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Abstract

This thesis explores approaches towards generic algorithms used in the field of adaptive mesh generation.
Typically, the applied mesh adaption approach depends solely on the field of application at hand resulting
in significant differences in underlying implementations. However, applying modular and generic software
design enables algorithm reusability thereby reducing overall implementation efforts considerably. The
thesis introduces an approach to generalize typical algorithms used for mesh adaption and generation.
The generalization aims to extend the applicability of such algorithms to new areas. By using the results
of the generalization procedure for mesh adaptation, the functionality of the generalization approach is
ensured. Furthermore, a mesh simplification algorithm based on the evaluation of color data is introduced
which provides facilities to convert images into meshes. Additionally, the initial mesh is simplified to
remove mesh elements of low color variation which facilitates a reasonable reduction of the mesh size
while simultaneously preserving details.



Kurzfassung

Diese Arbeit untersucht Ansatze hinsichtlich generischer Algorithmen, angewandt im Bereich der adap-
tiven Erzeugung von Diskretisierungsgittern. Typischerweise hangen die angewandten
Gitter-Adaptierungsansatze einzig und allein vom vorliegenden Anwendungsbereich ab, was signifikante
Unterschiede in den zugrundeliegenden Implementierungen mit sich bringt. Die Anwendung von modu-
larem und generischem Software-Design erlaubt die Wiederverwertbarkeit von Algorithmen, sodass der
generelle Implementierungsaufwand betrachtlich sinkt. Die Arbeit prasentiert einen Ansatz zur Gen-
eralisierung von typischen Algorithmen, eingesetzt fur Gitter-Adaptierung und Erzeugung. Ziel dieser
Generalisierung ist es, die Anwendbarkeit von solchen Algorithmen in neue Bereiche zu erweitern. Die
Funktionalitat des Generalisierungsansatzes kann durch die Anwendung der Ergebnisse der General-
isierungsprozedur fur Gitter-Adaptierung gezeigt werden. Weiters wird ein Gitter-Vereinfachungsalgorithmus
vorgestellt, basierend auf der Evaluierung von Farbdaten, der die Konvertierung von Bildern in Gittern er-
laubt. Das initiale Gitter wird vereinfacht - bei gleichzeitiger Erhaltung wichtiger Details -, indem die
Elemente von niedriger Farbanderung entfernt werden. Dadurch wird eine angemessene Reduzierung der
Gitter GroRe ermoglicht.
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Chapter 1

| ntroduction

1.1 General

A mesh can be interpreted as a transition from our continuous physical perception to a discrete represen-
tation. Meshes are used in several different fields such as scientific computing and computer graphics. For
example, a mesh may represent an electronic device which enables to utilize numerical methods for the
solution of the partial differential equations describing its behavior.

Mesh generation refers to the construction of meshes from some form of input data. Basically a mesh
is composed of elements, which represent geometrical entities, eg., triangles, tetrahedra, quadrilaterals,
hexahedrons etc.

Each particular field of application prefers a mesh based on certain elements, as each of the introduced el-
ements offers advantages and disadvantages [1][2][3]. Since each field of application has its own, specific
requirements, the generation process is not generalized but aimed at the specific area of application. For
example, the field of computer graphics does not require the mesh elements to be perfectly aligned face
to face. In contrast to this, the field of scientific computing such misalignment is not permissible and the
mesh must not contain any holes additionally to the elements meeting at common faces and at common
points. Such requirements are due to the prerequisites of the subsequently used numerical methods, as
they otherwise fail to obtain reasonable solutions.

Mesh adaption denotes the adjustment of an existing mesh to meet certain requirements. An initially
generated mesh, for example, may not contain enough points to model a complex shape with reasonable
accuracy. Therefore additional mesh elements are introduced at distinctive places of the shape which
locally increase the element density. Consequently the shape can be modelled more accurately. Another
example would be to decrease the number of mesh elements in regions of constant simulation values
which have been obtained by numerical methods. The conclusion may be that the element density in such
regions can be reduced as there is no change in value. Typically the reduction of mesh elements eases
subsequent computational efforts. This is due to the fact that algorithms usually processes each of the
mesh’s element. Therefore, a reduction of the number of elements decreases the computational effort.

The title of this thesisadaptive mesh generatipdenotes the merging of three differently handled fields:
mesh, adaption and generation. Therefore this expression relates to an unified approach for generating
discretizations which specifically fit an aimed application area. Typically the adaption and generation
of meshes is computational intensive, especially in three dimensions. Therefore, those applications are
typically investigated and provided separately. However, as the algorithms improve in efficiency and the
available computational performance increases the original mesh adaption tools can evolve to standalone
adaptive mesh generation applications [4].



The goal of this thesis is to develop generic algorithms fapéisle mesh generation tasks with a focus

on the application of modern programming concepts to achieve highly reusable and maintainable imple-
mentations. Typical algorithms used in the field of adaptive mesh generation should be generalized to
arbitrary dimensions and elements, thereby increasing the scope of these algorithms significantly. The
implemented applications act as prototypes to investigate the applicability of generalized algorithms in

the field of adaptive mesh generation.

The challenge is to implement a highly generic code basis, where the expreggitygenericshould em-
phasize the focus on reusability. For example, the implementation has to handle different data structures,
different mesh element types and dimensions in a concise manner. Such highly generic implementations
have been researched in the past years [5][6].

Generic code requires modern programming technigues. Furthermore high-performance is of utmost in-
terest as well. Therefore the C++ programming language is used in combination with the Boost libraries
[7]. To store and process meshes of arbitrary type@haeric Scientific Simulation Environme@SSE

[8]) is used.

1.2 Overview

Chapter 2 puts the thesis into context by introducing related applications and libraries presenting advan-
tages and disadvantages of each of them as well as improvements implemented during this thesis.

Chapter 3 provides the theoretical foundations for the thesis, defining the basics of discrete representa-
tions as well as how to evaluate the quality of meshes. Furthermore, an approach to algorithm generaliza-
tion, based on element type and element dimension abstractions, is presented.

Chapter 4 discusses applications which are used in conjunction with the actual adaptive mesh generation
applications. Furthermore, a programming technique is introduced which en