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Abstract

Algebraic multigrid methods (AMG) are multigrid methods which construct grid

hierarchies using algebraic information contained in the system matrix of the linear

equation to be solved. This makes AMG useful for more general applications, in-

cluding problems for which no grid interpretation is available. AMG offers optimal

linear complexity and is therefore especially well-suited for large problem-sizes. An

efficient stand-alone solver for linear equations, AMG is even more often used as a

preconditioner for Krylov methods to improve convergence. Many variations of the

AMG algorithm have been developed and the approaches usually differ in terms of

convergence, setup time and complexity. One important aspect, driven by recent

hardware development trends, is parallelism: Although parts of the basic AMG

approaches are sequential, this can be overcome by certain modifications to the

algorithm. For this thesis, implementations of several AMG preconditioners were

developed for ViennaCL, a mathematical C++ library supporting parallel comput-

ing via OpenCL. These implementations can take advantage of parallel execution by

using OpenMP threads for the setup phase (CPU) and OpenCL for the solver phase

(GPU). Benchmark results show that GPU computing can increase solver perfor-

mance for large matrices by a factor close to the theoretical maximum, but the total

computation time is bounded by the setup phase computed on the CPU. For various

problems, different AMG methods lead to optimal results, justifying the multitude

of AMG variations available. An interesting consequence of these benchmarks is the

relative independence of computation time from convergence factor and this is even

stronger if the GPU is used. Methods with lower convergence usually offer faster

setup but also a lower number of coarse levels and operator matrix density, reducing

solver time even though more iterations are required. Complexity, therefore, seems

to be a better indicator for AMG performance than convergence.
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Chapter 1

Introduction

Partial differential equations (PDE) play a central role in many models of physi-

cal nature and are therefore an important aspect of applied mathematics [1, p.47].

Examples are the Poisson equation (see below), the wave equation or the heat equa-

tion [2, p.2]. To solve PDEs, a typical approach is to discretize the problem on a grid

to transform it into a set of linear or nonlinear algebraic equations. Discretization

means that the differential equation at hand is approximated on a certain geometry

by solving for chosen grid points only [2, p.3-7]. Then, the unknowns in the original

PDE correspond to grid point values of the discretized equation.

This system of linear equation, formally written as Ax = f with a system matrix

A, a vector of unknowns x and a right-hand-side vector f , is of size N , the number

of points used for discretization on the respective grid. There are many different

approaches to choosing grids which is discussed in [2, p.3ff]. A simple example for

such a discretization can be obtained using the 1D Poisson equation with Dirichlet

boundary conditions [1, p.53f]:

−uxx = f(x) (1.1)

u(0) = u(1) = 0 (1.2)

Discretizing this equation on a regular grid using Taylor approximations for the
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CHAPTER 1. INTRODUCTION

Figure 1.1: Graph respresentation of the discretization of equation 1.1. Numbered
circles denote points, lines symmetric connections between points.

differential operators with 5 points located in (0, 1) leads to Ax = f with h = 1
5
and

A =


2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1
0 0 0 −1 2

 x =


x1

x2

x3

x4

x5

 f = h2


f(x1)

f(x2)

f(x3)

f(x4)

f(x5)

 (1.3)

The system can also be described using a graph notation. In that case, grid

points i and j are connected to each other if the respective coefficients aij and aji

for the matrix A are non-zero. The graph for the example system from equation 1.3

is depicted in figure 1.1. More examples of discretizations of PDEs can be found

in [2, p.389-412] and [3, p.78-112] for different PDEs and grids.

Usually, system matrices constructed from a grid discretization have the property

that they are relatively sparse, meaning that only a few coefficients per row are non-

zero [1, p.47]. The number of unknowns, or equivalently, the number of rows in the

system matrix, however, can be quite large, as the grid approximation improves by

using finer grids with more grid points. Those linear equations certainly can be

solved using general approaches like a direct Gauss solver or an iterative solver, but

this can be problematic.

An important feature of solvers is its complexity, which is defined as the re-

lationship between the number of operations and the number of unknowns N . A

comparison between the complexities of different solvers for the Poisson problem is

given in [2, p.14]: For the direct banded Gaussian solver, complexity squares with

the number of unknowns O(N2) which makes it inefficient for fine grids with many

grid points and a large resulting linear equation. For basic iterative procedures like

Jacobi and Gauß-Seidel [1, p.105ff], the complexity is also quadratic such that the

direct banded solver is usually preferred, especially since convergence and stability

2



CHAPTER 1. INTRODUCTION

can be an issue for the latter. More involved iterative solvers like Krylov subspace

methods show better complexity: For example, the complexity for CG [1, p.157ff] is

O(N
3
2 log ϵ)1. Still, for large systems, performance of the solver can become a prob-

lem. Therefore, for certain problems, specialized solvers have been developed, for

example the Fast Poisson Solver (FPS) for the discretization of the Poisson equation

on a rectangular grid, leading to a complexity of O(N logN) [1, p.58-62].

The best complexity, however, can be obtained using multigrid methods: These

offer linear complexity O(N) and therefore are an attractive choice for large equa-

tions. Multigrid methods are known since the 1960s and have become very popu-

lar since the 1980s when numerous scientific contributions were made [2, p.23-24].

Multigrid methods can be distinguished into geometric multigrid methods and alge-

braic multigrid methods: For the geometric approach, the grid and grid points are

constructed using discretizations as mentioned above and this is usually tailored to

the geometry of the problem at hand.

Algebraic multigrid methods (AMG), on the other hand, do not use a grid in

the geometric sense. Instead, grid points are constructed using algebraic informa-

tion only, that is, information contained in the system matrix A. Still, the formal

properties of AMG are the same as for geometric multigrid and AMG can also be

used for geometric problems with an underlying grid [3, p.8-12]. AMG, however, is

more general as no geometric grid is necessary and the approach can also be used

for any linear equation as long as certain requirements on the system matrix are

met. Although a general requirement is still lacking in the literature, AMG works

best if the system matrix is a symmetric M-matrix, that is, a symmetric matrix with

positive diagonal coefficients, negative off-diagonal coefficients and non-negative row

sums such that at least one is strictly positive. Experience, however, shows that this

is not a necessary requirement as AMG still works as long as the properties of the

respective system matrix is not too far off from an M-matrix [3] [4]. As mentioned

in [3], the terms “grids” and “points” are still used for AMG even though “sets of

variables” and “variables” would be more reasonable. On the other hand, using the

grid terminology makes it easier to relate to an underlying geometric problem and

also gives more intuitive insight into the algorithm.

1The term log ϵ reflects the stopping criterion for the iterative procedure.

3



CHAPTER 1. INTRODUCTION

Both multigrid approaches are based on two major principles - smoothing and

coarse grid correction [2, p.15f]:

1. Many relaxation procedures (like Gauß-Seidel or Jacobi) have the property

that the error e(i) = x(i)−x from an iteration of the equation Ax = f becomes

smoother the more iteration steps i are applied, especially for problems of

certain discretized partial differential equations. This means that oscillatory

error parts are damped more efficiently than the smooth parts such that the

error averages across the grid points (see figure 1.2). This principle is called

the smoothing principle. If the error is already smooth, relaxation procedures

are relatively inefficient (see above).

2. If the overall error is smooth, the error value at one point is close to the error

value of neighboring points. This means that for an approximation of the error

values at grid points, just a subset of the total grid points are needed, while

errors at the other points can be approximated from neighboring points. This

principle is called the coarse grid principle. It means that a coarser grid with

just a subset of grid points can be built from the original grid and an error

correction can be done by computing only the error on the coarser grid. If

the error across the grid is sufficiently smooth, the error at the all grid points

can be well approximated from errors computed for points on the coarser grid

only. This approach is called ”coarse grid correction”.

A combination of both principles can be used to solve linear equations by apply-

ing smoothing and coarse grid correction: First, a few relaxation steps are applied

to make the error smooth. Then, the error is computed on a coarser grid consisting

of only a fraction of the total points and approximated for all points on the original

grid. The computation of the error is achieved by taking into account that after a re-

laxation step i the equation Ae(i) = r(i) has to hold, where e(i) is the error to be com-

puted and r(i) is the residual after relaxation as r = f −Ax(i) = Ax−Ax(i) = Ae(i)

(x(i) is the solution vector after relaxation). Therefore, the equation can be solved

for the error vector using for example a direct Gauss solver on the coarser grid, ap-

proximated for the points not used on that grid and used to correct the result from

the relaxation. This is efficient as long as the number of relaxation steps needed for

4



CHAPTER 1. INTRODUCTION

Before 1st iteration
After 1st iteration

After 10th iteration

Figure 1.2: Error smoothing: Weighted Jacobi relaxation with weight factor 0.67 of
equation 1.3 with a random right-hand-side vector. Shown are the errors at all 5
points after 0, 1 and 10 iterations.

smoothing and the number of coarse points needed for approximation are relatively

small.

Multigrid methods generalize these two principles by using a hierarchy of grids

for smoothing and error correction (see figure 1.3). Then, the computation of the

error on the coarse level is done by building an even coarser grid and again using

smoothing and coarse grid correction on that level and so on. Only on the coarsest

grid the actual error is computed by using for example the Gauß method [2, p.39].

As shown in many examples, for example in [2, p.53-56] or [3], such an approach

can be very efficient.

How coarse points are chosen from the set of total points and how the approxima-

tion is done from errors at coarse points to errors at fine points (called interpolation)

is certainly the important aspect of how a multigrid method is constructed. Geomet-

ric multigrid methods usually use relatively simple approaches for choosing coarse

points, for example the use of every second point in any direction on structured grids.

Interpolation is then accomplished by computing the algebraic average of the errors

at the neighboring coarse points. This approach, however, needs more complex

5



CHAPTER 1. INTRODUCTION

Figure 1.3: Multigrid approach using three levels. Arrows denote possible error
approximations.

smoothers, especially for anisotropic problems, for good convergence [3, p.9]. Alge-

braic multigrid on the other hand can use simple smoothers, but the construction of

the coarse grids and the interpolation is in general more complex: Coarse grids are

constructed using the so-called Galerkin operator by employing only information

contained in the system matrix A and the interpolation is constructed using matrix

information only. Then, coarse-grid correction even works if the error is not smooth

in a geometric sense but only smooth in an algebraic sense. An error is algebraically

smooth when the residuals are small: Ae ≈ 0 [4, p.218]. Another interpretation

of an algebraically smooth error is that ”relaxation is slow to converge” [3, p.29].

In this case, coarse grid correction can improve overall convergence. Therefore,

while the geometric approach uses simple coarsening and interpolation but complex

smoothers, the algebraic approach uses more complex matrix-dependent coarsening

and interpolation but simple smoothers. This makes AMG very useful for problems

on unstructured grids [3, p.8].

A two-level AMG system can be shown to uniformly converge for certain classes

of positive definite matrices. This, however, does not generally hold for multilevel

approaches or more general classes of matrices [3, p.60-63]. Still, even if these

assumptions do not hold, AMG can usually be applied even though performance

might be affected. Benchmarks have shown that an AMG standalone solver is an

efficient process to solve linear equations for many classes of problems [3, p.78-112].

6
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However, AMG can also be used very efficiently as a preconditioner for Krylov

methods like CG [1, p.171ff] or GMRES [1, p.196ff]. In that case, if used as a

preconditioner, AMG does not solve the actual system but is used to improve the

convergence of those iterative solvers by correcting the iteration result. However,

the computation of this correction vector is still done by solving a system of linear

equations and therefore there is no algorithmic difference in the approach to an

AMG solver. To avoid confusion, the term precondition phase will be used for the

solve phase if AMG is used as a preconditioner. Using a combination of Krylov

solver and AMG preconditioner is often advised in the literature due to its good

convergence properties [3] [4].

One important aspect of the development of an AMG preconditioner is to use

parallel architectures, as this is a recent trend in hardware development: This is

described in [4] for highly parallel computer clusters, consisting of high numbers

of servers and processors that have to work together. But even on single worksta-

tions and personal computers, parallelism is becoming more important as processors

provide a number of parallel cores and threads. Furthermore, GPU (graphical pro-

cessing unit) computing has become a trend in recent years due to the fact that

GPUs consist of a huge number of processors, leading to a theoretical computing

power that is much higher than that of a CPU (see chapter 3.6). Technologies like

OpenCL allow developers to efficiently make use of this computing power in mixed

CPU-GPU software (section 3.1).

The main research goal of this thesis is to develop an AMG preconditioner which

uses parallel computation to improve performance and in effect, it has to be scruti-

nized how this can be done such that different architectures are used in an efficient

way. This includes the use of multiple CPU cores as well as GPU computing units.

Furthermore, the goal is to implement and compare different approaches and vari-

ations to AMG in terms of certain performance measures on parallel systems.

In the next chapter I will go into more details on AMG, namely, the different

components and certain variations of the algorithm. Then, in chapter 3, I describe

certain tools and technologies used for the implementation and the benchmarks. In

the following chapter, an explanation of the implementation of the AMG precondi-

tioner, focusing on features, interfaces and challenges, is given. In chapter 5, I will

7
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present benchmark results for the different AMG implementations for different lin-

ear systems for both CPU and GPU execution. In the last chapter I will revisit the

research goals, summarize the results and discuss possible extensions of my work.

8



Chapter 2

Components and Variants

In this chapter I will go into more details about the different components and vari-

ants of AMG. First, I will discuss the general concepts of AMG, including the core

components and the two phases, namely, the setup and precondition phase. Then, I

will go into more details about variants of these components, namely the smoother,

the coarsening and the interpolation. In the literature, there are many different ap-

proaches and I will discuss the most important ones, including the Gauß-Seidel and

Jacobi smoother, RS serial and parallel coarsening, aggregation-based coarsening

and different interpolation strategies like direct, classical or smoothed interpolation.

Some parts of the AMG algorithm do not require a more detailed theoretical

analysis. This includes the coarse-grid correction and also the computation of the

Galerkin operator, because these parts are quite straightforward and parallel as

these require only matrix-matrix multiplications, matrix-vector multiplications and

vector additions and substractions. In that case, the row of a matrix or the entry of

a vector can be computed independently of the other rows or entries and therefore

parallelism is not an issue. Still, certain aspects have to be taken into account

to efficiently exploit parallelism in the implementation, which will be discussed in

chapter 4.

9
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2.1 AMG Concepts

Formalizing the AMG approach described in chapter 1, the components of AMG

are the following [4, p.212]:

1. The problem is a system of linear equations, formally: Au = f with A the

n × n system matrix, u the n × 1 vector of unknowns and f the n × 1 right-

hand-side vector. Using geometric terminology n can be related to the number

of grid points on the finest grid while ui is the value of u at point i.

2. Grids 1, ...,M are defined such that on level k there is a number of Ck coarse

and F k fine points. Coarse points make up the grid on the next level k + 1

until the coarsest level is reached.

3. For every level k, an operator matrix Ak, an interpolation or prolongation

matrix P k, a restriction matrix Rk = (P k)T and a smoother Sk are defined.

The operator on the finest level is the system matrix: A1 = A.

4. A setup phase is used to build the grids and operators on all levels starting

from the finest level (see algorithm 1).

5. In the solve phase a cyclic algorithm is used to perform smoothing and coarse

grid correction on the defined levels (see algorithm 2).

Certainly, one drawback of using an AMG preconditioner is the need for a setup

phase, causing additional overhead. Furthermore, the data structures built and

saved during that phase require additional memory which might be a problem if

memory is scarce. Also, in the precondition phase, smoothing and coarse-grid cor-

rection operations have to be done on maybe a high number of levels which leads

to worse performance per iteration cycle. Usually, using the AMG preconditioner

therefore only makes sense for systems with a very large number of points.

2.1.1 Setup Phase

The setup phase is done before the actual computation and is used to build the

grids and the operators on all levels. It can be performed in a step-by-step manner,

10
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starting with the finest level until certain criteria are met for the coarsest level.

Usually, the criterion is an upper bound on the number of points on the coarsest

level to ensure that the direct solver in the solve phase can be run efficiently:

Algorithm 1 (AMG Setup Phase):

1. Define smoother1 S.

2. Start at the finest level k = 1.

3. Partition all points into coarse points Ck and fine points F k. Coarse points

are taken to the next (coarser) level and make up the points on that level.

4. Define an interpolation operator P k and a restriction operator Rk = (P k)T .

5. Calculate Galerkin operator matrix Ak+1 on next level: Ak+1 = RkAkP k.

6. If coarsest level is reached, set M = k and stop. If not, set k ← k + 1 and go

back to 3.

Variations of the AMG approach involve the smoother, the coarsening algorithm

and the interpolation operator.

2.1.2 Precondition Phase

The precondition phase does the actual computation to improve convergence of the

underlying iterative method. It is a recursive procedure that starts on the finest

level with a pre-smooth operation and a coarse-grid correction. Except for the

coarsest level, the coarse grid correction again uses pre-smoothing and a coarse-grid

correction to solve the residual equation and so on. If the coarsest level is reached,

then the residual equation is solved using a direct solver and the error is prolonged

to the finer level to correct the error. The presented algorithm is called a V-cycle due

to the fact that levels are traversed from finest to coarsest and back. A schematic

overview is shown in figure 2.1. In the literature sometimes also more complex cycles

like W-cycles are presented [2, p.46].

1The smoother could be different for pre- and postsmoothing and also on different levels but I
assume just one smoother for all levels and purposes.

11
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Algorithm 2 (AMG Precondition Phase (V-cycle)):

• If k = M , use a direct solver to solve AMuM = fM .

• Else, perform V-cycle:

1. Do µ1 pre-smooth iterations of S for Akuk = fk.

2. Do coarse-grid correction:

(a) Calculate residual from smoother: rk = fk − Akuk.

(b) Restrict residual to next level: rk+1 = Rkrk.

(c) Set fk+1 = rk+1 and repeat algorithm for k = k + 1.

(d) Prolongate error from coarser level: ek = P kuk+1.

(e) Correct error/solution: uk ← uk + ek.

3. Do µ2 post-smooth iterations of S for Akuk = fk.

2.1.3 Metrics

To discuss aspects of different AMG algorithms and approaches, several metrics have

to be used, both in a theoretical discussion and for benchmarks. Regular metrics

are convergence and solver time, but for AMG some more have to be used: First,

the setup time plays a role, especially for systems for which the solver time is rather

small. Also, one needs a metric for memory usage of the internal data structures

built during setup. In the literature this is called complexity and two different

metrics are usually defined [4, p.213]:

• Operator complexity is the sum of the number of non-zero coefficients on all

levels Ak divided by the sum of the number of non-zero coefficients for the

system matrix A1.

• Average stencil size is the average number of non-zero coefficients per row in

the operator matrix on a certain level. This shows average memory usage on

a certain level.
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Figure 2.1: Schematic overview of a V-cycle with four levels: Coarse grid correction
is done on the fine levels while the residual equation is solved on the coarsest level.

Note that both metrics also give some hint on setup and solve time as high numbers

of operator complexity and average stencil size mean that the number of certain

operations, for example a matrix-vector product, in both the setup and precondition

phase is high. Another metric that has to be discussed from a theoretical standpoint

is parallelism: As will be shown in the next sections, some variations are sequential

in nature while others allow parallel execution.

2.2 Smoother

An important part of the AMG precondition phase is the smoother S. Smoothing

is usually both done before and after a coarse-grid correction. In the first case, this

is useful as then interpolation is able to approximate the overall error well. In the

second case it is useful as non-smooth error components from the correction can be

damped efficiently. Traditionally, AMG uses Gauß-Seidel relaxation which has been

shown to be a good smoother for many problems [4, p.226]. The component form

of the Gauß-Seidel iteration is defined as2 [1, p.107]

xk+1
i =

1

aii

(
−

i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j + bi

)
, i = 1, ..., n

2xk
i denotes component i of vector x at iteration step k, aij is the component of matrix A at

row i and column j, bi is component i of vector b.

13
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Clearly, Gauß-Seidel is a sequential iteration as for the computation of vector com-

ponent i, components 0, ..., i−1 have to be computed first. A less effective [4, p.227]

but fully parallel approach is the Jacobi relaxation which only uses components of

the last iteration step [1, p.106]:

xk+1
i =

1

aii

(
−

n∑
j=1,j ̸=i

aijx
k
j + bi

)
, i = 1, ..., n

Here, in principle, vector components can be computed all at the same time.

One extension to these basic relaxation procedures is to weight the respective

result of the iteration with a certain weight parameter ω [1, p.431]. Using this

approach for the Jacobi relaxation leads to

xk+1
i = ω

1

aii

(
−

n∑
j=1,j ̸=i

aijx
k
j + bi

)
+ (1− ω)xk

i , i = 1, ..., n

Here, the new vector is built by using a fraction ω of the Jacobi relaxation and a

fraction (1 − ω) of the old vector from the previous iteration step. This approach

is still parallel but has improved smoothing properties similar to the ones by Gauß-

Seidel [3, p.30]. The parameter ω is usually chosen between 0 and 2 and a typical

choice is ω = 2
3
, although the optimal parameter usually depends on the actual

problem [1, p.431]. Note that for ω = 1 the weighted Jacobi relaxation is equivalent

to the basic Jacobi relaxation.

Another extension that is suggested for the Gauß-Seidel smoother is to first

smooth the coarse points and then the fine points for pre-smoothing and in reverse

order for post-smoothing [3]. This approach is called C-F (or F-C) smoothing. Of

course, this can also be done for the Jacobi relaxation with the advantage that it can

be implemented in parallel [4, p.227]. Many more ideas can be found in [4, p.227-

229], like hybrid smoothers, multicoloring approaches, polynomial smoothers and

also other preconditioners could be used as smoothers, for example the approximate

inverse approach or incomplete LU factorization. It is, however, not clear how

effective those smoothers are: They usually seem to need good matrix- or problem-

dependent parameter choices or involve a costly setup, for example the computation

of eigenvalues, to work well.
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2.3 Coarsening

Coarsening is the part of the setup phase where points are chosen to become either

coarse (C) points taken to the coarser grid, or fine (F) points for which the error

is interpolated from the coarse point errors. Choosing coarse points is crucial to

the effectiveness of the AMG algorithm and different approaches consequently show

very different properties in terms of complexity and convergence (see chapter 5).

2.3.1 RS Coarsening

The traditional coarsening algorithm described in [3, p.63-76] and in [4, p.216f] is

usually called RS (Ruge-Stüben) approach. The basic idea of this approach is that

points (or variables in the algebraic interpretation) are connected to each other via

couplings that depend on the matrix coefficients between those points. A point i is

then strongly coupled to (or dependent on or strongly influenced by) a point j if

−aij ≥ θmax
k ̸=i

(−aik).

The assumption is that the diagonal element of a certain row i is positive while

the non-diagonal elements are negative. If the diagonal is negative and the non-

diagonals are positive, the same criterion holds except that the signs have to be

changed. θ is the strength of threshold parameter and is set to 0 < θ < 1. Note

that whether a point is strongly influenced by another point is also dependent on

the highest negative coefficient in the respective row of matrix A and therefore

dependent on the couplings to all the other points.

Figure 2.2: First pass [4, p.215]. Numbers denote the current state of λi for point
i. Black points are C points, white points without number F points.
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The coarsening algorithm then proceeds with two passes: The first pass described

in algorithm 3 and shown graphically in figure 2.2 generates C and F points such

that there are enough C points for interpolation but as few as possible to minimize

complexity.

Algorithm 3 (RS coarsening, 1st pass):

1. Every point i is associated with a measure λi that stores the number of points

that are strongly influenced by i.

2. Pick a point with the maximum value λi to be C point3.

3. All points that are strongly influenced by this new C point become F points.

4. For every point that has become F point in the last step: Increment λi if point

i strongly influences an F point.

5. If there are points left that are neither C nor F point, go back to 2.

The second pass checks whether all strong influences between pairs of F points

are connected to a common C point. This is described in algorithm 4 and shown in

figure 2.3. If the check fails for a F-F connection, then more C points are created

to improve interpolation and convergence at the expense of a higher complexity4.

Figure 2.3: Second pass [4, p.215]. Left figure: Strong lines denote F-F connections,
dotted lines C-F connections. Central figure: Strong lines denote F-F connections
without common C point connection. Right figure: C points are added.

3There might be more points with maximum λi. If that is the case then a point can be picked
in an arbitrary way.

4Note that usually there are many options of how C points can be created to fulfill that re-
quirement.
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Algorithm 4 (RS coarsening, 2nd pass):

1. Pick one of the F points.

2. If F point is strongly influenced by another F point, check whether both are

influenced by a common C point.

3. If not, switch one of the mentioned F points to C point.

4. If not all F points are checked, pick an unchecked F point and go back to 2.

The first pass makes those points C points that have a high influence on other

points such that a minimal number of C points are selected. The second pass ensures

that if one F point is strongly influenced by another F point, there is also one C

point both F points are strongly coupled to. This improves interpolation although

it increases the number of C points and therefore a higher complexity on the coarser

levels is to be expected.

Even though RS-coarsening works very well for many applications, the main

drawback of the algorithm is that it is highly sequential, only the computation of

the dependence and the first step of the first pass can be done in parallel. Other

related coarsening procedures are one-pass-RS-coarsening, where only the first pass

of the algorithm is carried out, and aggressive coarsening [4, p.216]. For the latter,

strong relations are defined via paths of points. In this terminology, RS is a special

case with paths of unit length. The algorithm then proceeds with the first pass of

RS coarsening (algorithm 3) and runs another RS first pass on the C points from

the first run. Altogether, only those points become C points that are flagged as C

points in both runs.

Still, all of these approaches are single-threaded and therefore ideas have been

developed to parallelize the coarsening procedure. One idea is to partition all the

points into subsets (partition the matrix into many smaller matrices) and then

coarsen each set of points independently [4, p.217] [5, p.162-164]. This is called

RS0 coarsening and is efficient in the sense that coarsening can run in parallel on

(theoretically) as many processors as are available. To make this work, certain cou-

plings between points have to be neglected during coarsening as influencing points
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may reside on other processors. Therefore, in general, worse convergence is to be

expected. RS3 coarsening improves convergence by, after running RS0 coarsening,

introducing a third pass which is similar to the second pass of RS coarsening but is

only run on the processor boundary points - points which are influenced by points

on a different processor. This third pass therefore adds more C points and is again

sequential in nature.

2.3.2 CLJP Coarsening

A problem of both RS0 and RS3 coarsening is that at least one C point has to exist on

the coarsest level on each processor, which is a problem if the number of processors

becomes very large. In that case the direct solver on the coarsest level might become

quite slow as the overall number of points stays relatively large. A different parallel

approach that does not have this disadvantage is CLJP coarsening [4, p.218-220] [5,

p.160-162]. Here, points are picked as C points if their influence measure λi is greater

than the same measure for all points that either influence this C point or are strongly

influenced. This can be done in parallel. To be able to find unique maximum points,

random values between zero and one are added to λi for all points. Now, instead of

making all points strongly influenced by those C points to F points, the value λi is

decremented by the number of strongly influencing C points. This is also done for

all influencing point pairs that have a common C point. In the end, only points for

which λi < 1 become F points. The process is then repeated until all points are either

C or F points. Note that for a parallel execution, information between processors

has to be exchanged about updated values λi for strong influences between processor

boundaries.

2.3.3 Other RS-related Strategies

Although CLJP in general works well, complexities are rather high as can be seen

in [4, p.227ff]. A similar approach, which however leads to less complexity, is PMIS

coarsening [4, p.220]. The difference to CLJP is the fact that for PMIS all points

immediately become F points when points are strongly influenced by C points.

Subdomain blocking is another parallel approach that coarsens from the boundary
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points to the inside [4, p.220]. The Falgout approach is a combined approach that

uses RS0 coarsening on finer levels while proceeding with CLJP for coarser levels

[4, p.221] [5, p.164-165]. The advantage is that this leads to lower complexities

than CLJP and avoids the RS0 problem that at least one C point has to exist per

processor. HMIS coarsening combines RS0 and PMIS, using the former for finer

and the latter for coarser levels [4, p.221].

2.3.4 Aggregation

A completely different approach to coarsening is called coarsening by aggregation,

which uses a different strength of dependence measure [3, p.112-117] [4, p.216] [6].

A point i is strongly connected to a point j if

|aij| ≥ θ
√
|aiiajj|.

The idea of coarsening by aggregation is to form aggregates of points that are

represented as one point on the next coarser level. This concept is developed for

symmetric matrices, although it can be in principle also used for non-symmetric

ones.

Algorithm 5 (Coarsening by Aggregation):

1. Build neighborhoods Ni, which are sets of points that include point i and all

points connected to i.

2. Pick one neighborhood Ni by selecting a root point i.

3. Make this neighborhood an aggregate. The root point i of the aggregate can be

interpreted as C point while the others are F points.

4. If there are points included in a neighborhood but not in an aggregate, pick

another Ni that is not included in an aggregate and go back to 3.

5. If there are points left that are not in an aggregate, either join them with

existing aggregates or build new ones.
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Coarsening by aggregation usually leads to lower complexities than RS coars-

ening, but this depends on the interpolation used (see section 2.4.4). The original

aggregation-based AMG uses a very simple interpolation procedure where all points

in an aggregate just use the same value for all points in the aggregate. Smoothed

aggregation on the other hand also interpolates from other aggregates, which also

leads to higher complexities from the Galerkin operator. Note also that coarsening

by aggregation is a sequential algorithm with the exception of the first step. How-

ever, decoupled coarsening can be used similar to RS0 coarsening by splitting the

points into disjoint sets that are coarsened on different processors.

2.4 Interpolation

Interpolation is used to prolongate the error from a coarser level to the respective

fine level. The usual approach for C points is to use the same value as the respective

value on the coarser level, while F point values are linear combinations of C point

values. Which C points to interpolate from and which interpolation weights to use

is determined by the respective interpolation algorithm.

Formally, interpolation defines weights wij such that for all F points i and coarse

interpolatory points C̃i
5:

ei =
∑
j∈C̃i

wijej

The basis for interpolation is a smooth error, defined in the algebraic sense as

Ae ≈ 0 such that the error for point i can be approximated by the equation

aiiei +
∑
j∈Ni

aijej = 0,

where Ni is the set of all neighboring points.

5Usually, the set of coarse interpolatory points is the same as the set of strongly influencing C
point neighbors. For aggregation-based interpolation it is usually the C point that is the root of
the respective aggregate.

20



CHAPTER 2. COMPONENTS AND VARIANTS 2.4. INTERPOLATION

2.4.1 Direct Interpolation

Equation weights are then set such that the approximation is as good as possible.

The problem is that for the interpolation from a coarser level only the points Ci

(the points that appear on that coarser level) can be used and not all points Ni.

However, interpolation is still possible in a variety of ways. One approach used for

RS and related coarsening procedures is direct interpolation [3, p.39f] [4, p.223].

Here, influences from F points are neglected with the underlying assumption that

the approximation can be done using only direct connections to C points. Then,

weights can be defined as

wij = −
(∑

k∈Ni
aik∑

l∈Ci
ail

)
aij
aii

. (2.1)

Certainly, this approach only makes sense when a high portion of influence of an F

point can be captured in the neighboring C points. This has to be accomplished

by the coarsening procedure used, otherwise interpolation and in turn convergence

will suffer. This is one reason why the distinction of strong and weak dependence is

used and the coarsening algorithms are tailored such that points with many strong

connections become C points. Still, most applications of the algorithm leave strong

F connections and therefore convergence for direct interpolation can be worse than

for other interpolation approaches. Still, the formula is rather simple and can be

computed in parallel such that good setup times are to be expected.

To reduce complexity, interpolation truncation can be used to restrict the number

of interpolating C points [3, p.74]. Then, interpolation is only done from points

for which the interpolation weight is larger than a certain threshold ϵ times the

maximum weight per point6. All the weights that are smaller than the threshold are

set to zero while the others are scaled such that the total sum of interpolation weights

per point stays the same. Then, complexity is smaller as both the interpolation and

the Galerkin operator become more sparse and, if the weight is chosen correctly,

interpolation does not suffer as only small weights are neglected.

6Choosing ϵ = 0.2 is suggested in [3].
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2.4.2 Classical Interpolation

A more sophisticated interpolation formula is classical interpolation [4, p.222f].

Here, the distinction is made not only between strongly influencing C points Ci

and other points, but also between strongly influencing F points F s
i and weakly

influencing points Fw
i . Now, connections are treated differently for weak and strong

F connections if the pair of strongly connected F points has a common C point:

wij = −
1

aii +
∑

k∈Fw
i
aik

aij +
∑
k∈F s

i

aikakj∑
l∈Ci

akl

 (2.2)

This is always the case for RS coarsening when the full algorithm is used, as the

second pass makes sure that any strong F connection has a common C point. This

is also the case for RS3 coarsening, but cannot be guaranteed by one-pass or RS0

coarsening. In that case, the interpolation formula breaks down as the right denom-

inator becomes zero. The computation can again be done in parallel but is more

complex such that setup times are expected to be worse than for direct interpola-

tion. However, as more information is used for the interpolation (C point influence

over strong F connection), convergence should improve.

Experience suggests that classical interpolation works very well if the system

matrix is close to an M matrix, where coefficients in a row have the opposite sign

of the diagonal coefficient in that row. However, if the matrix for the system to be

solved has many non-diagonal coefficients with the same sign as the diagonal, then

interpolation weights might become very large as coefficients in the denominator

of the right sum in equation 2.2 might cancel out [5, p.166]. This can lead to bad

interpolation performance and even divergence in some cases.

A proposed modification for this problem is to define weights

wij = −
1

aii +
∑

k∈Fw
i
aik

aij +
∑
k∈F s

i

aikâkj∑
l∈Ci

âkl

 (2.3)

such that
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âij =

0, if sign(aij) = sign(aii),

aij, otherwise.

In this case, only coefficients are used which have a different sign as the diagonal.

Depending on the actual matrix, this might also lead to worse convergence as certain

strong F connections are neglected. On the other hand, this ensures that coefficients

in the denominator in the right sum have the same sign, eliminating the divergence

problem.

2.4.3 Other Interpolation Procedures

Even more information is used for standard interpolation [3, p.70f] [4, p.215]. It

works like direct interpolation but eliminates all strongly influencing F points F s
i

from the equation by approximating these first:

ej = −
∑
k∈Nj

ajkek
ajj

Then, the error equation resembles a larger neighborhood, namely all C points that

strongly influence i or strongly influence an F point that strongly influences i:

âiiei +
∑
j∈N̂i

âijej = 0

The coefficients in the equation are the combined coefficients from the elimination of

the points in F s
i together with the original ones and N̂i is the extended neighborhood.

For this equation, direct interpolation can be used for the interpolation weights.

Standard interpolation offers very good convergence but the computation of the

extended neighborhood leads to higher setup times.

Multipass interpolation is used for coarsening procedures for which not every F

point has a C point connection, for example with aggressive coarsening [4, p.223].

Here, direct interpolation is used for all F points with a C point neighbor and

standard interpolation for the others.
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2.4.4 Interpolation for Aggregation-based AMG

The basic idea of aggregation-based AMG is to identify all values in an aggregate

with the aggregate value on the coarse level, resulting in interpolation weights of

1 if the point is part of the respective aggregate, and 0 if not [3, p.112]. This is

equivalent to interpolating an error at an F point exactly by the error at the C

point that corresponds to the respective aggregate for which the C point is the root

point. As this interpolation can be implemented in parallel and furthermore the

interpolation is very simple, one can expect fast setup times and low complexity.

However, as only one C point is always used for interpolation, the approximation is

not very good compared to other approaches. Therefore, convergence of the basic

aggregation-based method is relatively bad.

Smoothed aggregation uses the same approach, however, the interpolation is

improved by doing one step of a weighted Jacobi smoother such that a broader

interpolation base is used, including values from other aggregates [6]. In matrix

form, if P̂ is the basic prolongation matrix at a certain level, the final interpolation

is determined by computing

P = (I − ωD−1AF )P̂

I is the identity matrix, ω the weight of the Jacobi method7, D the diagonal of the

operator matrix A and AF the filtered matrix. The latter is constructed from A by

transferring all off-neighborhood coefficients into the diagonal to decrease complexity

(see [6] for more details).

Nevertheless, complexity is usually increased compared to the basic aggregate

interpolation, but convergence is improved due to the broader interpolation base.

Furthermore, the additional matrix product leads to higher computation times for

the smoothed aggregation approach and therefore also to higher setup times.

7ω = 2
3 is often advised in the literature.
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2.5 Summary

This chapter shows that AMG is in fact not a single method or algorithm but a

very broad concept that can be tweaked in a variety of ways. This includes certain

parameter choices, for example for the strength of dependence, but even more so the

respective coarsening and interpolation schemes used. Usually, there is a trade-off

involved between setup time and operator complexity on one hand and convergence

on the other.

It is important to note that not all combinations of coarsening and interpolation

work well together: The aggregation-based coarsening methods have to be com-

bined with aggregation-based interpolation, aggressive coarsening needs multipass

interpolation and one-pass coarsening cannot be used together with classical inter-

polation. However, in the end it is up to the user which approach to apply to a

certain problem. This of course includes the trade-off mentioned above, but also

the underlying physical problem that might be more suitable for one approach or

the other. This is certainly also the case for the partitioning approaches like RS0 or

RS3 which only make sense if the off-processor influences are small.
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Chapter 3

Tools and Technologies

In this chapter I want to discuss and summarize certain tools and technologies used

for the work on the practical part of this thesis. This includes certain parallel

programming tools (OpenCL, OpenMP) and libraries (ViennaCL, uBlas), a tool to

renumber matrix indices and a description of the used hardware.

3.1 OpenCL

OpenCL (Open Computing Language) is an open computing standard for paral-

lel architectures and supports many different heterogenous platforms [7]. OpenCL

drivers are available for many different vendors including NVIDIA (GPU), AMD

(GPU and CPU) and Intel (CPU). OpenCL includes a runtime, a compiler and a

C dialect programming language also usually called OpenCL. It therefore offers a

convenient way to develop applications which efficiently use the parallel execution

units available on a given device. OpenCL applications are usually called kernels.

OpenCL uses a host/device-based platform model: An application runs on a

host which controls and issues streams of instructions (kernels) to the devices which

are executed on the processing elements of these devices. A typical example of

such a model is a CPU-host that runs the program but delegates certain tasks to

GPU-devices. To distinguish between the different execution units, an index space
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Figure 3.1: Simplistic overview of the OpenCL architecture including memory for a
CPU host and a GPU device with 4 work-items per work-group.

is used which separates the parallel ressources on the device in work-items such

that every work-item is associated with a unique index. Each work-item executes

the same code in parallel, but this code can be index-dependent such that different

calculations are possible (see below).

Work-items are further grouped into work-groups which allows for a better com-

position of work-items for execution. Furthermore, synchronization barriers can be

used inside work-groups to control the execution on work-items. OpenCL uses four

different types of memory: Global memory that is shared between all work-items,

constant memory which holds constants for all work-items, local memory which is

shared among a work-group and private memory only visible to a certain work-item.

To copy memory between host and an OpenCL device the global memory is used

which is controlled by the host but can be accessed from the work-items on a device.

A schematic overview of the architecture for a typical CPU-GPU system is shown

in figure 3.1.
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The OpenCL C language is used to develop kernels which execute on the work-

items. The most important part is the handling of the parallel execution using

the work-item id. A typical code to distinguish the execution between different

work-items is the following:

for (i = get_global_id(0); i < max_i; i += get_global_size(0))

{

// Computation for work-item i

}

Here, get global id(0) returns the id of the work-item, while get global size(0)

returns the total number of work-items available. Work-item 0 in this case com-

putes values for i = 0, get global size(0), 2 x get global size(0) and so

on. This can be used for example for vector manipulations where vector-entries

with index i are computed in parallel.

ViennaCL offers an API for C++ and Fortran to write code for an OpenCL host

(see next section). This includes memory handling, device control and a compiler

for OpenCL code that is run on the device. From a performance point of view, this

introduces some overhead compared to a host-only application mostly due to data

transfer from host to device but also due to kernel calls and for the device handling.

A performance gain from using OpenCL is therefore only to be expected if the

difference in computation time between a host-only application and a combined

application is at least as large as this overhead.

3.2 ViennaCL

ViennaCL (Vienna Computing Library) is a computing library written in C++ [8].

The current version 1.1.2 offers a variety of linear algebra functions (BLAS level 1, 2

and 3), a direct solver (LU decomposition), three iterative solvers (CG, BiCGStab,

GMRES) and three preconditioners (LU with threshold, Jacobi, row normalization).

ViennaCL further offers a variety of data types for mathematical computation

like vector, dense and sparse matrix types. There are also many functions for data

29



3.2. VIENNACL CHAPTER 3. TOOLS AND TECHNOLOGIES

manipulation like matrix-vector multiplication or matrix-matrix multiplication. The

library is distributed as C++ header files and can therefore easily be used in any

C++ project. ViennaCL further has a similar interface to Boost uBlas (see section

3.4) and offers wrappers to uBlas, Eigen [9] and MTL4 [10].

The main feature of ViennaCL is its ability to optionally use GPUs or multi-

core CPUs to speed up computation. For this purpose, ViennaCL uses OpenCL and

offers a convenient way to access OpenCL functionality. This include handling of

OpenCL data objects and memory and certain convenience functions for OpenCL

source code:

• OpenCL kernels usually have to be programmed as C++ strings which is not

very convenient. ViennaCL offers a tool such that OpenCL source code can

be written into source files which are then translated into C++ strings.

• ViennaCL furthermore checks whether an OpenCL device and driver provide

double precision support. This is currently not included in the standard but is

nevertheless implemented in some devices as an extension. If double precision

is supported, then the OpenCL code is adjusted for this purpose.

• ViennaCL also eases the OpenCL code compilation: Kernels are associated

with certain data types (e.g. compressed matrix) and are automatically pre-

compiled when an object of this type is created. This can even improve per-

formance because compilation is only done once instead of every time a kernel

is to be run.

ViennaCL is therefore a library to ease the implementation of parallel applica-

tions. A programmer can either use the built-in functionality or use the framework to

implement his or her own parallel computation code. Of course, ViennaCL function-

ality can also be used for plain single-threaded computation just like Boost uBlas,

for example when the underlying algorithm cannot be parallelized in a reasonable

way.

Benchmark results show that ViennaCL indeed offers a performance advantage

over single-threaded uBlas computations whenever massive parallel execution of a

certain large computation is possible. Then, the superior parallel computing power
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of a GPU outweighs the OpenCL overhead which includes memory transfers, kernel

calls and device handling1. For more details, see the benchmark results in the

ViennaCL manual and those in chapter 5.

3.3 OpenMP

OpenMP (Open Multi-Processing) is an API for multithreaded programming in

C, C++ and Fortran in a shared memory environment like multi-core CPUs and

supports many platforms and compilers including GCC [11]. The difference to

OpenCL is the way parallelism is used: In case of OpenCL by several workers on

an OpenCL device, for example a GPU or multicore CPU, in case of OpenMP by

threads on the CPU. A single-threaded C++ program can therefore be altered to

a parallel program if the execution or algorithm allows it. The main advantage of

OpenMP is therefore that single-threaded code can easily be altered to parallel code

using simple code constructs to for example run a for-loop in parallel:

#pragma omp parallel for private (var_list1) shared (var_list2)

for (unsigned int i = 0; i < 10; ++i)

{ ... }

In this code example the compiler runs the loop by starting threads with the

interior code for i=0,1,2,...,10 in parallel. Of coarse, the calculations in those itera-

tions have to be independent of the other iterations. OpenMP further offers ways

to deal with variables by using the private and shared list. Private variables can

only be accessed by the respective thread while shared variables can be accessed by

all threads in parallel. Variables that are created inside the loop-block are always

treated as private variables.

Parallel write-access to shared variables, however, is problematic and can re-

sult in race conditions and even memory errors (“Segmentation Fault”). Therefore,

the directive #pragma omp critical makes sure that the block below the directive

1A typical example for the differences in raw computing power between CPU and GPU is given
in section 3.6.
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is only executed by one thread at a time. There are many more ways to include

or control OpenMP parallel execution in C++ code, for example by using paral-

lel sections, tasks, singular regions, atomic operations and barriers. However, many

problems can already be programmed using parallel for and critical. OpenMP

further defines global functions to control parallel execution and the system environ-

ment. The number of available processors/threads for example can be determined

by calling omp get num procs().

OpenMP is therefore a very useful tool when parallel execution on a CPU is

required. For this case, OpenMP offers a lightweight approach using shared memory

and threads with less overhead than OpenCL.

3.4 uBlas

uBlas is part of the Boost libraries and offers mathematical functionality for the

C++ language by providing certain mathematical data types (e.g. vector or matrix

in different formats) and operations [12]. uBlas also provides a lot of linear algebra

functionality (Blas level 1, 2 and 3). ViennaCL is interface-compatible to uBlas

and offers some of the same features, but the main difference is that uBlas is a

single-threaded CPU-only library2.

In this work uBlas is used as both a basis for the development of the precondi-

tioner (see chapter 4) but also as a way to compare CPU versus GPU performance

(see chapter 5).

3.5 Renumbering Tool

For certain coarsening strategies (RS0, RS3) the space of points has to be grouped

into different sub-spaces such that parallel execution of the coarsening algorithm is

possible. For this to make sense, the grouping has to be such that as many strong

connections as possible are retained, or to put it in another way: As few as possible

2There are of course many more differences as for example uBlas does not offer iterative solvers.
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strong connections should be cut. This is tough to do if neighboring points have

very different indices. Therefore, a renumbering of the points eases the development

of such a coarsening algorithm as then neighbor points also have close indices.

A simple example can be derived from the matrix defined in equation 1.3. By

switching indices for points 2 and 4 as well as 3 and 5, the matrix

Ã =


2 0 0 −1 0

0 2 −1 0 −1
0 −1 2 −1 0

−1 0 0 2 −1
0 −1 0 −1 2


is obtained, which clearly has a higher bandwidth than the original matrix. Al-

though the mathematical interpretation of this matrix is equivalent and there are

no negative effects on performance if for example non-zero iterators are used, the

situation is different if the matrix is split into sub-matrices. For example, a splitting

into two matrices of size 2 and 3 where A1 and A2 are the parts of the original

matrix and Ã1 and Ã2 the parts of the renumbered matrix leads to

Ã1 =

(
2 0

0 2

)
A1 =

(
2 −1
−1 2

)

Ã2 =

2 −1 0

0 2 −1
0 −1 2

 A2 =

 2 −1 0

−1 2 −1
0 −1 2


Clearly, the matrices are different and the splitting of the lower-bandwidth-matrix

retains more connections between points than the one with the higher-bandwidth-

matrix. Therefore, in practice, the quality of the coarsening of RS0 and RS3 depends

very much on the numbering of the points in a matrix with the effect that an

optimal result can be obtained for a numbering for which the matrix has the lowest

bandwidth possible.

However, matrices in practice are not necessarily numbered in an optimal way.

For RS0 and RS3 it is therefore useful to first employ a renumbering tool that works

on the system matrix and renumbers the points such that the matrix is diagonally
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dominant. There are different algorithmic approaches to doing such a renumbering

and I used an implementation of the Reverse Cuthill-McKee algorithm described

in [13]3. The algorithm uses two sets: R to order points and Q to save neighboring

points. First, the point with the fewest neighbors is chosen and put into the first

free place in R, all the neighbors in order of their number of neighbors into Q. Then,

the algorithm prioritizes points in Q and does the same operation again: Transfer

the point with the fewest neighbors to R and it’s neighbors to Q. This is done until

all points are in R. In the end, the ordering of R is reversed.

The tool is able to read and write matrices in the matrix-market format which

is also used in ViennaCL. After computation, the bandwidth of the matrix is mini-

mized, meaning that the indices of neighboring points are a lot closer to each other.

The mentioned tool might be included in ViennaCL in later versions, until then how-

ever, a user of the coarsening algorithms RS0 and RS3 is advised to use a similar

renumbering tool before doing the coarsening.

3.6 Hardware

The software was developed and benchmarked on a personal computer equipped

with an Intel Core i7-960 (3,2 GHz), 12 GB RAM memory and a NVIDIA GeForce

GTX 470 (OpenCL driver version: 270.41.19) with a maximum of 14 compute units

and 1024 OpenCL work-items on Funtoo Linux (64 Bit) and kernel version 2.6.38.

The processor has 4 physical cores and can run a total of 8 threads via OpenCL or

OpenMP. The theoretical total computing power of the CPU is about 50 GFlops [14]

while for the GPU it is about 550 GFlops [15]. Although these theoretical values

have to be taken with a a grain of salt, it shows nicely how the GPU can improve

performance if the software is able to exploit its parallel architecture for problems

for which the ViennaCL/OpenCL overhead is small enough.

3The tool was developed by Philipp Grabenweger at the Institute for Microelectronics, Vienna
University of Technology in 2011 for his Bachelor thesis.
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Chapter 4

Implementation

During the work on this thesis a C++ implementation of an AMG preconditioner has

been developed for ViennaCL. It features support for both CPU and GPU comput-

ing devices and can be used with the already existing iterative solvers in ViennaCL.

The AMG preconditioner can be customized by the user as several coarsening and

interpolation schemes can be chosen and combined. Other options include the num-

ber of coarse levels set manually or automatically by the algorithm during setup,

the number of pre- and postsmooth cycles and the strength of dependence threshold

parameter for the setup phase (see table 4.1 for a full list).

The implementation combines several approaches: While the precondition phase

can be run both on the CPU and GPU by just using CPU or GPU vectors and

matrices as input, the setup phase runs on the CPU only. The reason for this design

decision was that the precondition steps are rather straightforward, involving a

smoother, matrix-vector multiplications, vector-vector additions and a direct solver.

This can be developed easily by using the existing ViennaCL framework and some

OpenCL code1. The setup phase on the other hand is rather complex, involving

the handling and build-up of many different data structures, a task for which GPUs

are not very efficient. Furthermore, the setup phase involves many data transfers

which would also slow down a GPU implementation. Still, even though the setup

phase is CPU-only, the implementation can be speed up by using OpenMP on a

1The direct solver also runs on the CPU right now but will run on the GPU as soon as ViennaCL
supports pivoting for the LU factorization.
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multicore CPU. For the GPU implementation, the data structures are copied to the

GPU after the setup phase has been completed on the CPU.

The software therefore takes advantage of the strength of the respective architec-

ture: While the general purpose CPU is efficient for more complex tasks including

sorting, dynamic memory handling and conditional branching, the GPU is efficient

for standard and repetitive parallel tasks like vector computations or iterations.

While important parts of the setup phase like the construction of coarsening and in-

terpolation consist of many tasks of the former, the precondition algorithm is solely

based on tasks of the latter. On both architectures the implementation makes full

use of the available computing units by taking advantage of parallelism as much as

possible.

4.1 Code and File Organization

The code of the AMG preconditioner is distributed among several files and can be

found in viennacl/linalg/. All the classes and global functions are also built into the

namespace viennacl::linalg.

• amg.hpp: The main file contains both classes for the AMG preconditioner

(CPU and GPU version), the precondition methods including the smoothers

and certain global functions for the setup phase. These functions build the

internal data structures, run the setup cycle and copy data to the GPU (if

necessary).

• amg base.hpp: This file is included in all the other files and contains the

internal data structures and several functions, including the computation of

the Galerkin operator.

• amg coarse.hpp: In this file all the different coarsening algorithms are included.

• amg interpol.hpp: This file contains the different interpolation algorithms.

• amg debug.hpp: To ease code debugging, functions were written to print cer-

tain matrices or vectors or write them to a file. These are included here.
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For debugging and benchmarking I tweaked the built-in ViennaCL solver bench-

mark to support the AMG preconditioner. This source file can be found in the

ViennaCL benchmark directory examples/benchmarks and is named amgbench.cpp.

ViennaCL enforces certain coding standards for the preconditioners such that

they can work with the existing iterative solvers. First, the class and template

structure has to match both for the CPU and GPU type. The default implementa-

tion which uses the CPU for all computations uses the structure

template <typename MatrixType>

class amg_precond

while the specialization for GPU computation via ViennaCL and OpenCL uses

template <typename ScalarType, unsigned int MAT_ALIGNMENT>

class amg_precond< compressed_matrix<ScalarType, MAT_ALIGNMENT> >

The templates for the class amg precond therefore enable the choice between CPU

or GPU implementation. In the latter case the class is templated by the type

viennacl::compressed matrix using a ScalarType (float or double) and a mem-

ory alignment MAT ALIGNMENT. For all other classes the CPU implementation is used

and MatrixType shows the type of the system matrix, for example

ublas::compressed matrix. If common functionality is needed for both classes

which is the case for most of the setup phase, then global functions are used.

The precondition operation is done by using a member function of these classes,

in both cases using the following interface:

template <typename VectorType>

void apply(VectorType & vec) const

Note that the method is const and therefore data structures inside the class do

not change. vec is the vector of type VectorType (e.g. viennacl::vector or

ublas::vector) to which the preconditioner is applied to. From the point of view
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of the AMG preconditioner this is the right-hand-side of the precondition equation

to be solved which is equivalent to the residual of the system equation (see chapter

1).

4.2 Data Structures

An important aspect of the implementation are the data structures. Those are not

only important to exchange information between the user and the implementation

but also to efficiently transmit the relevant information between different parts of the

preconditioner which often factors into the overall performance quite substantially.

This includes information about the system matrix and its coefficients, information

about the influence between different points and about the division of information

between different threads and so on. In the following section I will explain how those

data structures are set up and used and the reasons behind the most important

design decision.

4.2.1 User Options

To setup the properties of the AMG preconditioner a tag-class amg tag is used,

which is distributed to the AMG classes and saves the user options for the algorithm.

Options include the coarsening and interpolation strategy used, parameters for the

smoother, the strength of dependence calculations and many more. The options can

be set via the constructor and getter/setter functions for every parameter. Table 4.1

shows the implemented options with the restrictions on the values and the default

value.

4.2.2 Sparse Matrix

Most of the data structures used for AMG are in a matrix format which includes

the operator matrix, the restriction and the prolongation matrix. To use memory

efficiently it makes sense to use a sparse matrix format that only saves non-zero

38



CHAPTER 4. IMPLEMENTATION 4.2. DATA STRUCTURES

O
p
ti
o
n
N
a
m
e

D
es
cr
ip
ti
on

V
al
u
e
R
es
tr
ic
ti
on

s
D
ef
a
u
lt

co
a
rs
e

C
oa

rs
en

in
g
al
go

ri
th
m
.

V
IE

N
N
A
C
L
A
M
G

C
O
A
R
S
E

R
S
(=

1
)

1
(s
ee

se
ct
io
n
s
2.
3
an

d
4.
3.
1
fo
r
d
es
cr
ip
ti
on

s)
V
IE

N
N
A
C
L
A
M
G

C
O
A
R
S
E

O
N
E
P
A
S
S
(=

2
)

V
IE

N
N
A
C
L
A
M
G

C
O
A
R
S
E

R
S
0
(=

3)
V
IE

N
N
A
C
L
A
M
G

C
O
A
R
S
E

R
S
3
(=

4)
V
IE

N
N
A
C
L
A
M
G

C
O
A
R
S
E

A
G

(=
5
)

V
IE

N
N
A
C
L
A
M
G

C
O
A
R
S
E

S
A

(=
6)

in
te
rp
ol

In
te
rp
ol
at
io
n
a
lg
or
it
h
m
.

V
IE

N
N
A
C
L
A
M
G

IN
T
E
R
P
O
L
D
IR

E
C
T

(=
1
)

1
(s
ee

se
ct
io
n
2.
4
an

d
4.
3.
2
fo
r
d
es
cr
ip
ti
on

s)
V
IE

N
N
A
C
L
A
M
G

IN
T
E
R
P
O
L
C
L
A
S
S
IC

(=
2)

V
IE

N
N
A
C
L
A
M
G

IN
T
E
R
P
O
L
A
G

(=
3
)

V
IE

N
N
A
C
L
A
M
G

IN
T
E
R
P
O
L
S
A

(=
4)

th
re
sh
ol
d

S
tr
en

gt
h
of

d
ep

en
d
en

ce
th
re
sh
ol
d
.

0
<

th
re
sh

ol
d
≤

1
0.
25

in
te
rp
ol
w
ei
gh

t
W
ei
gh

t
p
a
ra
m
et
er

fo
r
th
e
S
A

in
te
rp
ol
at
io
n
.

0
<

in
te
rp
ol
w
ei
g
h
t
≤

2
1

T
ru
n
ca
ti
on

p
a
ra
m
et
er

fo
r
R
S
in
te
rp
ol
at
io
n
s.

ja
co
b
iw
ei
gh

t
W
ei
gh

t
p
a
ra
m
et
er

fo
r
th
e
J
ac
ob

i
sm

o
ot
h
er
.

0
<

ja
co
bi
w
ei
g
h
t
≤

2
1

ja
co
bi
w
ei
g
h
t
=

1
le
a
d
s
to

cl
as
si
c
J
ac
ob

i
re
la
x
at
io
n
.

p
re
sm

o
ot
h

N
u
m
b
er

of
p
re
sm

o
ot
h
it
er
at
io
n
s.

p
re
sm

oo
th
≥

0
1

p
os
ts
m
o
ot
h

N
u
m
b
er

of
p
os
ts
m
o
ot
h
it
er
at
io
n
s.

p
os
ts
m
oo
th
≥

0
1

co
a
rs
el
ev
el
s

N
u
m
b
er

of
co
ar
se

le
v
el
s
to

co
n
st
ru
ct
.

co
a
rs
el
ev
el
s
≥

0
0

If
ze
ro
,
se
tu
p
ru
n
s
u
n
ti
l
a
m
ax

im
u
m

of
C
O
A
R
S
E

L
IM

IT
(=

50
)
p
oi
n
ts

ar
e
fo
u
n
d
.

F
or

ot
h
er

va
lu
es

co
a
rs
el
ev
el
s
ar
e
co
n
st
ru
ct
ed

if
p
os
si
b
le
.
If

on
ly

<
co
a
rs
el
ev
el
s
le
ve
ls

ca
n
b
e
co
n
st
ru
ct
ed

,
co
ar
se
n
in
g
is

st
op

p
ed

th
er
e.

T
ab

le
4.
1:

O
p
ti
on

s
fo
r
th
e
V
ie
n
n
aC

L
A
M
G

p
re
co
n
d
it
io
n
er

v
ia

cl
as
s
v
i
e
n
n
a
c
l
:
:
l
i
n
a
l
g
:
:
a
m
g
t
a
g
.

.

39



4.2. DATA STRUCTURES CHAPTER 4. IMPLEMENTATION

entries. In a first development the ublas::compressed matrix type was used for

this purpose but its performance traversing through the matrix is rather weak and

in some cases not much better than the regular ublas::matrix.

Therefore, the decision was to implement a custom sparse matrix format that

is compatible to ublas::compressed matrix but also includes special functionality

needed for AMG (see below). The class is defined as

template <typename ScalarType>

class amg_sparsematrix

where ScalarType is either float or double and denotes the type of the matrix

entries. Those entries are saved in a structure std::vector<std::map<unsigned

int,ScalarType>> which means that rows are saved in std::map structures while

the row indices are used to access elements in std::vector. This approach is very

flexible as a map can be dynamically extended and it is also very efficient as it uses

an index-value mapping for the actual entries in a certain row. Therefore, memory

is only allocated for entries that are explicitly written. The underlying assumption

to this approach is that all entries that are not present in the respective map are

zero values. A sparse matrix typically consists of just a few non-zero entries per row

and therefore such a structure is efficient both in terms of memory requirements and

iteration performance.

The interface of this class is similar to ublas::compressed matrix as single en-

tries can be accessed using parenthesis operators like mat(i,j) and the matrix can

be traversed using row and column iterators. This is usually more efficient than using

indices as iterators only run through non-zero entries. The functionality of these it-

erators is used from the built-in viennacl::tools::sparse matrix adapter class.

One feature of amg internalmatrix is that it works very efficiently with zero

values. To check whether an entry at a certain index is non-zero, one can use bool

isnonzero(unsigned int i, unsigned int j) constwhich uses the fast find()

operation from the std::map type and is therefore very efficient. Furthermore, the

implementation takes care that no zero-entry is written to the matrix. For this

purpose an additional class is used:
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template <typename InternalType,

typename IteratorType,

typename ScalarType>

class amg_nonzero_scalar

If the parenthesis operator for amg sparsematrix is used to access a certain ma-

trix entry for write access, an object of this type is created and returned which

saves both indices of the matrix entry, an iterator position and a pointer to the

amg internalmatrix it belongs to. If a non-zero value is written to this

amg internal nonzero scalar object, then the method addscalar(IteratorType

& iter, unsigned int i, unsigned int j, ScalarType s) is called, saving s

to the iterator position denoted by iter or to position (i,j) if a new entry is cre-

ated. In this way no zero-entry can be written to the matrix and therefore memory

consumption and computational overhead are minimized. Using the iterator is not

necessary but it leads to an improved performance if an already existing value is

overwritten as only one search operation in the std::map is necessary.

Another feature is that the data type not only saves the matrix itself but it

can also easily deal with the transposed of the saved matrix which is needed for

example for building the restriction matrix (R = P T ). For this purpose another

structure of type std::vector<std::map<unsigned int,ScalarType>> is used,

which saves the transposed of the matrix when needed. Using the transposed is

necessary because iterating over rows is a lot faster than iterating over columns due

to the fact that in the first case only one std::map has to be traversed while in

the second every single map in the outer vector (see figure 4.1). An object of type

amg sparsematrix can therefore be switched to a transposed mode, either by using

the method void set trans(bool mode) or by using the iterators in transposed

mode, for example by calling iterator1 begin1(bool trans = false) with pa-

rameter true. To save memory usage and computation time the transposed is only

built when requested and saved for later usage. An internal state variable tracks

changes to the matrix such that the transposed is rebuilt if necessary.

A last important implementation aspect I want to discuss is the efficient parallel

access of the amg internalmatrix type with OpenMP. Usually, a parallel compu-

tation with a matrix is designed such that rows are traversed in parallel. However,
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Figure 4.1: Matrix iterations. Left: row by row. Right: column by column. The
right iteration is a lot slower because a vector-entry-switch and a map-entry-find
has to be done in every iteration step.

the iterators defined for the amg internalmatrix type cannot be used to parallelize

the execution via OpenMP as the latter can only work with basic types. For this

purpose, the “+=” operator can be used to combine the advantages of sparse-matrix

iterators with the advantage of parallel execution:

#pragma omp parallel for

for (unsigned int i=0; i<A.size1(); ++i)

{

// Use row i in matrix A

RowIterator row_iter = A.begin1();

row_iter += i;

// Use column iterator in row i

for (ColIterator col_iter = row_iter.begin();

col_iter != row_iter.end(); ++col_iter)

{ /* Computations in row i */ }

}

In this code example, rows are traversed in parallel while the column iterator only

iterates over non-zero entries. With this combination very efficient matrix compu-

tations can be realized.
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4.2.3 Sparse Vector

A similar approach is used for a sparse vector format in this implementation. Again,

only coefficients that are non-zero are saved which improves iteration performance

and memory usage:

template <typename ScalarType>

class amg_sparsevector

Internally, the structure uses a std::map <unsigned int,ScalarType > to save

the vector coefficients and therefore is similar to one row in the sparse matrix struc-

ture. Furthermore, the interface is very similar to ublas::vector with the extension

that a function bool isnonzero() is used to efficiently determine whether a cer-

tain entry is non-zero. The amg nonzero scalar described in section 4.2.2 is used

to only write non-zero entries and the function unsigned int internal size()

returns the number of non-zero entries in the vector. Care has to be taken when

using the sparse vector in a parallel environment. Although read-access is possible

in parallel, entries can only be written one after another due to the underlying map

structure: In a std::map type, entries are sorted and re-ordered for every write ac-

cess. Certainly, writing entries in parallel can disturb this operation and is therefore

impossible.

4.2.4 Point Management

An important aspect of the AMG implementation is the handling of points. This

is important for coarsening when points become either coarse (C) or fine (F) points

and for interpolation when points from the coarse level have to prolongate their

values to points on the fine level. The management of the points is done using

the classes amg point which saves information for each point and amg pointvector

which holds the points and stores global information about them. The following

information is stored in class amg point:

43



4.2. DATA STRUCTURES CHAPTER 4. IMPLEMENTATION

1. The point index and the current influence measure used and updated during

coarsening (see section 2.3).

2. The state of the point: C point, F point or undecided point.

3. The index on the coarse level if the point is a C point. This information is con-

structed before the interpolation procedure by calling void build index() in

amg pointvector. The method uses a simple counter to index points on the

coarse level, for example: If on the fine level points 1, 3 and 7 are chosen C

points, then those points get indices of 0, 1 and 2 on the coarse level.

4. Each point furthermore holds a list of points influencing this point and a list

of points that are influenced by this point, using pointers to the respective

amg point objects. This information is necessary for RS coarsening as points

that are influenced by C points become F points and the influence measure

has to be changed for points that influence an F point (see section 2.3.1 and

4.3.1). For AG coarsening the list of influencing points holds the neighborhood

of the point. The two lists both use the amg sparsevector structure as for a

sparse operator matrix only a few points have to be stored.

5. For parallel coarsening an offset is saved to translate between the global point

index and the local index inside the thread.

6. For AG coarsening an aggregate identifier is saved to hold the information to

which aggregate a point belongs to.

The class amg pointvector stores pointers to objects of type amg point, one

for each point. This structure can be accessed like a traditional pointer using

the bracket operator to access a single point via its index: amg point* point =

pointvector[index]. However, internally the points are additionally saved using a

list of type std::set which also orders points much like a std::map2. This is done

because the first pass of RS coarsening traverses points by their influence measure

(see section 2.3.1). Although this could be done by traversing all undecided points

before each iteration, sorting points in a set is a lot more efficient. The sorting is

2The difference is that a map saves key-value pairs while in a set the value and the key are the
same.
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done automatically for each write operation to the set. How to sort the entries is

determined by a structure passed to the set via the constructor:

struct classcomp

{

bool operator() (amg_point* l, amg_point* r) const

{

return ( l->get_influence() < r->get_influence() ||

(l->get_influence() == r->get_influence()

&& l->get_index() > r->get_index()) );

}

};

This structure ensures that points are sorted by influence measure using the index as

a tie-breaker to enforce a deterministic behavior. Calling get nextpoint() returns

a pointer to the undecided point with the highest influence measure.

4.2.5 AMG Classes

As already described, the data structures for the AMG preconditioner are saved

in amg precond while the preconditioning operation is done via the member func-

tion void apply(VectorType & vec) const. Currently, two implementations are

available, one for the ViennaCL GPU operation and one for all other types for CPU

operation. Both classes also include methods for the weighted Jacobi smoother,

where one is an implementation via an OpenCL kernel call (GPU) and the other an

OpenMP CPU implementation (see section 4.4.1 for more details).

The data structures saved are in the form vector-of-matrix or vector-of-vector

and hold the respective structures for the different levels such that index 0 refers to

the finest level and amg tag.coarselevels the coarsest (see table 4.1). Note that on

the highest level only the operator matrix has to be stored. while on the other levels

also the restriction and prolongation matrices are needed. Furthermore, information

is saved for the setup process, including the points of structure amg point saved in

the amg pointvector for every level.
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For the setup phase, the matrices are stored in the amg sparsematrix format

which includes the operator matrix, the prolongation matrix and the restriction ma-

trix, implicitely included in the transposed part of the prolongation matrix. This

improves performance for the setup phase and eases the development due to the

extended features of the amg internalmatrix type. For the precondition phase,

however, those structures are transformed into the respective matrix format re-

quested by the user, for example ublas::compressed matrix for CPU operation or

viennacl::compressed matrix for GPU operation.

Furthermore, some data structures used in the precondition phase are also stored

in the AMG classes: This includes the vectors used during precondition operation

like residuals, results and errors on all levels and also the pivoting information from

the factorization of the operator matrix on the coarsest level used for the direct

solver (see section 4.4.2).

4.2.6 Parallel Coarsening

For RS0 coarsening and RS3 coarsening the grid is partitioned into several slices

and RS coarsening is run on each of the slices separately. For this purpose the

class amg slicing is used, which saves the data structures for the threads sepa-

rately and offers functionality to partition and join the data structures. In this

class essentially the same coarsening-related information is held as in amg precond,

which includes the operator matrix and the point management classes, but the dif-

ference is that the information is held on a per-thread level. The data structures

are built when void init(unsigned int levels, unsigned int threads = 0)

is called, allowing the user to specify the number of threads for RS0 or RS3. If the

default value (0) is chosen, then the system uses as many threads as processors are

available. By calling void slice (unsigned int level, InternalType1 const

& A, InternalType2 const & Pointvector), the operator matrix and the point

information are partitioned into as many parts as threads are available. This is

equivalent to slicing the matrix into quadratic parts around the diagonal, effectively

setting coefficients too far off the diagonal to zero.
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The matrix parts are constructed such that they are of roughly the same size:

The number of points per matrix part is the size of the operator matrix divided

by the number of threads. If a remainder is present in this integer division, then

the remaining points are added to the last matrix part in the split. An example

how a splitting of a matrix with size five is done for two threads can be found in

section 3.5. Furthermore, it is assumed that neighboring points also have a close

index such that non-zero coefficients are always close to the diagonal (see discussion

about renumbering in the same section).

Note that an initial slicing is built on the finest level and the slicing on the coarser

levels is done using the same boarders as on the finest level. This ensures that points

are grouped in the same way on all levels, which is important as strong connections

in RS0 or RS3 coarsening are usually in the same partition. To use the parti-

tioned information for the computation of the interpolation and Galerkin operator,

the structures from the different threads have to be joint into a single data struc-

ture which is done by calling void join (unsigned int level, InternalType2

& Pointvector) const. Afterwards, the same routines for interpolation and the

Galerkin operator can be used as if a single-threaded coarsening was called. Note

that in the case of parallel coarsening, points essentially have two indices: One

global index derived from the system matrix and one local index inside the thread

derived from the slicing procedure.

4.3 Setup Phase

When an object of the amg precond class is built using the system matrix and

a proper amg tag, void amg init(...) is called directly from the constructor to

transform the system matrix into a amg sparsematrix used for the setup phase. The

setup routine can be started right afterwards by calling void setup() on this object

and it proceeds by calling the chosen coarsening and interpolation algorithm and

computing the Galerkin operator for all levels. The implementations of these steps

will be discussed in more detail below. After setup has finished, the prolongation,

restriction and operator matrices are transformed back into the respective matrix

type such that they can be used in the precondition phase.
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4.3.1 Coarsening

The implementation of the AMG preconditioner supports five different coarsening

methods: Classical RS coarsening, RS one-pass coarsening, RS0, RS3 and standard

aggregation-based (AG) coarsening. Which coarsening procedure to apply is cho-

sen by the user via the tag-class (see table 4.1). For every coarsening procedure

one function is defined, which is called by void amg coarse(...) from the setup

routine void amg setup(...). The implementation of the coarsening approaches

can basically be grouped into two approaches: RS one-pass, RS0 and RS3 are all

variants of RS, while AG is a different approach to coarsening (see chapter 2.3).

The implementation of the first group is therefore developed to maximize code-

reuse and functions are called in a nested way:

• RS uses RS one-pass and then runs the second pass.

• RS0 runs RS in parallel on sets of subpoints and combines the results after-

wards.

• RS3 runs RS0 first and then runs the third pass.

A common task for all strategies is to define criteria when coarsening has to

terminate. In this implementation this is done when

1. the number of coarse levels reaches the value set by the user in the amg tag

class.

2. the user chose the automatic creation of coarse levels and the number of

points on the coarsest level reaches the value of the preprocessor constant

COARSE LIMIT defined in amg.hpp. The default value is 50.

3. the maximum possible coarse level is found. This is the case when coarsening

cannot construct any C or F points on that level.

The second criteria is designed to take into account that the direct solver is

inefficient for large matrix sizes and therefore automatic coarsening is done until
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a reasonably small size is reached, where an efficient execution can be expected.

Experiments, however, showed that doing the coarsening until the maximum pos-

sible coarse level is reached is basically equivalent to stopping at COARSE LIMIT as

the overhead for the construction of those last coarse levels is negligible and the

convergence of the resulting preconditioners shows no difference.

Influence

An important step before the actual coarsening is done is to figure out which points

strongly influence other points. Although the approach is different for RS and AG

coarsenings, in both cases the information has to be present beforehand. For RS it

is also necessary in a second step to find out how many points depend on a certain

point since coarsening starts with the point that has the highest influence measure.

The information about the respective influences (RS) or neighborhoods (AG) is

stored in lists in the amg point class (see section 4.2.4).

Both approaches are efficiently implemented in parallel using OpenMP by search-

ing for strong influences on a per-point, or equivalently, on a per-matrix-row ba-

sis. The information about the transposed influence is determined in a second

step by transposing the information stored in the amg point objects. This has to

be done serially as the list cannot be written in parallel due to the fact that an

amg sparsevector type is used (see section 4.2.3 and 4.2.4). Of course, one could

also use a regular std::vector which allows for parallel write access, but for sparse

operator matrices, iteration can be done a lot faster with amg sparsevector out-

weighing the performance loss. In a third step the number of influenced points are

counted for each point which again can be done in parallel.

RS One-Pass

RS one-pass coarsening uses only the first pass of the classical RS algorithm for

coarsening. This has the disadvantage that strong F-F connections without com-

mon C point might remain after the process, leading to worse interpolation and

convergence. However, the advantage is that some setup time is saved and the com-
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plexity is reduced as there are less C points and therefore the matrix on the coarser

level is smaller (see section 2.3).

The implementation uses the amg pointvector structure to traverse through

points ordered by their influence measure (see section 4.2.4). The point with the

highest order becomes C point while all points influenced by this point become F

point. As those points are stored in the influenced list for each point, this can be

done very efficiently. Then, for all newly created F points, all influencing points

increment their influence measure. These points are stored in the influencing list

which again allows for an efficient operation and shows why these lists are set up

before coarsening.

The procedure stops whenever there are no undecided points left or only points

with influence measure equal to zero. These points do not influence other points

and are further not influenced by any C points constructed during coarsening. In

such a situation it makes sense to leave them undecided as coarse-grid correction

cannot improve the error for these points anyway. The interpolation row for this

point in effect remains an all-zero row as no interpolation to this point can be done.

Classical RS

Classical RS first runs RS one-pass coarsening as the first pass and this also im-

plicitely builds the influence information needed. The goal of the second pass is to

prevent strong influences from one F point to another if both do not have a common

neighboring C point. In that case interpolation from the C points does not lead to

a very good approximation in all likelihood. If such a situation is found then one

of the two F points becomes C point, improving interpolation but also worsening

complexity as more points are drawn to the coarser level. Which of the two F points

becomes C point is not important for the algorithm, however, it can lead to very

different outcomes, especially when it comes to complexity. The decision was to

always make the point with the higher index to a C point. This counteracts the

fact that points with lower index are more likely to become C points due to the

fact that a lower index is a tie-breaker if points have the same influence measure.

Using the higher indices for C point creation in the second phase therefore leads to

50



CHAPTER 4. IMPLEMENTATION 4.3. SETUP PHASE

a better distribution of C points on average. Again, this has to be done sequentially

as F to C point transformations have to be done step by step. The implementation,

however, is straightforward such that a more detailed discussion is not necessary at

this point.

RS0

RS0 coarsening runs RS coarsening in parallel after points are partitioned into

groups (see chapter 2.3 and 4.2.6 for more details). The number of different threads

and matrix parts in use is decided by the user via the amg tag class or can be set

automatically to the number of threads available for the processor. The implemen-

tation starts by building the parallel data structures and slicing the system matrix

into as many parts as threads are requested. Then, RS coarsening is run in parallel

on those parts using OpenMP. Note that influence measures are calculated in the

sub-matrices and not on the full operator matrix. This improves the coarsening for

certain cases, for example when a high coefficient value lies on the outside of the re-

spective part, practically approximating it to zero. After the coarsening is finished,

data structures for the coarsening information are joined to single data structures.

RS3

RS3 coarsening runs RS0 coarsening and then adds a third pass similar to the second

pass of RS coarsening. The only difference is that this third pass only operates on

F-F connections crossing thread boundaries of the RS0 coarsening, such that in

most cases only a few points have to be visited. There are many ways this can

be implemented: The easiest is to just run the third pass on one processor after

all RS0 threads have finished, while the alternative is to compute the additional C

points on the different processors separately. Even though the first choice might

lead to worse setup times, this approach was taken as the overhead is negligible.

Furthermore, doing the pass on all processors in parallel might lead to more C points

and therefore higher complexity or certain C points have to be removed afterwards

to reduce complexity at the expense of some computational overhead.
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AG

AG coarsening uses the aggregation approach and therefore runs a different approach

for computing dependencies (see section 2.3.4). In the implementation, neighbor-

hoods are built first, which includes all influencing points and then neighborhoods

are made into disjoint aggregates. C points are the root points of those aggre-

gates while all points in the neighborhood of this root point become F points. The

algorithm is sequential in nature, although compared to RS coarsening it is less ex-

pensive: For AG coarsening, neighborhoods can be built in a sequential way while

for RS coarsening, influence measures have to be computed and points have to

traversed in the order of their influence measures such that sorting is necessary.

4.3.2 Interpolation

For this thesis four different interpolation procedures were implemented, two for

the different RS related approaches and two for aggregation-based AMG. Direct

interpolation and classical interpolation belong to the first group while the basic

aggregation-based interpolation and smoothed aggregation interpolation belong to

the second. The interpolation is chosen by the user in the amg tag class and the

respective interpolation routine is called from the setup routine after coarsening has

finished.

A common task for all interpolation procedures is to change the C point in-

dices from the fine to the coarse level. This is necessary as the operator matrix

on the coarse level only contains the C points from the fine level such that the

prolongation matrix is usually rectangular with as many rows as on the fine level

and as many columns as on the coarse level. The respective coarse level index is

saved in the amg point class and constructed before interpolation by calling void

build index() (see section 4.2.4 for more details).
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Direct Interpolation

Direct interpolation uses only direct C-F point connections for interpolation. This

can be implemented using either only strongly connected C points or all C points

with at least a weak connection to the respective F point. The decision was to

implement the first approach because this usually leads to sparser prolongation

matrices and also to sparser operator matrices via the Galerkin operation, improving

complexity and performance. The disadvantage is that interpolation might be worse,

although experiments have shown that the effect is negligible. The interpolation is

otherwise quite straightforward. To improve performance, the summations of the C

point coefficients and coefficient row sum in equation 2.1 are calculated on a per-row

level. Furthermore, the rows of the prolongation matrix are computed in parallel.

If chosen by the user (interpolweight > 0), each row is truncated to further reduce

the number of non-zero points per row (see section 2.4.1). The truncation operation

is quite straightforward and therefore not described.

Classical Interpolation

Classical interpolation also takes strong F-F connections via a common C point into

account, which leads to better convergence but the computation of the interpolation

is more complex because neighbors of neighbors have to be visited. The implemen-

tation, however, is very similar to direct interpolation: Interpolation is done from

strongly coupled coarse points only, rows are computed in parallel and the denomi-

nator and sum of C point coefficients in equation 2.2 is determined before the actual

computation of the interpolation weights. Interpolation truncation is done for each

row if chosen by the user.

Basic Aggregation-based Interpolation

Basic aggregation-based interpolation only uses the root point of each aggregate as

basis for interpolation. Therefore, interpolation is done from only one point with

unit weight. This is easy to implement and compute and it further keeps complexity

low at the expense of the interpolation quality. The implementation is again parallel.

53



4.3. SETUP PHASE CHAPTER 4. IMPLEMENTATION

Smoothed Aggregation

Smoothed aggregation interpolation improves the basic aggregation by employing

a smoother, for example one iteration of a weighted Jacobi. In that case, inter-

polation is done also from neighboring aggregates which improves convergence.

However, the computation of the prolongation matrix is a lot more expensive as

it involves a matrix-matrix product (see section 2.4.4). The implementation is

done in parallel using OpenMP and is rather straightforward: It involves build-

ing the Jacobi matrix from the filtered operator matrix and the computation of the

matrix-matrix product. The former is constructed without explicitely building the

filtered matrix which improves performance substantially. The latter is done via the

function void amg mat prod (SparseMatrixType & A, SparseMatrixType & B,

SparseMatrixType & RES) and will be explained next.

4.3.3 Matrix Product

Matrix product are used in two scenarios: To compute the smoothed aggregation

(see last section) and to compute the Galerkin operator (see section 2.1.1). This is

done after coarsening is defined and interpolation is computed and finishes up the

setup phase on a certain level. That computation is a triple-matrix product involving

the restriction, prolongation and operator matrix on the respective level (see section

2.1.1). For this purpose the function void amg galerkin prod(SparseMatrixType

& A, SparseMatrixType & P, SparseMatrixType & RES) was developed to com-

pute the Galerkin product Ak+1 = RkAkP k.

The implementation of the matrix product is quite straightforward and can be

parallelized conveniently using OpenMP by computing the rows of the result matrix

in parallel. However, certain aspects have to be taken into account to make the

implementation efficient for sparse matrices. While a typical implementation of a

dense matrix product would directly compute all the row-column multiplications

on after another, this is not efficient if matrices are relatively sparse. Then, this

type of multiplication can involve row-column computations with non-overlapping

coefficients, leading to unnecessary iterations.
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Take the five-point example matrix from chapter 1 together with a very simple

interpolation scheme such that3

RkAkP k =

(
1 1 0.5 0 0

0 0 0.5 1 1

)


2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1
0 0 0 −1 2




1 0

1 0

0.5 0.5

0 1

0 1


Here, the computation of row 1 of Rk with column 5 in Ak leads to 1× 0 + 1× 0 +

0.5 × 0 + 0 × (−1) + 0 × 2 = 0. Depending on the actual implementation a high

number of unnecessary iterations are carried out in this case even though the result

is zero anyways. Furthermore, as column iterations are slow (see section 4.2.2), the

transposed matrix of Ak would have to be built first.

A more efficient approach for sparse-matrix multiplication is not to do row-

column multiplications directly, but to iterate over non-zero coefficients only, which

can be done very efficiently using the amg sparsematrix structure (see same sec-

tion). Then, iterations are minimized as only those rows/columns are iterated that

lead to overlapping coefficients. Algorithm 6 shows how these iterations are done: If

a non-zero entry in the left matrix is found, then all computations with that entry

are done by traversing through the respective row in the right matrix and adding

up the resulting coefficient multiplications.

Algorithm 6 (Sparse Matrix Product: AB = C):

1. Choose row i in A that has not been chosen yet.

2. For all non-zero entries aij in row i of matrix A do:

3. For all non-zero entries bjk in row j of matrix B compute cik ← cik + aijbjk

for result matrix C.

4. If not all rows in A have been visited, go back to 1.

3In this example points 2 and 4 are coarse points while 1, 3 and 5 are fine points. The interpo-
lation is defined by simply using a weighted sum via strongly coupled C points.
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Clearly, this algorithm can proceed in parallel as the computations for rows

i = 0, 1, ... are independent. Furthermore, no matrix transposition is necessary.

For a computation of RkAk from above, the steps proceed in the following way:

1. Choosing the first row in Rk.

2. r00 = 1. Switching to row 0 in A.

3. a00 = 2. c00 ← 0 + 1× 2 = 2.

4. a01 = −1. c01 ← 0 + 1×−1 = −1.

5. r01 = 1. Switching to row 1 in A.

6. a10 = −1. Computing c00 ← 2 + 1× (−1) = 1.

The triple-matrix product used for the Galerkin operator could be computed

by doing the matrix product twice via a temporary result matrix. However, only

a minor modification to the algorithm is necessary such that the Galerkin product

can be computed at once, which has the advantage that more work can be done in

one OpenMP thread, improving the utilization of the CPU cores. This algorithm is

described in algorithm 7.

Algorithm 7 (Galerkin Operator: RkAkP k = Ak+1):

1. Choose row i in Rk that has not been chosen yet.

2. For all non-zero entries rij in row i of matrix Rk do:

3. For all non-zero entries ajk in row j of matrix Ak compute tk ← tk + aijbjk

for temporary row t.

4. For all non-zero entries tk in t do:

5. For all non-zero entries pkl in row k in P k compute ak+1
il ← ak+1

il + tkpkl for

result matrix Ak+1.

6. If not all rows in A have been visited, go back to 1.
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For the temporary row t the amg sparsevector type can be used to minimize

iterations. Experiments during the development showed that those algorithms run

considerably faster for all matrices used for the benchmarks in chapter 5 than any

implementation using conventional dense matrix algorithms. Furthermore, if the

number of non-zero entries per row in A stays constant, the computation time

grows linearly with the number of rows N . In the grid terminology this means that

the computation time grows linearly with the number of points if the number of

connections per point stays constant.

4.4 Precondition Phase

The precondition phase is started from the iterative solver calling void apply

(VectorType & vec) const in amg precond. If the method is called for the first

time, some preparatory work is done including building the necessary data struc-

tures (see section 4.2) and running the LU factorization on the coarsest level (see

section 4.4.2). This speeds up the precondition phase due to the fact that these

steps only have to be taken once instead of for every iteration cycle.

Then, the first part of the V cycle with pre-smoothing and restriction operations

is started until the coarsest level is reached. There, the residual equation is solved

using a direct solver and then the second part of the V cycle is started with prolon-

gation operations and post-smoothing. In the following, I will discuss the smoother

and the implementation of the direct solver in more detail. The coarse-grid cor-

rection only consists of basic matrix-vector operations from the computation of the

residuals/errors and the respective restrictions/prolongations and therefore there is

no need to go into additional details.

4.4.1 Smoother

At present, a weighted Jacobi smoother is implemented for both classes, using the

same interface: void smooth jacobi (int level, unsigned int iterations,

VectorType & x, VectorType const & rhs) const. Although in the literature
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Gauß-Seidel is the standard smoother for AMG, Jacobi has the advantage that it

can be computed in parallel on a per vector-entry level and the smoothing quality

is at a similar level (see chapter 2.1.1). The weight of the linear combination of

former and newly computed Jacobi vector can be set using the amg tag class (see

table 4.1).

GPU Implementation

One iteration of the GPU implementation is written in an OpenCL kernel called

from void smooth jacobi(..) const for every iteration. This makes sense as

then memory can be accessed efficiently. If the smoother was implemented using

ViennaCL objects in C++, then one would either use matrix operations or have

one memory transfer per computed vector-entry which is both a lot slower than an

OpenCL implementation.

An important aspect of the implementation is memory access. ViennaCL already

provides tools to ease the usage of GPU memory such that whenever an OpenCL

kernel is called, a viennacl::vector can be used directly as a parameter and can

be accessed in OpenCL like a pointer/array. A viennacl::compressed matrix can

be used indirectly using the methods handle1(), handle2() and handle(). Those

translate the matrix into three different pointers/arrays using the CSR (compressed

sparse row) format [1, p.92ff] which can be accessed from an OpenCL kernel:

• handle() returns all matrix entries in a one-dimensional memory array.

• handle2() returns an array of indices that can be used to access that memory.

• handle1() returns an array that holds the ranges for the respective row in

the index array from handle2().

If row indices holds the array from handle2() and elements the array from

handle(), then an iteration over the elements of a certain row i can be done by
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for (unsigned int j = row_indices[i]; j < row_indices[i+1]; j++)

{

int col = column_indices[j];

// Element access via elements[j]

}

The second important aspect is the parallel computation of the resulting vector.

This is done on a per-element basis using built-in functionality in OpenCL (see also

section 3.1 for more details). The complete kernel code for the Jacobi smoother

looks like this (variable initialization not shown):

for (unsigned int i = get_global_id(0); i < size;

i += get_global_size(0))

{

sum = 0;

for (unsigned int j = row_indices[i]; j < row_indices[i+1]; j++)

{

col = column_indices[j];

if (i == col)

diag = elements[j];

else

sum += elements[j] * old_result[col];

}

new_result[i] = weight * (rhs[i]-sum) / diag

+ (1-weight) * old_result[i];

}

CPU Implementation

The CPU implementation is straightforward and uses OpenMP to parallelize com-

putation, again, on a per-element basis and the operator matrix is accessed using

iterators. The code is very similar to the one in OpenCL with the only difference

that matrix access is simpler because iterators can be used.
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4.4.2 Direct Solver

The direct solver uses LU factorization to solve the residual equation on the coarsest

level. For both CPU and GPU implementation the LU substitution is done on the

CPU as the direct solver for ViennaCL does not support pivoting yet. This is

certainly bad for the overall GPU precondition performance because two memory

transfers have to be done on the coarsest level.

As already mentioned, the two parts of the direct solver are split such that the

factorization of the operator matrix on the coarsest level is only done once, indepen-

dent of the number of iterations of the underlying solver method and precondition

operations. The implementation of the direct solver is done using built-in function-

ality in ublas: ublas::lu factorize(op,Permutation) factorizes the matrix op

and saves pivoting information in Permutation while ublas::lu substitute(op,

Permutation, result) does the substitution. The variable result holds the right-

hand-side vector of the residual equation before the function call and the result of

the substitution afterwards.

4.5 Summary

The implementation of the AMG preconditioner makes use of the different process-

ing units available to the system. While the GPU is not a good option for the setup

phase due to its complex nature, it can considerably improve the performance of

the precondition phase, which uses standard linear operations. A user can there-

fore choose to use the available GPU devices, combining it with the already existing

GPU computing capabilities in ViennaCL. The setup phase on the other hand makes

use of parallel threads on the CPU: This is relatively simple for the setup of the

interpolation operator and the computation of the Galerkin operator as rows can

be computed independently. However, the standard coarsening approaches are se-

rial in nature and parallel variations affect the overall precondition performance as

discussed in chapter 2. The most important aspect for the efficiency of the im-

plementation, however, is the handling of the data structures: For this purpose a

sparse matrix and a sparse vector data type were implemented to improve perfor-
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mance, especially for iterations. Furthermore, the point management is done to

quickly access necessary information when needed, including the sorting of points

by their influence measure before and during coarsening and the lists of influencing

and influenced points saved for each point. Furthermore, an efficient sparse matrix

multiplication algorithm was developed to take advantage of the underlying sparse

matrix structure.
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Chapter 5

Benchmarks

In this chapter numerical results obtained from solving certain systems with different

combinations of AMG methods and parameters are presented and discussed. For

this purpose, discretizations of physical problems are used which lead to linear

equations, formally Ax = b, as discussed in chapter 1. The result vector x is

constructed arbitrarily for each matrix A such that entries xi are in the range [1, 2].

The right-hand-side vector b is computed from A and x, using the matrix-vector

product from the Boost uBlas library (see section 3.4) before the benchmark is run.

Then, benchmarks use A and b and solve the equation for x. For the benchmarks,

different AMG preconditioners are used for either a CG or BiCGStab iterative solver

in ViennaCL. The initial guess for all benchmarks is the all-zero-vector.

In the following section the different systems are described with emphasis on

the structure of the matrix. This is followed by a presentation of the different

coarsening and interpolation combinations as well as parameter values used for these

benchmarks. In the last section, numerical results of the different AMG approaches

are compared and discussed.

63



5.1. SYSTEMS CHAPTER 5. BENCHMARKS

5.1 Systems

The benchmarks use a total of nine different system matrices from five discretized

physical problems. These system matrices have a different size and different prop-

erties in terms of the number of coefficients per row and the coefficient structure:

• FEM2D: Four matrices are built by a piecewise linear finite element method for

the discretization of the Poisson equation on the unit square. The problem and

structure is very similar to the 1D case described in chapter 1. The difference is

that in the 2D case one point has up to four neighbors and that the matrix has a

slightly higher bandwidth after renumbering. Martrices with different numbers

of points are constructed: 3969 for fem2d 3969, 16129 for fem2d 16129, 65025

for fem2d 65025 and 261121 for fem2d 261121. Although the scaling leads to

a higher number of rows, the number of non-zero coefficients remains constant

with an average stencil size of close to 5. The structure is a symmetric M-

matrix for which good AMG performance is to be expected as discussed in

chapters 1 and 2.

• FEM3D: Another matrix for the Poisson equation is built by a finite element

discretization on the unit cube using 31713 points (fem3d 31713). There are

more non-zero coefficients per row with an average stencil size of 11.6 and the

bandwidth is higher compared to the 2D case. The matrix is symmetric and

positive definite but no M-matrix as a few off-diagonal coefficients have the

same sign as the diagonal. Still, the structure is not too far off the optimal

case such that good AMG performance is still to be expected.

• KRATOS: This system matrix is a 3D finite elements discretization of the

non-stationary Navier-Stokes equation (fluid dynamics) with 24202 points

(kratos 24202). The overall structure is relatively similar to FEM3D as it is

close to an M-matrix with a few off-diagonal coefficients having the “wrong”

sign. However, the matrix is denser with an average stencil size of 14.3 as the

number of non-zero coefficients per row is higher.

• LAME: This matrix is constructed using a 3D discretization of the stationary

linear elasticity equation under the influence of gravity (mechanics) with 13005
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points (lame 13005). The discretization is carried out on the unit cube using

a tetrahedron grid. The number of non-zero coefficients per row is the highest

with an average stencil size of 36.9. The matrix, however, is not even close to

an M-matrix as the number of coefficients with the “wrong” sign is close to

the number of coefficients with the “right” one.

• SHE1: The last matrix is constructed using a first order spherical harmon-

ics expansion of the Boltzmann equation (semiconductors) with 30126 points

(she1 30126). The matrix is relatively sparse with an average stencil size of

5.9. It is furthermore an M-matrix but non-symmetric.

5.2 AMG Variants

To test how certain AMG variants work with different matrices, a number of com-

binations of components and parameters were chosen for these benchmarks. Of

course, the implementation described in chapter 4 allows for numerous combinations

to construct AMG methods by choosing the coarsening and interpolation method,

smoothing parameter, threshold and all other parameters shown in table 4.1. How-

ever, to preserve a reasonable scope of the benchmark, the choices described below

are using combinations, which are recommended in the literature and make sense

from a theoretical standpoint. The following combinations of coarsening and inter-

polation methods are used:

• RS coarsening with direct interpolation (rs direct)

• RS coarsening with classical interpolation (rs classic)

• RS one-pass coarsening with direct interpolation (rsop direct)

• RS0 coarsening with direct interpolation (rs0 direct)

• RS3 coarsening with direct interpolation (rs3 direct)

• Aggregation-based coarsening with basic interpolation (ag)

• Aggregation-based coarsening with smoothed aggregation interpolation (sa)
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All benchmarks use the automatic construction of coarse levels until there are

a maximum of 50 points on the coarsest level. All methods use three pre- and

postsmooth iterations for the precondition phase and the weight for the Jacobi

relaxation is chosen to ω = 0.67. The threshold parameters are θ = 0.25 for RS-

based coarsening and θ = 0.08 × (0.5)l−1 for AG-coarsening1. Direct and classical

interpolation use interpolation truncation with a weight of ϵ = 0.2. The weight for

the smoothed aggregation interpolation is chosen to ω = 0.67.

5.3 Numerical Results

In this section, I discuss certain benchmark results, comparing different AMG ap-

proaches. Before running the benchmarks, the system matrices are renumbered

using the tool discussed in section 3.5. The benchmarks are run on the hardware

described in section 3.6. AMG is used as a preconditioner for the BiCGStab solver

if the matrix is non-symmetric (she1 30126) and for the CG solver if the matrix is

symmetric (all other matrices). Iteration is performed until the quadratic norm of

the estimated relative residual2 from the CG iteration is smaller than 10−9. Note

that the CG and BiCGStab solvers in ViennaCL do not compute the actual resid-

uals during iteration but use estimates which is more efficient. Benchmarks which

determine computation times are run 50 times and the average of these runs is taken

as the result. Benchmarks that determine convergence, complexity measures and

residuals are extracted from a single run only.

5.3.1 Scaling Analysis

One important property of AMG and multigrid methods in general is the linear

complexity as described in chapter 1. To check for this property, the four FEM2D

matrices are used where the number of points scale by a factor of 4. The scaling

benchmark uses the RS coarsening approach with classical interpolation as well as

1l is the level index where l = 0 denotes the finest level.
2The quadratic norm of the estimated relative residual is computed by dividing the quadratic

norm of the estimated residual by the quadratic norm of the right-hand-side vector.
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fem2d 3969 fem2d 16129 fem2d 65025 fem2d 261121
rs classic (CPU) 0.052 (0.031;6) 0.233 (0.141;6) 1.011 (0.604;6) 4.069 (2.219;6)
rs classic (GPU) 0.060 (0.037;6) 0.204 (0.171;6) 0.785 (0.716;6) 2.890 (2.704;6)
rs3 direct (CPU) 0.061 (0.031;8) 0.234 (0.124;7) 0.969 (0.459;8) 3.705 (1.756;8)
rs3 direct (GPU) 0.070 (0.032;8) 0.180 (0.130;7) 0.600 (0.494;8) 2.119 (1.870;8)
sa (CPU) 0.155 (0.092;8) 0.761 (0.355;9) 3.675 (1.432;12) 18.975 (5.677;16)
sa (GPU) 0.138 (0.084;8) 0.531 (0.419;9) 2.192 (1.795;12) 8.388 (6.481;16)
cg (CPU) 0.037 (-;192) 0.286 (-;355) 2.265 (-;672) 17.564 (-;1262)
cg (GPU) 0.063 (-;192) 0.131 (-;355) 0.380 (-;672) 1.695 (-;1262)

Table 5.1: Scaling benchmark: Shown are the total computation time in seconds
with the setup time and the number of iterations in parenthesis. Best results are
shown in bold.

RS3 with standard interpolation and aggregation-based coarsening with smoothed

interpolation such that a maximum number of overlapping routines is used: RS uses

RS one-pass coarsening, while RS3 uses RS0, and smoothed interpolation the basic

aggregation-based interpolation.

Table 5.1 shows the results for the different combinations, comparing them with

the unpreconditioned CG solver. The benchmark times are determined by comput-

ing the average of 50 runs of each solver. Figure 5.1 further shows diagrams of the

total computation times for the different problem sizes on CPU and GPU. Due to

the matrix scaling, it is to be expected that for the AMG preconditioned solvers,

total computation and setup times scale with a factor of about 4 and the number of

iterations should stay constant. The unpreconditioned solver should, however, scale

with a factor of about 8 due to its complexity of O(N
3
2 ) (see chapter 1).

Comparing expectations with the numerical results shows a good match for CPU

computation. The only exception is the smoothed aggregation preconditioner for

which the number of iterations does not stay constant, leading to a stronger increase

in solver time. The situation for the GPU computation is different: Here, the

unpreconditioned CG performs fairly well and shows much better scaling even up

to the largest matrix size. The reason for this result is that the OpenCL overhead

is relatively large compared to the computation time of one CG iteration for the

matrix sizes used in this benchmark. The same behavior can be observed for the

smoothed aggregation preconditioner.
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Figure 5.1: Scaling benchmark: Total computation times for different AMG pre-
conditioners to CG on the CPU (top) and the GPU (bottom) from table 5.1. The
unpreconditioned CG is shown for comparison.
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Therefore, for the systems at hand and if the GPU can be used, it is not mean-

ingful to use an AMG preconditioner as the overhead of the setup phase is larger

than the savings in solver time. The only exception is the smallest matrix for which

the OpenCL overhead is large compared to the setup time. But then, it certainly

does not pay off to use the GPU anyways. Using an AMG preconditioner on the

GPU would only be efficient for a faster CPU such that setup time goes down or

a larger system such that CG is not as efficient. For the GPU benchmark results

presented, almost all of the computation time is taken by the setup phase.

However, if no GPU was available such that the CPU also had to be used for

the solver and precondition phase, the RS and RS3 preconditioners are both useful

for smaller matrix sizes as the break-even point with the unpreconditioned CG is

at around 10,000 points. The benchmark results for both methods are quite simi-

lar, although RS3 offers a little better performance for larger matrices. Smoothed

aggregation on the other hand does not seem useful at all for the FEM2D problems.
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Figure 5.2: Squared relative residuals for CG and different FEM2D matrices.

A comparison between CPU and GPU solver time shows that only for the largest

matrix the theoretical factor 10 in computation power between GPU and CPU can
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Figure 5.3: Squared relative residuals for different solvers and matrix fem2d 65025.

be observed. For example, the solver time for the RS method on the CPU is 1.850

while for the GPU it is 0.186. For the smaller matrices the factor is a lot smaller

and for fem2d 3969 there is no difference in solver time at all. The reason for this

result is that only for large matrices the overhead for OpenCL is negligible and the

parallel processors on the GPU can be utilized efficiently.

Figure 5.2 shows the scaling of the unpreconditioned CG method in terms of

relative residuals, while figure 5.3 shows the progress of the relative residuals dur-

ing iteration for preconditioned and unpreconditioned CG. It can be seen how CG

convergence depends on the matrix size and how AMG preconditioning drastically

improves overall convergence.

5.3.2 Aggressive and Parallel Coarsening

Using aggressive or parallel coarsening is often advised in the literature to improve

the setup time at the expense of interpolation quality. Table 5.2 shows results, com-
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fem2d 65025 fem3d 31713 kratos 24202 she1 30126
rs direct (CPU) 1.064 (0.609;6) 5.161 (1.777;10) 5.476 (1.501;13) 9.447 (0.292;90)
rs direct (CPU) 0.794 (0.724;6) 1.940 (2.587;10) 1.640 (2.393;13) 2.229 (0.324;90)
rsop direct (CPU) 1.123 (0.632;6) 1.947 (0.806;12) 1.631 (0.480;21) -
rsop direct (GPU) 0.772 (0.702;6) 1.090 (0.854;12) 0.789 (0.508;21) -
rs0 direct (CPU) 1.192 (0.434;13) 4.460 (1.540;10) 4.777 (1.154;17) -
rs0 direct (GPU) 0.586 (0.452;13) 2.354 (1.730;10) 2.166 (1.319;17) -
rs3 direct (CPU) 0.988 (0.470;8) 6.215 (2.132;10) 6.395 (1.555;16) -
rs3 direct (GPU) 0.591 (0.486;8) 3.298 (2.427;10) 2.922 (1.801;16) -

Table 5.2: Coarsening benchmark: Shown are the total computation time in seconds
with the setup time and the number of iterations in parenthesis. Best results are
shown in bold.

fem2d 65025 fem3d 31713 kratos 24202
rs direct (6; 2.20; 9.68) (8; 7.24; 327.01) (8; 7.22; 297.36)
rsop direct (6; 2.20; 8.94) (5; 2.42; 64.17) (4; 1.72; 46.75)
rs0 direct (6; 2.20; 13.79) (8; 7.34; 300.07) (8; 6.31; 259.71)
rs3 direct (7; 2.33; 24.61) (9; 10.20; 377.43) (9; 8.68; 326.07)

Table 5.3: Coarsening benchmark, additional information: (Coarse levels; Operator
complexity; Maximal stencil size)

paring one-pass, RS0 and RS3 coarsening to the standard RS coarsening approach

for different matrices.

The results show that one-pass coarsening is a very good approach for the

FEM3D and KRATOS matrices, both 3D grids. Although convergence is worst

among the approaches, both setup and solver times are best for both systems. The

reasons behind these results can be seen in table 5.3 and figure 5.4: Due to the ag-

gressive coarsening, only roughly half as many coarse levels have to be constructed

and furthermore, the number of non-zero coefficients is a lot smaller. RS, RS0 and

RS3, on the other hand, construct larger numbers of coarse points, leading to dense

matrices on the coarser levels which also slows down the precondition phase.

The results, however, are different for FEM2D: In that case, the second phase

does not add many C points such that the results for RS and one-pass coarsening

are very similar. Although RS0 and RS3 worsen convergence, they also improve the

setup time using parallel coarsening. The total computation time is best for RS3 on

the CPU and RS0 on the GPU. The reason for the difference is that on the GPU

the additional iterations required by RS0 are less expensive than on the CPU.

71



5.3. NUMERICAL RESULTS CHAPTER 5. BENCHMARKS

 1

 10

 100

 1000

 10000

 0  1  2  3  4  5  6  7  8

R
el

at
iv

e 
re

si
du

al
 (

qu
ad

ra
tic

 n
or

m
)

Level

Points (RS)
Avg. Stencil Size (RS)

Points (One-Pass)
Avg. Stencil Size (One-Pass)

Figure 5.4: Comparison of RS and one-pass coarsening: Shown are the number of
points and the average stencil sizes on all levels. RS constructs more C points such
that more levels are constructed and the operator matrices become denser.

The benchmark for the SHE1 matrix did not work for the methods except RS

because the computation of the estimated residuals for the BiCGStab solver was far

off from the real residual value. Therefore, the iteration stopped too early and the

results cannot be compared. The result for RS, however, shows that for SHE1 most

of the computation time is used on the solver.

Comparing overall results for CPU and GPU computing shows that for the

matrices at hand, GPU computing improves solver times by a factor of about 4-5

and total execution times by a factor of about 2.

5.3.3 Interpolation Approaches

The implementation of the AMG preconditioner offers two interpolation schemes

for each coarsening approach: Direct and classical interpolation for RS coarsening

and basic and smoothed interpolation for aggregation-based coarsening. Tables 5.4
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fem2d 65025 fem3d 31713 kratos 24202 she1 30126
rs direct (CPU) 1.034 (0.596;6) 6.206 (1.966;10) 5.976 (1.568;13) 10.543 (0.304;90)
rs direct (GPU) 0.702 (0.772;6) 2.818 (2.170;10) 2.437 (1.685;13) 2.240 (0.335;90)
rs classic (CPU) 1.134 (0.675;6) 4.790 (1.819;8) 6.332 (1.543;15) 10.145 (0.310;87)
rs classic (GPU) 0.839 (0.769;6) 2.459 (2.001;8) 2.491 (1.687;15) 1.899 (0.334;74)
ag (CPU) 3.177 (0.292;48) 1.465 (0.241;25) 1.500 (0.176;41) -
ag (GPU) 0.706 (0.333.48) 0.534 (0.271;25) 0.594 (0.191;41) -
sa (CPU) 4.206 (1.582;12) 3.701 (1.348;11) 2.853 (0.756;19) -
sa (GPU) 2.281 (1.872;12) 1.882 (1.490;11) 1.304 (0.870;19) -

Table 5.4: Interpolation benchmark: Shown are the total computation time in sec-
onds with the setup time and the number of iterations in parenthesis. Best results
are shown in bold.

fem2d 65025 fem3d 31713 kratos 24202
rs direct (6; 2.20; 9.68) (8; 7.24; 327.01) (8; 7.22; 297.36)
rs classic (6; 2.20; 9.68) (8; 6.34; 283.68) (8; 6.77; 265.38)
ag (6; 1.93; 6.96) (5; 1.41; 13.74) (5; 1.25; 14.67)
sa (6; 5.71; 107.32) (5; 4.51; 204.50) (5; 2.84; 161.76)

Table 5.5: Interpolation benchmark, additional information: (Coarse levels; Opera-
tor complexity; Maximal stencil size)

and 5.5 show the results for the different approaches on different system matrices.

The results from this benchmark show a similar result as in section 5.3.2: For

3D problems the method with the worst convergence is the one with the best overall

computation time. In this benchmark, this is the aggregation-based coarsening with

basic interpolation. The reason for this result is again that fewer coarse points and

coarse levels are constructed and the operator matrix stays relatively sparse even

on coarser levels. Although smoothed aggregation improves convergence, total and

setup times are larger as operator matrices become more dense. However, the results

are still better than for RS coarsening.

For the 2D problem, the situation however is different: Here, the convergence of

RS coarsening for both interpolation approaches is a lot better and so is the solver

time. Aggregation-based coarsening with basic interpolation still has the best setup

time, though, such that for GPU computing the total computation time is still

best among the approaches. The difference between direct and classical coarsening

is only marginal and there is no general result about convergence, setup time or

complexity. The total computation time is best for direct interpolation for FEM2D

and KRATOS, while it is best for classical interpolation for FEM3D and SHE1.

73



5.3. NUMERICAL RESULTS CHAPTER 5. BENCHMARKS

The benchmark for SHE1 is problematic for the aggregation-based coarsening

approaches as the iteration stops too early due errors in the computation of the

residuals estimates (see section 5.3.2).

5.3.4 Limitations to AMG

As described in chapters 1 and 2, AMG works very well for symmetric M-matrices

and matrices that are not too far off this optimal case. LAME, however, is a matrix

which is not even close to being an M-matrix as described in section 5.1. This

shows in the benchmark results as the preconditioner actually worsens convergence:

While an unpreconditioned CG solver needs 286 iterations to converge, the best

preconditioned CG (RS3, direct interpolation) needs 614. Of course, the difference

in computation times is even worse.

5.3.5 Summary

The benchmark results show that the implemented AMG preconditioner indeed of-

fers linear complexity for both the setup and the solver phase for most approaches.

This makes AMG useful for large matrices when the performance for the unpre-

conditioned CG and BiCGStab methods goes down. A comparison of the different

coarsening and interpolation procedures shows that the performance varies very

much between different problems and system matrices. One interesting result, how-

ever, is that convergence does not play an important role in determining the overall

computation time: Methods offering worse convergence not only lead to smaller

setup times, but often reduce the solver time also. The reason behind this result

is that these methods, most notably RS one-pass coarsening or aggregation-based

coarsening with basic interpolation, lead to fewer coarse points, which in turn leads

to fewer coarse levels and sparser operator matrices. In that case, the solver time is

reduced even though more iterations are required. It therefore seems that complex-

ity measures might be a better indicator for AMG performance than convergence

factors. This result is even stronger if the GPU is used to compute the precondi-

tion phase: In that case, additional iterations can be computed very efficiently such

that convergence rates factor even less into the total computation time. In such
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a situation, the setup phase computed on the CPU dominates total computation

time. The speedup from using the GPU scales with the size of the system matrix

as the OpenCL overhead becomes relatively small for large matrices. For very small

matrices, however, the overhead is relatively large such that it is more efficient to

run the solver on the CPU.
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Chapter 6

Summary, Conclusions and

Possible Extensions

Algebraic multigrid methods can be used to efficiently solve linear equations, either

as a stand-alone solver or as a preconditioner for iterative solvers to improve conver-

gence. This is especially useful for large systems as AMG offers linear complexity

and therefore scales very well. Although the plethora of variations of AMG com-

ponents, including smoother, coarsening and interpolation routines, may seem odd,

results show that this is justified as different approaches lead to different results in

terms of convergence, setup time and complexity. Furthermore, the performance

of an AMG method in terms of these properties depends very much on the prob-

lem at hand such that an AMG method can be chosen given certain requirements.

Benchmark results, however, suggest that the most important factor for AMG per-

formance is complexity, that is, the number of coarse levels as well as the number of

non-zero coefficients on each level. This is important in many ways as it determines

the memory requirements as well as the number of computations done in the setup

and precondition phase. Convergence, on the other hand, is not as important as the

gain in performance due to a smaller number of iterations is often counteracted by

a much higher number of computations per iteration cycle as shown in chapter 5.

Parallelism is used in a number of ways in the implementation presented: The

setup phase uses OpenMP threads on the CPU, while the precondition phase uses
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OpenCL to take advantage of the parallel cores on the GPU. Although the latter

introduces a certain overhead in terms of data transfers and device control, the

results show that this does not play a role if the system matrix is sufficiently large. In

that case, GPU computing offers a significant speedup in solver time that comes close

to the theoretical maximum for very large matrices. However, the total computation

time is bounded by the setup time, which for large matrices dominates the overall

computation time if the solver is run on the GPU. Experience gained during the

implementation furthermore shows that using efficient data structures and efficient

algorithms is at least as important as an efficient use of parallelism. This includes

using sparse types for matrices and vectors, but also a useful management of point

information and an efficient sparse matrix product algorithm.

Possible extensions to the existing implementation are the implementation of

even more AMG variations, especially ones that offer low complexity like the ag-

gressive coarsening approaches. Furthermore, using the block parallelism approach

for aggregation-based coarsening much like RS0 would certainly be useful given the

good results shown in chapter 5. Although never mentioned in the literature, par-

allel one-pass coarsening could lead to good results, too. Other parallel coarsening

approaches like CLJP or HMIS could also be implemented although relatively high

complexity is to be expected.

Some further improvement in performance could be obtained if certain parts of

the setup phase could be computed on the GPU. Although this is certainly not possi-

ble for the coarsening procedure due to its complex and sequential nature, this could

be done for the sparse matrix products, especially the Galerkin operator. However,

as OpenCL currently does not support dynamic memory allocation, certain exten-

sions to the algorithm would have to be made: The number of non-zero coefficients

would have to computed first, then memory would have to be allocated and then

the actual computation could start. This is certainly not very efficient although

there could be a net gain due to the high performance of the GPU. Furthermore,

the direct solver is currently run on the CPU as the ViennaCL direct solver does not

support pivoting. Doing at least the LU substitution on the GPU would therefore

improve performance of the GPU preconditioner even more, especially since two

data CPU-GPU transfers could be saved in each iteration.
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