Bibliography

1
"International Technology Roadmap for Semiconductors - 2005 Edition," tech. rep., Semiconductor Industry Association, 2005.
http://public.itrs.net.

2
S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature (London), vol. 354, no. 6348, pp. 56-58, 1991.

3
R. Martel, T. Schmidt, H. Shea, T. Hertel, and P. Avouris, "Single- and Multi-Wall Carbon Nanotube Field-Effect Transistors," Appl.Phys.Lett., vol. 73, no. 17, pp. 2447-2449, 1998.

4
S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Room-Temperature Transistor Based on a Single Carbon Nanotube," Nature (London), vol. 393, no. 6680, pp. 49-52, 1998.

5
J. Guo, S. Datta, and M. Lundstrom, "A Numerical Study of Scaling Issues for Schottky Barrier Carbon Nanotube Transistors," IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 172-177, 2004.

6
M. Freitag, Y. Martin, J. Misewich, R. Martel, and P. Avouris, "Photoconductivity of Single Carbon Nanotubes," Nano Lett., vol. 3, no. 8, pp. 1067-1071, 2003.

7
M. Freitag, J. Chen, J. Tersoff, J. Tsang, Q. Fu, J. Liu, and P. Avouris, "Mobile Ambipolar Domain in Carbon-Nanotube Infrared Emitters," Phys.Rev.Lett., vol. 93, p. 076803, 2004.

8
A. Svizhenko, M. P. Anantram, T. R. Govindan, B. Biegel, and R. Venugopal, "Two-Dimensional Quantum Mechanical Modeling of Nanotransistors," J.Appl.Phys., vol. 91, no. 4, pp. 2343-2354, 2002.

9
R. Venugopal, Z. Ren, S. Datta, M. Lundstrom, and D. Jovanovic, "Simulating Quantum Transport in Nanoscale Transistors: Real Versus Mode-Space Approaches," J.Appl.Phys., vol. 92, no. 7, pp. 3730-3739, 2002.

10
A. Svizhenko and M. Anantram, "Effect of Scattering and Contacts on Current and Electrostatics in Carbon Nanotubes," Phys.Rev.B, vol. 72, p. 085430, 2005.

11
Y. Xue, S. Datta, and M. A. Ratner, "First-Principles Based Matrix Green's Function Approach to Molecular Electronic Devices: General Formalism," Chem.Phys., vol. 281, no. 2-3, pp. 151-170, 2002.

12
R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical Properties of Carbon Nanotubes.
London: Imperial College Press, 1998.

13
M. Endo, Mecanisme de Croissance en Phase Vapeur de Fibres de Carbone (The Growth Mechanism of Vapor-Grown Carbon Fibers).
Dissertation, University of Orleans, Orleans, France, 1975.

14
A. Oberlin, M. Endo, and T. Koyama, "Filamentous Growth of Carbon through Benzene Decomposition," J.Cryst.Growth, vol. 32, no. 3, pp. 335-349, 1976.

15
S. Iijima, "Direct Observation of the Tetrahedral Bonding in Graphitized Carbon Black by High Resolution Electron Microscopy," J.Cryst.Growth, vol. 55, no. 3, pp. 675-683, 1980.

16
M. S. Dresselhaus, G. Dresselhaus, and R. Saito, "Carbon Fibers Based on C60 and Their Symmetry ," Phys.Rev.B, vol. 45, no. 11, pp. 6234-6242, 1992.

17
J. W. Mintmire, B. I. Dunlap, and C. T. White, "Are Fullerene Tubules Metallic?," Phys.Rev.Lett., vol. 68, no. 5, pp. 631-634, 1992.

18
N. Hamada, S. Sawada, and A. Oshiyama, "New One-Dimensional Conductors: Graphitic Microtubules ," Phys.Rev.Lett., vol. 68, no. 10, pp. 1579-1581, 1992.

19
J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, "Electronic Structure of Atomically Resolved Carbon Nanotubes," Nature (London), vol. 391, no. 6662, pp. 59-62, 1998.

20
T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, "Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes," Nature (London), vol. 391, no. 6662, pp. 62-64, 1998.

21
R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, "Electronic Structure of Chiral Graphene Tubules," Appl.Phys.Lett., vol. 60, no. 18, pp. 2240-2206, 1992.

22
S. Reich, , C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties.
Weinheim, Cambridge: Wiley-VCH, 2004.

23
D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, "Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls," Nature (London), vol. 363, no. 6430, pp. 605-607, 1993.

24
A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, "Crystalline Ropes of Metallic Carbon Nanotubes," Science, vol. 273, no. 5274, pp. 483-487, 1996.

25
H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassell, S. Fan, and M. Chapline, "Controlled Chemical Routes to Nanotube Architectures, Physics, and Devices," J.Phys.Chem.B, vol. 103, no. 51, pp. 11246-11255, 1999.

26
S. Fan, M. Chapline, F. Franklin, T. Tombler, A. Cassell, and H. Dai, "Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties," Science, vol. 283, no. 5401, pp. 512-514, 1999.

27
A. M. Cassell, N. R. Franklin, T. W. Tombler, E. M. Chan, J. Han, and H. Dai, "Directed Growth of Free-Standing Single-Walled Carbon Nanotubes," J.Am.Chem.Soc., vol. 121, no. 34, pp. 7975-7976, 1999.

28
N. Franklin and H. Dai, "An Enhanced CVD Approach to Extensive Nanotube Networks with Directionality," Adv.Mater., vol. 12, no. 12, pp. 890-894, 2000.

29
R. A. Jishi, D. Inomata, K. Nakao, M. S. Dresselhaus, and G. Dresselhaus, "Electronic and Lattice Properties of Carbon Nanotubes," J.Phys.Soc.Jap., vol. 63, no. 6, pp. 2252-2260, 1994.

30
V. Popov, "Curvature Effects on the Structural, Electronic and Optical Properties of Isolated Single-Walled Carbon Nanotubes within a Symmetry-Adapted Non-Orthogonal Tight-Binding Model," New J.Phys., vol. 6, no. 17, pp. 1-17, 2004.

31
S. Reich and C. T. S. P. Ordejón, "Electronic Band Structure of Isolated and Bundled Carbon Nanotubes," Phys.Rev.B, vol. 65, p. 155411, 2002.

32
V. Zólyomi and J. Kürti, "First-Principles Calculations for the Electronic Band Structures of Small Diameter Single-Wall Carbon Nanotubes," Phys.Rev.B, vol. 70, p. 085403, 2004.

33
S. Datta, Quantum Transport: From Atoms to Transistors.
Cambridge, New York: Cambridge University Press, 2005.

34
J. W. Mintmire and C. White, "Universal Density of States for Carbon Nanotubes," Phys.Rev.Lett., vol. 81, no. 12, pp. 2506-2509, 1998.

35
A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, and Y. Nishina, "Evidence for Size-Dependent Discrete Dispersions in Single-Wall Nanotubes," Phys.Rev.Lett., vol. 78, no. 23, pp. 4434-4437, 1997.

36
S. Kazaoui, N. Minami, R. Jacquemin, and H. Kataura, "Amphoteric Doping of Single-Wall Carbon-Nanotube Thin Films as Probed by Optical Absorption Spectroscopy," Phys.Rev.B, vol. 60, no. 19, pp. 13339-13342, 1999.

37
R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, "Phonon Modes in Carbon Nanotubules," Chem.Phys.Lett., vol. 209, no. 1-2, pp. 77-82, 1993.

38
P. C. Eklunda, J. M. Holdena, and R. A. Jishi, "Vibrational Modes of Carbon Nanotubes; Spectroscopy and theory," Carbon, vol. 33, no. 7, pp. 959-972, 1995.

39
J. Yu, R. K. Kalia, and P. Vashishta, "Phonons in Graphitic Tubules: A Tight-Binding Molecular Dynamics Study," J.Chem.Phys, vol. 103, no. 15, pp. 6697-6705, 1995.

40
M. Menon, E. Richter, and K. R. Subbaswamy, "Structural and Vibrational Properties of Fullerenes and Nanotubes in a Nonorthogonal Tight-Binding Scheme," J.Chem.Phys, vol. 104, no. 15, pp. 5875-5882, 1995.

41
J. Kürti, G. Kresse, and H. Kuzmany, "First-Principles Calculations of the Radial Breathing Mode of Single-Wall Carbon Nanotubes," Phys.Rev.B, vol. 58, no. 14, pp. 8869-8872, 1998.

42
D. Sánchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejón, "Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes," Phys.Rev.B, vol. 59, no. 19, pp. 12678-12688, 1999.

43
O. Dubay, G. Kresse, and H. Kuzmany, "Phonon Softening in Metallic Nanotubes by a Peierls-like Mechanism," Phys.Rev.Lett., vol. 88, p. 235506, 2002.

44
O. Dubay and G. Kresse, "Accurate Density Functional Calculations for the Phonon Dispersion Relations of Graphite Layer and Carbon Nanotubes," Phys.Rev.B, vol. 67, p. 035401, 2003.

45
L.-H. Ye, B.-G. Liu, D.-S. Wang, and R. Han, "Ab Initio Phonon Dispersions of Single-Wall Carbon Nanotubes," Phys.Rev.B, vol. 69, p. 235409, 2004.

46
J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejón, "Phonon Dispersion in Graphite," Phys.Rev.B, vol. 92, p. 075501, 2004.

47
S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, "Kohn Anomalies and Electron-Phonon Interactions in Graphite," Phys.Rev.B, vol. 93, p. 185503, 2004.

48
K.-P. Bohnen, R. Heid, H. J. Liu, and C. T. Chan, "Lattice Dynamics and Electron-Phonon Interaction in (3,3) Carbon Nanotubes," Phys.Rev.Lett., vol. 93, p. 245501, 2004.

49
D. Connétable, G.-M. Rignanese, J.-C. Charlier, and X. Blase, "Room Temperature Peierls Distortion in Small Diameter Nanotubes," Phys.Rev.Lett., vol. 94, p. 015503, 2005.

50
V. N. Popov, V. E. V. Doren, and M. Balkanski, "Lattice Dynamics of Single-Walled Carbon Nanotubes," Phys.Rev.B, vol. 59, no. 13, pp. 8355-8358, 1999.

51
Z. M. Li, V. N. Popov, and Z. K. Tang, "A Symmetry-Adapted Force-Constant Lattice-Dynamical Model for Single-Walled Carbon Nanotubes," Solid-State Communications, vol. 130, no. 10, pp. 657-661, 2004.

52
I. Milo $ \check{\mathrm{s}}$evic, E. Dobard $ \check{\mathrm{z}}$ic, and M. Damnjanovic, "Phonons in Narrow Carbon Nanotubes," Phys.Rev.B, vol. 72, p. 085426, 2005.

53
C. Mapelli, C. Castiglioni, G. Zerbi, and K. Müllen, "Common Force Field for Graphite and Polycyclic Aromatic Hydrocarbons ," Phys.Rev.B, vol. 60, no. 18, pp. 12710-12725, 1999.

54
V. N. Popov and P. Lambin, "Radius and Chirality Dependence of the Radial Breathing Mode and the G-band Phonon Modes of Single-Walled Carbon Nanotubes," Phys.Rev.B, vol. 73, p. 085407, 2006.

55
S. O. Koswatta, S. Hasan, M. Lundstrom, M. P. Anantram, and D. E. Nikonov, "Non-Equilibrium Green's Function Treatment of Phonon Scattering in Carbon Nanotube Transistors," cond-mat/0702496, 2007.

56
V. N. Popov and P. Lambin, "Intraband Electron-Phonon Scattering in Single-Walled Carbon Nanotubes," Phys.Rev.B, vol. 74, p. 075415, 2006.

57
G. D. Mahan, "Electron-Optical Phonon Interaction in Carbon Nanotubes," Phys.Rev.B, vol. 68, p. 125409, 2003.

58
J. Jiang, R. Saito, G. G. Samsonidze, S. G. Chou, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, "Electron-Phonon Matrix Elements in Single-Wall Carbon Nanotubes," Phys.Rev.B, vol. 72, p. 235408, 2005.

59
V. N. Popov, V. E. V. Doren, and M. Balkanski, "Elastic Properties of Single-Walled Carbon Nanotubes," Phys.Rev.B, vol. 61, no. 4, pp. 3078-3084, 2000.

60
S. Datta, Electronic Transport in Mesoscopic Systems.
New York: Cambridge University Press, 1995.

61
B. J. Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, "Quantized Conductance of Point Contacts in a Two-Dimensional Electron Gas," Phys.Rev.Lett., vol. 60, no. 9, pp. 848-850, 1988.

62
W. Hoenlein, F. Kreupl, G. Duesberg, A. Graham, M. Liebau, R. Seidel, and E. Unger, "Carbon Nanotube Applications in Microelectronics," IEEE Trans.Components and Packaging Technologies, vol. 27, no. 4, pp. 629-634, 2004.

63
H. T. Soh, C. F. Quate, A. F. Morpurgo, C. Marcus, J. Kong, and H. Dai, "Integrated Nanotube Circuits: Controlled Growth and Ohmic Contacting of Single-Walled Carbon Nanotubes," Appl.Phys.Lett., vol. 75, no. 5, pp. 627-629, 1999.

64
R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Tersoff, and P. Avouris, "Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes," Phys.Rev.Lett., vol. 87, p. 256805, 2001.

65
R. Seidel, M. Liebau, G. Duesberg, F. Kreupl, E. Unger, A. Graham, W. Hoenlein, and W. Pompe, "In-Situ Contacted Single-Walled Carbon Nanotubes and Contact Improvement by Electroless Deposition," Nano Lett., vol. 3, no. 7, pp. 965-968, 2003.

66
A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, "Ballistic Carbon Nanotube Field-Effect Transistors," Nature (London), vol. 424, no. 6949, pp. 654-657, 2003.

67
V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, "Carbon Nanotube Inter- and Intramolecular Logic Gates," Nano Lett., vol. 1, no. 9, pp. 453-465, 2001.

68
S. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, "Vertical Scaling of Carbon Nanotube Field-Effect Transistors using Top Gate Electrodes," Appl.Phys.Lett., vol. 80, no. 20, pp. 3817-3819, 2002.

69
J. Appenzeller, J. Knoch, R. Martel, V. Derycke, S. Wind, and P. Avouris;, "Carbon Nanotube Electronics," IEEE Trans.Nanotechnology, vol. 1, no. 4, pp. 184-189, 2002.

70
A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai, "High-$ \kappa$ Dielectrics for Advanced Carbon Nanotube Transistors and Logic Gates," Nature Materials, vol. 1, no. 4, pp. 241-246, 2002.

71
M. Radosavljevic, J. Appenzeller, P. Avouris, and J. Knoch, "High Performance of Potassium n-Doped Carbon Nanotube Field-Effect Transistors," Appl.Phys.Lett., vol. 84, no. 18, pp. 3693-3695, 2004.

72
F. Leonard and J. Tersoff, "Novel Length Scales in Nanotube Devices," Phys.Rev.Lett., vol. 83, no. 24, pp. 5174-5177, 1999.

73
F. Leonard and J. Tersoff, "Role of Fermi-Level Pinning in Nanotube Schottky Diodes," Phys.Rev.Lett., vol. 84, no. 20, pp. 4693-4696, 2000.

74
J. Appenzeller, M. Radosavljevic, J. Knoch, and P. Avouris, "Tunneling Versus Thermionic Emission in One-Dimensional Semiconductors," Phys.Rev.Lett., vol. 92, p. 048301, 2004.

75
R. V. Seidel, A. P. Graham, J. Kretz, B. Rajasekharan, G. S. Duesberg, M. Liebau, E. Unger, F. Kreupl, and W. Hoenlein, "Sub-20 nm Short Channel Carbon Nanotube Transistors," Nano Lett., vol. 5, no. 1, pp. 147-150, 2005.

76
M. H. Yang, K. B. K. Teo, L. Gangloff, W. I. Milne, D. G. Hasko, Y. Robert, and P. Legagneux, "Advantages of Top-Gate, High-k Dielectric Carbon Nanotube Field-Effect Transistors," Appl.Phys.Lett., vol. 85, p. 113507, 2006.

77
J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, and P. Avouris, "Field-Modulated Carrier Transport in Carbon Nanotube Transistors," Phys.Rev.Lett., vol. 89, p. 126801, 2002.

78
S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, "Carbon Nanotubes as Schottky Barrier Transistors," Phys.Rev.Lett., vol. 89, p. 106801, 2002.

79
M. Freitag, M. Radosavljevic, Y. X. Zhou, A. T. Johnson, and W. F. Smith, "Controlled Creation of a Carbon Nanotube Diode by a Scanned Gate," Appl.Phys.Lett., vol. 79, no. 20, pp. 3326-3328, 2001.

80
S. Wind, J. Appenzeller, and P. Avouris, "Lateral Scaling in Carbon-Nanotube Field-Effect Transistors," Phys.Rev.Lett., vol. 91, p. 058301, 2003.

81
Z. Chen, J. Appenzeller, J. Knoch, Y.-M. Lin, and P. Avouris, "The Role of Metal-Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors," Nano Lett., vol. 5, no. 6, pp. 1497-1502, 2005.

82
P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes," Science, vol. 287, no. 5459, pp. 1801-1803, 2000.

83
V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, "Controlling Doping and Carrier Injection in Carbon Nanotube Transistors," Appl.Phys.Lett., vol. 80, no. 15, pp. 2773-2775, 2002.

84
T. Nakanishi, A. Bachtold, and C. Dekker, "Transport Through the Interface Between a Semiconducting Carbon Nanotube and a Metal Electrode," Phys.Rev.B, vol. 66, p. 073307, 2002.

85
T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, "Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing," Science, vol. 289, no. 5476, pp. 94-97, 2000.

86
J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, "Nanotube Molecular Wires as Chemical Sensors," Science, vol. 287, no. 5453, pp. 622-625, 2000.

87
A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, "Logic Circuits with Carbon Nanotube Transistors," Science, vol. 294, no. 5545, pp. 1317-1320, 2001.

88
Z. Chen, J. Appenzeller, Y.-M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Tang, S. J. Wind, P. M. Solomon, and P. Avouris, "An Integrated Logic Circuit Assembled on a Single Carbon Nanotube," Science, vol. 311, no. 5768, p. 1735, 2006.

89
D. Frank and J. Appenzeller, "High-Frequency Response in Carbon Nanotube Field-Effect Transistors," IEEE Trans. Electron Devices, vol. 25, no. 1, pp. 34-36, 2004.

90
X. Huo, M. Zhang, P. C. H. Chan, Q. Liang, and Z. K. Tang, "High Frequency S parameters Characterization of Back-Gate Carbon Nanotube Field-Effect Transistors," in IEDM Tech.Dig., (San Francisco), pp. 691-694, IEEE, 2004.

91
S. Rosenblatt, H. Lin, V. Sazonova, S. Tiwari, and P. L. McEuen, "Mixing at 50 GHz Using a Single-Walled Carbon Nanotube Transistor," Appl.Phys.Lett., vol. 87, p. 153111, 2005.

92
J. Schwinger, "Brownian Motion of a Quantum Oscillator," J.Math.Phys., vol. 2, no. 3, pp. 407-432, 1961.

93
L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics: Green's Function Methods in Equilibrium and Non-Equilibrium Problems.
New York: W.A. Benjamin, 1962.

94
C. B. Duke, Tunneling in Solids.
New York: Academic Press, 1969.

95
G. Kim and G. B. Arnold, "Theoretical Study of Tunneling Phenomena in Double-Barrier Quantum-Well Heterostructures," Phys.Rev.B, vol. 38, no. 5, pp. 3252-3262, 1988.

96
C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, "Direct Calculation of the Tunneling Current," J.Phys.C:Solid State Phys., vol. 4, no. 8, pp. 916-929, 1971.

97
C. Caroli, R. Combescot, D. Lederer, P. Nozieres, and D. Saint-James, "A Direct Calculation of the Tunnelling Current. II. Free Electron Description," J.Phys.C:Solid State Phys., vol. 4, no. 16, pp. 2598-2610, 1971.

98
R. Combescot, "A Direct Calculation of the Tunnelling Current. III. Effect of Localized Impurity States in the Barrier," J.Phys.C:Solid State Phys., vol. 4, no. 16, pp. 2611-2622, 1971.

99
C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, "A Direct Calculation of the Tunnelling Current: IV. Electron-Phonon Interaction Effects," J.Phys.C:Solid State Phys., vol. 5, no. 1, pp. 21-42, 1972.

100
W. R. Bandy and A. J. Glick, "Tight-Binding Green's-Function Calculation of Electron Tunneling. I. One-Dimensional Two-Band Model," Phys.Rev.B, vol. 13, no. 8, pp. 3368-3380, 1976.

101
W. R. Bandy and A. J. Glick, "Tight-Binding Green's-Function Calculations of Electron Tunneling. II. Diagonal Disorder in the One-Dimensional Two-Band Model," Phys.Rev.B, vol. 16, no. 6, pp. 2346-2349, 1977.

102
M. Cini, "Time-Dependent Approach to Electron Transport through Junctions: General Theory and Simple Applications," Phys.Rev.B, vol. 22, no. 12, pp. 5887-5899, 1980.

103
H. Haug, ed., Optical Nonlinearities and Instabilities in Semiconductors.
Boston: Academic Press, 1988.

104
A. P. Jauho and J. W. Wilkins, "Theory of High-Electric-Field Quantum Transport for Electron-Resonant Impurity Systems," Phys.Rev.B, vol. 29, no. 4, pp. 1919-1938, 1984.

105
G. D. Mahan, "Quantum Transport Equation for Electric and Magnetic Fields," Physics Reports, vol. 145, no. 5, pp. 251-318, 1987.

106
R. Bertoncini and A.-P. Jauho, "Quantum Transport Theory for Electron-Phonon Systems in Strong Electric Fields," Phys.Rev.Lett., vol. 68, no. 18, pp. 2826-2829, 1992.

107
E. V. Anda and F. Flores, "The Role of Inelastic Scattering in Resonant Tunnelling Heterostructures," J.Phys.:Condensed Matter, vol. 3, no. 46, pp. 9087-9101, 1991.

108
L. Y. Chen and C. S. Ting, "AC Conductance of a Double-Barrier Resonant Tunneling System Under a DC-Bias Voltage," Phys.Rev.Lett., vol. 64, no. 26, pp. 3159-3162, 1990.

109
J. Zang and J. L. Birman, "Theory of Intrinsic Bistability in Double-Barrier Resonant-Tunneling Structures," Phys.Rev.B, vol. 46, no. 8, pp. 5020-5023, 1992.

110
R. K. Lake and S. Datta, "High-Bias Quantum Electron Transport," Superlattices & Microstructures, vol. 11, no. 1, pp. 83-87, 1992.

111
C. H. Grein, E. Runge, and H. Ehrenreich, "Phonon-Assisted Transport in Double-Barrier Resonant-Tunneling Tructures," Phys.Rev.B, vol. 47, no. 19, pp. 12590-12597, 1993.

112
R. Lake and S. Datta, "Nonequilibrium Green's-Function Method Applied to Double-Barrier Resonant-Tunneling Diodes," Phys.Rev.B, vol. 45, no. 12, pp. 6670-6685, 1992.

113
A. L. Yeyati, F. Flores, and E. V. Anda, "Model Calculation of the Noise Characteristic in Double-Barrier Heterostructures," Phys.Rev.B, vol. 47, no. 16, pp. 10543-10547, 1993.

114
R. Lake, G. Klimeck, R. C. Bowen, C. Fernando, M. Leng, T. Moise, and Y. C. Kao, "Interface Roughness, Polar Optical Phonons, and the Valley Current of a Resonant Tunneling Diode," Superlattices & Microstructures, vol. 20, no. 3, pp. 279-285, 1996.

115
R. Lake, G. Klimeck, R. C. Bowen, C. L. Fernando, D. Jovanovic, D. Blanks, T. S. Moise, Y. C. Kao, M. Leng, and W. R. Frensley, "Experimentally Verified Quantum Device Simulations Based on Multiband Models, Hartree Self-Consistency, and Scattering Assisted Charging," in 54th Annual Device Research Conference Digest, (Santa Barbara), pp. 174-175, IEEE, 1996.

116
R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, "Single and Multiband Modeling of Quantum Electron Transport Through Layered Semiconductor Devices," J.Appl.Phys., vol. 81, no. 12, pp. 7845-7869, 1997.

117
G. Kim, H. Suh, and E. Lee, "Green's-Function Study of the Electron Tunneling in a Double-Barrier Heterostructure," Phys.Rev.B, vol. 52, no. 4, pp. 2632-2639, 1995.

118
G. Klimeck, R. C. Bowen, T. Boykin, R. L. D. Blanks, T. S. Moise, Y. C. Kao, and W. R. Frensley, "Quantitative Simulation of Strained and Unstrained InP-Based Resonant Tunneling Diodes," in 55th Annual Device Research Conference Digest, (Fort Collins), pp. 92-93, IEEE, 1997.

119
L. Y. Chen and C. S. Ting, "Theoretical Investigation of Noise Characteristics of Double-Barrier Resonant-Tunneling Systems," Phys.Rev.B, vol. 43, no. 5, pp. 4534-4537, 1991.

120
R. Lake and S. Datta, "Energy Balance and Heat Exchange in Mesoscopic Systems," Phys.Rev.B, vol. 46, no. 8, pp. 4757-4763, 1992.

121
G. Klimeck, R. Lake, R. C. Bowen, and W. R. Frensley, "Quantum Device Simulation with a Generalized Tunneling Formula," Appl.Phys.Lett., vol. 67, no. 17, pp. 2539-2541, 1995.

122
R. C. Bowen, G. Klimeck, R. K. Lake, W. R. Frensley, and T. Moise, "Quantitative Simulation of a Resonant Tunneling Diode," J.Appl.Phys., vol. 81, no. 7, pp. 3207-3213, 1997.

123
M. J. McLennan, Y. Lee, and S. Datta, "Voltage Drop in Mesoscopic Systems: A Numerical Study Using a Quantum Kinetic Equation," Phys.Rev.B, vol. 43, no. 17, pp. 13846-13884, 1991.

124
S.-C. Lee and A. Wacker, "Nonequilibrium Green's Function Theory for Transport and Gain Properties of Quantum Cascade Structures," Phys.Rev.B, vol. 66, no. 24, p. 245314, 2002.

125
C. Rivas, R. Lake, G. Klimeck, W. R. Frensley, M. V. Fischetti, P. E. Thompson, S. L. Rommel, and P. R. Berger, "Full-Band Simulation of Indirect Phonon Assisted Tunneling in a Silicon Tunnel Diode with Delta-Doped Contacts," Appl.Phys.Lett., vol. 78, no. 8, pp. 814-916, 2001.

126
C. Rivas, R. Lake, W. R. Frensley, G. Klimeck, P. E. Thompson, S. L. Rommel, and P. R. Berger, "Full Band Modeling of the Excess Current in a Delta-Doped Silicon Tunnel Diode," J.Appl.Phys., vol. 94, no. 8, pp. 5005-5013, 2003.

127
D. Jovanovic and R. Venugopal, "Computational Techniques for the Nonequilibrium Quantum Field Theory Simulation of MOSFETs," in 7th International Workshop on Computational Electronics. Book of Abstracts, (Glasgow), pp. 30-31, IWCE, 2000.

128
R. Lake, D. Jovanovic, and C. Rivas, "Nonequilibrium Green's Functions in Semiconductor Device Modeling," in Progress in Nonequilibrium Green Functions, (NewJersey), pp. 143-158, World Scientific, 2003.

129
A. Svizhenko and M. P. Anantram, "Role of Scattering in Nanotransistors," IEEE Trans. Electron Devices, vol. 50, no. 6, pp. 1459-1466, 2003.

130
R. Venugopal, M. Paulsson, S. Goasguen, S. Datta, and M. S. Lundstrom, "A Simple Quantum Mechanical Treatment of Scattering in Nanoscale Transistors," J.Appl.Phys., vol. 93, no. 9, pp. 5613-5625, 2003.

131
Y.-J. Ko, M. Shin, S. Lee, and K. W. Park, "Effects of Atomistic Defects on Coherent Electron Transmission in Si Nanowires: Full Band Calculations," J.Appl.Phys., vol. 89, no. 1, pp. 374-379, 2001.

132
C. R. R. Lake, "Three-Dimensional, Full-Band, Quantum Modeling of Electron and Hole Transport through Si / SiGe Nano-Structures," in Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, vol. 2, (San Francisco), pp. 137-140, Computational Publications, 2003.

133
C. Rivas and R. Lake, "Non-equilibrium Green Function Implementation of Boundary Conditions for Full Band Simulations of Substrate-Nanowire Structures," Phys.stat.sol.(b), vol. 239, no. 1, pp. 94-102, 2003.

134
M. B. Nardelli99, "Electronic Transport in Extended Systems: Application to Carbon Nanotubes," Phys.Rev.B, vol. 60, no. 11, pp. 7828-7833, 1999.

135
J. Taylor, H. Guo, and J. Wang, "Ab Initio Modeling of Quantum Transport Properties of Molecular Electronic Devices," Phys.Rev.B, vol. 63, p. 245407, 2001.

136
H. Mehrez, J. Taylor, H. Guo, J. Wang, and C. Roland, "Carbon Nanotube Based Magnetic Tunnel Junctions," Phys.Rev.Lett., vol. 84, no. 12, pp. 2682-2685, 2000.

137
D. Orlikowski, H. Mehrez, J. Taylor, H. Guo, J. Wang, and C. Roland, "Resonant Transmission Through Finite-Sized Carbon Nanotubes," Phys.Rev.B, vol. 63, p. 155412, 2001.

138
J. Taylor, H. Guo, and J. Wang, "Ab Initio Modeling of Open Systems: Charge Transfer, Electron Conduction, and Molecular Switching of a $ \mathrm{C_{60}}$ Device," Phys.Rev.B, vol. 63, p. 121104, 2001.

139
M. P. Anantram, "Which Nanowire Couples Better Electrically to a Metal Contact: Armchair or Zigzag Nanotube?," Appl.Phys.Lett., vol. 78, no. 14, pp. 2055-2057, 2001.

140
A. Maiti, A. Svizhenko, and M. P. Anantram, "Electronic Transport through Carbon Nanotubes: Effects of Structural Deformation and Tube Chirality," Phys.Rev.Lett., vol. 88, p. 126805, 2002.

141
C.-C. Kaun, B. Larade, H. Mehrez, J. Taylor, and H. Guo, "Current-Voltage Characteristics of Carbon Nanotubes with Substitutional Nitrogen," Phys.Rev.B, vol. 65, p. 205416, 2002.

142
G. Cuniberti, R. Gutiérrez, G. Fagas, F. Grossmann, K. Richter, and R. Schmidt, "Fullerene Based Devices for Molecular Electronics," Physica E, vol. 12, no. 1-4, pp. 749-752, 2002.

143
J. J. Palacios, A. J. P. Jimenez, E. Louis, E. SanFabioa, and J. Verges, "First-Principles Phase-Coherent Transport in Metallic Nanotubes with Realistic Contacts," Phys.Rev.Lett., vol. 90, p. 106801, 2003.

144
Y. Xue and M. A. Ratner, "Schottky Barriers at Metal-Finite Semiconducting Carbon Nanotube Interfaces," Appl.Phys.Lett., vol. 83, no. 12, pp. 2429-2431, 2003.

145
T.-S. Xia, L. F. Register, and S. K. Banerjee, "Quantum Transport in Carbon Nanotube Transistors: Complex Band Structure Effects," J.Appl.Phys., vol. 95, no. 3, pp. 1597-1599, 2004.

146
M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, "Density-Functional Method for Nonequilibrium Electron Transport," Phys.Rev.B, vol. 65, p. 165401, 2002.

147
E. Louis, J. A. Vergés, J. J. Palacios, A. J.Pérez-Jiménez, and E. SanFabián, "Implementing the Keldysh Formalism into Ab Initio Methods for the Calculation of Quantum Transport: Application to Metallic Nanocontacts," Phys.Rev.B, vol. 67, p. 155321, 2003.

148
W. Tian, S. Datta, S. Hong, R. Reifenberger, J. I. Henderson, and C. P. Kubiak, "Conductance Spectra of Molecular Wires," J.Chem.Phys, vol. 109, no. 7, pp. 2874-2882, 1998.

149
P. A. Derosa and J. M. Seminario, "Electron Transport through Single Molecules: Scattering Treatment Using Density Functional and Green Function Theories," J.Phys.Chem.B, vol. 105, no. 2, pp. 471-481, 2001.

150
Y. Xue, S. Datta, and M. A. Ratner, "Charge Transfer and "Band Lineup" in Molecular Electronic Devices: A Chemical and Numerical Interpretation," J.Chem.Phys, vol. 115, no. 9, pp. 4292-4299, 2001.

151
Y. Xue, Molecular Electronic Devices: Electronic Structure and Transport Properties.
Dissertation, Purdue University, 2000.

152
P. S. Damle, A. W. Ghosh, and S. Datta, "Unified Description of Molecular Conduction: From Molecules to Metallic Wires," Phys.Rev.B, vol. 64, p. 201403, 2001.

153
J. M. Seminario, A. G. Zacarias, and P. A. Derosa, "Theoretical Analysis of Complementary Molecular Memory Devices," J.Phys.Chem.A, vol. 105, no. 5, pp. 791-795, 2001.

154
J. M. Seminario and P. A. Derosa, "Molecular Gain in a Thiotolane System," J.Am.Chem.Soc., vol. 123, no. 49, pp. 12418-12419, 2001.

155
J. Taylor, M. Brandbyge, and K. Stokbro, "Theory of Rectification in Tour Wires: The Role of Electrode Coupling," Phys.Rev.Lett., vol. 89, no. 13, p. 138301, 2002.

156
J. Palacios, E. Louis, A. J. Pérez-Jiménez, E. S. Fabián, and J. Vergés, "An Ab Initio Approach to Electrical Transport in Molecular Devices," Nanotechnology, vol. 13, no. 3, pp. 378-381, 2002.

157
J. Heurich, J. C. Cuevas, W. Wenzel, and G. Schön, "Electrical Transport through Single-Molecule Junctions: From Molecular Orbitals to Conduction Channels," Phys.Rev.Lett., vol. 88, p. 256803, 2002.

158
Y. Xue and M. A. Ratner, "Microscopic Study of Electrical Transport through Individual Molecules with Metallic Contacts. I. Band Lineup, Voltage Drop, and High-Field Transport," Phys.Rev.B, vol. 68, p. 115406, 2003.

159
J. M. Seminario, L. E. Cordova, and P. A. Derosa, "An Ab Initio Approach to the Calculation of Current-Voltage Characteristics of Programmable Molecular Devices," Proc.IEEE, vol. 91, no. 11, pp. 1958-1975, 2003.

160
M. Galperin, A. Nitzan, S. Sek, and M. Majda, "Asymmetric Electron Transmission across Asymmetric Alkanethiol Bilayer Junctions," J. Electroanalytical Chem., vol. 550-551, no. 1, pp. 337-350, 2003.

161
P. A. Derosa, S. Guda, and J. M. Seminario, "A Programmable Molecular Diode Driven by Charge-Induced Conformational Changes," J.Am.Chem.Soc., vol. 125, no. 47, pp. 14240-14241, 2003.

162
Y. Xue and M. A. Ratner, "End Group Effect on Electrical Transport through Individual Molecules: A Microscopic Study," Phys.Rev.B, vol. 69, p. 085403, 2004.

163
A. W. Ghosh, T. Rakshit, and S. Datta, "Gating of a Molecular Transistor: Electrostatic and Conformational," Nano Lett., vol. 4, no. 4, pp. 565-568, 2004.

164
F. Evers, F. Weigend, and M. Koentopp, "Conductance of Molecular Wires and Transport Calculations based on Density-Functional Theory," Phys.Rev.B, vol. 69, p. 235411, 2004.

165
U. Gunsenheimer and A. D. Zaikin, "Ballistic Charge Transport in Superconducting Weak Links," Phys.Rev.B, vol. 50, no. 9, pp. 6317-6331, 1994.

166
W. I. Babiaczyk and B. R. Bulka, "Electronic Transport in Molecular Systems with Para- and Ferromagnetic Leads," J.Phys.:Condensed Matter, vol. 16, no. 23, pp. 4001-4012, 2004.

167
S. Krompiewski, "Modelling a Spin-Selective Interface between Ferromagnetic Electrodes and a Carbon Nanotube-Towards the Enhanced Giant Magnetoresistance Effect," J.Phys.:Condensed Matter, vol. 16, pp. 2981-2990, 2004.

168
M. A. Davidovich, E. V. Anda, C. Tejedor, and G. Platero, "Interband Resonant Tunneling and Transport in InAs/AlSb/GaSb Heterostructures," Phys.Rev.B, vol. 47, no. 8, pp. 4475-4484, 1993.

169
G. Klimeck, R. Lake, and D. K. Blanks, "Role of Interface Roughness Scattering in Self-Consistent Resonant-Tunneling-Diode Simulations," Phys.Rev.B, vol. 58, no. 11, pp. 7279-7285, 1998.

170
A. Groshev, T. Ivanov, and V. Valtchinov, "Charging Effects of a Single Quantum Level in a Box," Phys.Rev.Lett., vol. 66, no. 8, pp. 1082-1085, 1991.

171
L. Y. Chen and C. S. Ting, "Coulomb Staircase in the I-V Characteristic of an Ultrasmall Double-Barrier Resonant-Tunneling Structure," Phys.Rev.B, vol. 44, no. 11, pp. 5916-5918, 1991.

172
S. Hershfield, J. Davies, and J. Wilkins, "Probing the Kondo Resonance by Resonant Tunneling through an Anderson Impurity," Phys.Rev.Lett., vol. 67, no. 26, pp. 3720-3723, 1991.

173
S. Hershfield, J. Davies, and J. Wilkins, "Resonant Tunneling through an Anderson Impurity. I. Current in the Symmetric Model," Phys.Rev.B, vol. 46, no. 11, pp. 7046-7060, 1992.

174
Y. Meir, N. S. Wingreen, and P. A. Lee, "Low-Temperature Transport through a Quantum Dot: The Anderson Model out of Equilibrium," Phys.Rev.Lett., vol. 70, no. 17, pp. 2601-2604, 1993.

175
N. S. Wingreen and Y. Meir, "Anderson Model out of Equilibrium: Noncrossing-Approximation Approach to Transport through a Quantum Dot," Phys.Rev.B, vol. 49, no. 16, pp. 11040-11052, 1994.

176
Y. Xue and M. A. Ratner, "Microscopic Theory of Single-Electron Tunneling through Molecular-Assembled Metallic Nanoparticles," Phys.Rev.B, vol. 68, p. 235410, 2003.

177
S. Hershfield, "Resonant Tunneling through an Anderson Impurity. II. Noise in the Hartree Approximation," Phys.Rev.B, vol. 46, no. 11, pp. 7061-7076, 1992.

178
S. Datta and M. P. Anantram, "Steady-State Transport in Mesoscopic Systems Illuminated by Alternating Fields," Phys.Rev.B, vol. 45, no. 23, pp. 13761-13764, 1991.

179
M. P. Anantram and S. Datta, "Effect of Phase Breaking on the AC Response of Mesoscopic Systems," Phys.Rev.B, vol. 51, no. 12, pp. 7632-7639, 1995.

180
N. S. Wingreen, A. Jauho, and Y. Meir, "Time-Dependent Transport through a Mesoscopic Structure," Phys.Rev.B, vol. 48, no. 11, pp. 8487-8490, 1993.

181
A. Jauho, N. S. Wingreen, and Y. Meir, "Time-dependent transport in interacting and noninteracting resonant-tunneling systems," Phys.Rev.B, vol. 50, no. 8, pp. 5528-5544, 1994.

182
C. A. Stafford and N. S. Wingreen, "Resonant Photon-Assisted Tunneling through a Double Quantum Dot: An Electron Pump from Spatial Rabi Oscillations," Phys.Rev.Lett., vol. 76, no. 11, pp. 1916-1919, 1996.

183
P. Kral, "Linearized Quantum Transport Equations: AC Conductance of a Quantum Wire with an Electron-Phonon Interaction," Phys.Rev.B, vol. 53, no. 16, pp. 11034-11050, 1996.

184
P. Kral and A.-P. Jauho, "Resonant Tunneling in a Pulsed Phonon Field," Phys.Rev.B, vol. 59, no. 11, pp. 7656-7662, 1999.

185
H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, vol. 123 of Springer Series in Solid-State Sciences.
Berlin, New York: Springer, 1996.

186
S. Datta, "Nanoscale Device Modeling: the Green's Function Method," Superlattices & Microstructures, vol. 28, no. 4, pp. 253-278, 200.

187
R. K. Lake and R. R. Pandey, Handbook of Semiconductor Nanostructures and Devices, vol. 3, ch. Non-Equilibrium Green Functions in Electronic Device Modeling, pp. 409-443.
Los Angles: American Scientific Publishers, 2006.

188
W. Fichtner, "Quantum Transport for Nanostructures," tech. rep., Integrated Systems Laboratorym, ETH Zürich, 2006.

189
A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems.
San Francisco: McGraw-Hill, 1971.

190
G. D. Mahan, Many-Particle Physics.
Physics of Solids and Liquids, New York: Plenum Press, 2nd ed., 1990.

191
R. P. Feynman, "Space-Time Approach to Quantum Electrodynamics," Phys.Rev., vol. 76, no. 6, pp. 769-789, 1949.

192
M. Gell-Mann and F. Low, "Bound States in Quantum Field Theory," Phys.Rev., vol. 84, no. 2, pp. 350-354, 1951.

193
T. Matsubara, "A New Approach to Quantum-Statistical Mechanics," Prog.Theor.Phys., vol. 14, no. 4, pp. 351-378, 1955.

194
V. Korenman, "Nonequilibrium Quantum Statistics: Application to the Laser," Ann. Phys., vol. 39, no. 1, pp. 72-126, 1966.

195
A. Schmid, "On a Quasiclassical Langevin Equation," J.Low.Temp.Phys., vol. 49, no. 5-6, pp. 609-626, 1982.

196
J. Rammer and H. Smith, "Quantum Field-Theoretical Methods in Transport Theory of Metals," Rev.Mod.Phys., vol. 58, no. 2, pp. 323-359, 1986.

197
R. Mills, Propagators for Many-Particle Systems: An Elementary Treatment.
New York: Gordon and Breach, 1969.

198
S. Fujita, "Thermodynamic Evolution Equation for a Quantum Statistical Gas," J.Math.Phys., vol. 6, no. 12, pp. 1877-1885, 1965.

199
S. Fujita, "Resolution of the Hierarchy of Green's Functions for Fermions," Phys.Rev.A, vol. 4, no. 3, pp. 1114-1122, 1971.

200
A. G. Hall, "Non-Equilibrium Green's Functions: Generalized Wick's Theorem and Diagrammatic Perturbation Theory with Initial Correlations," J.Phys.A:Math.Gen., vol. 8, no. 2, pp. 214-224, 1975.

201
Y. A. Kukharenkov and S. G. Tikhodeev, "A Diagram Technique in the Theory of Relaxation Processes," Soviet Phys.JETP, vol. 56, no. 4, pp. 831-838, 1982.

202
L. V. Keldysh, "Diagram Technique for Nonequilibrium Processes," Soviet Phys.JETP, vol. 20, no. 4, pp. 1018-1026, 1965.

203
P. Danielewicz, "Quantum Theory of Nonequilibrium Processes, I," Ann. Phys., vol. 152, no. 2, pp. 239-304, 1984.

204
J. Goldstone, "Derivation of the Brueckner Many-Body Theory," Proc.Phys.Soc.A, vol. 239, no. 12173, pp. 267-279, 1957.

205
W. Schäfer and M. Wegener, Semiconductor Optics and Transport Phenomena.
Berlin, New York: Springer, 2002.

206
D. C. Langreth, Linear and Non-linear Electron Transport in Solids, vol. 17 of NATO Advanced Study Institute Series: Series B, pp. 3-18.
New York: Plenum Press, 1976.

207
A. Gehring and S. Selberherr, "Evolution of Current Transport Models for Engineering Applications," J.Comp.Electronics, vol. 3, no. 3-4, pp. 149-155, 2004.

208
S. Datta, "A Simple Kinetic Equation for Steady-State Quantum Transport," J.Phys.:Condensed Matter, vol. 2, no. 40, pp. 8023-8052, 1990.

209
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, "Generalized Many-Channel Conductance Formula with Application to Small Rings," Phys.Rev.B, vol. 31, no. 10, pp. 6207-6215, 1985.

210
M. Büttiker, "Four-Terminal Phase-Coherent Conductance," Phys.Rev.Lett., vol. 57, no. 14, pp. 1761-1764, 1986.

211
G. Lindblad, "On the Generators of Quantum Dynamical Semigroups," Communications in Mathematical Physics, vol. 48, no. 2, pp. 119-130, 1976.

212
H. J. Kreuzer, Nonequilibrium Thermodynamics and Its Statistical Foundations.
New York: Oxford University Press, 1981.

213
M. V. Fischetti, "Theory of Electron Transport in Small Semiconductor Devices Using the Pauli Master Equation," J.Appl.Phys., vol. 83, no. 1, pp. 270-291, 1998.

214
M. V. Fischetti, "Master-Equation Approach to the Study of Electronic Transport in Small Semiconductor Devices," Phys.Rev.B, vol. 59, no. 7, pp. 4901-4917, 1998.

215
W. R. Frensley, "Boundary Conditions for Open Quantum Systems Driven Far From Equilibrium," Rev.Mod.Phys., vol. 62, no. 3, pp. 745-791, 1990.

216
R. Gebauer and R. Car, "Kinetic Theory of Quantum Transport at the Nanoscale," Phys.Rev.B, vol. 70, p. 125324, 2004.

217
R. Gebauer and R. Car, "Current in Open Quantum Systems," Phys.Rev.Lett., vol. 93, p. 160404, 2004.

218
E. Wigner, "On the Quantum Correction For Thermodynamic Equilibrium ," Phys.Rev., vol. 40, no. 5, pp. 749-759, 1932.

219
H. Kosina and M. Nedjalkov, Handbook of Theoretical and Computational Nanotechnology, vol. 10, ch. Wigner Function Based Device Modeling, pp. 731-763.
Los Angeles: American Scientific Publishers, 2006.

220
R. K. Mains and G. I. Haddad, "Wigner Function Modeling of Resonant Tunneling Diodes With High Peak-to-Valley Ratios," J.Appl.Phys., vol. 64, no. 10, pp. 5041-5044, 1988.

221
K. L. Jensen and F. A. Buot, "The Effects of Scattering on Current-Voltage Characteristics, Transient Response, and Particle Trajectories in the Numerical Simulation of Resonant Tunneling Diodes," J.Appl.Phys., vol. 67, no. 12, pp. 7602-7607, 1990.

222
K. Hess, ed., Monte Carlo Device Simulation: Full Band and Beyond.
Kluwer International Series in Engineering and Computer Science, Boston: Kluwer Academic, 1991.

223
R. Stratton, "Diffusion of Hot and Cold Electrons in Semiconductor Barriers," Phys.Rev., vol. 126, no. 6, pp. 2002-2014, 1962.

224
K. Blotekjaer, "Transport Equations for Electrons in Two-Valley Semiconductors," IEEE Trans. Electron Devices, vol. 17, no. 1, pp. 38-47, 1970.

225
M. Lundstrom, Fundamentals of Carrier Transport.
Cambridge, New York: Cambridge University Press, 2nd ed., 2000.

226
S. Selberherr, Analysis and Simulation of Semiconductor Devices.
Vienna, New York: Springer-Verlag, 1984.

227
T. Grasser, T.-W. Tang, H. Kosina, and S. Selberherr, "A Review of Hydrodynamic and Energy-Transport Models for Semiconductor Device Simulation," Proc.IEEE, vol. 91, no. 2, pp. 251-274, 2003.

228
T. Grasser, H. Kosina, M. Gritsch, and S. Selberherr, "Using Six Moments of Boltzmann's Transport Equation for Device Simulation," J.Appl.Phys., vol. 90, no. 5, pp. 2389-2396, 2001.

229
W. Liang, N. Goldsman, I. Mayergoyz, and P. J. Oldiges, "2-D MOSFET Modeling Including Surface Effects and Impact Ionization by Self-Consistent Solution of the Boltzmann, Poisson, and Hole-Continuity Equations," IEEE Trans. Electron Devices, vol. 44, no. 2, pp. 257-267, 1997.

230
N. Goldsman, C.-K. Lin, Z. Han, and C.-K. Huang, "Advances in the Spherical Harmonic-Boltzmann-Wigner Approach to Device Simulation," Superlattices & Microstructures, vol. 27, no. 2/3, pp. 159-175, 2000.

231
M. Karner, A. Gehring, S. Holzer, M. Pourfath, M. Wagner, W. Goes, M. Vasicek, O. Baumgartner, C. Kernstock, K. Schnass, G. Zeiler, T. Grasser, H. Kosina, and S. Selberherr, "VSP-A Multi-Purpose Schrödinger-Poisson Solver for TCAD Applications," J.Comp.Electronics, vol. 6, no. 1-3, pp. 179-182, 2007.

232
M. Krüger, M. R. Buitelaar, T. Nussbaumer, , C. Schönenbergera, and L. Forró, "Electrochemical Carbon Nanotube Field-Effect Transistor," Appl.Phys.Lett., vol. 78, no. 9, pp. 1291-1293, 2001.

233
S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, and P. L. McEuen, "High Performance Electrolyte Gated Carbon Nanotube Transistors," Nano Lett., vol. 2, no. 8, pp. 869-872, 2002.

234
W. B. Choi, J. U. Chu, K. S. Jeong, E. J. Bae, J. W. Lee, J. J. Kim, and J. O. Lee, "Ultrahigh-Density Nanotransistors by Using Selective-Grown Vertical Carbon Nanotubes," Appl.Phys.Lett., vol. 79, no. 22, pp. 3696-3698, 2001.

235
A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, and M. L. Simpson, "Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly," J.Appl.Phys., vol. 97, p. 041301, 2005.

236
F. Zahid, A. Ghosh, M. Paulsson, E. Polizzi, and S. Datta, "Charging-Induced Asymmetry in Molecular Conductors," Phys.Rev.B, vol. 70, p. 245317, 2004.

237
D. John, L. Castro, P. Pereira, and D. Pulfrey, "A Schrödinger-Poisson Solver for Modeling Carbon Nanotube FETs," in Proc. NSTI Nanotech, vol. 3, pp. 65-68, 2004.

238
A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams.
Chichester, New York: Wiley, 1992.

239
J. Cervenka, Three-Dimensional Mesh Generation for Device and Process Simulation.
Dissertation, Technische Universität Wien, 2004.

240
S. Wagner, Small-Signal Device and Circuit Simulation.
Dissertation, Technische Universität Wien, 2005.

241
F. Leonard and J. Tersoff, "Dielectric Response of Semiconducting Carbon Nanotubes," Appl.Phys.Lett., vol. 81, no. 25, pp. 4835-4837, 2002.

242
D. Z. Y. Ting and Y.-C. Change, "$ \Gamma $-X Mixing in GaAs/$ Al_{x}$$ Ga_{1-x}$As and $ Al_{x}$$ Ga_{1-x}$As/AlAs Superlattices," Phys.Rev.B, vol. 36, no. 8, pp. 4359-4374, 1987.

243
J. Guo, S. Datta, M. Lundstrom, and M. Anantram, "Multi-Scale Modeling of Carbon Nanotube Transistors," The International Journal of Multiscale Computational Engineering, vol. 2, no. 2, pp. 257-278, 2004.

244
N. Nemec, D. Tománek, and G. Cuniberti, "Contact Dependence of Carrier Injection in Carbon Nanotubes: An Ab Initio Study," Phys.Rev.Lett., vol. 96, p. 076802, 2006.

245
D. Kienle and A. W. Ghosh, "Atomistic Modeling of Metal-Nanotube Contacts," J.Comp.Electronics, vol. 4, no. 1-2, pp. 97-100, 2005.

246
A. B. Migdal, "Interaction Between Electrons and Lattice Vibrations in a Normal Metal," Soviet Phys.JETP, vol. 7, no. 6, pp. 996-1001, 1958.

247
P. Davis and P. Rabinowitz, Methods of Numerical Integration.
Orlando: Academic Press, 2nd ed., 1984.

248
J. Lyness, "Notes on the Adaptive Simpson Quadrature Routine," J.ACM, vol. 16, no. 3, pp. 483-495, 1969.

249
T. Espelid, "Adaptive Doubly Quadrature Routines based on Newton-Cotes Rules," BIT, vol. 43, no. 2, pp. 319-337, 2003.

250
T. Espelid, "DQAINT: An Algorithm for Adaptive Quadrature over a Collection of Finite Intervals," Numerical Integration, Recent Developments, Software and Applications, NATO Advanced Study Institute Series C: Mathematical and Physical Sciences, vol. 357, p. 367, 1992.

251
M. Malcolm and R. Simpson, "Local Versus Global Strategies for Adaptive Quadratures," ACM Trans.Math. Software, vol. 1, no. 2, pp. 129-146, 1975.

252
C. Fernando and W. Frensley, "An Efficient Method for the Numerical Evaluation of Resonant States," J.Appl.Phys., vol. 76, no. 5, pp. 2881-2886, 1994.

253
O. Pinaud, "Transient Simulations of a Resonant Tunneling Diode," J.Appl.Phys., vol. 92, no. 4, pp. 1987-1994, 2002.

254
S. Laux, A. Kumar, and M. Fischetti, "Analysis of Quantum Ballistic Electron Transport in Ultrasmall Silicon Devices Including Space-Charge and Geometric Effects," J.Appl.Phys., vol. 95, no. 10, pp. 5545-5582, 2004.

255
F. Stern, "Iteration Methods for Calculating Self-Consistent Fields in Semiconductor Inversion Layers," J.Comput.Phys., vol. 6, no. 1, pp. 56-67, 1970.

256
T. Kerkhoven, A. Galick, U. Ravaioli, J. Arends, and Y. Saad, "Efficient Numerical Simulation of Electron States in Quantum Wires," J.Appl.Phys., vol. 68, no. 7, pp. 3461-3469, 1990.

257
A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, "Iteration Scheme for the Solution of the Two-Dimensional Schrödinger-Poisson Equations in Quantum Structures," J.Appl.Phys., vol. 81, no. 12, pp. 7880-7884, 1997.

258
F. Venturi, R. Smith, E. Sangiorgi, M. Pinto, and B. Ricco, "A General Purpose Device Simulator Coupling Poisson and Monte Carlo Transport with Applications to Deep Submicron MOSFETs," IEEE Trans.Computer-Aided Design, vol. 8, no. 4, pp. 360-369, 1989.

259
A. Pacelli, "Self-Consistent Solution of the Schrödinger Equation in Semiconductor Devices by Implicit Iteration," IEEE Trans. Electron Devices, vol. 44, no. 7, pp. 1169-1171, 1997.

260
S. Heinze, M. Radosavljevic, J. Tersoff, and P. Avouris, "Unexpected Scaling of the Performance of Carbon Nanotube Schottky-Barrier Transistors," Phys.Rev.B, vol. 68, p. 235418, 2003.

261
S. Heinze, J. Tersoff, and P. Avouris, "Electrostatic Engineering of Nanotube Transistors for Improved Performance," Appl.Phys.Lett., vol. 83, no. 24, pp. 5038-5040, 2003.

262
M. Radosavljevic, S. Heinze, J. Tersoff, and P. Avouris, "Drain Voltage Scaling in Carbon Nanotube Transistors," Appl.Phys.Lett., vol. 83, no. 12, pp. 2435-2437, 2003.

263
J. Guo, A. Javey, H. Dai, and M. Lundstrom, "Performance Analysis and Design Optimization of Near Ballistic Carbon Nanotube Field-Effect Transistors," in IEDM Tech.Dig., (San Francisco), pp. 703-706, IEEE, 2004.

264
D. John, L. Castro, and D. Pulfrey, "Quantum Capacitance in Nanoscale Device Modeling," J.Appl.Phys., vol. 96, no. 9, pp. 5180-5184, 2004.

265
P. J. Burke, "An RF Circuit Model for Carbon Nanotubes," IEEE Trans.Nanotechnology, vol. 2, no. 1, pp. 55-58, 2003.

266
P. Burke, "AC Performance of Nanoelectronics: Towards a Ballistic THz Nanotube Transistors," Solid-State Electronics, vol. 48, no. 10-11, pp. 1981-1986, 2004.

267
J. Guo, S. Datta, and M. Lundstrom, "Assesment of Silicon MOS and Carbon Nanotube FET Performance Limits using a General Theory of Ballistic Transistors," in IEDM Tech.Dig., (San Francisco), pp. 711-714, IEEE, 2002.

268
A. Keshavarzi, A. Raychowdhury, J. Kurtin, K. Roy, and V. De, "Carbon Nanotube Field-Effect Transistors for High-Performance Digital Circuits-Transient Analysis, Parasitics, and Scalability," IEEE Trans. Electron Devices, vol. 53, no. 11, pp. 2718-2726, 2006.

269
A. Raychowdhury, A. Keshavarzi, J. Kurtin, V. De, and K. Roy, "Carbon Nanotube Field-Effect Transistors for High-Performance Digital Circuits-DC Analysis and Modeling Toward Optimum Transistor Structure," IEEE Trans. Electron Devices, vol. 53, no. 11, pp. 2711-2717, 2006.

270
Y.-M. Lin, J. Appenzeller, J. Knoch, and P. Avouris, "High-Performance Carbon Nanotube Field-Effect Transistor with Tunable Polarities," IEEE Trans.Nanotechnology, vol. 4, no. 5, pp. 481-489, 2005.

271
J. Chen, C. Klinke, A. Afzali, K. Chan, , and P. Avouris, "Self-Aligned Carbon Nanotube Transistors with Novel Chemical Doping," in IEDM Tech.Dig., (San Francisco), pp. 695-698, IEEE, 2004.

272
A. Javey, R. Tu, D. Farmer, J. Guo, R. Gordon, and H. Dai, "High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts," Nano Lett., vol. 5, no. 2, pp. 345-348, 2005.

273
J. Appenzeller, Y.-M. Lin, J. Knoch, Z. Chen, and P. Avouris, "Comparing Carbon Nanotube Transistors - The Ideal Choice: A Novel Tunneling Device Design," IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2568-2576, 2005.

274
J. Knoch, S. Mantl, and J. Appenzeller, "Comparison of Transport Properties in Carbon Nanotube Field-Effect Transistors with Schottky Contacts and Doped Source/Drain Contacts," Solid-State Electronics, vol. 49, no. 1, pp. 73-76, 2005.

275
J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, "Band-to-Band Tunneling in Carbon Nanotube Field-Effect Transistors," Phys.Rev.Lett., vol. 93, p. 196805, 2004.

276
S. O. Koswatta, S. Hasan, M. Lundstrom, M. P. Anantram, and D. E. Nikonov, "Ballisticity of Nanotube FETs: Role of Phonon Energy and Gate Bias," Appl.Phys.Lett., vol. 89, p. 023125, 2006.

277
M. Lundstrom, "Elementary Scattering Theory of the Si MOSFET," IEEE Electron Device Lett., vol. 18, no. 7, pp. 361-363, 1997.

278
J. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T. Arias, P. Brouwer, and P. McEuen, "Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes," Nano Lett., vol. 4, no. 3, pp. 517-520, 2004.

279
A. Javey, J. Guo, D. Farmer, Q. Wang, E. Yenilmez, R. Gordon, M. Lundstrom, and H. Dai, "Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays," Nano Lett., vol. 4, no. 7, pp. 1319-1322, 2004.

280
D. Singh, K. Jenkins, J. Appenzeller, D. Neumayer, A. Grill, and H.-S. P. Wong, "Frequency Response of Top-Gated Carbon Nanotube Field-Effect Transistors," IEEE Trans.Nanotechnology, vol. 3, no. 3, pp. 383-387, 2004.

281
Y. Yoon, Y. Ouyang, and J. Guo, "Effect of Phonon Scattering on Intrinsic Delay and Cutoff Frequency of Carbon Nanotube FETs," IEEE Trans. Electron Devices, vol. 53, no. 10, pp. 2467-2470, 2006.

282
R. Binder and S. W. Koch, "Nonequilibrium Semiconductor Dynamics," Prog.Quant.Electr., vol. 19, no. 4/5, pp. 307-462, 1995.

283
N. Ashcroft and N. Mermin, Solid State Physics.
New York: Holt, Rinehart and Winston, 1976.

284
A. Wacker, "Semiconductor Superlattices: A Model System for Nonlinear Transport," Physics Reports, vol. 357, no. 1, pp. 1-111, 2002.

285
M. P. Anantram, M. S. Lundstrom, and D. E. Nikonov, "Modeling of Nanoscale Devices," cond-mat/0610247, 2006.

M. Pourfath: Numerical Study of Quantum Transport in Carbon Nanotube-Based Transistors