next up previous contents
Next: D5. Example Up: D. Design of Experiments Previous: D3. Transformations

D4. Designs

The design is defined by a shortcut for the design name and additional attributes (<shortcut> [<attribute>]). A list of available design types and shortcuts is listed in Table D.3. In Table D.4 the attribute types are explained.


Table D.3: Available experimental design types
Parameter Description
NOM Nominal Design
SA <num> Screening Analysis
FUL <cp> Full Factorial Design
CCF <cp> Central Composite Face-centered Design
CCC <cp> Central Composite Circumscribed Design
CCI <cp> Central Composite Inscribed Design
RND <seed> <num> Random Design
GR <seed> <num> Gauß Random Design
DIA <num> Diagonal Design
GRI <steps> Full Grid Design
G2D <steps> <dim1> <dim2> 2D - Grid Design
LAT <seed> <num> Latin Hypercube Design
FRA <cp> <string> Fractional Factorial Design
PLA <cp> Plackett-Burman Design
OME Orthogonal Main Effect Design
SUP [<1/-1>] Supplementary Design


Table D.4: Explanation of the attributes following the design type.
Parameter Description
<cp> Number of center points.
<seed> Start value for randomizer.
<num> Number of experiments.
<steps> Number of steps per dimension
<dim1> <dim2> Index of the first and second dimension.
<string> In this string the indices are defined. ( "12(3)")
<1/-1> This defines if the value of the supplemented parameter was on maximum or minimum boundary in the previous design. Default is the nominal value.


next up previous contents
Next: D5. Example Up: D. Design of Experiments Previous: D3. Transformations

R. Plasun