next up previous contents
Next: 4.1.3 Introduction of Triangle Up: 4.1 Two-Dimensional Scalar Finite Previous: 4.1.1 Domain Discretization   Contents


4.1.2 Linear Shape Functions on Triangular Elements

Figure 4.1: Triangular element.
\includegraphics[width=14cm]{figures/fem/triangle.eps}

The triangular element and the corresponding notations used in this work are shown in Fig. <4.1>. The well known linear approximation of an unknown function $ \phi$ within a triangle is given by

$\displaystyle \phi(x,y) = a + bx + cy.$ (4.25)

The linear element form functions will be obtained from this approximation. Assume the values of $ \phi$ on the nodes of the triangle are known. The nodes are numbered by $ 1$ , $ 2$ and $ 3$ as in Fig. <4.1>, and the corresponding field values are $ \phi_1$ , $ \phi_2$ and $ \phi_3$ . The coefficients $ a$ , $ b$ and $ c$ are determined by the system

\begin{displaymath}\begin{split}\phi_1& = a + bx_1 + cy_1  \phi_2& = a + bx_2 + cy_2  \phi_3& = a + bx_3 + cy_3, \end{split}\end{displaymath} (4.26)

where $ x_i$ and $ y_i$ are the coordinates of the i-th node in the element. Solving (4.26) for $ a$ , $ b$ , and $ c$ leads to

\begin{displaymath}\begin{split}a & = \frac{1}{J}\left\vert \begin{array}{ccc} \...
...\phi_1 + (x_1 - x_3)\phi_2 + (x_2 - x_1)\phi_3}{J}. \end{split}\end{displaymath} (4.27)

$ J$ is the so called Jacobi determinant

$\displaystyle J = \left\vert \begin{array}{ccc} 1 & x_1 & y_1  1 & x_2 & y_2 ...
...ot\vec{e}_z = \left(\vec{r}_{31}\times\vec{r}_{12}\right)\cdot\vec{e}_z = 2F_e,$ (4.28)

where $ F_e$ is the area of the triangular element and $ \vec{r}_{ij} = \vec{r}_j - \vec{r}_i$ with $ \vec{r}_i = x_i\vec{e}_x + y_i\vec{e}_y$ . With back substituting of $ a$ , $ b$ , and $ c$ from (4.27) into (4.25) $ \phi$ is written in the form

\begin{displaymath}\begin{split}\phi(x,y)& = \frac{x_2y_3 - x_3y_2 + (y_2 - y_3)...
...phi_3   =   \sum^3_{i=1}\lambda^e_i(x,y) \phi_i, \end{split}\end{displaymath} (4.29)

which gives the element shape functions $ \lambda^e_i$ .


next up previous contents
Next: 4.1.3 Introduction of Triangle Up: 4.1 Two-Dimensional Scalar Finite Previous: 4.1.1 Domain Discretization   Contents

A. Nentchev: Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements