next up previous contents
Next: B3. Two Norm Up: B. Optimization Previous: B1. Jacobian Matrix


B2. Hessian Matrix

The Hessian matrix $\mathop{\nabla }\nolimits ^2 r(\vec{x})$ of a scalar function $r(\vec{x})$ ( $\vec{x} \in \mathbb{R}^{n}$) is defined by the n x n matrix built out of the second partial derivatives


\begin{displaymath}
\mathop{\nabla }\nolimits ^2 r(\vec{x}) =
\left (
\beg...
...tial^2 r(\vec{x})}{\partial x_n^2} \\
\end{array} \right )
.
\end{displaymath} (B3)

The Hessian matrix of the scalar function $r(\vec{x})$ is the Jacobian matrix of the gradient $\mathop{\nabla }\nolimits r(\vec{x})$.




R. Plasun