3.4 Aluminum Nitride

Material parameters as used by different group are given in Table 3.7, while Table 3.8 summarizes the experimental and theoretical values of the elastic constants $ c_{11}$, $ c_{12}$, and $ c_{44}$, available for wurtzite AlN in the literature. From these the corresponding $ c_\ensuremath{\mathrm{L}}$, $ c_\ensuremath{\mathrm{T}}$, $ v_\ensuremath{\mathrm{sl}}$, and $ v_\ensuremath{\mathrm{st}}$ are calculated. The experimental values from [165] are adopted in the MC simulation.


Table 3.7: Summary of material parameters of wurtzite AlN for Monte Carlo
simulation.
Bandgap energy Electron mass Non-parabolicity Scattering models Ref.
$ \Gamma_{1}$ U $ \Gamma_{3}$ $ \ensuremath{\mathrm{m}}_{\Gamma 1}$ $ \ensuremath{\mathrm{m}}_\ensuremath{\mathrm{U}}$ $ \ensuremath{\mathrm{m}}_{\Gamma 3}$ $ \alpha_{\Gamma 1}$ $ \alpha_\ensuremath{\mathrm{U}}$ $ \alpha_{\Gamma 3}$ ADP $ \hbar \omega _\ensuremath{\mathrm{ij}}$ $ \hbar \omega _\ensuremath{\mathrm{LO}}$ $ \rho$ $ \ensuremath{\ensuremath{\epsilon}_\ensuremath{\mathrm{r}}}$ $ \ensuremath{\ensuremath{\epsilon}_{\infty}}$  
eV eV eV m$ _0$ m$ _0$ m$ _0$ 1/eV 1/eV 1/eV eV meV meV g/cm$ ^2$ - -  
6.20 6.90 - 0.48 1.0 - 0.044 0 - 9.5 99.2 99.2 3.23 8.5 4.77 [246]
5.84 7.00 8.29 0.326 0.384 0.473 0.29 - - 9.5 75.8 110.3 3.23 8.5 4.46 [153]
6.00 7.05 8.49 0.26 0.495 0.55 0.207 0.035 0.023 - 76.1 110.7 - - 4.68 [247]
6.20 6.90 8.20 0.33 0.40 0.50 0.044 0 0 9.5 99.2 99.2 3.23 8.5 4.77  


Table 3.8: Summary of elastic constants of AlN and the resulting longitudinal and transverse elastic constants and sound velocities.
$ c_{11}$ $ c_{12}$ $ c_{44}$ Data Refs. $ c_\ensuremath{\mathrm{L}}$ $ c_\ensuremath{\mathrm{T}}$ $ v_\ensuremath{\mathrm{sl}}$ $ v_\ensuremath{\mathrm{st}}$
GPa GPa GPa     GPa GPa m/s m/s
345 125 118 exp. [248] 351 115 10430 5962
411 149 125 exp. [249] 406 127 11214 6280
410 140 120 exp. [165] 398 126 11100 6246
380 114 109 calc. [250] 361 119 10569 6060
464 149 128 calc. [251] 440 140 11677 6579
424 103 138 calc. [166] 406 147 11211 6746
398 140 96 calc. [167] 372 109 10726 5814
396 137 116 calc. [168] 385 121 10920 6131
398 142 127 calc. [169] 397 127 11089 6280

Table 3.9 summarizes the experimental and theoretical values of the piezoelectric coefficients $ e_{15}$, $ e_{31}$, and $ e_{33}$.


Table 3.9: Summary of piezoelectric coefficients of AlN for Monte Carlo simulation of
piezoelectric scattering.
$ e_{15}$ $ e_{31}$ $ e_{33}$ Data Refs. $ \langle e_\ensuremath{\mathrm{L}}^2 \rangle $ $ \langle e_\ensuremath{\mathrm{T}}^2 \rangle $
C/m$ ^2$ C/m$ ^2$ C/m$ ^2$ Data Refs. C$ ^2$/m$ ^4$ C$ ^2$/m$ ^4$
-0.48 -0.58 1.55 exp. [248] 0.251 0.304
- -0.60 1.50 exp. [171] 0.260 0.334
-0.29 -0.58 1.39 exp. [252] 0.102 0.230
- -0.60 1.46 calc. [172] 0.251 0.326
- -0.38 1.29 calc. [169] 0.169 0.187
- -0.64 1.80 calc. [174] 0.349 0.429

Fig. 3.14 compares the MC simulation result for AlN against others from [253,246,254]. The simulation results are in good agreement with [253,246], since similar MC parameters are used as shown in Table 3.7. The difference visible at high fields can be explained by different effective electron masses used in the higher valleys. The simulation of [254] differs at low fields, since it ignores some mechanisms, e.g. ionized-impurity scattering.

Figure 3.14: Drift velocity versus electric field in wurtzite AlN: Comparison of MC simulation results.
\includegraphics[width=0.43\textheight]{figures/materials/AlN/AlNvel.eps}


S. Vitanov: Simulation of High Electron Mobility Transistors