next up previous contents
Next: Constants Up: List of Symbols Previous: Notation

Physical Quantities


Symbol Unit Description
$ V_{\text{t}}$ V threshold voltage
$ \mu_{\mathrm{eff}}$ $ \mathrm{cm}^{2}\, \mathrm{V}^{-1}\mathrm{s}^{-1}$ effective mobility
$ \vec{R}$ m displacement vector
$ \bar{\varepsilon}$ 1 displacement tensor
$ \bar{\epsilon}$ 1 strain tensor
$ \epsilon_{i j}$ 1 displacement tensor component
$ \varepsilon_{i j}$ 1 strain tensor component
$ \vec{\sigma}$ Nm$ ^{-2}$ stress vector
$ \bar{\sigma}$ Nm$ ^{-2}$ stress tensor
$ C_{ijkl}$ Nm$ ^{-2}$ elastic stiffness tensor
$ S_{ijkl}$ N$ ^{-1}$m$ ^{2}$ elastic compilance tensor
$ m_\mathrm{l}$ kg longitudinal electron mass
$ m_\mathrm{t}$ kg transversal electron mass
$ \mathcal{H}$ $ eV$ Hamiltonian
$ \mathcal{H}\left(\bar{\epsilon}\right)$ eV strain dependent Hamiltonian
$ \mathcal{D}^{\alpha \beta}$ eV deformation potential for strain components $ \alpha \beta$
$ E$ eV energy
$ \delta E_{0}^{v_{i}}$ eV energy shifts of the conduction band edge for valeys
    along $ \langle100\rangle$ and $ \langle111\rangle$ direction
$ \Xi_{\mathrm{d}}^{v}$ eV dilatation deformation potential for a valley of type $ v=\Delta,L$
$ \Xi^{v}_{\mathrm{u}}$ eV uniaxial deformation potential for a valley of type $ v=\Delta,L$
$ \Xi_{u'}$ eV shear strain deformation potential
$ \vec{r}$ m$ ^{D}$ space vector for $ D$ dimensions
$ \Psi_{n}$ m$ ^{-D/2}$ wave function in the eigenstate $ n$ and $ D$ dimensions
$ E_{n}$ eV eigenenergy of the eigenstate $ n$
$ \vec{k}$ m$ ^{-D}$ wave vector for $ D$ dimensions
$ u_{n \vec{k}}\left(\vec{r}\right)$ $ \mathrm{m}^{-D/2}$ Bloch function for $ D$ dimensions
$ \Omega$   m$ ^{D}$
$ m^{\ast}_{ij}$ kg effective mass tensor
$ m_{\text{l}}$ kg longitudinal effective mass
$ m_{\text{t}}$ kg transversal effective mass
$ \left[X\right]$ $ \mathrm{mol}/\mathrm{l}$ concentration of molecule/atom $ X$
$ \Lambda_{\infty}$ $ \mathrm{l}\,\Omega^{-1}\mathrm{mol}^{-1}$ molar conductivity of an electrolyte in infinite dilution
$ \Lambda$ $ \mathrm{l}\,\Omega^{-1}\mathrm{mol}^{-1}$ effective conductivity of an electrolyte
$ \Lambda^{\pm}$ $ \mathrm{l}\,\Omega^{-1}\mathrm{mol}^{-1}$ molar conductivities for positive and negative ions
$ \nu^{\pm}$ 1 valences for positive and negative ions
$ \mu^{\pm}$ $ \mathrm{cm}^{2}\mathrm{V}^{-1}\mathrm{s}^{-1}$ ionic mobility for positive and negative ions
$ K$ $ \Omega\, \mathrm{mol}^{3/2}\mathrm{l}^{-3/2}$ Kohlrausch coefficient
$ V_{\mathrm{o}}$ V overpotential (applied potential minus built in potential)
$ V_{\mathrm{a}}$ V externally aplied potential
$ \tilde{u}_{\mathrm{X}}$ V electrochemical potential for material X
$ u_{\mathrm{X}}$ V chemical potential for material X
$ \Phi_{\mathrm{X}}$ V inner potential of matrial X
$ E_{\mathrm{ref}}$ V reference electrode potential
$ \chi_{\mathrm{X}}$ V electron affinity X
$ V_{\mathrm{FB}}$ V flatband voltage
$ \psi$ V potential
$ \varepsilon_{\mathrm{sol}}$ 1 relative permittivity of the solute
$ c_{0}$ $ \mathrm{mol}/\mathrm{l}$ bulk concentration
$ \sigma _{0}$ $ \mathrm{As}\,\mathrm{cm}^{-2}$ charge density of the electrolytic double layer
$ K_{a}$ $ \mathrm{mol}/\mathrm{l}$ reaction equilibrium constant for positive charging
$ K_{b}$ $ \mathrm{mol}/\mathrm{l}$ reaction equilibrium constant for negative charging
$ \sigma_{\mathrm{Ox}}$ $ \mathrm{As}\,\mathrm{cm}^{-2}$ surface charge density
$ N_{s}$ $ \mathrm{cm}^{-3}$ total binding site density
$ \sigma_{\mathrm{s}}$ $ \mathrm{As}\,\mathrm{cm}^{-2}$ charge density of the semiconductor
$ \xi$ $ 1$ valency of the corresponding ion
$ c_{\xi}^{\infty}$ $ \mathrm{mol}/\mathrm{l}$ bulk concentration for the ion with valency $ \xi$
$ \psi_{\mu}$ V chemical potential
$ \rho_{\mathrm{Space}}$ $ \mathrm{As}\,\mathrm{cm}^{-3}$ space charge density
$ \sigma_{\mathrm{Sheet}}$ $ \mathrm{As}\,\mathrm{cm}^{-2}$ sheet charge density
$ \lambda _{\mathrm {D}}$ $ \mathrm{m}$ Debye length
$ I$ $ \mathrm{mol}/\mathrm{l}$ ionic strength
$ \varphi$ $ 1$ scaled potential
$ \mathcal{E}$ $ \mathrm{m}^{-1}$ electric field
$ \mathscr{E}$ $ 1$ scaled energy
$ \mu_{n}$ $ \mathrm{cm}^{2}\,V^{-1} s^{-1}$ electron mobility
$ \mu_{p}$ $ \mathrm{cm}^{2}\,V^{-1} s^{-1}$ hole mobility


next up previous contents
Next: Constants Up: List of Symbols Previous: Notation

T. Windbacher: Engineering Gate Stacks for Field-Effect Transistors