3.2.1 Material Properties

The choice on the bandgap energies for GaN is based on a publication [139]. The particular setup for the masses has negligible impact within the available range, thus an average value [140] is chosen.

An interesting result of the literature search is the fact that in almost all MC simulations the piezoelectric scattering mechanisms were modeled assuming a cubic crystal structure. This is a correct approach to most of the technologically significant semiconductors, whereas for wurtzites the hexagonal structure has to be accounted for in the relevant piezoelectric scattering model.

The role of piezoelectric interaction in bulk wurtzite GaN has been analyzed by Kokolakis et al. [141]. In particular, the effect of acoustic piezoelectric scattering is taken in consideration, and the scattering rates have been calculated including the effect of screening. In accordance with their simulations, present results show that the piezoacoustic rates are higher in the wurtzite phase than in the cubic phase, and they are very sensitive to the background doping of the sample. Since nitrides exhibit the largest piezoelectric constants among all of the III-V semiconductors, an accurate modeling of piezoelectric scattering is especially important. In this work a piezoelectric scattering model similar to [142,141] is used, assuming equipartition, valid at temperatures over one Kelvin and considering non-parabolicity and screening in terms of the Thomas-Fermi inverse length $ q_0$.


Table 3.1: Summary of material parameters of wurtzite GaN for Monte Carlo simulation.
Bandgap energy Electron mass Non-parabolicity Scattering models Ref.
$ \Gamma_{1}$ U $ \Gamma_{3}$ $ \ensuremath{\mathrm{m}}_{\Gamma 1}$ $ \ensuremath{\mathrm{m}}_\ensuremath{\mathrm{U}}$ $ \ensuremath{\mathrm{m}}_{\Gamma 3}$ $ \alpha_{\Gamma 1}$ $ \alpha_\ensuremath{\mathrm{U}}$ $ \alpha_{\Gamma 3}$ ADP $ \hbar \omega _\ensuremath{\mathrm{ij}}$ $ \hbar \omega _\ensuremath{\mathrm{LO}}$ $ \rho$ $ \ensuremath{\ensuremath{\epsilon}_\ensuremath{\mathrm{r}}}$ $ \ensuremath{\ensuremath{\epsilon}_{\infty}}$  
eV eV eV m$ _0$ m$ _0$ m$ _0$ 1/eV 1/eV 1/eV eV meV meV g/cm$ ^3$ - -  
3.5 - - 0.19 - - 0.187 - - 12.0 - 99.5 6.1 9.5 5.35 [143]
3.5 5.00 - 0.19 1.00 - 0.187 - - 12.0 - 92.0 6.1 9.5 5.35 [144]
3.5 5.00 - 0.19 0.7 - 0.187 - - 12.0 - 92.0 6.1 9.5 5.35 [145]
3.4 5.50 5.60 0.19 - - - - - 10.1 - 92.0 6.095 9.5 5.35 [146]
3.5 5.50 5.60 0.20 0.40 0.60 0.183 0.065 0.029 8.3 92.9 92.9 6.1 8.9 5.35 [147]
3.5 5.5 5.6 0.19 0.4 0.6 0.187 0.065 0.029 12.0 - 92.0 6.1 9.5 5.35 [148]
3.39 5.39 5.59 0.20 0.40 0.60 0.189 0.067 0.029 8.3 91.2 91.2 6.15 8.9 5.35 [149]
3.5 4.99 5.25 0.20 0.24 0.40 0.19 0.17 0 7.8 65.0 92.0 6.095 9.5 5.35 [110]
3.39 5.49 5.29 0.20 1.00 1.00 0.189 0 0 8.3 91.2 91.2 6.15 8.9 5.35 [150]
3.5 5.50 5.60 0.19 0.40 0.60 0.183 0.065 0.029 10.1 92.0 92.0 6.1 8.9 5.35 [151]
3.5 5.45 5.60 0.21 0.25 0.40 0.19 0.1 0 8.0 65.0 92.0 6.095 9.5 5.35 [140]
3.36 - - 0.20 - - - - - 10.1 - 92.0 6.095 9.5 5.35 [152]
3.52 5.77 5.87 0.212 - - 0.37 - - 8.3 65.8 90.88 6.087 9.7 5.28 [153]
3.5 4.5 4.6 0.186 0.40 0.60 0.189 0.065 0.029 8.3 - 99.5 6.15 9.5 5.35 [116]
3.52 5.77 5.87 0.212 0.493 0.412 - - - 8.3 - 90.88 6.087 9.7 5.28 [154]
3.5 5.60 3.90 0.20 0.60 0.22 0.183 0.029 0.065 8.3 80.0 92.2 6.15 9.95 5.35 [155]
3.39 5.49 5.29 0.21 1.00 1.0 0.189 0 0 8.3 92.0 92.0 6.15 8.9 5.35 [139]
3.39 5.49 5.29 0.2 1.0 1.0 0.189 0 0 8.3 91.2 91.2 6.15 8.9 5.35 [156]
3.39 5.49 5.29 0.2 1.0 1.0 0.189 0 0 8.3 92.0 92.0 6.15 8.9 5.35 [157]
3.39 5.29 5.49 0.20 0.30 0.40 0.189 0 0 8.3 91.0 92.0 6.1 8.9 5.35  

Material parameters as used by different group are given in Table 3.1, while Table 3.2 summarizes the experimental and theoretical values of the elastic constants $ c_{11}$, $ c_{12}$, and $ c_{44}$, available for wurtzite GaN in the literature. From these the corresponding values for $ c_\ensuremath{\mathrm{L}}$, $ c_\ensuremath{\mathrm{T}}$, $ v_\ensuremath{\mathrm{sl}}$, and $ v_\ensuremath{\mathrm{st}}$ are calculated. The latest experimental values for GaN [158] are adopted in the MC simulation [159].


Table 3.2: Summary of elastic constants of GaN and the resulting longitudinal and transverse elastic constants and sound velocities.
$ c_{11}$ $ c_{12}$ $ c_{44}$ Data Refs. $ c_\ensuremath{\mathrm{L}}$ $ c_\ensuremath{\mathrm{T}}$ $ v_\ensuremath{\mathrm{sl}}$ $ v_\ensuremath{\mathrm{st}}$
GPa GPa GPa     GPa GPa m/s m/s
296 120 24 exp. [160] 245 50 6342 2855
374 106 101 exp. [161] 348 114 7557 4331
390 145 105 exp. [162] 376 112 7859 4290
377 160 81 exp. [163] 355 92 7637 3888
365 135 109 exp. [164] 360 111 7693 4278
370 145 90 exp. [165] 364 108 7733 4212
373 141 94 exp. [158] 355 103 7641 4110
369 94 118 calc. [166] 353 126 7620 4546
396 144 91 calc. [167] 368 105 7775 4153
367 135 95 calc. [168] 350 103 7585 4122
350 140 101 calc. [169] 347 103 7548 4106

Table 3.3 summarizes the experimental and theoretical values of the piezoelectric coefficients $ e_{15}$, $ e_{31}$, and $ e_{33}$, available for GaN in the literature. In cases, where $ e_{15}$ is not available, $ e_{15}=e_{31}$ is assumed. From these, the corresponding $ \langle e_\ensuremath{\mathrm{L}}^2 \rangle $ and $ \langle e_\ensuremath{\mathrm{T}}^2 \rangle $ are calculated, which are necessary to obtain the coupling coefficient $ K_{av,WZ}$ taking into account the wurtzite structure [159].


Table 3.3: Summary of piezoelectric coefficients of GaN for Monte Carlo simulation
of piezoelectric scattering.
$ e_{15}$ $ e_{31}$ $ e_{33}$ Data Refs. $ \langle e_\ensuremath{\mathrm{L}}^2 \rangle $ $ \langle e_\ensuremath{\mathrm{T}}^2 \rangle $
C/m$ ^2$ C/m$ ^2$ C/m$ ^2$ Data Refs. C$ ^2$/m$ ^4$ C$ ^2$/m$ ^4$
-0.30 -0.36 1.00 exp. [170] 0.103 0.123
- -0.55 1.12 exp. [171] 0.175 0.234
- -0.33 0.65 calc. [143] 0.061 0.082
- -0.49 0.73 calc. [172] 0.118 0.149
-0.22 -0.22 0.43 calc. [173] 0.027 0.036
- -0.32 0.63 calc. [169] 0.058 0.077
- -0.44 0.86 calc. [174] 0.109 0.145


S. Vitanov: Simulation of High Electron Mobility Transistors