3.3.2.2 Transformation Operator

The transformation operator describing three successive rotations with Euler's Angles $ \alpha $, $ \beta $ and $ \gamma $ is given as a product of three rotations:

$\displaystyle \hat{U}(\alpha,\beta,\gamma)=\hat{U}_{z}(\alpha)\hat{U}_{y^{'}}(\beta)\hat{U}_{z^{'}}(\gamma),$ (3.40)

where the unitary operators $ \hat{U}_{z}(\alpha)$, $ \hat{U}_{y^{'}}(\beta)$ and $ \hat{U}_{z^{'}}(\gamma)$ are given through the expressions:

$\displaystyle \hat{U}_{z}(\alpha)=\begin{pmatrix}\cos\alpha & -\sin\alpha & 0\\ \sin\alpha & \cos\alpha & 0\\ 0 & 0 & 1\end{pmatrix},$ (3.41)

$\displaystyle \hat{U}_{y^{'}}(\beta)=\begin{pmatrix}\cos\beta & 0 & \sin\beta\\ 0 & 1 & 0\\ -\sin\beta & 0 & \cos\beta\end{pmatrix},$ (3.42)

$\displaystyle \hat{U}_{z^{'}}(\gamma)=\begin{pmatrix}\cos\gamma & -\sin\gamma & 0\\ \sin\gamma & \cos\gamma & 0\\ 0 & 0 & 1\end{pmatrix}.$ (3.43)

Thus the transformation operator (3.40) takes the form:

$\displaystyle \small \hat{U}(\alpha,\beta,\gamma)=\begin{pmatrix}\cos\alpha\cos...
...sin\beta\\ -\sin\beta\cos\gamma & \sin\beta\sin\gamma & \cos\beta\end{pmatrix}.$ (3.44)

Due to the symmetry property (3.32) the transformed strain tensor will not depend on $ \gamma $. So $ \gamma $ is arbitrary and can be set to zero. The transformation operator takes the final form:

$\displaystyle \hat{U}(\alpha,\beta)=\begin{pmatrix}\cos\alpha\cos\beta & -\sin\...
...a & \cos\alpha & \sin\alpha\sin\beta\\ -\sin\beta & 0 & \cos\beta\end{pmatrix}.$ (3.45)

S. Smirnov: