3.7.1 Real Time Formalism


The contour $ C_K$ depicted in Fig. 3.3 consists of two two branches, $ \mathrm{C_1}$ and $ \mathrm{C_2}$. Each of the time arguments of the GREEN's function can reside either on the first or second part of the contour. Therefore, contour-ordered GREEN's function thus contains four different GREEN's functions

$\displaystyle G(t,t') \ = \ \left\{
 \begin{array}{ll}
 G^\mathrm{>}(t,t') & t\...
...G_\mathrm{\tilde{t}}(t,t') & t,t'\ \in \ \mathrm{C_2}
 \end{array}
 \right. \ .$    

The greater ( $ G^\mathrm{>}$), lesser ( $ G^\mathrm{<}$), time-ordered ( $ G_\mathrm{t}$), and anti-time-ordered ( $ G_\mathrm{\tilde{t}}$) GREEN's functions can be defined as

\begin{displaymath}\begin{array}{ll}
 G^\mathrm{>}(t,t') \ &\displaystyle = \ -i...
... (t,t') \ + \ \theta(t-t') G^\mathrm{<} (t,t') \ ,
 \end{array}\end{displaymath} (3.51)

where the time-ordering operator $ T_\mathrm{t}$ is defined in (B.21). The anti-time-ordering operator $ T_\mathrm{\tilde{t}}$ can be defined in a similar manner. Since $ G_\mathrm{t} + G_\mathrm{\tilde{t}} = G^\mathrm{>} + G^\mathrm{<}$, there are only three linearly independent functions. The freedom of choice reflects itself in the literature, where a number of different conventions can be found. For our purpose the most suitable functions are the $ G^\mathrm{\gtrless}$, and the retarded ( $ G^\mathrm{r}$) and advanced ( $ G^\mathrm{a}$) GREEN's functions defined as

\begin{displaymath}\begin{array}{ll}
 G^\mathrm{r}(t,t')&\displaystyle = \ +\the...
...\ [ G^\mathrm{<}(t,t') -
 G^\mathrm{>}(t,t') ] \ .
 \end{array}\end{displaymath} (3.52)

It is straightforward to show that $ G^\mathrm{r}-G^\mathrm{a} = G^\mathrm{>}-G^\mathrm{<}$. M. Pourfath: Numerical Study of Quantum Transport in Carbon Nanotube-Based Transistors