Previous Up Next

References

[1]
D. Bimberg, Ed., Semiconductor Nanostructures.1em plus 0.5em minus 0.4emBerlin: Springer, 2008.
[2]
S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8-THz Quantum Cascade Laser Operating Significantly Above the Temperature of ω/kB,” Nature Physics, vol. 7, no. 2, pp. 166–171, 2011.
[3]
B. Williams, S. Kumar, Q. Hu, and J. Reno, “Operation of Terahertz Quantum-Cascade Lasers at 164 K in Pulsed Mode and at 117 K in Continuous-Wave Mode,” Opt. Express, vol. 13, no. 9, pp. 3331–3339, 2005.
[4]
B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz Quantum Cascade Laser Based on Longitudinal-Optical-Phonon Scattering for Depopulation,” Appl. Phys. Lett., vol. 82, no. 7, pp. 1015–1017, 2003.
[5]
M. Tacke, “New Developments and Applications of Tunable IR Lead Salt Lasers,” Infrared Physics & Technology, vol. 36, no. 1, pp. 447–463, 1995.
[6]
S. E. Rosenbaum, B. K. Kormanyos, L. M. Jelloian, M. M. A. S. Brown, L. E. Larson, L. D. Nguyen, M. A. Thompson, L. P. Katehi, and G. M. Rebeiz, “155- and 213-GHz AlInAs/GaInAs/InP HEMT MMIC Oscillators,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 4, pp. 927–932, 1995.
[7]
X. Cai, A. B. Sushkov, R. J. S. M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. Fuhrer, “Sensitive Room-Temperature Terahertz Detection via the Photothermoelectric Effect in Graphene,” Nature Nanotech., vol. 9, no. 10, pp. 814–819, 2014.
[8]
Y. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, Y. H. Kim, K. J. Ahn, D. Kim, and P. C. M. Planken, “Plasmon Enhanced Terahertz Emission from Single Layer Graphene,” Nano Lett., vol. 8, no. 9, pp. 9089–9096, 2014.
[9]
L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene Field-Effect Transistors as Room-Temperature Terahertz Detectors,” Nature Mater., vol. 11, no. 10, pp. 865–871, 2012.
[10]
A. V. Muraviev, S. L. Rumyantsev, G. Liu, A. A. Balandin, W. Knap, and M. S. Shur, “Plasmonic and Bolometric Terahertz Detection by Graphene Field-Effect Transistor,” Appl. Phys. Lett., vol. 103, no. 18, p. 181114 (4pp), 2013.
[11]
D. Spirito1, D. Coquillat, S. L. D. Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, “High Performance Bilayer-Graphene Terahertz Detectors,” Appl. Phys. Lett., vol. 104, no. 6, p. 061111 (5pp), 2014.
[12]
R. Musah, S. Y. Mensah, and S. S. Abukari, “Terahertz Generation and Amplification in Graphene Nanoribbons in Multi-Frequency Electric Fields,” Physica E, vol. 61, pp. 90–94, 2014.
[13]
C. C. Sirtori, S. Barbieri, and R. Colombelli, “Wave Engineering with THz Quantum Cascade Lasers,” Nature Photo., vol. 7, no. 9, pp. 691–701, 2013.
[14]
M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, P. Filloux, C. Sirtori, J. Lampin, G. Ferrari, S. P. Khanna, E. H. Linfield, H. E. Beere, D. A. Ritchie, and S. Barbieri, “Stabilization and Mode Locking of Terahertz Quantum Cascade Lasers,” IEEE J. Select. Topics Quantum Electron., vol. 19, no. 1, p. 8501011 (11pp), 2013.
[15]
S. Barbieri AND M. Ravaro P. Gellie AND G. Santarelli C. Manquest AND C. Sirtori AND S. P. Khanna AND E. H. Linfield A. G. Davies, “Coherent Sampling of Active Mode-Locked Terahertz Quantum Cascade Lasers and Frequency Synthesis,” Nature Photo., vol. 5, no. 5, pp. 306–313, 2011.
[16]
A. W. M. Lee, S. B. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable Terahertz Quantum Cascade Lasers with External Gratings,” Opt. Express, vol. 35, no. 7, pp. 910–912, 2010.
[17]
A. Benz, M. Krall, S. Schwarz, D. Dietze, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Resonant Metamaterial Detectors Based on THz Quantum-Cascade Structures,” Sci. Rep., vol. 4, no. 1, pp. 1–10, 2014.
[18]
A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-Field-Assisted Terahertz Quantum Cascade Laser Operating up to 225 K,” Nature Photo., vol. 3, no. 1, pp. 41–45, 2009.
[19]
M. T. Amanti, M. Fischer, G. S. M. Beck, and J. Faist, “Low-Divergence Single-Mode Terahertz Quantum Cascade Laser,” Nature Photo., vol. 3, no. 10, pp. 586–590, 2009.
[20]
E. Mujagić, C. Deutsch, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, K. Unterrainer, and G. Strasser, “Vertically Emitting Terahertz Quantum Cascade Ring Lasers,” Appl. Phys. Lett., vol. 95, no. 1, p. 011120 (3pp), 2009.
[21]
N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. L. A. G. Davies, and J. Tignon, “Terahertz Amplifier Based on Gain Switching in a Quantum Cascade Laser,” Nature Photo., vol. 3, no. 12, pp. 715–719, 2009.
[22]
B. S. Williams, “Terahertz Quantum-Cascade Lasers,” Nature Photo., vol. 1, no. 9, pp. 517–525, 2007.
[23]
M. Moradinasab, M. Pourfath, and H. Kosina, “Performance Optimization and Instability Study in Ring Cavity Quantum Cascade Lasers,” IEEE J. Quantum Electron., vol. 51, no. 1, pp. 1–7, 2015.
[24]
K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
[25]
K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature (London), vol. 438, no. 7065, pp. 197–200, 2005.
[26]
G. Seol and J. Guo, “Assessment of Graphene Nanomesh and Nanoroad Transistors by Chemical Modification,” in IEEE International Electron Devices Meeting (IEDM), 2011, pp. 2.3.1–2.3.4.
[27]
Z. Wang, Q. Li, Q. Shi, X. Wang, J. Yang, J. Hou, and J. Chen, “Chiral Selective Tunneling Induced Negative Differential Resistance in Zigzag Graphene Nanoribbon: A Theoretical Study,” Appl. Phys. Lett., vol. 92, no. 13, p. 133114 (3pp), 2008.
[28]
H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen, “High-Quality Graphene p-n Junctions via Resist-Free Fabrication and Solution-Based Noncovalent Functionalization,” ACS Nano, vol. 5, no. 3, pp. 2051–2059, 2011.
[29]
M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chemical Reviews, vol. 110, no. 1, pp. 132–145, 2010.
[30]
X. Du, I. Skachko, A. Barker, and E. Andrei, “Approaching Ballistic Transport in Suspended Graphene,” Nature Nanotech., vol. 3, no. 8, pp. 491–495, 2008.
[31]
K. Bolotin, K. Sikesb, Z. Jianga, M. Klimac, G. Fudenberga, J. Honec, P. Kima, and H. Stormera, “Ultrahigh Electron Mobility in Suspended Graphene,” Solid-State Commun., vol. 146, no. 9-10, pp. 351–355, 2008.
[32]
J.-H. Chen, C. Jang, S. Xiao, M. Ishighami, and M. Fuhrer, “Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2,” Nature Nanotech., vol. 3, no. 4, pp. 206–209, 2008.
[33]
F. Schwierz, “Graphene Transistors,” Nature Nanotech., vol. 5, no. 7, pp. 487–496, 2010.
[34]
Semiconductor Industry Association, “International Technology Roadmap for Semiconductors - 2013 Edition,” 2013.
[35]
P. Tassin, T. Koschny, and C. M. Soukoulis, “Graphene for Terahertz Applications,” Science, vol. 341, pp. 620–621, 2013.
[36]
N. Tombros, C. Jozsa, M. Popinciuc, H. Jonkman, and B. van Wees, “Electronic Spin Transport and Spin Precession in Single Graphene Layers at Room Temperature,” Nature (London), vol. 448, no. 7153, pp. 571–574, 2007.
[37]
S. Cho, Y.-F. Chen, and M. Fuhrer, “Gate-Tunable Graphene Spin Valve,” Appl. Phys. Lett., vol. 91, no. 12, p. 123105 (3pp), 2007.
[38]
M. Freitag, “Graphene: Nanoelectronics Goes Flat Out,” Nature Nanotech., vol. 3, no. 8, pp. 455–457, 2008.
[39]
X. Li, L. Zhang, S. Lee, and H. Dai, “Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors,” Science, vol. 319, no. 5867, pp. 1229–1232, 2008.
[40]
M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, “Pecular Localized States at Zigzag Graphite Edge,” J. Phys. Soc. Jap., vol. 65, no. 7, pp. 1920–1923, 1996.
[41]
K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Edge State in Graphene Ribbons: Nanometer Size Effect and Edge Shape Dependence,” Phys. Rev. B, vol. 54, no. 24, pp. 17 954–17 961, 1996.
[42]
M. Moradinasab, H. Nematian, M. Pourfath, M. Fathipour, and H. Kosina, “Analytical Models of Approximations for Wave Functions and Energy Dispersion in Zigzag Graphene Nanoribbons,” J. Appl. Phys., vol. 111, no. 7, p. 318 (9pp), 2012.
[43]
S. C. Jeon, Y. S. Kim, and D. K. Lee, “Fabrication of a Graphene Nanoribbon with Electron Beam Lithography Using a XR-1541/PMMA Lift-Off Process,” Trans. Electr. and Elec. Materials, vol. 11, no. 4, pp. 190–193, 2010.
[44]
L. P. Biró and P. Lambin, “Nanopatterning of Graphene with Crystallographic Orientation Control,” Carbon, vol. 48, no. 10, pp. 2677–2689, 2010.
[45]
N. Gorjizadeh and Y. Kawazoe, “Chemical Functionalization of Graphene Nanoribbons,” Nanomaterials, vol. 2010, p. 513501 (7pp), 2010.
[46]
H. Sevincli, M. Topsakal, and S. Ciraci, “Superlattice Structures of Graphene-based Armchair Nanoribbons,” Phys. Rev. B, vol. 78, no. 24, p. 245402 (8pp), 2008.
[47]
H. Teong, K.-T. Lam, S. B. Khalid, and G. Liang, “Shape Effects in Graphene Nanoribbon Resonant Tunneling Diodes: A Computational Study,” J. Appl. Phys., vol. 105, no. 8, p. 084317 (6pp), 2009.
[48]
T. Mueller, F. Xia, and P. Avouris, “Graphene Photodetectors for High-Speed Optical Communications,” Nature Photonics, vol. 4, no. 5, pp. 297–301, 2010.
[49]
M. Moradinasab, M. Pourfath, M. Fathipour, and H. Kosina, “Numerical Study of Graphene Superlattice-Based Photodetectors,” vol. PP, no. 99, pp. 1–1, 2015.
[50]
S. Rakheja and A. Naeemi, “Graphene Nanoribbon Spin Interconnects for Nonlocal Spin-Torque Circuits: Comparison of Performance and Energy per Bit with cmos Interconnects,” IEEE Trans. Electron Devices, vol. 59, no. 1, pp. 51–59, 2012.
[51]
S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, “Tight-Binding Description of Graphene,” Phys. Rev. B, vol. 66, no. 3, p. 035412 (5pp), 2002.
[52]
R. S. Deacon, K. C. Chuang, R. J. Nicholas, K. S. Novoselov, and A. K. Geim, “Cyclotron Resonance Study of the Electron and Hole Velocity in Graphene Monolayers,” Phys. Rev. B, vol. 76, no. 8, p. 081406 (4pp), 2007.
[53]
J. C. Slater and G. F. Koster, “Simplified lcao method for the periodic potential problem,” Phys. Rev., vol. 94, no. 6, pp. 1498–1524, 1954.
[54]
A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The Electronic Properties of Graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp. 109–162, 2009.
[55]
A. Roberts, D. Cormode, C. Reynolds, T. Newhouse-Illige, B. J. Leroy, and A. S. Sandhu, “Response of Graphene to Femtosecond High-Intensity Laser Irradiation,” Appl. Phys. Lett., vol. 99, no. 5, p. 051912 (3pp), 2011.
[56]
X. Wang, Z. Shen, J. Lu, and X. Ni, “Laser-Induced Damage Threshold of Silicon in Millisecond, Nanosecond, and Picosecond Regimes,” J. Appl. Phys., vol. 108, no. 3, p. 033103 (7pp), 2010.
[57]
A. Garg, K. Avinashi, and K. N. Tripathi, “Laser-Induced Damage Studies in GaAs,” Optics & Laser Technology, vol. 35, no. 1, pp. 21–24, 2003.
[58]
E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent Nonlinear Optical Response of Graphene,” Phys. Rev. Lett., vol. 105, no. 9, p. 097401 (4pp), 2010.
[59]
H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-Scan Measurement of the Nonlinear Refractive Index of Graphene,” Opt. Lett., vol. 37, no. 11, pp. 1856–1858, 2012.
[60]
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science, vol. 320, no. 5881, p. 1308 (1pp), 2008.
[61]
T. Ando, Y. Zheng, and H. Suzuura, “Dynamical Conductivity and Zero-Mode Anomaly in Honeycomb Lattices,” Journal of the Physical Society of Japan, vol. 71, no. 5, pp. 1318–1324, 2002.
[62]
V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual Microwave Response of Dirac Quasiparticles in Graphene,” Phys. Rev. Lett., vol. 96, no. 25, p. 256802(4pp), 2006.
[63]
A. K. Geim and K. S. Novoselov, “The Rise of Graphene,” Nature Mater., vol. 6, no. 3, pp. 183–191, 2007.
[64]
A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal Optical Conductance of Graphite,” Phys. Rev. Lett., vol. 100, no. 11, p. 117401 (4pp), 2008.
[65]
Q. Bao and K. P. Loh, “Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices,” ACS Nano, vol. 6, no. 5, pp. 3677–3694, 2012.
[66]
F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene,” Science, vol. 320, no. 5873, pp. 206–209, 2008.
[67]
L. G. D. Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, “Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics,” ACS Nano, vol. 4, no. 5, pp. 2865–2873, 2010.
[68]
Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large Area, Continuous, Few-Layered Graphene as Anodes in Organic Photovoltaic Devices,” Appl. Phys. Lett., vol. 95, no. 6, p. 063302 (3pp), 2009.
[69]
Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, “Graphene: Interface Engineering of Layer-by-Layer Stacked Graphene Anodes for High-Performance Organic Solar Cells,” Advanced Materials, vol. 23, no. 13, pp. 1475–1475, 2011.
[70]
F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene Photonics and Optoelectronics,” Nature Photo., vol. 4, no. 9, pp. 611–622, 2010.
[71]
D. S. Hecht, L. Hu, and G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Advanced Materials, vol. 23, no. 13, pp. 1482–1513, 2011.
[72]
S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes,” Nature Nanotech., vol. 5, no. 8, pp. 574–578, 2010.
[73]
P. Avouris, “Graphene: Electronic and Photonic Properties and Devices,” Nano Lett., vol. 10, no. 11, pp. 4285–4294, 2010.
[74]
C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene Photodetectors with Ultra-Broadband and High Responsivity at Room Temperature,” Nature Nanotech., vol. 9, no. 4, pp. 273–278, 2014.
[75]
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics.1em plus 0.5em minus 0.4emWiley, 2009, ch. Semiconductor Photon Detectors, pp. 784–803.
[76]
Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano, vol. 4, no. 2, pp. 803–810, 2010.
[77]
J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D.Veksler, and Y. Chen, “Measurement of the Optical Absorption Spectra of Epitaxial Graphene from Terahertz to Visible,” Appl. Phys. Lett., vol. 93, no. 13, p. 131905 (3pp), 2008.
[78]
A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced Optical Conductivity of Bilayer Graphene Nanoribbons in the Terahertz Regime,” Phys. Rev. Lett., vol. 103, no. 20, p. 207401 (4pp), 2009.
[79]
F. T. Vasko and V. Ryzhii, “Photoconductivity of Intrinsic Graphene,” Phys. Rev. B, vol. 77, no. 19, p. 195433 (8pp), 2008.
[80]
J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of Photocurrent Generation and Collection in Single-Layer Graphene,” Nano Lett., vol. 9, no. 5, pp. 1742–1746, 2009.
[81]
F. Xia, T. Mueller, R. G.-M. M. F. Y. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor,” Nano Lett., vol. 9, no. 3, pp. 1039–1044, 2009.
[82]
F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast Graphene Photodetector,” Nature Nanotech., vol. 4, no. 12, pp. 839–843, 2009.
[83]
Y. Kang, H. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. Kuo, H. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Germanium/Silicon Avalanche Photodiodes with 340 GHz Gain-Bandwidth Product,” Nature Photo., vol. 3, no. 1, pp. 59–63, 2009.
[84]
E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, “Contact and Edge Effects in Graphene Devices,” Nature Nanotech., vol. 3, no. 8, pp. 486–490, 2008.
[85]
A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-Compatible Graphene Photodetector Covering All Optical Communication Bands,” Nature Photo., vol. 7, no. 11, pp. 892–896, 2013.
[86]
X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-Thermoelectric Effect at a Graphene Interface Junction,” Nano Lett., vol. 10, no. 2, pp. 562–566, 2010.
[87]
M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. Marcus, “Gate-Activated Photoresponse in a Graphene p-n Junction,” Nano Lett., vol. 11, no. 10, pp. 4134–4137, 2010.
[88]
G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain,” Nature Nanotech., vol. 7, no. 6, pp. 363–368, 2012.
[89]
J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-Gated Bilayer Graphene Hot-Electron Bolometer,” Nature Nanotech., vol. 7, no. 7, pp. 472–478, 2012.
[90]
B. Lax, Proceedings of the International Symposium on Quantum Electronics.1em plus 0.5em minus 0.4emColumbia University Press, 1960, p. 428.
[91]
R. Paiella, Intersubband Transitions In Quantum Structures.1em plus 0.5em minus 0.4emMcGraw-Hill, 2006.
[92]
R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent Light Emission From GaAs Junctions,” Phys. Rev. Lett., vol. 9, no. 9, pp. 366–368, 1962.
[93]
Z. I. Alferov, V. M. Andreev, E. L. Portnoi, and M. K. Trukan, “AlAs-GaAs Heterojunction Injection Lasers with a Low Room-Temperature Threshold,” Fiz. Tekh. Poluprovodn, vol. 3, pp. 1328–1332, 1969.
[94]
I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction Lasers Which Operate Continuously at Room Temperature,” Appl. Phys. Lett., vol. 17, no. 3, pp. 109–111, 1970.
[95]
A. Cho, Molecular Beam Epitaxy.1em plus 0.5em minus 0.4emNew York: AIP Press, Woodbury, 1994.
[96]
L. Esaki and R. Tsu, “Superlattice and Negative Differential Conductivity in Semiconductors,” IBM Journal of Research and Development, vol. 14, no. 1, pp. 61–65, 1970.
[97]
R. F. Kazarinov and R. A. Suris, “Possibility of Amplification of Electromagnetic Waves in a Semiconductor with a Superlattice,” Fizika i Tekhnika Poluprovodnikov, vol. 5, no. 4, pp. 797–800, 1971.
[98]
R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-Infrared Surface-Plasmon Quantum-Cascade Lasers at 21.5 µm and 24 µm Wavelengths,” Appl. Phys. Lett., vol. 78, no. 18, pp. 2620–2622, 2001.
[99]
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz Semiconductor-Heterostructure Laser,” Nature, vol. 417, no. 6885, pp. 156–159, 2002, cited By (since 1996)1583.
[100]
J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “Short Wavelength (λ ∼ 3.4 µ m) Quantum Cascade Laser Based on Strained Compensated InGaAs/AlInAs,” Appl. Phys. Lett., vol. 72, no. 6, pp. 680–682, 1998.
[101]
S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, “1.9 THz Quantum-Cascade Lasers with One-Well Injector,” Appl. Phys. Lett., vol. 88, no. 12, p. 121123 (3pp), 2006.
[102]
C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, S. N. Chu, and A. Y. Cho, “Noncascaded Intersubband Injection Lasers at λ ≈ 7.7µ m,” Appl. Phys. Lett., vol. 73, no. 26, pp. 3830–3832, 1998.
[103]
F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New Frontiers in Quantum Cascade Lasers and Applications,” IEEE J. Select. Topics Quantum Electron., vol. 6, no. 6, pp. 931–947, 2000.
[104]
A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully Automatized Quantum Cascade Laser Design by Genetic Optimization,” Appl. Phys. Lett., vol. 101, no. 2, p. 021103, 2012.
[105]
J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-Continuum and Two-Phonon Resonance, Quantum-Cascade Lasers for High Duty Cycle, High-Temperature Operation,” IEEE J. Quantum Electron., vol. 38, no. 6, pp. 533–546, 2002.
[106]
Q. J. Wang, C. Pflugl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “High Performance Quantum Cascade Lasers Based on Three-Phonon-Resonance Design,” Appl. Phys. Lett., vol. 94, no. 1, p. 011103 (3pp), 2009.
[107]
Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken, and M. Razeghi, “Highly Temperature Insensitive Quantum Cascade Lasers,” Appl. Phys. Lett., vol. 97, no. 25, p. 251104 (3pp), 2010.
[108]
C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent Progress in Quantum Cascade Lasers and Applications,” Rep. Prog. Phys., vol. 64, no. 11, pp. 1533–1601, 2001.
[109]
J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. G. Chu, and A. Y. Cho, “High Power Mid-Infrared (λ ∼ 5 µ m) Quantum Cascade Lasers Operating Above Room Temperature,” Appl. Phys. Lett., vol. 68, no. 26, pp. 3680–3682, 1996.
[110]
C. Gmachl, F. Capasso, A. Tredicucci, D. L. Sivco, R. Köhler, A. L. Hutchinson, and A. Y. Cho, “Dependence of the Device Performance on the Number of Stages in Quantum-Cascade Lasers,” IEEE J. Select. Topics Quantum Electron., vol. 5, no. 3, pp. 808–816, 1999.
[111]
C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Cho, “Resonant Tunneling in Quantum Cascade Lasers,” IEEE J. Quantum Electron., vol. 34, no. 9, pp. 1722–1729, 1998.
[112]
G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-Power Infrared (8-Micrometer Wavelength) Superlattice Lasers,” Science, vol. 276, no. 5313, pp. 773–776, 1997.
[113]
J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertsen, and A. Y. Cho, “Quantum Cascade Lasers without Intersubband Population Inversion,” Phys. Rev. Lett., vol. 76, no. 3, pp. 411–414, 1996.
[114]
M. Helm, “Infrared Spectroscopy and Transport of Electrons in Semiconductor Superlattices,” Semiconductor Science and Technology, vol. 10, no. 5, p. 557, 1995.
[115]
J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Laser Action by Tuning the Oscillator Strength,” Nature, vol. 387, no. 6635, pp. 777–782, 1997.
[116]
C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Bidirectional Semiconductor Laser,” Science, vol. 286, no. 5440, pp. 749–752, 1999.
[117]
R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How Many-Particle Interactions Develop After Ultrafast Excitation of an Electron-Hole Plasma,” Nature, vol. 414, no. 6861, pp. 286–289, 2001.
[118]
R. Torre, P. Bartolini, and R. Righini, “Structural Relaxation in Supercooled Water by Time-Resolved Spectroscopy,” Nature, vol. 428, no. 6980, pp. 296–299, 2004.
[119]
P. Loza-Alvarez, C. T. A. Brown, D. T. Reid, W. Sibbett, and M. Missey, “High-Repetition-Rate Ultrashort-Pulse Optical Parametric Oscillator Continuously Tunable From 2.8 to 6.8 µm,” Opt. Lett., vol. 24, no. 21, pp. 1523–1525, 1999.
[120]
W. S. Warren, H. Rabitz, and M. Dahleh, “Coherent Control of Quantum Dynamics: The Dream is Alive,” Science, vol. 259, no. 5101, pp. 1581–1589, 1993.
[121]
H. Okamoto and M. Tasumi, “Generation of Ultrashort Light Pulses in the Mid-Infrared (3000−800 cm−1) by four-wave mixing,” Optics Communications, vol. 121, no. 1–3, pp. 63–68, 1995.
[122]
T. Udem, R. Holzwarth, and T. W. Hansch, “Optical Frequency Metrology,” Nature, vol. 416, no. 6877, pp. 233–237, 2002.
[123]
C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-Locked Pulses from Mid-Infrared Quantum Cascade Lasers,” Opt. Express, vol. 17, no. 15, pp. 12 929–12 943, 2009.
[124]
C. Gmachl, D. L. Sivco, R. Colombelli, and F. C. A. Y. Cho, “Ultra-Broadband Semiconductor Laser,” Nature, vol. 415, no. 6874, pp. 883–887, 2002.
[125]
C. Y. Wang, L. Diehl, A. Gordon, C. Jirauschek, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, M. Troccoli, J. Faist, and F. Capasso, “Coherent Instabilities in a Semiconductor Laser with Fast Gain Recovery,” Phys. Rev. A, vol. 75, no. 3, p. 031802, 2007.
[126]
A. Gordon, C. Y. Wang, L. Diehl, F. X. K. a, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Trocolli, J. Faist, and F. Capasso, “Multimode Regimes in Quantum Cascade Lasers: From Coherent Instabilities to Spatial Hole Burning,” Phys. Rev. A, vol. 77, no. 5, p. 053804, 2008.
[127]
H. Choi, T. B. Norris, T. Gresch, M. Giovannini, J. Faist, L. Diehl, and F. Capasso, “Femtosecond Dynamics of Resonant Tunneling and Superlattice Relaxation in Quantum Cascade Lasers,” Appl. Phys. Lett., vol. 92, no. 12, p. 122114 (3pp), 2008.
[128]
H. A. Haus, “Mode-Locking of Lasers,” IEEE J. Select. Topics Quantum Electron., vol. 6, no. 6, pp. 1173–1185, 2000.
[129]
A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, “Electronic Structure of Monolayer Hexagonal Boron Nitride Physisorbed on Metal Surfaces,” Phys. Rev. Lett., vol. 75, no. 21, p. 3918 (4pp), 1995.
[130]
T. Wehling, K. Novoselov, S. Morozov, E. Vdovin, M. Katsnelson, A. Geim, and A. Lichtenstein, “Molecular Doping of Graphene,” Nano Lett., vol. 8, no. 1, pp. 173–177, 2008.
[131]
F. Zheng, K.-I. Sasaki, R. Saito, W. Duan, and B.-L. Gu, “Edge States of Zigzag Boron Nitride Nanoribbons,” J. Phys. Soc. Jpn., vol. 78, no. 7, pp. 074 713–1–074 713–6, 2009.
[132]
Y. Ding, Y. Wang, and J. Ni, “Electronic Properties of Graphene Nanoribbons Embeded in Boron Nitride Sheets,” Appl. Phys. Lett., vol. 95, p. 123105 (3pp), 2009.
[133]
X. Gao, Z. Zhou, Y. Zhao, S. Nagase, S. B. Zhang, and Z. Chen, “Comparative Study of Carbon and BN Nanographenes: Ground Electronic States and Energy Gap Engineering,” J. Phys. Chem. C, vol. 112, no. 33, p. 12677 (6pp), 2008.
[134]
L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, “Atomic Layers of Hybridized Boron Nitride and Graphene Domains,” Nature Mater., vol. 9, no. 5, pp. 430–435, 2010.
[135]
G. Seol and J. Guo, “Bandgap Opening in Boron Nitride Confined Armchair Graphene Nanoribbon,” Appl. Phys. Lett., vol. 98, no. 14, p. 143107 (3pp), 2011.
[136]
H. Nematian, M. Moradinasab, M. Pourfath, M. Fathipour, and H. Kosina, “Optical Properties of Armchair Graphene Nanoribbons Embedded in Hexagonal Boron Nitride Lattices,” J. Appl. Phys., vol. 111, no. 9, p. 512 (6pp), 2012.
[137]
T. van Mourik, M. Bühl, and M. P. Gaigeot, “Density Functional Theory Across Chemistry, Physics and Biology,” Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, vol. 372, pp. 1–5, 2011.
[138]
F. N. Ajeel, A. M. Khudhair, and A. A. Mohammed, “Density Functional Theory Investigation of the Physical Properties of Dicyano Pyridazine Molecules,” International Journal of Science and Research (IJSR), vol. 4, no. 1, pp. 2334–2339, 2015.
[139]
H. N. Najeeb, “Density Functional Theory and Semi-Empirical Investigations of Amino Tetrahydrofuran Molecules,” Physics and Materials Chemistry, vol. 1, no. 2, pp. 21–26, 2013.
[140]
H. Dorsett and A. White, Overview of Molecular Modelling and Ab Initio Molecular Orbital Methods Suitable for Use with Energetic Materials.1em plus 0.5em minus 0.4emAustralia: DSTO Aeronautical and Maritime Research Laboratory, 2000.
[141]
M. Orio, A. Dimitrios, D. A. Pantazis, and F. Neese, “Density Functional Theory,” Photosynthesis research, vol. 102, no. 2-3, pp. 443–453, 2009.
[142]
E. Engel and R. M. Dreizler, Density Functional Theory.1em plus 0.5em minus 0.4emSpringer, 2011.
[143]
J. B. Staunton, “The Electronic Structure of Magnetic Transition Metallic Materials,” Reports on Progress in Physics, vol. 57, no. 12, p. 1289 (57pp), 1994.
[144]
P. Elliott and K. Burke, “Non-Empirical Derivation of the Parameter in the B88 Exchange Functional,” Canadian Journal of Chemistry, vol. 87, no. 10, pp. 1485–1491, 2009.
[145]
J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, and G. I.Csonka, “Prescription for the Design and Selection of Density Functional Approximations: More Constraint Satisfaction with Fewer Fits,” The Journal of Chemical Physics, vol. 123, no. 6, p. 062201 (9pp), 2005.
[146]
C. Fiolhais, F. Nogueira, and M. A. L. Marques, Eds., A Primer in Density Functional Theory.1em plus 0.5em minus 0.4emSpringer Berlin Heidelberg, 2003.
[147]
J. P. Perdew, J. A. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation,” Phys. Rev. B, vol. 46, no. 11, pp. 6671–6687, 1992.
[148]
A. D. Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior,” Phys. Rev. A, vol. 38, no. 6, pp. 3098–3100.
[149]
D. C. Langreth and M. J. Mehl, “Beyond the Local-Density Approximation in Calculations of Ground-State Electronic Properties,” Phys. Rev. B, vol. 28, no. 4, pp. 1809–1834, 1983.
[150]
P. T. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties.1em plus 0.5em minus 0.4emBerlin: Springer, 2001.
[151]
H. Hsu and L. E. Reichl, “Selection Rule for the Optical Absorption of Graphene Nanoribbons,” Phys. Rev. B, vol. 76, no. 4, p. 045418 (5pp), 2007.
[152]
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera1, P. Ordejón, and D. Sánchez-Portal, “The SIESTA Method for Ab Initio Order-N Materials Simulation,” J. Phys.: Condens. Matter, vol. 14, pp. 2745–2779, 2002.
[153]
R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical Properties of Carbon Nanotubes.1em plus 0.5em minus 0.4emLondon: Imperial College Press, 1998.
[154]
Y. Hancock, A. Uppstu, K. Saloriutta, A. Harju, and M. J. Puska, “Generalized Tight-Binding Transport Model for Graphene Nanoribbon-Based Systems,” Phys. Rev. B, vol. 81, p. 245402 (6pp), 2010.
[155]
D. Gunlycke and C. White, “Tight-Binding Energy Dispersions of Armchair-Edge Graphene Nanostrips,” Phys. Rev. B, vol. 77, p. 115116 (6pp), 2008.
[156]
M. Freitag, Y. Martin, J. Misewich, R. Martel, and P. Avouris, “Photoconductivity of Single Carbon Nanotubes,” Nano Lett., vol. 3, no. 8, pp. 1067–1071, 2003.
[157]
S. Tasaki, K. Maekawa, and T. Yamabe, “π-Band Contribution to the Optical Properties of Carbon Nanotubes: Effects of Chirality,” Phys. Rev. B, vol. 57, no. 15, pp. 9301–9318, 1998.
[158]
A. Grüneis, R. Saito, G. G. Samsomidze, T. Kimura, M. A. Pimenta, A. Jorio, A. G. S. Filho, G. D. Dresselhaus, and M. S. Dresselhaus, “Inhomogeneous Optical Absorption Around the K Point in Graphite and Carbon Nanotubes,” Phys. Rev. B, vol. 67, p. 165402 (7pp), 2003.
[159]
M. Pourfath, Non-Equilibrium Green’s Function Method for Nanoscale Device Simulation.1em plus 0.5em minus 0.4emVienna: Springer, 2014.
[160]
L. E. Henrickson, “Nonequilibrium Photocurrent Modeling in Resonant Tunneling Photodetectors,” J. Appl. Phys., vol. 91, no. 10, pp. 6273–6281, 2002.
[161]
D. A. Stewart and F. Leonard, “Photocurrents in Nanotube Junctions,” Phys. Rev. Lett., vol. 93, no. 10, p. 107401, 2004.
[162]
G. Dresselhaus and M. S. Dresselhaus, “Fourier Expansion for the Electronic Energy Bands in Silicon and Germanium,” Phys. Rev., vol. 160, no. 3, pp. 649–679, 1967.
[163]
T. G. Pedersen, K. Pedersen, and T. B. Kriestensen, “Optical Matrix Elements in Tight-Binding Calculations,” Phys. Rev. B, vol. 63, p. 201101 (4pp), 2001.
[164]
U. Aeberhard and H. Morf, “Microscopic Momequilibrium Theory of Quantum Well Solar Cells,” Phys. Rev. B, vol. 77, p. 125343 (9pp), 2008.
[165]
R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, “Single and Multiband Modeling of Quantum Electron Transport Through Layered Semiconductor Devices,” J. Appl. Phys., vol. 81, no. 12, pp. 7845–7869, 1997.
[166]
D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy: Introduction to Vibrational and Electronic Spectroscopy.1em plus 0.5em minus 0.4emCourier Dover Publications, 1989.
[167]
S. V. Goupalov, “Optical Transitions in Carbon Nanotubes,” Phys. Rev. B, vol. 72, p. 195403 (5pp), 2005.
[168]
H. Zheng, Z. Wang, T. Luo, Q. Shi, and J. Chen, “Analytical Study of Electronic Structure in Armchair Graphene Nanoribbons,” Phys. Rev. B, vol. 75, no. 16, p. 165414 (6pp), 2007.
[169]
K. i. Sasaki, K. Kato, Y. Tokura, K. Oguri, and T. Sogawa, “Theory of Optical Transitions in Graphene Nanoribbons,” Phys. Rev. B, vol. 84, p. 085458 (11pp), 2011.
[170]
H. C. Chung, M. H. Lee, C. P. Chang, and M. F. Lin, “Exploration of Edge-Dependent Optical Selection Rules for Graphene Nanoribbons,” Opt. Express, vol. 19, no. 23, pp. 23 350–23 363, 2011.
[171]
M. Pourfath, O. Baumgartner, S. Kosina, and S. Selberherr, “Performance Evaluation of Graphene Nanoribbon Infrared Photodetectors,” in Proceedings of the 9th International Conference on Numerical Simulation of Optoelectronic Devices, Gwangju, 2009, pp. 13–14, Talk: Numerical Simulation of Optoelectronic Devices (NUSOD).
[172]
K. Wakabayashi, K. I. Sasaki, T. Nakanishi, and T. Enoki, “Electronic States of Graphene Nanoribbons and Analytical Solutions,” , vol. 11, p. 054504 (18pp), 2010.
[173]
A. K. Gupta, O. E. Alon, and N. Moiseyev, “Generation and Control of High-Order Harmonics by the Interaction of an Infrared Laser with a Thin Graphite Layer,” Phys. Rev. B, vol. 68, p. 205101 (13pp), 2003.
[174]
L. Esaki and L. L. Chang, “New Transport Phenomenon in a Semiconductor "Superlattice",” Phys. Rev. Lett., vol. 33, no. 8, pp. 495–498, 1974.
[175]
L. L. Chang, L. Esaki, and R. Tsu, “Resonant Tunneling in Semiconductor Double Barriers,” Appl. Phys. Lett., vol. 24, no. 12, pp. 593–595, 1974.
[176]
S. Ciraci and I. P. Batra, “Long-Range Order and Segregation in Semiconductor Superlattices,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2114–2117, 1987.
[177]
——, “Self-Consistent Study of Confined States in Thin GaAs-AlAs Superlattices,” Phys. Rev. B, vol. 36, no. 2, pp. 1225–1232, 1987.
[178]
Y.-W. Son, M. Cohen, and S. Louie, “Half-Metallic Graphene Nanoribbons,” Nature (London), vol. 444, no. 7117, pp. 347–349, 2006.
[179]
A. Y. Goharrizi, M. Pourfath, M. Fathipour, H. Kosina, and S. Selberherr, “An Analytical Model for Line-Edge Roughness Limited Mobility of Graphene Nanoribbons,” IEEE Trans. Electron Devices, vol. 58, no. 11, pp. 3725–3735, 2011.
[180]
Y. Yang and R. Murali, “Impact of Size Effect on Graphene Nanoribbon Transport,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 237–239, 2010.
[181]
A. Y. Goharrizi, M. Pourfath, M. Fathipour, H. Kosina, and S. Selberherr, “A Numerical Study of Line-Edge Roughness Scattering in Graphene Nanoribbons,” IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 433–440, 2012.
[182]
D. Gunlycke and C. T. White, “Scaling of the Localization Length in Armchair-Edge Graphene Nanoribbons,” Phys. Rev. B, vol. 81, p. 075434 (6pp), 2010.
[183]
S. Dubois, A. Lopez-Bezanilla, A. Cresti, F. Triozon, B. Biel, J. Charlier, and S. Roche, “Quantum Transport in Graphene Nanoribbons: Effects of Edge Reconstruction and Chemical Reactivity,” ACS Nano, vol. 4, no. 4, pp. 1971–1976, 2010.
[184]
A. Y. Goharrizi, M. Pourfath, M. Fathipour, and H. Kosina, “Device Performance of Graphene Nanoribbon Field-Effect Transistors in the Presence of Line-Edge Roughness,” IEEE Trans. Electron Devices, vol. 59, no. 12, pp. 3527–3532, 2012.
[185]
Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-Infrared Quantum Cascade Lasers,” Nature Photonics, vol. 6, no. 7, pp. 432–439, 2012.
[186]
J. R. Freeman, J. Maysonnave, H. E. Beere, D. A. Ritchie, J. Tignon, and S. S. Dhillon, “Electric Field Sampling of Modelocked Pulses from a Quantum Cascade Laser,” Opt. Express, vol. 21, no. 13, pp. 16 162–16 169, 2013.
[187]
J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum Generation in Photonic Crystal Fiber,” Rev. Mod. Phys., vol. 78, no. 4, pp. 1135–1184, 2006.
[188]
E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent Soft X-Ray Generation in the Water Window with Quasi-Phase Matching,” Science, vol. 302, no. 5642, pp. 95–98, 2003.
[189]
R. Paiella, F. Capasso, C. Gmachl, H. Hwang, D. Sivco, A. Hutchinson, A. Y. Cho, and H. C. Liu, “Monolithic Active Mode Locking of Quantum Cascade Lasers,” Appl. Phys. Lett., vol. 77, no. 2, pp. 169–171, 2000.
[190]
R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Bailargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Self-Mode-Locking of Quantum Cacade Lasers with Giant Ultrafast Optical Nonlinearities,” Science, vol. 290, pp. 1739–1742, 2001.
[191]
V.-M. Gkortsas, C. Wang, L. Kuznetsova, L. Diehl, A. Gordon, C. Jirauschek, M. A. Belkin, A. Belyanin, F. Capasso, and F. X. Kärtner, “Dynamics of Actively Mode-Locked Quantum Cascade Lasers,” Opt. Express, vol. 18, no. 13, pp. 13 616–13 630, 2010.
[192]
A. Daničić, J. Radovanović, V. Milanović, D. Indjin, and Z. Ikonić, “Optimization and Magnetic-Field Tunability of Quantum Cascade Laser for Applications in Trace Gas Detection and Monitoring,” J. Phys. D: Appl. Phys., vol. 43, no. 4, p. 045101, 2010.
[193]
M. T. Arafin, N. Islam, S. Roy, and S. Islam, “Performance Optimization for Terahertz Quantum Cascade Laser at Higher Temperature Using Genetic Algorithm,” Opt. Quant. Electron., vol. 44, no. 15, pp. 701–715, 2012.
[194]
M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science, vol. 295, no. 5553, pp. 301–305, 2002.
[195]
Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room Temperature Quantum Cascade Lasers with 27% Wall Plug Efficiency,” Appl. Phys. Lett., vol. 98, no. 18, p. 181102, 2011.
[196]
R. Maulini, A. Lyakh, A. Tsekoun, R. Go, and C. K. N. Patel, “High Average Power Uncooled Mid-Wave Infrared Quantum Cascade Lasers,” Electronics Letters, vol. 47, no. 6, pp. 395–397, 2011.
[197]
P. A. Sanchez-Serrano, D. Wong-Campos, S. Lopez-Aguayo, and J. C. Gutiérrez-Vega, “Engineering of Nondiffracting Beams with Genetic Algorithms,” Opt. Lett., vol. 37, no. 24, pp. 5040–5042, 2012.
[198]
D. Gagnon, J. Dumont, and L. J. Dubé, “Multiobjective Optimization in Integrated photonics Design,” Opt. Lett., vol. 38, no. 13, pp. 2181–2184, 2013.
[199]
R. Poli, J. Kennedy, and T. Blackwell, “Particle Swarm Optimization,” Swarm Intelligence, vol. 1, no. 1, pp. 33–57, 2007.
[200]
F. Grimaccia, M. Mussetta, and R. E. Zich, “Genetical Swarm Optimization: Self-Adaptive Hybrid Evolutionary Algorithm for Electromagnetics,” Antennas and Propagation, IEEE Transactions on, vol. 55, no. 3, pp. 781–785, 2007.
[201]
R. Y. Wang, W. P. Lee, and Y. T. Hsiao, “A New Cooperative PSO Approach for the Optimization of Multimodal Functions,” in Proceedings of the World Congress on Engineering, 2012, WCE, 2012, pp. 418–424.
[202]
D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, “Self-Consistent Scattering Theory of Transport and Output Characteristics of Quantum Cascade Lasers,” J. Appl. Phys., vol. 91, no. 11, pp. 9019–9026, 2002.
[203]
C. Wang, F. Grillot, V. I. Kovanis, J. D. Bodyfelt, and J. Even, “Modulation Properties of Optically Injection-Locked Quantum Cascade Lasers,” Opt. Lett., vol. 38, no. 11, pp. 1975–1977, 2013.
[204]
G. Milovanovic and H. Kosina, “A Semiclassical Transport Model for Quantum Cascade Lasers Based on the Pauli Master Equation,” J. Comp. Electronics, vol. 9, no. 3-4, pp. 211–217, 2010.
[205]
R. Terazzi and J. Faist, “A Density Matrix Model of Transport and Radiation in Quantum Cascade Lasers,” New J. Phys., vol. 12, no. 3, p. 033045, 2010.
[206]
T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of Nonequilibrium Quantum Transport and Energy Dissipation in Terahertz Quantum Cascade Lasers,” Phys. Rev. B, vol. 79, p. 195323, 2009.
[207]
A. Wacker, M. Lindskog, and D. O. Winge, “Nonequilibrium Green’s Function Model for Simulation of Quantum Cascade Laser Devices Under Operating Conditions,” IEEE J. Select. Topics Quantum Electron., vol. 19, no. 5, pp. 1–11, 2013.
[208]
G. Beji, Z. Ikonić, C. A. Evans, D. Indjin, and P. Harrison, “Coherent Transport Description of the Dual-Wavelength Ambipolar Terahertz Quantum Cascade Laser,” J. Appl. Phys., vol. 109, no. 1, p. 013111, 2011.
[209]
O. Baumgartner, Z. Stanojevic, and H. Kosina, “Efficient Simulation of Quantum Cascade Lasers Using the Pauli master Equation,” in Simulation of Semiconductor Processes and Devices (SISPAD), 2011, pp. 91–94.
[210]
R. C. Iotti and F. Rossi, “Nature of Charge Transport in Quantum-Cascade Lasers,” Phys. Rev. Lett., vol. 87, no. 14, p. 146603 (4pp), 2001.
[211]
C. Weber, A. Wacker, and A. Knorr, “Density-Matrix Theory of the Optical Dynamics and Transport in Quantum Cascade Structures: The Role of Coherence,” Phys. Rev. B, vol. 79, no. 16, p. 165322 (14pp), 2009.
[212]
M. V. Fischetti, “Master-Equation Approach to the Study of Electronic Transport in Small Semiconductor Devices,” Phys. Rev. B, vol. 59, no. 7, pp. 4901–4917, 1999.
[213]
M. Karner, A. Gehring, S. Holzer, M. Pourfath, M. Wagner, W. Goes, M. Vasicek, O. Baumgartner, C. Kernstock, K. Schnass, G. Zeiler, T. Grasser, H. Kosina, and S. Selberherr, “VSP-A Multi-Purpose Schrödinger-Poisson Solver for TCAD Applications,” J. Comp. Electronics, vol. 6, no. 1-3, pp. 179–182, 2007.
[214]
O. Baumgartner, Z. Stanojevic, K. Schnass, M. Karner, and H. Kosina, “VSP -a Quantum-Electronic Simulation Framework,” Journal of Computational Electronics, vol. 12, no. 4, pp. 701–721, 2013.
[215]
C. Jirauschek, G. Scarpa, P. Lugli, M. Vitiello, and G. Scamarcio, “Comparative Analysis of Resonant Phonon THz Quantum Cascade Lasers,” J. Appl. Phys., vol. 101, no. 8, p. 086109 (3pp), 2007.
[216]
R. C. Iotti, E. Ciancio, and F. Rossi, “Quantum Transport Theory for Semiconductor Nanostructures: A Density-Matrix Formulation,” Phys. Rev. B, vol. 72, no. 12, p. 125347 (21pp), 2005.
[217]
O. Baumgartner, Z. Stanojevic, and H. Kosina, Monte Carlo Methods and Applications, K. K. Sabelfeld and I. Dimov, Eds.1em plus 0.5em minus 0.4emBerlin: De Gruyter, 2012.
[218]
E. S. Peer, F. van den Bergh, and A. Engelbrecht, “Using Neighbourhoods with the Guaranteed Convergence PSO,” in Swarm Intelligence Symposium, 2003. SIS ’03. Proceedings of the 2003 IEEE, 2003, pp. 235–242.
[219]
Y. Shi and R. Eberhart, “A Modified Particle Swarm Optimizer,” in Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, 1998, pp. 69–73.
[220]
J. Faist, Quantum Cascade Lasers.1em plus 0.5em minus 0.4emOxford: Oxford University Press, 2013.
[221]
C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-Power λ ≈ 8 µ m Quantum Cascade Lasers with Near Optimum Performance,” Appl. Phys. Lett., vol. 72, no. 24, pp. 3130–3132, 1998.
[222]
S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, “Continuous-Wave Operation of Terahertz Quantum-Cascade Lasers Above Liquid-Nitrogen Temperature,” Appl. Phys. Lett., vol. 84, no. 14, pp. 2494–2496, 2004.
[223]
A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of Doping on the Performance of Terahertz Quantum-Cascade Lasers,” Appl. Phys. Lett., vol. 90, no. 10, p. 101107 (3pp), 2007.
[224]
H. Risken and K. Nummedal, “Self-Pulsing in Lasers,” J. Appl. Phys., vol. 39, no. 10, pp. 4662–4672, 1968.
[225]
R. Graham and H. Haken, “Quantum Theory of Light Propagation in a Fluctuating Laser-Active Medium,” Zeitschrift für Physik, vol. 213, no. 5, pp. 420–450, 1968.
[226]
B. F. Levine, K. K. Choi, C. Bethea, J. Walker, and R. J. Malik, “New 10 µm Infrared Detector Using Intersubband Absorption in Resonant Tunneling GaAlAs Superlattices,” Appl. Phys. Lett., vol. 50, no. 16, pp. 1092–1094, 1987.
[227]
F. R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H. E. Beere, D. A. Ritchie, E. Linfield, A. G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum Cascade Detectors,” IEEE J. Quantum Electron., vol. 45, no. 8, pp. 1039–1052, 2009.
[228]
H. Schneider, P. Koidl, F. Fuchs, B. Dischler, K. Schwarz, and J. D. Ralston, “Photovoltaic Intersubband Detectors for 3−5 µm Using GaAs Quantum Wells Sandwiched Between AlAs Tunnel Barriers,” Semiconductor Science and Technology, vol. 6, no. 12C, pp. C120–C123, 1991.
[229]
H. Schneider, K. Kheng, M. Ramsteiner, J. D. Ralston, F. Fuchs, and P. Koidl, “Transport Asymmetry and Photovoltaic Response in (AlGa)As/AlAs/GaAs/(AlGa)As Single-Barrier Quantum-Well Infrared Detectors,” Appl. Phys. Lett., vol. 60, no. 12, pp. 1471–1473, 1992.
[230]
H. Schneider, “Optimized Performance of Quantum Well Intersubband Infrared Detectors: Photovoltaic Versus Photoconductive Operation,” J. Appl. Phys., vol. 74, no. 7, pp. 4789–4791, 1993.
[231]
D. Hofstetter, M. Beck, and J. Faist, “Quantum-Cascade-Laser Structures as Photodetectors,” Appl. Phys. Lett., vol. 81, no. 15, pp. 2683–2685, 2002.
[232]
L. Gendron, M. Carras, A. Huynh, V. Ortiz, C. Koeniguer, and V. Berger, “Quantum Cascade Photodetector,” Appl. Phys. Lett., vol. 85, no. 14, pp. 2824–2826, 2004.


Previous Up Next