595,
1974.
- [176]
-
S. Ciraci and I. P. Batra, “Long-Range Order and Segregation in Semiconductor
Superlattices,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2114–2117,
1987.
- [177]
-
——, “Self-Consistent Study of Confined States in Thin GaAs-AlAs
Superlattices,” Phys. Rev. B, vol. 36, no. 2, pp. 1225–1232, 1987.
- [178]
-
Y.-W. Son, M. Cohen, and S. Louie, “Half-Metallic Graphene Nanoribbons,”
Nature (London), vol. 444, no. 7117, pp. 347–349, 2006.
- [179]
-
A. Y. Goharrizi, M. Pourfath, M. Fathipour, H. Kosina, and S. Selberherr, “An
Analytical Model for Line-Edge Roughness Limited Mobility of Graphene
Nanoribbons,” IEEE Trans. Electron Devices, vol. 58, no. 11, pp.
3725–3735, 2011.
- [180]
-
Y. Yang and R. Murali, “Impact of Size Effect on Graphene Nanoribbon
Transport,” IEEE Electron Device Lett., vol. 31, no. 3, pp.
237–239, 2010.
- [181]
-
A. Y. Goharrizi, M. Pourfath, M. Fathipour, H. Kosina, and S. Selberherr, “A
Numerical Study of Line-Edge Roughness Scattering in Graphene Nanoribbons,”
IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 433–440, 2012.
- [182]
-
D. Gunlycke and C. T. White, “Scaling of the Localization Length in
Armchair-Edge Graphene Nanoribbons,” Phys. Rev. B, vol. 81, p.
075434 (6pp), 2010.
- [183]
-
S. Dubois, A. Lopez-Bezanilla, A. Cresti, F. Triozon, B. Biel, J. Charlier, and
S. Roche, “Quantum Transport in Graphene Nanoribbons: Effects of Edge
Reconstruction and Chemical Reactivity,” ACS Nano, vol. 4, no. 4,
pp. 1971–1976, 2010.
- [184]
-
A. Y. Goharrizi, M. Pourfath, M. Fathipour, and H. Kosina, “Device
Performance of Graphene Nanoribbon Field-Effect Transistors in the Presence
of Line-Edge Roughness,” IEEE Trans. Electron Devices, vol. 59,
no. 12, pp. 3527–3532, 2012.
- [185]
-
Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-Infrared Quantum Cascade
Lasers,” Nature Photonics, vol. 6, no. 7, pp. 432–439, 2012.
- [186]
-
J. R. Freeman, J. Maysonnave, H. E. Beere, D. A. Ritchie, J. Tignon, and S. S.
Dhillon, “Electric Field Sampling of Modelocked Pulses from a Quantum
Cascade Laser,” Opt. Express, vol. 21, no. 13, pp. 16 162–16 169,
2013.
- [187]
-
J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum Generation in Photonic
Crystal Fiber,” Rev. Mod. Phys., vol. 78, no. 4, pp. 1135–1184,
2006.
- [188]
-
E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P.
Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C.
Kapteyn, “Coherent Soft X-Ray Generation in the Water Window with
Quasi-Phase Matching,” Science, vol. 302, no. 5642, pp. 95–98,
2003.
- [189]
-
R. Paiella, F. Capasso, C. Gmachl, H. Hwang, D. Sivco, A. Hutchinson, A. Y.
Cho, and H. C. Liu, “Monolithic Active Mode Locking of Quantum Cascade
Lasers,” Appl. Phys. Lett., vol. 77, no. 2, pp. 169–171, 2000.
- [190]
-
R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Bailargeon, A. L.
Hutchinson, A. Y. Cho, and H. C. Liu, “Self-Mode-Locking of Quantum Cacade
Lasers with Giant Ultrafast Optical Nonlinearities,” Science, vol.
290, pp. 1739–1742, 2001.
- [191]
-
V.-M. Gkortsas, C. Wang, L. Kuznetsova, L. Diehl, A. Gordon, C. Jirauschek,
M. A. Belkin, A. Belyanin, F. Capasso, and F. X. Kärtner, “Dynamics of
Actively Mode-Locked Quantum Cascade Lasers,” Opt. Express, vol. 18,
no. 13, pp. 13 616–13 630, 2010.
- [192]
-
A. Daničić, J. Radovanović, V. Milanović, D. Indjin, and Z. Ikonić,
“Optimization and Magnetic-Field Tunability of Quantum Cascade Laser for
Applications in Trace Gas Detection and Monitoring,” J. Phys. D:
Appl. Phys., vol. 43, no. 4, p. 045101, 2010.
- [193]
-
M. T. Arafin, N. Islam, S. Roy, and S. Islam, “Performance Optimization for
Terahertz Quantum Cascade Laser at Higher Temperature Using Genetic
Algorithm,” Opt. Quant. Electron., vol. 44, no. 15, pp. 701–715,
2012.
- [194]
-
M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini,
and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor
Laser at Room Temperature,” Science, vol. 295, no. 5553, pp.
301–305, 2002.
- [195]
-
Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room
Temperature Quantum Cascade Lasers with 27% Wall Plug Efficiency,”
Appl. Phys. Lett., vol. 98, no. 18, p. 181102, 2011.
- [196]
-
R. Maulini, A. Lyakh, A. Tsekoun, R. Go, and C. K. N. Patel, “High Average
Power Uncooled Mid-Wave Infrared Quantum Cascade Lasers,” Electronics
Letters, vol. 47, no. 6, pp. 395–397, 2011.
- [197]
-
P. A. Sanchez-Serrano, D. Wong-Campos, S. Lopez-Aguayo, and J. C.
Gutiérrez-Vega, “Engineering of Nondiffracting Beams with Genetic
Algorithms,” Opt. Lett., vol. 37, no. 24, pp. 5040–5042, 2012.
- [198]
-
D. Gagnon, J. Dumont, and L. J. Dubé, “Multiobjective Optimization in
Integrated photonics Design,” Opt. Lett., vol. 38, no. 13, pp.
2181–2184, 2013.
- [199]
-
R. Poli, J. Kennedy, and T. Blackwell, “Particle Swarm Optimization,”
Swarm Intelligence, vol. 1, no. 1, pp. 33–57, 2007.
- [200]
-
F. Grimaccia, M. Mussetta, and R. E. Zich, “Genetical Swarm Optimization:
Self-Adaptive Hybrid Evolutionary Algorithm for Electromagnetics,”
Antennas and Propagation, IEEE Transactions on, vol. 55, no. 3, pp.
781–785, 2007.
- [201]
-
R. Y. Wang, W. P. Lee, and Y. T. Hsiao, “A New Cooperative PSO Approach for
the Optimization of Multimodal Functions,” in Proceedings of the
World Congress on Engineering, 2012, WCE, 2012, pp. 418–424.
- [202]
-
D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Self-Consistent
Scattering Theory of Transport and Output Characteristics of Quantum Cascade
Lasers,” J. Appl. Phys., vol. 91, no. 11, pp. 9019–9026, 2002.
- [203]
-
C. Wang, F. Grillot, V. I. Kovanis, J. D. Bodyfelt, and J. Even, “Modulation
Properties of Optically Injection-Locked Quantum Cascade Lasers,”
Opt. Lett., vol. 38, no. 11, pp. 1975–1977, 2013.
- [204]
-
G. Milovanovic and H. Kosina, “A Semiclassical Transport Model for Quantum
Cascade Lasers Based on the Pauli Master Equation,” J. Comp.
Electronics, vol. 9, no. 3-4, pp. 211–217, 2010.
- [205]
-
R. Terazzi and J. Faist, “A Density Matrix Model of Transport and Radiation
in Quantum Cascade Lasers,” New J. Phys., vol. 12, no. 3, p. 033045,
2010.
- [206]
-
T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of
Nonequilibrium Quantum Transport and Energy Dissipation in Terahertz Quantum
Cascade Lasers,” Phys. Rev. B, vol. 79, p. 195323, 2009.
- [207]
-
A. Wacker, M. Lindskog, and D. O. Winge, “Nonequilibrium Green’s Function
Model for Simulation of Quantum Cascade Laser Devices Under Operating
Conditions,” IEEE J. Select. Topics Quantum Electron., vol. 19,
no. 5, pp. 1–11, 2013.
- [208]
-
G. Beji, Z. Ikonić, C. A. Evans, D. Indjin, and P. Harrison, “Coherent
Transport Description of the Dual-Wavelength Ambipolar Terahertz Quantum
Cascade Laser,” J. Appl. Phys., vol. 109, no. 1, p. 013111, 2011.
- [209]
-
O. Baumgartner, Z. Stanojevic, and H. Kosina, “Efficient Simulation of
Quantum Cascade Lasers Using the Pauli master Equation,” in
Simulation of Semiconductor Processes and Devices (SISPAD), 2011,
pp. 91–94.
- [210]
-
R. C. Iotti and F. Rossi, “Nature of Charge Transport in Quantum-Cascade
Lasers,” Phys. Rev. Lett., vol. 87, no. 14, p. 146603 (4pp), 2001.
- [211]
-
C. Weber, A. Wacker, and A. Knorr, “Density-Matrix Theory of the Optical
Dynamics and Transport in Quantum Cascade Structures: The Role of
Coherence,” Phys. Rev. B, vol. 79, no. 16, p. 165322 (14pp), 2009.
- [212]
-
M. V. Fischetti, “Master-Equation Approach to the Study of Electronic
Transport in Small Semiconductor Devices,” Phys. Rev. B, vol. 59,
no. 7, pp. 4901–4917, 1999.
- [213]
-
M. Karner, A. Gehring, S. Holzer, M. Pourfath, M. Wagner, W. Goes, M. Vasicek,
O. Baumgartner, C. Kernstock, K. Schnass, G. Zeiler, T. Grasser, H. Kosina,
and S. Selberherr, “VSP-A Multi-Purpose Schrödinger-Poisson Solver for
TCAD Applications,” J. Comp. Electronics, vol. 6, no. 1-3, pp.
179–182, 2007.
- [214]
-
O. Baumgartner, Z. Stanojevic, K. Schnass, M. Karner, and H. Kosina, “VSP -a
Quantum-Electronic Simulation Framework,” Journal of Computational
Electronics, vol. 12, no. 4, pp. 701–721, 2013.
- [215]
-
C. Jirauschek, G. Scarpa, P. Lugli, M. Vitiello, and G. Scamarcio,
“Comparative Analysis of Resonant Phonon THz Quantum Cascade Lasers,”
J. Appl. Phys., vol. 101, no. 8, p. 086109 (3pp), 2007.
- [216]
-
R. C. Iotti, E. Ciancio, and F. Rossi, “Quantum Transport Theory for
Semiconductor Nanostructures: A Density-Matrix Formulation,” Phys.
Rev. B, vol. 72, no. 12, p. 125347 (21pp), 2005.
- [217]
-
O. Baumgartner, Z. Stanojevic, and H. Kosina, Monte Carlo Methods and
Applications, K. K. Sabelfeld and I. Dimov, Eds.1em plus 0.5em minus
0.4emBerlin: De Gruyter, 2012.
- [218]
-
E. S. Peer, F. van den Bergh, and A. Engelbrecht, “Using Neighbourhoods with
the Guaranteed Convergence PSO,” in Swarm Intelligence Symposium,
2003. SIS ’03. Proceedings of the 2003 IEEE, 2003, pp. 235–242.
- [219]
-
Y. Shi and R. Eberhart, “A Modified Particle Swarm Optimizer,” in
Evolutionary Computation Proceedings, 1998. IEEE World Congress on
Computational Intelligence., The 1998 IEEE International Conference on,
1998, pp. 69–73.
- [220]
-
J. Faist, Quantum Cascade Lasers.1em plus 0.5em minus
0.4emOxford: Oxford University Press, 2013.
- [221]
-
C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N.
Baillargeon, and A. Y. Cho, “High-Power λ ≈ 8 µ m Quantum
Cascade Lasers with Near Optimum Performance,” Appl. Phys. Lett.,
vol. 72, no. 24, pp. 3130–3132, 1998.
- [222]
-
S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, “Continuous-Wave
Operation of Terahertz Quantum-Cascade Lasers Above Liquid-Nitrogen
Temperature,” Appl. Phys. Lett., vol. 84, no. 14, pp. 2494–2496,
2004.
- [223]
-
A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch,
W. Schrenk, S. Golka, and G. Strasser, “Influence of Doping on the
Performance of Terahertz Quantum-Cascade Lasers,” Appl. Phys. Lett.,
vol. 90, no. 10, p. 101107 (3pp), 2007.
- [224]
-
H. Risken and K. Nummedal, “Self-Pulsing in Lasers,” J. Appl. Phys.,
vol. 39, no. 10, pp. 4662–4672, 1968.
- [225]
-
R. Graham and H. Haken, “Quantum Theory of Light Propagation in a Fluctuating
Laser-Active Medium,” Zeitschrift für Physik, vol. 213, no. 5,
pp. 420–450, 1968.
- [226]
-
B. F. Levine, K. K. Choi, C. Bethea, J. Walker, and R. J. Malik, “New 10
µm Infrared Detector Using Intersubband Absorption in Resonant Tunneling
GaAlAs Superlattices,” Appl. Phys. Lett., vol. 50, no. 16, pp.
1092–1094, 1987.
- [227]
-
F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere,
D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel,
M. Fischer, J. Faist, and D. Hofstetter, “Quantum Cascade Detectors,”
IEEE J. Quantum Electron., vol. 45, no. 8, pp. 1039–1052, 2009.
- [228]
-
H. Schneider, P. Koidl, F. Fuchs, B. Dischler, K. Schwarz, and J. D. Ralston,
“Photovoltaic Intersubband Detectors for 3−5 µm Using GaAs Quantum
Wells Sandwiched Between AlAs Tunnel Barriers,” Semiconductor
Science and Technology, vol. 6, no. 12C, pp. C120–C123, 1991.
- [229]
-
H. Schneider, K. Kheng, M. Ramsteiner, J. D. Ralston, F. Fuchs, and P. Koidl,
“Transport Asymmetry and Photovoltaic Response in
(AlGa)As/AlAs/GaAs/(AlGa)As Single-Barrier Quantum-Well Infrared
Detectors,” Appl. Phys. Lett., vol. 60, no. 12, pp. 1471–1473,
1992.
- [230]
-
H. Schneider, “Optimized Performance of Quantum Well Intersubband Infrared
Detectors: Photovoltaic Versus Photoconductive Operation,” J. Appl.
Phys., vol. 74, no. 7, pp. 4789–4791, 1993.
- [231]
-
D. Hofstetter, M. Beck, and J. Faist, “Quantum-Cascade-Laser Structures as
Photodetectors,” Appl. Phys. Lett., vol. 81, no. 15, pp. 2683–2685,
2002.
- [232]
-
L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger,
“Quantum Cascade Photodetector,” Appl. Phys. Lett., vol. 85,
no. 14, pp. 2824–2826, 2004.