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Kurzfassung

Um den Anforderungen der Skalierung in der Mikroelektronik gerecht zu werden, wird die
Einführung neuer Strukturen und Materialien notwendig. Dazu zählen etwa multiple gate

MOSFETs, Carbon Nanotube Feldeffekttransistoren (CNT-FETs) und auf Molekülen basierende
Transistoren. Auf Grund der hervorragenden elektronischen Eigenschaften von carbon nan-
otubes (CNTs) wurden CNT-FETs in den vergangenen Jahren vermehrt als mögliche Alter-
native zu CMOS Bauelementen untersucht. Einige dieser Eigenschaften sind quasi-ballistischer
Ladungsträgertransport, geringe Elektromigration und Unterdrückung von Kurzkanaleffekten
auf Grund der ein-dimensionalen Transporteigenshaften. Die nahezu symmetrische Bandstruk-
tur von Valenz- und Leitungsband ermöglicht symmetrische p- und n-Kanal Transistoren für
komplementäre Logik. Da CNTs sowohl mit metallischem als auch halbleitendem Verhalten
realisiert werden können, ist eine vollständig auf CNTs basierende Elektronik vorstellbar.

Zur Erforschung der in CNT-FETs auftretenden physikalischen Effekte und zur Verbesserung
ihrer Leistungskennzahlen und Funktionalität wurden selbstkonsistente quantenmechanische
Simulationen durchgeführt. Dazu wurde der Formalismus der Nichtgleichgewichts-Greenschen
Funktionen (NEGF) verwendet. Dieser stellt eine sehr mächtige Methode zur Behandlung von
Vielteilchensystemen sowohl im thermodynamischen Gleichgewicht als auch im Nichtgleich-
gewicht dar.

Die numerische Implementierung des NEGF-Formalismus wird mit besonderem Augenmerk auf
die Reduktion von Speicher- und Rechenzeitbedarf durchgeführt. Der Fokus auf die rechnerische
Effizienz ist notwendig, um kurze Simulationszeiten zu ermöglichen und großangelegte Anwen-
dungen wie Bauelementoptimierung durchführbar zu machen. Zur exakten Analyse sind weiters
die Quantentransportgleichungen selbstkonsistent mit der Poisson-Gleichung zu lösen. Dazu
wurde ein iteratives Lösungsschema angewandt, wobei das Konvergenzverhalten der Methode
einen entscheidenden Faktor darstellt. Das Konvergenzverhalten der selbstkonsistenten Iteration
wurde untersucht und daraus Methoden zur Verbesserung der Konvergenzrate entwickelt.

Die numerischen Methoden wurden im Rahmen des vielseitigen, quantenmechanischen Bauele-
mentsimulators Vienna Schrödinger-Poisson (VSP) implementiert und zur Untersuchung
von CNT-FETs angewandt. Basierend auf den Erkenntnissen aus den Simulationsergebnissen
ist ein tieferes Verständnis der Bauelementfunktion und ihrer Abhängigkeit von Material- und
Geometrieparametern möglich.
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KURZFASSUNG

Die ambipolare Leitung in CNT-FETs, welche die Transistoreigenshaften stark beeinträchtigen
kann, wurde genauer untersucht. Die Simulationen zeigen, dass dieses Verhalten durch eine
Doppel-Gate-Struktur unterdrückt werden kann. Dabei wird die Ladungsträgerinjektion an den
Source- und Drain Kontakten unabhängig voneinander gesteuert. Das erste Gate steuert die
Ladungsträgerinjektion am Source-Kontakt, während das zweite Gate die parasitäre Ladungs-
trägerinjektion am Drain-Kontakt unterdrückt.

Da allerdings die Herstellung von Einfach-Gate-Bauelementen praktikabler ist, wurden auch für
diese Bauelemente Möglichkeiten zur Reduktion des ambipolaren Leitung untersucht. Es wird
gezeigt dass die Eigenshaften von Einfach-Gate CNT-FETs durch Optimierung der Gate-Source
und Gate-Drain Abstände enorm verbessert werden können. Die zu Grunde liegenden Effekte
unterscheiden sich deutlich von jenen in konventionellen MOSFETs.

Abschließend werden die Auswirkungen der Elektron-Phonon Wechselwirkung auf die Bauele-
menteigenschaften im Detail untersucht. In Übereinstimmung mit Experimenten zeigen unsere
Ergebnisse, dass Streuung mit hochenergetischen Phononen zwar den Strom im eingeschal-
teten Zustand kaum beeinflusst, jedoch auf Grund von Ladungsansammlung im Kanal die
Schaltzeiten merklich verschlechtert. Für Streuung mit niederenergetischen Phononen findet
man das umgekehrte Verhalten vor. In den für elektronische Anwendungen geeigneten CNTs
dominiert bei Raumtemperatur allerdings Elektron-Phonon Wechselwirkung mit hochenergetis-
chen Phononen. Daher liegt der Strom von CNT-FETs im eingeschalteten Zustand nahe am
ballistischen Limit, die Schaltzeiten hingegen deutlich darunter.
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Abstract

NOVEL STRUCTURES and materials such as multiple gate MOSFETs, carbon nanotube
field-effect transistors (CNT-FETs), and molecular based transistors, are expected to be

introduced to meet the requirements for scaling. CNT-FETs have been considered in recent
years as potential alternatives to CMOS devices due to excellent electronic properties of carbon
nanotubes (CNTs). Some of the interesting electronic properties of CNTs are quasi-ballistic
carrier transport, suppression of short-channel effects due to one-dimensional electron transport,
nearly symmetric structure of the conduction and valence bands, which is advantageous for
complementary applications, and high resistance against electro-migration. Since CNTs can be
both metallic or semiconducting, an all-CNT electronics can be envisioned.

To explore the physics of CNT-FETs and to find methods to improve the functionality and
performance of these devices we performed self-consistent quantum mechanical simulations. The
non-equilibrium Green’s function (NEGF) formalism is used in this work. It provides a very
powerful technique for evaluating properties of many-particle systems both in thermodynamic
equilibrium and also in non-equilibrium situations.

The numerical implementation of the outlined method is presented. Methods to reduce compu-
tational cost and memory requirement are discussed. Employing such techniques allows one to
perform simulations in a reasonable amount of time, which is essential for large-scale applications
such as device optimizations. For accurate analysis we solved the quantum transport equations
with the Poisson equation self-consistently. To solve the system of equations we used an itera-
tive method, the convergence of which is a critical issue. We analyzed the convergence behavior
of self-consistent simulations and propose methods to improve the convergence behavior.

The numerical methods are implemented in the multi-purpose quantum-mechanical device sim-
ulator Vienna Schrödinger-Poisson (VSP) solver, which has extensively been applied to
study CNT-FETs. Based on simulation results one can obtain a deeper insight into device
operation and its dependence on material and geometrical parameters.

We investigated the ambipolar conduction of CNT-FETs, which deteriorates the device char-
acteristics. Based on the results we propose a double-gate structure to suppress the ambipolar
behavior. In this device type carrier injection at the source and drain contacts are controlled
separately. The first gate controls carrier injection at the source contact and the second one
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ABSTRACT

controls carrier injection at the drain contact, which can be used to suppress parasitic carrier
injection.

Reduction of ambipolar conduction of single-gate devices has been studied. We show that the
performance of single-gate CNT-FETs can be considerably improved by optimizing the gate-
source and gate-drain spacer lengths. The results indicate that the exploited effects are very
different from that in conventional MOSFETs.

Finally, the effect of electron-phonon interactions on the device characteristics is discussed in
detail. In agreement with experimental data, our results indicate that scattering with high energy
phonons reduces the on-current only weakly, but can increase the switching time considerably due
to charge pileup in the channel. Scattering with low energy phonons can reduce the on-current
more effectively, but has a weaker effect on the switching time. In a CNT at room temperature
scattering processes are mostly due to electron-phonon interaction with high energy phonons.
Therefore, the on-current of CNT-FETs can be close to the ballistic limit, whereas the switching
time is found to be significantly below that limit.
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Chapter 1

Introduction

THE INCREASING demand for higher computing power, smaller dimensions, and lower
power consumption of integrated circuits leads to a pressing need to downscale semicon-

ductor components. However, downscaling of conventional MOSFETs leads to many problems,
such as short-channel effects, gate-leakage current, and so forth. Therefore, novel structure and
materials such as multiple gate MOSFETs, CNT-FETs, and molecular based transistors, are
expected to be introduced to meet the requirements for scaling [1].

Since the discovery of carbon nanotubes (CNTs) by Iijima in 1991 [2], significant progress has
been achieved in both understanding the fundamental properties and exploring possible engi-
neering applications. The possible application for nano-electronic devices has been extensively
explored since the demonstration of the first CNT transistors (CNT-FETs) [3, 4].

CNTs are attractive for nano-electronic applications due to their excellent electrical properties.
The phase space for scattering is severely reduced due to the one-dimensional nature of the
density of states. The low scattering probability is responsible for high on-current in semicon-
ducting CNT transistors. Due to the chemical stability and perfection of the CNT structure
carrier mobility is not affected by processing and roughness scattering as it is in the conventional
semi-conductor channel. The fact that there are no dangling bond states at the surface of CNTs
allows for a wide choice of gate insulators. This improves gate control while meeting gate leakage
constrains. The purely one-dimensional transport properties of the SW-CNTs should lead to a
suppression of short-channel effects in transistor devices [5]. Furthermore, the conduction and
valence bands are symmetric, which is advantageous for complementary applications, and finally,
the combined impact of transport and electrostatic benefits together with the fact that semicon-
ducting CNTs are, unlike silicon, direct-gap materials, suggests applications in opto-electronics
as well [6, 7].

Chapter 2 describes the fundamentals of CNTs. It presents a comprehensive overview of
electron and phonon properties along with electron-phonon interaction parameters, which are
the key points to understand transport phenomena in CNTs. The chapter continues with a
brief historical overview of CNT-FETs. The operation of these devices can be explained in
terms of Schottky barriers which are formed at the metal-CNT interfaces. CNT-FETs can
operate by modulating the transmission coefficient through these barriers, which results in device
characteristics different from that of conventional MOSFETs.
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INTRODUCTION

Chapter 3 outlines the theory of the non-equilibrium Green’s function (NEGF) formalism.
Knowledge of the single-particle Green’s function provides both the complete equilibrium or
non-equilibrium properties of the system and the excitation energies of the systems containing
one more or one less particle. The many-particle information about the system is cast into
self-energies, parts of the equations of motion for the Green’s functions. Green’s functions
can be expressed as a perturbation expansion, which is the key to approximate the self-energies.
Green’s functions provide a very powerful technique for evaluating properties of many-particle
systems both in thermodynamic equilibrium and also in non-equilibrium situations. This formal-
ism has been successfully used to investigate the characteristics of nano-scale transistors [8, 9],
CNT-FETs [5, 10], and molecular transistors [11].

Chapter 4 discusses the numerical implementation of the NEGF formalism to study quan-
tum transport in CNT-FETs. To solve the transport equations numerically they have to be
discretized. The discretization of the transport equations in both the spatial and energy do-
main are discussed in detail. We employed a tight-binding Hamiltonian and applied a mode-
space transformation to reduce the computational cost. The calculation of self-energies due to
electron-phonon interactions are also presented in this chapter. Finally, the iterative method for
self-consistent simulation and its convergence rate is studied.

In Chapter 5 several applications are discussed. By using the described methodology the
physics of CNT-FET has been explored. A comprehensive study of the role of electron-phonon
interaction on the performance of CNT-FETs is presented. Scaling of some geometrical param-
eters is investigated and we show that by appropriately selecting these parameters considerable
improved performance can be achieved.

Finally, Chapter 6 briefly summarizes the thesis with some conclusions.
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Chapter 2

Fundamentals of Carbon Nanotubes

CARBON MATERIALS are found in a variety of forms such as fullerenes, graphite, carbon
fibres, carbon nanotubes, and diamond. The reason why carbon assumes many structural

forms is that a carbon atom can form several distinct types of orbital hybridization. The spn

hybridization is essential for determining the dimensionality of not only carbon based molecules
but also carbon based solids. Carbon is the only element in the periodic table that has isomers
from zero-dimensions to three-dimensions, see Table 2. In spn hybridization, (n+1) σ bonds per
carbon atom are formed, which form a skeleton for the local structure of the n-dimensional struc-
ture. In sp hybridization, two σ bonds form a one-dimensional chain structure, which is known
as a carbyne. Interestingly, sp2 hybridization, which forms a planer structure in two-dimensional
graphite, also forms a planar local structure in the closed polyhedra of the (zero-dimensional)
fullerene family and the one-dimensional cylinders called carbon nanotubes (CNTs). Carbon
fibers which are macroscopic one-dimensional materials are closely related to CNTs, because of
their characteristic high length to diameter ratio. A carbon fiber, however, consists of many
graphite planes and microscopically exhibits electronic properties that are predominantly two-
dimensional. Amorphous graphite, showing mainly sp2 hybridization, consisting of randomly
stacked graphite layer segments. Because of the weak inter-planer interaction between two
graphite planes, they can move easily relative to each other, thereby forming a solid lubricant.
In this sense, amorphous graphite can behave like a two-dimensional material. Four σ bonds
defining a regular tetrahedron are sufficient to form a three-dimensional structure known as the
diamond structure. Amorphous carbon is a disordered, three-dimensional material in which
both sp2 and sp3 hybridization is present.

CNTs are unique nano-structures that can be considered conceptually a prototype one-dimensio-
nal quantum wire. The fundamental building block of CNTs is the very long, all-carbon cylin-
drical single-wall CNT (SW-CNT), one atom in wall thickness and tens of atoms around the
circumference (typical diameter ∼ 1.4 nm). Initially, CNTs gained great interest in research
community because of their exotic electronic properties, and this interest continued as other
remarkable properties were discovered and promise of practical applications developed. In this
chapter, a brief historical review of CNT research is presented and some basic definitions relevant
to the structural properties of CNTs are provided. Finally, application of CNTs in electronics,
especially CNT based transistors, are discussed.
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FUNDAMENTALS OF CARBON NANOTUBES 2.1 Historical Overview

Dimension 0-D 1-D 2-D 3-D

Isomer Fullerene Nanotubes Graphite Diamond

Hybridization sp2 sp2 sp2 sp3

Density [g/cm3] 1.72 1.2 − 2.0 2.26 3.52

Bond Length (Å) 1.40 (C=C) 1.42 (C=C) 1.42 (C=C) 1.54 (C-C)

Electronic Properties
Semiconductor
Eg = 1.9 eV

Semiconductor
or Metal

Semi-metal
Insulator
Eg = 5.47 eV

Table 2.1: Important carbon isomers [12].

2.1 Historical Overview

Very small diameter (less than 10 nm) carbon filaments were prepared in the 1970’s and 1980’s
through the synthesis of vapor grown carbon fibers by the decomposition of hydrocarbons at
high temperatures in the presence of transition metal catalyst particles with diameters of less
than 10 nm [13–15]. However, no detailed systematic studies of such very thin filaments were
reported in these early years, and it was not until the observation of CNTs in 1991 by Iijima of
the NEC laboratory using high resolution transmission electron microscopy [2].

It was Iijima’s observation of multi-wall CNTs (MW-CNTs) (see Fig. 2.1) in 1991 [2] that
heralded the entry of many scientists into the field of CNTs, stimulated at first by the remarkable
one-dimensional quantum effects predicted for their electronic properties, and subsequently by
the promise that the remarkable structure and properties of CNTs might give rise to some unique
applications. Although the initial experimental observations were for MW-CNTs, SW-CNTs
had been the basis for a large body of theoretical studies and predictions that preceded their
experimental observation. The most striking of these theoretical developments was the prediction
that CNTs could be either semiconductors or metals depending on their characteristics, namely
their diameters and the orientation of their hexagons with respect to the CNT axis (chiral
angle) [16–18]. Though predicted in 1992, it was not until 1998 that these predicted remarkable
electronic properties were corroborated experimentally [19,20].

Figure 2.1: The observation of coaxial MW-CNTs by Iijima in 1991 [2].
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2.2 Theoretical Background

The structure of CNTs has been explored early by high resolution transmission electron mi-
croscopy techniques yielding direct confirmation that the CNTs are seamless cylinders derived
from the honeycomb lattice representing a single atomic layer of crystalline graphite, called
a graphene sheet. The structure of a SW-CNT is conveniently explained in terms of its one-
dimensional unit cell, defined by the vectors Ch and T as shown in Fig. 2.2.

The circumference of any CNT is expressed in terms of the chiral vector Ch = na1 +ma2 which
connects two crystallographically equivalent sites on a two-dimensional graphene sheet [16]. The
construction in Fig. 2.2 depends uniquely on the pair of integers (n,m) which specify the chiral
vector. The chiral angle θ is defined as the angle between the chiral vector Ch and the zigzag
direction (θ = 0). Three distinct types of CNT structures can be generated by rolling up the
graphene sheet into a cylinder as shown in Fig. 2.3. The zigzag and armchair CNTs correspond to
chiral angles of θ = 0 and θ = 30°, respectively, and chiral CNTs correspond to 0 < θ < 30°. The

intersection of the vector
−−→
OB (which is normal to Ch) with the first lattice point determines the

fundamental one-dimensional translation vector T. The unit cell of the one-dimensional lattice
is the rectangle defined by the vectors Ch and T.

The cylinder connecting the two hemispherical caps of the CNT (see Fig. 2.3) is formed by
superimposing the two ends of the vector Ch and the cylinder joint is made along the two lines−−→
OB and

−−→
AB′ in Fig. 2.2. The lines

−−→
OB and

−−→
AB′ are both perpendicular to the vector Ch at each

end of Ch [16]. In the (n,m) notation for Ch = na1 +ma2, the vectors (n, 0) or (0,m) denote
zigzag CNTs, whereas the vectors (n,m) correspond to chiral CNTs [21]. The CNT diameter
dCNT is given by

dCNT =
|Ch|
π

=

√
3aC−C(m2 + mn + n2)1/2

π
, (2.1)

where |Ch| is the length of Ch and aC−C is the C-C bond length (1.42 Å). The chiral angle θ is
given by θ = tan−1[

√
3n/(2m + n)]. For the (n, n) armchair CNT θ = 30° and for the (n, 0)

zigzag CNT θ = 60°. From Fig. 2.2 it follows that if one limits θ to the range 0 ≤ θ ≤ 30°, then
by symmetry, θ = 0 for a zigzag CNT. Both armchair and zigzag CNTs have a mirror plane and
thus are considered achiral. Differences in the CNT diameter dCNT and chiral angle θ give rise
to different properties of the various CNTs. The number N of hexagons per unit cell of a CNT,
specified by integers (n,m), is given by

N =
2(m2 + n2 + nm)

dR
, (2.2)

where dR = d if n −m is not a multiple of 3d, and dR = 3d if n −m is a multiple of 3d, and
d is defined as the greatest common divisor (gcd) of (n,m). Each hexagon in the honeycomb
lattice contains two carbon atoms. The unit cell area of the CNT is N times larger than
that for a graphene layer and consequently the unit cell area for the CNT in reciprocal space
is correspondingly 1/N times smaller. Table 2.2 provides a summary of relations useful for
describing the structure of SW-CNTs [12,22].
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Figure 2.2: The chiral vector Ch = na1 +ma2 is defined on the honeycomb lattice
of carbon atoms by unit vectors a1 and a2 and the chiral angle θ with respect to the
zigzag axis (θ = 0). The diagram is constructed for (n,m) = (4, 2).

Figure 2.3: Schematic models of SW-CNTs with the CNT axis normal to the chiral
vector. The latter is along (a) the θ = 30° direction for an (n, n) armchair CNT,
(b) the θ = 0 direction for a (n, 0) zigzag CNT, and (c) a general θ direction with
0 < θ < 30° for a (n,m) chiral CNT.
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Symbol Description Formula

a length of unit vectors a =
√

3aC−C = 2.49 Å, aC−C = 1.42 Å

a1, a2 unit vectors

(√
3

2
,
1

2

)
a,

(√
3

2
,−1

2

)
a

b1, b2 reciprocal lattice vectors
(

1√
3
, 1

)
2π

a
,

(
1√
3
,−1

)
2π

a

Ch chiral vector Ch = na1+ma2 ≡ (n,m), (0 ≤ |m| ≤ n)

L length of Ch L = |Ch| = a
√
n2 +m2 + nm

dCNT diameter dCNT =
L

π

θ chiral angle tan(θ) =

√
3

2n+m

d gcd(n,m)

dR gcd(2n+m, 2m+ n)

T translational vector

T = t1a1 + t2a2 ≡ (t1, t2)

t1 =
2m+ n

dR
, t2 = −2n+m

dR

T length of T T = |T| =

√
3L

dR

N number of hexagons in the unit-cell N =
2(n2 +m2 +mn)

dR

Table 2.2: Structural properties for CNTs [12].
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2.3 Nanotube Growth Methods

This section summarizes the progress made in recent years in CNT growth by various methods
including arc-discharge, laser ablation, and chemical vapor deposition (CVD).

2.3.1 Arc-Discharge and Laser Ablation

Arc-discharge and laser ablation methods for the growth of CNTs have been actively pursued
in the past decades. Both methods involve the condensation of carbon atoms generated from
evaporation of solid carbon sources. The temperature involved in these methods are 3000−4000°
C, close to the melting temperature of graphite.

In arc-discharge, carbon atoms are evaporated by a helium plasma initiated by high currents
passed through an opposing carbon anode and cathode. Arc-discharge has been developed
into an excellent method for producing both high quality MW-CNTs and SW-CNTs. For the
growth of SW-CNTs, a metal catalyst is needed in the arc-discharge system. The first success
in producing substantial amount of SW-CNTs by arc-discharge was achieved by Bethune and
coworkers in 1993 [23], by using a carbon anode containing a small percentage of cobalt in the
discharge experiment.

The growth of high quality SW-CNTs was achieved by Smalley and coworkers using a laser
ablation method [24]. The method utilized intense laser pulses to ablate a carbon target con-
taining 0.5 atomic percent of nickel and cobalt. The target was placed in a tube-furnace heated
to 1200°C.

In SW-CNT growth by arc-discharge and laser ablation, typical by-products include fullerene,
graphitic polyhedrons with enclosed metal particles, and amorphous carbon in the form of
particles or over-coating on the CNT sidewalls.

2.3.2 Chemical Vapor Deposition

The growth process involves a catalyst material at high temperature in a tube furnace and a
hydrocarbon gas flowing through the tube reactor for a period of time. Materials grown over
the catalyst are collected upon cooling the system to room temperature. The key parameters
in CVD growth of CNTs are the hydrocarbons, catalysts and growth temperature. The active
catalytic species are typically transition-metal nano-particles formed on a support material such
as alumina. The general CNT growth mechanism in a CVD process involves the dissolution and
saturation of carbon atoms in the metal nano-particles. The precipitation of carbon from the
saturated metal particle leads to the formation of tubular carbon solids in sp2 structure. Tubular
formation is favored over other forms of carbon such as graphitic sheets with open edges. This
is because a tube contains no dangling bonds and, therefore, is in a low energy form.

Recent interests in CVD growth of CNTs are also due to the idea that aligned and ordered CNT
structures can be grown on surfaces in a controlled manner that is not possible with arc-discharge
or laser ablation techniques [25].

Methods developed to obtain MW-CNTs include CVD growth of tubes in the pores of meso-
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Figure 2.4: Self-aligned MW-CNT arrays grown by CVD on a catalytically patterned
porous silicon substrate a) SEM image of tower structures consisting of aligned CNTs
and b) SEM image of the side view of the towers [25].

porous silica. Dai and coworkers have devised growth strategies for ordered MW-CNTs and
SW-CNTs by CVD on a catalytically patterned substrate [25]. They found that MW-CNTs
can self-assemble into aligned structures as they grow, and the driving force for self-alignment
is the Van der Waals interaction between CNTs [26]. The growth approach involves catalyst
patterning and rational design of the substrate to enhance catalyst-substrate interaction and
control the catalyst particle size. Figure 2.4 shows scanning electron microscopy (SEM) images
of regularly positioned arrays of CNT towers grown from patterned iron squares on a porous
silicon substrate.

Ordered SW-CNT structures can be directly grown by methane CVD on catalytically patterned
substrates. A method has been devised to grow suspended SW-CNT networks with directionality
on substrates containing lithographically patterned silicon pillars [27, 28]. Contact printing is
used to transfer catalyst materials onto the pillar’s tops selectively. CVD of methane using
these substrates leads to suspended SW-CNTs forming nearly ordered networks with the CNT
orientations directed by the pattern of the pillars (Fig. 2.5).

a) b)

c)

Figure 2.5: Directed growth of suspended SW-CNT a) and b) square of CNTs and
c) CNT power-line structure [28].
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2.4 Electronic Structure

The energy dispersion relations of SW-CNTs can be calculated using zone folding [18, 29], the
tight-binding method [30], and density functional theory [31, 32]. In the simplest method the
energy dispersion relations of CNTs are obtained by folding those of graphene.

2.4.1 Electronic Band Structure of Graphene

Within the tight-binding method the two-dimensional energy dispersion relations of graphene
can be calculated by solving the eigen-value problem for a Hamiltonian Hg−2D associated with
the two carbon atoms in the graphene unit cell [12]. In the Slater-Koster scheme one gets1

Hg−2D =

[
0 f(k)

−f †(k) 0

]
. (2.3)

where f(k) = −t(1+eik·.a1 +eik·a2) = −t(1+2e
√

3kxa/2cos(kya/2)) and t is the nearest neighbor
C-C tight binding overlap energy2 [29]. Solution of the secular equation det(Hg−2D − EI) = 0
leads to

E±
g−2D(k) = ± t

√√√√1 + 4cos

(√
3kxa

2

)
cos

(
kya

2

)
+ cos2

(
kya

2

)
, (2.4)

where the E+
g−2D and E−

g−2D correspond to the π∗ and the π energy bands, respectively. Fig-
ure 2.6 shows the electronic energy dispersion relations for graphene as a function of the two-
dimensional wave-vector k in the hexagonal Brillouin zone.

Figure 2.6: The energy dispersion relations for graphene are shown through the whole
region of the Brillouin zone. The lower and the upper surfaces denote the valence π
and the conduction π∗ energy bands, respectively. The coordinates of high symmetry
points are Γ = (0, 0), K = (0, 2π/3a), and M = (2π/

√
3a, 0). The energy values at the

K, M, and Γ points are 0, t, and 3t, respectively.

1We consider only the valence π and the conduction π∗ energy band of graphene and CNTs.
2Experimentally the value |t| = 2.7 eV has been reported [19].
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2.4.2 Electronic Band Structure of SW-CNTs

The electronic structure of a SW-CNT can be obtained from that of graphene. Assuming
periodic boundary conditions in the circumferential direction characterized by the chiral vector
Ch, the wave vector associated with the Ch direction becomes quantized, while the wave-
vector associated with the direction of the translational vector T (along the CNT axis) remains
continuous for a CNT of infinite length. Thus the energy bands consist of a set of one-dimensional
energy dispersion relations which are cross sections of those of graphene. Expressions for the
reciprocal lattice vectors K2 along the CNT axis, (Ch · K2 = 0,T · K2 = 2π), and K1 in the
circumferential direction, (Ch · K2 = 0,T · K2 = 2π), are given by (see Table 2.2)

K1 =
1

N
(−t2b1 + t1b2) , K2 =

1

N
(mb1 − nb2) . (2.5)

The one-dimensional energy dispersion relations of a SW-CNT can be written as

Eν
CNT(k) = Eg−2D

(
k

K2

|K2|
+ νK1

)
, (2.6)

where −π/T < k < π/T is a one-dimensional wave-vector along the CNT axis and ν = 1, . . . , N .
The periodic boundary condition for a CNT gives N discrete k values in the circumferential
direction. The N pairs of energy dispersion curves given by (2.6) correspond to the cross sections
of the two-dimensional energy dispersion surface of graphene. In Fig. 2.7 several cutting lines
near one of the K points are shown. The separation between two adjacent lines and the length of
the cutting lines are given by the |K1| = 2/dCNT and |K2| = 2π/T , respectively. If the cutting
line passes through a K point of the two-dimensional Brillouin zone (Fig. 2.7-a), where the π
and π∗ energy bands of graphene are degenerate by symmetry, then the one-dimensional energy
bands have a zero energy gap. When the K-point is located between to cutting lines, K is always
located in a position one-third of the distance between two adjacent K1 lines (Fig. 2.8-b) [29]
and thus a semiconducting CNT with a finite energy gap is formed. If for a (n,m) CNT, n−m
is exactly divisible by 3 the CNT is metallic. CNTs with residuals 1 and 2 of the division n−m
by 3 are semiconducting.

Figure 2.7: The one-dimensional wave-vectors k are shown in the Brillouin zone of
graphene as bold lines for (a) metallic and (b) semiconducting CNTs.
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Figure 2.8: One-dimensional energy dispersion relations of a) the (5, 5) armchair
CNT, b) the (9, 0) zigzag CNT, and c) the (10, 0) zigzag CNT. kmax for armchair and
zigzag CNTs correspond to kmax = π/a and kmax = π/

√
3a, respectively. Solid lines

denote degenerate bands and dashed lines non-degenerate bands.

Figure 2.8 shows the energy dispersion relations for the (5, 5) armchair, the (9, 0) zigzag, and
the (10, 0) zigzag CNTs. In general (n, n) armchair CNTs yield 4n energy subbands with 2n
conduction and 2n valence bands. Of these 2n bands, two are non-degenerate and n−1 are doubly
degenerate. The degeneracy comes from the two subbands with the same energy dispersion, but
different ν-values. All armchair CNTs have a band degeneracy between the highest valence and
the lowest conduction band (Fig. 2.8-a). In zigzag CNTs the lowest conduction and the highest
valence bands are doubly degenerate (Fig. 2.8-b and Fig. 2.8-c).

In armchair and zigzag CNTs the bands are symmetric with respect to k = 0. Since the band
of an armchair CNT has a minimum at point k = 2π/3a, it has a mirror minimum at point
k = −2π/3a and therefore two equivalent valleys are present around the point ±2π/3a. The
bands of zigzag and chiral CNTs can have at most one valley (Fig. 2.8-b and Fig. 2.8-c).

In armchair CNTs the bands cross the Fermi level at k = ±2π/3a. Thus, all they are expected
to exhibit metallic conduction [12]. There is no energy gap for the (9, 0) CNT at k = 0, whereas
the (10, 0) CNT indeed shows an energy gap.

Electrical conduction is determined by states around the Fermi energy. Therefore, it is useful
to develop an approximate relation that describes the dispersion relations in the regions around
the Fermi energy EF = 0. This can be done by replacing the expression for f(k) = −t(1 +

2e
√

3kxa/2cos(kya/2)) in (2.3) with a Taylor expansion around the point (0,±4π/3a) where the
energy gap is zero and f(k) = 0. It is straightforward to show that f(k) ≈ (i

√
3at/2) (kx ∓ iβy),

with βy ≡ ky ∓ (4π/3a). The corresponding energy dispersion relation can be written as [33]

Eg−2D(k) = ±|f(k)| = ±
√

3at

2

√
k2

x + β2
y . (2.7)

The energy bands for (n, 0) zigzag CNTs can be obtained by imposing the periodic boundary
conditions, which define the number of allowed wave-vectors ky in the circumferential direction
as nkya = 2πν, (ν = 1, . . . , 2n). This yields the one-dimensional dispersion relations for the 4n
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states of the (n, 0) zigzag CNT

Eν(kx) = ±
√

3at

2

√

k2
x +

[
4π

3a

(
3ν

2n
− 1

)]2

, −π/
√

3a < kx < π/
√

3a . (2.8)

Therefore, the energy gap for subband ν can be written as difference between the energies of
the + and − branches at kx = 0

Eν
g =

√
3at

2π

na

(
ν − 2n

3

)
. (2.9)

The energy gap has a minimum value of zero corresponding to ν = 2n/3. If n is not a multiple
of three the minimum value of ν − 2n/3 is equal to 1/3. This means that the minimum energy
gap is then given by

Eg =

√
3at

3

2π

na
=

2aC−Ct

dCNT
≈ 0.8 eV nm

dCNT
. (2.10)

where dCNT = na/π is the diameter of the CNT in nano-meters. Based on (2.8) and (2.9), the
DOS for semiconducting zigzag CNTs is given by

g(E) =
∑

ν

8

3πaC−Ct

E√
E − Eν

g/2
, (2.11)

which is an approximation valid as long as (E − EF) ≪ t [34]. Van hove singularities in the
DOS appearing at both the energy minima and maxima of the bands (see Fig. 2.9) are important
for determining various solid-state properties of CNTs [35,36]

For all metallic CNTs, independent of their diameter and chirality, due to the nearly linear
dispersion relations around the Fermi energy the density of states (DOS) per unit length along
the CNT axis is a constant given by 8/3πaC−Ct [12].

Figure 2.9: The density of states per unit cell of graphene for a) the (9, 0) zigzag CNT
which has metallic behavior and b) the (10, 0) zigzag CNT which has semiconducting
behavior. Dashed lines show the density of states for the graphene sheet [21].
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2.5 Phonon Properties

The phonon dispersion relations of SW-CNTs can be calculated using zone folding [29], tight-
binding methods [37–40], density functional theory [41–49], and symmetry-adapted models [50–
54]. The phonon dispersion relations of SW-CNTs can be understood by zone folding of the
phonon dispersion branches of graphene.

2.5.1 Phonon Dispersion Relations of Graphene

Since there are two carbon atoms, A and B, in the unit cell of graphene, one must consider 6
coordinates. The secular equation to be solved is thus a dynamical matrix of rank 6, such that
6 phonon branches are achieved.

The phonon dispersion relation of the graphene comprises three acoustic (A) branches and three
optical (O) branches. The modes are associated with out-of-plane (Z), in-plane longitudinal (L),
and in-plane transverse (T) atomic motions (Fig. 2.10-b).

Figure 2.10-b shows the phonon dispersion branches of graphene. The three phonon dispersion
branches, which originate from the Γ-point of the Brillouin zone correspond to acoustic modes:
an out-of plane mode (ZA), an in-plane transverse mode (TA), and in-plane longitudinal (LA),
listed in order of increasing energy. The remaining three branches correspond to optical modes:
one out-of plane mode (ZO), and two in-plane modes (TO) and (LO).

While the TA and LA modes display the normal linear dispersion around the Γ-point, the ZA
mode shows a q2 energy dispersion which is explained in [12] as a consequence of the D6h point-
group symmetry of graphene. Another consequence of the symmetry are the linear crossings of
the ZA/ZO and the LA/LO modes at the K-point.

Figure 2.10: a) Atomic motions of carbon atoms in graphence can be along the
out-of-plane (Z), in-plane transverse (T), and in-plane longitudinal (L) direction. b)
The phonon dispersion branches for a graphene sheet, plotted along high symmetry
directions [12].
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2.5.2 Phonon Dispersion Relations of SW-CNTs

The phonon dispersion relations for a SW-CNT can be determined by folding that of a graphene
layer (see Section 2.4.2). Since there are 2N carbon atoms in the unit cell of a CNT, 6N
phonon dispersion branches for the three-dimensional vibrations of atoms are achieved. The
corresponding one-dimensional phonon energy dispersion relation for the CNT is given by

ωµλ
CNT(q) = ωλ

g−2D(q
K2

|K2|
+ µK1) , (2.12)

where λ = 1, . . . , 6 denotes the polarization, µ = 0, . . . , N − 1 is the azimuthal quantum
number, and −π/T < q ≤ π/T is the wave-vector of phonons. However, the zone-folding
method does not always give the correct dispersion relation for a CNT, especially in the low
frequency region. For example, the out-of-plane tangential acoustic (ZA) modes of a graphene
sheet do not give zero energy at the q = 0 when rolled into a CNT. Here, at q = 0, all the carbon
atoms of the CNT move radially in and out-of-plane radial acoustic vibration, which corresponds
to a breathing mode (RBM) with a non-zero frequency [37]. To avoid these difficulties, one can
directly diagonalize the dynamical matrix (see Fig. 2.11-a).

Fundamental phonon polarizations in CNTs are radial (R), transverse (T), and longitudinal (L).
As shown in Fig. 2.11-b, zone center phonons, also referred to as Γ-point phonons, can belong to
the transverse acoustic (TA), the longitudinal acoustic (LA), the radial breathing mode (RBM),
the out-of-plane optical branch (RO), the transverse optical (TO), or the longitudinal optical
(LO) phonon branch. The LO phonon branch near the Γ-point has an energy of ≈ 190 eV,
whereas the energy of the RBM phonon branch is inversely proportional to the CNT diameter

~ωRBM ≈ 28 meV/dCNT , (2.13)

where dCNT is the diameter of the CNT in nanometer [41, 42]. Zone boundary phonons, also
referred to as K-point phonons, are found to be a a mixture of fundamental polarizations [55].

Figure 2.11: The phonon dispersion relations of a) a (10, 10) armchair CNT [12] and
b) a (16, 0) zigzag CNT with µ = 0, see (2.5.2) [55].
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2.6 Electron-Phonon Interaction

The electron-phonon interaction Hamiltonian for CNTs can be written as [56]

Ĥel−ph =
∑

k′,ν′,k,ν,λ

Mk′,ν′,k,ν,λc
†
k′,ν′ck′,ν′(bq,µ,λ + b†−q,−µ,λ) , (2.14)

where c†k′,ν′ and ck,ν are the electron creation and annihilation operators, respectively, b†−q,−µ,λ

and bq,µ,λ are the phonon creation and annihilation operators, respectively, and Mk′,ν′,k,ν,λ is the
electron-phonon matrix element

Mk′,ν′,k,ν,λ =

√
~

2ρCNTLωq,µ,λ
M̃k′,ν′,k,ν,λ , (2.15)

where ρCNT is the mass density of the CNT, L is the normalization length, and M̃k′,ν′,k,ν,λ is
the reduced electron-phonon matrix element of the transition from the initial electronic state
k, ν to the final state k′, ν ′, where k is the wave-vector and ν is the azimuthal quantum number
of electrons. Because of energy conservation for a scattering event it holds Ek′,ν′ − Ek,ν =
±~ω±q,±µ,λ, where q is the wave-vector, µ is the azimuthal quantum number, and λ is the
polarization of the phonon. The matrix element obeys selection rules arising from wave-vector
and azimuthal quantum number conservation, q = k′ − k and µ = ν − ν ′.

Because in the CNT two degrees of freedom are confined, an electron can only be scattered
forward or backward in the axial direction, preserving or changing the sign of the band-velocity,
respectively. The scattering processes invoke either intra-subband or inter-subband transitions.
The intra-subband processes are important for the electrical and the heat transport in CNTs
and for the relaxation of an excited electron or hole in the same subband. The inter-subband
processes contribute to the radiation-less relaxation of electrons (holes) from a given subband
to a subband with a lower (higher) energy [56]. The scattering of electrons can take place
within a given valley or between two valleys. The two possibilities being termed intra-valley and
inter-valley scattering processes.

2.6.1 Electron-Phonon Matrix Elements

An important case is the intra-subband scattering of electrons, ν ′ = ν, therefore, µ = 0 (Fig. 2.11-
b) and λ can be any of six different phonon polarizations. One can omit the index µ and write
the phonon frequency as ωλ(q) and the reduced electron-phonon matrix element for a given band

as M̃k′,ν′,k,ν,λ = M̃λ(q), where the weak dependence on k is neglected.

For intra-valley processes, most of the phonons have q ≈ 0 and are referred to as Γ-point phonons.
Near the Γ point a linear dispersion relation for acoustic phonons is assumed,

ωAP(q) ≈ υAP|q| , (2.16)

where υAP is the acoustic phonon velocity. For optical phonons the energy is assumed to be
independent of the phonon wave-vector

ωOP(q) ≈ ωOP . (2.17)
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Near the Γ-point the reduced electron-phonon matrix elements can be approximated by

M̃AP(q) ≈ M̃AP|q| (2.18)

for acoustic phonons and by

M̃OP(q) ≈ M̃OP (2.19)

for optical phonons [56]. Phonons inducing inter-valley processes have a wave-vector of |q| ≈ qK,
where qK is a wave-number corresponding to the K-point of the Brillouin zone of graphite. For
such phonons one can neglect the q-dependence, ωK(q) ≈ ωK and M̃K(q) ≈ M̃K [56].

To calculate the electron-phonon matrix elements one can employ the orthogonal tight-binding
[57], the non-orthogonal tight-binding [56], and density functional theory [58] for the band-
structure and a force constant model for the lattice dynamics [12, 59]. Electron-phonon matrix
elements depend on the chirality and the diameter of the CNT [56–58]. Figure 2.12 shows the
reduced matrix elements for intra-subband intra-valley transitions in semiconducting zigzag and
chiral CNTs as a function of the CNT radius [56].

Figure 2.12: The calculated intra-valley intra-subband reduced electron-phonon ma-

trix elements M̃AP (in eV) and M̃OP (in eV/Å) for zigzag (open circles) and chiral
(closed) CNTs with the radius range from 3.5 Å to 12 Å. The results for CNTs with
residuals 1 and 2 of the division n −m by 3 are shown in the left and right figures,
respectively. Open and closed circles denote the results for zigzag (Z) and chiral (C)
CNTs, respectively. All results are for the lowest conduction band [56].
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2.7 Transport Properties

Considering an electric current in a square wire with a width W and a length L, the resistance
is given by Ohm’s law

R = ρ
L

W 2
(2.20)

where ρ is the resistivity. In a macroscopic conductor, the resistivity ρ is a physical property
which does not generally depend on either the length of the wire L or the voltage applied
to the sample but only on the material. However, when the size of the wire becomes small
compared with the characteristic lengths for the motion of electrons, then ρ depends on the
length L through quantum effects. In the quantum regime, electrons act like waves that show
interference effects. Such devices are usually referred to as mesoscopic systems3. In the following
subsections the characteristics of ballistic and diffusive transport regimes are reviewed. These
regimes pertain to transport in CNTs under appropriate conditions.

2.7.1 Ballistic Transport

For ballistic transport one can consider an ideal case where electrons are not scattered on the
wire of length L connected to two electrodes, 1 and 2 (see Fig. 2.13). Since two electrodes have
a large electron capacity, the Fermi energy for electrodes 1 and 2 are constants denoted by EF1

and EF2
, (EF1

> EF2
), respectively. If there are no reflections of electrons at the electrodes,

k > 0 states are occupied primarily by electrons coming from the left contact while the k < 0
states are occupied primarily by electrons coming from the right contact. Consequently the
occupation factors for the k > 0 and k < 0 states are given by the Fermi functions for the left
and right contacts, respectively.

Figure 2.13: A ballistic conductor with length L is connected to two electrodes 1
and 2 with Fermi energies EF1

and EF2
, respectively. M is the number of channels

for electrons to propagate from the electrode 1 to 2.

3A mesoscopic system is a solid small enough in size, so that the interference of electron wave-functions can
be observed. A typical size of a mesoscopic system is around 1− 100 nm which is larger than the microscopic size
of around 1 − 10 Å and smaller than the macroscopic size which is more than 1 µm [60].
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Because of the confinement of electronic states in the direction perpendicular to the current
flow, there are several energy subbands Eν(k). Thus the total current is given by the sum of
the microscopic currents of all the subbands Eν(k). The subbands are also called channels. The
number of channels is a function of energy, which is denoted by M(E). An electron which has
a velocity of υ = ~

−1(∂E/∂k) in an unoccupied state contributes to the microscopic current
I = q/tt, in which tt is the carrier transit time tt = L/υ. Then the total current is given by [60]

I =
q

L

∑

l,k

1

~

∂Eν(k)

∂k
[f(Eν − EF1

) − f(Eν − EF2
)] ,

=
q

L

2L

2π

∑

l

∫
dk

1

~

∂Eν(k)

∂k
[f(Eν − EF1

) − f(Eν − EF2
)] ,

=
2q

h

∫
dE [f(Eν − EF1

) − f(Eν − EF2
)] M(E) ,

≈ 2q2

h
M

[EF1
− EF2

]

q
,

(2.21)

where the sum over k is converted to the integral. In (2.21) a spin degeneracy of 2 and the
inverse of the level spacing L/2π is introduced and M(E) is assumed to be constant over the
integration range. One can easily show that for T = 0 K only states with EF2

< E < EF1

contribute to the total current. If the width of a wire is very small (less than 1 nm), M = 1
even for EF1

− EF2
= 1 eV. On the other hand, if the width of a wire is on the order of 1 µm

and EF1
− EF2

= 1 eV, the number of channels M becomes very large (106).

Since V = (EF1
− EF2

)/q is the voltage between the electrodes, the resistance of the ballistic
conductor is given by

Rc =
(EF1

− EF2
) /q

I
=

h

2q2

1

M
, (2.22)

where Rc is called the contact resistance and h/2q2 is the quantized resistance

R0 =
h

2q2
≈ 12.9kΩ . (2.23)

This contact resistance arises from the mismatch of the numbers of conduction channels in
the mesoscopic conductor and the macroscopic metal lead [60]. In addition to this quantum-
mechanical contact resistance, there are other sources of contact resistance, such as that pro-
duced by poor coupling between the mesoscopic conductor and the leads. The inverse of (2.22)
gives the contact conductance Gc = G0M where G0 = 2q2/h denotes the quantized conduc-
tance. Thus in a wire without scattering the conductance is proportional to M . The quantized
resistance and conductance can be observed in clean semiconductors at very low temperature
on samples which have a small number of channels M [61]. If one considers the range of M(E)
for a SW-CNT with a diameter of 1 − 2 nm, one finds that M = 1 under low bias conditions,
EF1

− EF2
< 1 eV. In a zigzag SW-CNT close to the Fermi energy the bands are doubly

degenerate, and thus the total conductance is G = 2G0.
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In case of coherent transport, the wave-function is determined by the Schrödinger equation.
The phase and amplitude of the wave-function at electrode 2 can be obtained from those at
electrode 1. The resistance and the conductance are thus given by

R =
h

2q2

1

MT , G =
2q2

h
M T , (2.24)

where T is the transmission probability for a channel extending from electrode 1 to electrode 2.
Here it is assumed again that T is constant near the Fermi energy. Equation (2.24) is known
as the Landauer formula. It can be applied only if the wave-function spreads over the whole
sample.

The resistance Rw for a single channel of a mesoscopic wire is given in terms of the transmission
probability T as

Rw = R − Rc = R0
1 − T
T ≡ R0

R
T . (2.25)

The reflected wave-function, which is proportional to R = 1 − T , causes a voltage drop in the
wire.

2.7.2 Diffusive Transport

In case of incoherent transport, the electron wave-functions can not be described by a single
phase over the entire sample. If one considers multiple reflections, for example between scattering
centers i = 1 and i = 2, the overall transmission probability T12 between these two scattering
centers is given by

T12 = T1T2

(
1 + R1R2 + R2

1R2
2 + . . .

)
=

T1T2

1 −R1R2
, (2.26)

where the effect of interference during a scattering event is neglected. One can rewrite (2.26) as

1 − T12

T12
=

1 − T1

T1
+

1 − T2

T2
. (2.27)

Using the formula for the resistance given by (2.25) and (2.27), one can see that the resistance
of the wire is additive, R12 = R1 +R2. Applying this result to the case of N scatterers yields

R − Rc = R0

∑

i

1 − Ti

Ti
∼ N R0

1 − T
T . (2.28)

where T is an average transmission probability for an individual scattering event over a mean
free path. Thus the total resistance is given by a series connection of microscopic resistances.
This is nothing but Ohm’s law, according to which the microscopic resistance is proportional to
L.
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2.8 CNTs in Electronics

The one-dimensional nature of CNTs severely reduces the phase space for scattering, allowing
CNTs to realize maximum possible bulk mobility of this material. The low scattering probability
and high mobility are responsible for high on-current of CNT transistors. Furthermore, the
chemical stability and perfection of the CNT structure suggests that the carrier mobility at high
gate fields may not be affected by processing and roughness scattering as in the conventional
semiconductor channel. Similarly, low scattering together with the strong chemical bonding and
high thermal conductivity allows metallic CNTs to withstand extremely high current densities
(up to ∼ 109 A/cm2).

Electrostatics is improved in these devices as well. The fact that there are no dangling bond
states at the surface of CNTs allows for a much wider choice of gate insulators other than
conventional SiO2. This improved gate control without any additional gate leakage becomes
very important in scaled devices with effective SiO2 thickness below 1 nm. Also, the strong
one-dimensional electron confinement and full depletion in the nanometer-scale diameter of
the SW-CNTs (typically 1 − 2 nm) should lead to a suppression of short-channel effects in
transistors [5].

The combined impact of transport and electrostatic benefits together with the fact that semicon-
ducting CNTs are, unlike silicon, direct-gap materials, suggest applications in opto-electronics
as well [6, 7]. As far as integration is concerned, semiconducting CNTs benefit from their band
structure which exhibits essentially the same effective mass for electrons and holes. This should
enable similar mobilities and performance of n-type and p-type transistors which is necessary for
a complementary metal-oxide semiconductor (CMOS)-like technology. Finally, since CNTs can
be both metallic and semiconducting, an all-CNT electronics can be envisioned. In this case,
metallic CNTs could act as high current carrying local interconnects [62], while semiconducting
CNTs would form the active devices. The most important appeal of this approach is an ability to
fabricate one of the critical device dimensions (the CNT diameter) reproducibly using synthetic
chemistry.

2.8.1 Fabrication and Performance of CNT-FETs

The first CNT field effect transistors (CNT-FETs) were reported only a few years after the initial
discovery of CNTs [3,4]. These early devices, shown schematically in Fig. 2.14-a, were relatively
simple in structure: Noble metal (gold or platinum) electrodes were lithographically patterned
atop an oxide-coated, heavily doped silicon wafer, and a single-walled CNT was deposited atop
the electrodes. The metal electrodes served as the source and drain, and the CNT was the
active channel. The doped substrate served as the gate electrode, separated from the CNT
channel by a thick (∼ 100−200 nm) oxide layer. These devices displayed clear p-type transistor
action, with gate voltage modulation of the drain current over several orders of magnitude. The
devices displayed high parasitic resistance (≥ 1 MΩ), low drive current, low transconductance
(gm ∼ 1 nS), high sub-threshold slope (S = [d(log10Id)/dVg]

−1 ∼ 1 V/decade), and no current
saturation. Due to the thick gate dielectric, these devices required large values of the gate
voltage (several volts) to turn on, making them unattractive for practical applications.

Following these initial results, advances in CNT-FET device structures and processing yielded
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Figure 2.14: a) Schematic structure of first CNT-FETs, with CNT draped over metal
electrodes. b) Improved CNT-FET structure, with metal electrodes deposited upon
the CNT, followed by thermal processing to improve contact. The substrate serves as
the gate for both device structures, and it is separated from the CNT by a thick oxide
layer.

improvements in their electrical characteristics. Rather than laying the CNT down upon the
source and drain electrodes, relying on weak van der Waals forces for contact, the CNTs
were first deposited on the substrate, and the electrodes were patterned on top of the CNTs, as
shown in Fig. 2.14-b. In addition to Au, Ti and Co were used [63–65] with a thermal annealing
step to improve the metal-CNT contact. In the case of Ti, the thermal processing leads to
the formation of TiC at the metal-CNT interface [64], resulting in a significant reduction in
the contact resistance from several MΩ to ∼ 30 kΩ. On-state currents ∼ 1 µA were measured,
with a transconductance of ∼ 0.3 µS — an improvement of more than two orders of magnitude
relative to the van der Waals contacted devices. This CNT-FET device configuration has
been extensively studied in the literature. More recently, it has been found that Pd forms a
low resistance contact to CNTs for p-type devices [66]. It is speculated [66] that Pd offers
improved sticking or wetting interaction to the CNT surface relative to other metals, as well as
good Fermi level alignment relative to the CNT conduction band. This point will be explored
further in Section 2.8.2.

As mentioned above, early CNT-FETs were p-type in air (hole conduction). The role of the
ambient on CNT-FET conduction will be discussed in Section 2.8.3, however, it was found that
n-type conduction could be achieved by doping from an alkali (electron donor) gas [67] or by
thermal annealing in vacuum [64]. In addition, it is possible to achieve an intermediate state,
in which both electron and hole injection occur, resulting in ambipolar conduction [64]. The
ability to controllably fabricate both p-type and n-type CNT-FETs is a key to the formation of
complementary metal oxide semiconductor (CMOS) logic circuits.

Figure 2.15: Schematic cross-section of top-gate CNT-FET.
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Figure 2.16: Electrical characteristics of the CNT-FET shown in Fig. 2.15 for both
top-gate and bottom-gate operation. The oxide thicknesses for the top-gate and the
bottom-gate are 15 nm and 120 nm, respectively. Output characteristics for a) top-gate
and b) bottom-gate operation. c) Transfer characteristics [68].

Early experiments on CNT-FETs were built upon oxidized silicon wafers, with the substrate itself
serving as the gate and a thermally grown oxide film, typically ∼ 100 nm or thicker, serving as
the gate dielectric. The thick gate oxide required relatively high gate voltages (∼ 10 V) to turn
on the devices, and the use of the substrate as the gate implied that all CNT-FETs must be
turned on and off together, precluding the implementation of complex circuits. A more advanced
CNT-FET structure [68] is shown in Fig. 2.15. The device comprises a top-gate separated
from the CNT channel by a thin gate dielectric. The top-gate allows independent addressing
of individual devices, making it more amenable to integration in complex circuits, while the
thin gate dielectric improves the gate to channel coupling, enabling low voltage operation. In
addition, the reduction of the capacitance due to gate-source and gate-drain overlap suggests that
such a device structure would be appropriate for high frequency operation. Such a CNT-FET can
also be switched using the conductive substrate as a bottom gate, allowing for direct comparison
between top and bottom gate operation. Comparison of the output characteristics for top and
bottom-gate operation of the device in Fig. 2.15 are shown in Fig. 2.16-a and Fig. 2.16-b,
respectively. Operating the device with the top-gate yields distinctly superior performance
relative to bottom gate operation, with a lower threshold voltage (−0.5V vs. −12V) and higher
transconductance (3.25 µS vs. 0.1 µS). Figure 2.16-c shows superior sub-threshold behavior
for top-gate operation with an order of magnitude improvement in sub-threshold slope (130
mV/decade vs. 2V/decade).

In order to gauge whether or not CNT-FETs have potential for future nano-electronic appli-
cations, it is important to compare their electrical performance to those of advanced silicon
devices. Wind et al. [68] demonstrated that although the device structure is far from opti-
mized, the electrical characteristics, such as the on-current and the transconductance of the
device shown in Fig. 2.15 exceeds those of state-of-the-art silicon MOSFETs. Further enhance-
ments to CNT-FET structures, such as the use of high dielectric constant gate insulators [69,70],
and additional improvements in the metal-CNT contact resistance at the source and drain [66]
have lead directly to improved CNT-FET performance. Such improvements can be also applied
to n-type CNT-FETs [71].
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2.8.2 Schottky Barrier Model of CNT-FET Operation

In general a charge transfer will take place at the metal-CNT interface leading to band-bending
and the creation of a Schottky barrier. For example, a CNT-FET with titanium-carbide
contacts shows equal hole and electron currents depending on the sign of the applied gate bias,
so called ambipolar conduction [64]. This suggests the existence of two barriers, one for electrons
and one for holes, of approximately equal height, implying that each must be about half the
band-gap (Eg/2 ≈ 300 meV). Applying conventional semiconductor analysis, which assumes
that thermionic emission contributes mostly to the total current through a Schottky barrier,
indeed yields similar thermal activation barriers for electrons and holes, however, on the order
of 10 meV [64]. This finding suggested that the thermionic contribution alone cannot account
for the observed current levels, which is supported by modeling results showing that Schottky

barriers in one-dimension are much thinner than their planar analogues [72, 73]. Consequently,
carrier tunneling through these thin barriers becomes the dominant conduction mechanism and
cannot be neglected when quantifying the barrier height [74].

Similar conclusions can be drawn from the sub-threshold behavior of CNT-FETs, in particular
when plotted as a function of gate oxide thickness. The switching behavior of a MOSFET is
described by the inverse sub-threshold slope, S ≃ (kBT/q)ln(10)(1 +CD/Cg) where CD and Cg

are the depletion and gate capacitance, respectively. In the case of a fully depleted device, CD

is zero and, therefore, S depends only on the temperature, having a value of 65 mV/decade at
room temperature. The original CNT-FETs with thick gate oxides in back-gated geometry had
unexpectedly high S values of approximately 1 V/decade. On the other hand, when devices
are fabricated using thinner oxides, such as the top-gated CNT-FET in [68], the value of S
dropped significantly into the range of 100 − 150 mV/decade [68], 80 mV/decade [75], and
67 − 70 mV/decade [76]. Such a dependence of S is not consistent with the bulk switching
mechanism which should give 65 mV/decade in the long channel limit. Instead, this kind of
scaling of the sub-threshold slope with oxide thickness is compatible with the existence of sizeable
Schottky barriers at the metal-CNT interfaces, and theoretical modeling showed that the
gate field impact on this interface is responsible for the observed improvement in S [77, 78],
see Fig. 2.17.

Figure 2.17: Inverse sub-threshold slope S as a function of gate capacitance. Symbols
are experimental data. Lines represent calculations for MOS-FETs with (dashed line)
and without (solid line) Schottky barriers of 0.3 eV [77].
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Further evidence of the presence of Schottky barriers in CNT-FET devices is found in local
gating experiments, where the on-current is shown to increase significantly by application of a
local potential from a metal coated scanning probe tip only at the positions above the metal-CNT
interface [79]. Similarly, the impact of Schottky barriers in the sub-threshold characteristics
of the CNT-FET is clearly observed in transistors with multiple top-gates [80]. In this case, local
gates over the metal-CNT interface are used to electrostatically thin the Schottky barriers
and reduce the value of S closer to that of the bulk switching device [80].

Hole (electron) injection into the CNT depends on the line-up of the metal Fermi level and the
valence (conduction) band of the CNT, which is defined here as the Schottky barrier height.
In this picture, other details of the contacts such as any changes in the metal-CNT coupling as
a function of the curvature of the CNT are incorporated in an effective Schottky tunneling
barrier height. This barrier height depends on a number of material parameters such as the
band-gap of the CNT, work-function difference, as well as the interface quality. The CNT band-
gap is inversely proportional to the diameter of the CNT, according to (2.10). Figure 2.18-a
shows qualitative band diagrams for CNT-FETs with different diameters. Assuming a constant
work function for all CNTs4, the Schottky barrier increases linearly with increasing band-gap.
On a log scale, current injection through the Schottky barrier is inversely proportional to the
barrier height. Therefore, the CNT-FET with a small diameter delivers low on-current. The
choice of the metal contacts also affects the device performance. Figure 2.18-b depicts the band
diagrams for CNT-FETs using different source and drain contact materials. Identical energy
band-gaps are drawn here to represent CNTs of the same diameter. CNT-FETs with Pd contacts
deliver the highest on-current (Fig. 2.18-c), since Pd has the highest work function (5.1 eV),
which forms a low Schottky barrier height to the valence band of the CNT. The trend shown
follows that of the clean metal work functions: 4.3 eV for Ti and 4.1 eV for Al.

Figure 2.18: a) Schematic band diagram showing the different Schottky barrier
heights for b) CNT-FETs with the same contact, but with different CNT diameters and
b) CNT-FETs with the same diameter, but using Pd, Ti, and Al contacts, respectively.
c) Plot of the on-current as a function of the CNT diameter [81].

4The work function is defined as the sum of the CNT electron affinity and half of the band-gap in the bulk.
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2.8.3 Environmental Influences on the Performance of CNT-FETs

The effect of ambient air on the performance and functionality of CNT-FETs can be also under-
stood within the framework of the Schottky barrier model of conduction. In particular, this
model helps to clarify and separate the effects due to the bulk of the CNT channel from those
arising from the effects at the contact between the metal electrode and the CNT.

It has been proposed that e.g. oxygen adsorption leads to doping of CNTs [82]. However,
as shown in Fig. 2.19-a, the effect of oxygen on the transport properties of a CNT-FET is a
reversible transition from p-type (devices prepared in air) to n-type after annealing the transistor
in vacuum [83]. In contrast, the deposition of an n-type dopant such as potassium (Fig. 2.19-
b) shifts the transfer characteristics with respect to the gate voltage. It is known that the
work function of a metal surface is altered significantly upon the adsorption of gases due to
the formation of interface dipoles. Thus, the local work function of the metal electrode can
be modified considerably by the adsorption of oxygen at the contacts. If the work function of
the metal electrode changes the line-up of the metal Fermi energy with the CNT, bands will
shift5 [73].

Figures 2.19-c and 2.19-d compare the effect of doping with that of a shift in the line-up, i.e. a
reduction of the Schottky barrier height to the conduction band and an increase of that to the
valence band or vice versa. While n-type doping shifts the transport curves to more negative
gate voltages, a change in the work function promotes either the p-type or the n-type branch of
conduction and reduces the other.

Figure 2.19: Effect of gas adsorption and doping on the operation of CNT-FETs. a)
and b) are experimental data and c) and d) numerical calculations. In a) a vacuum
annealed n-type FET has been exposed to increasing amounts of oxygen until the am-
bient is reached. In b) the curves from right to left correspond to increasing deposited
amounts of potassium. In c) the work function difference between metal and CNT is
changed from −0.2 eV to +0.2 eV in steps of +0.1 eV [78,84].

5 Note that this is unique for the contact between a metal and a CNT. In a conventional, planar semiconductor
device the position of the Fermi energy is pinned by metal-induced gap states [72].
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2.8.4 Prototype CNT-FET Circuits

The promising characteristics of individual CNT-FETs have lead to initial attempts at integra-
tion of several CNT-FETs into useful circuits that can perform a logic operation, or function
as memories [85] or sensors [86]. In the following, we limit our discussion to advances in logic
circuitry. The CNT logic gates have been, in most cases, based on a complementary technology
analogous to silicon CMOS, which is important as it may ease integration of CNTs onto this
well established technology.

The first complementary (CMOS-like) logic gates were reported by Derycke and co-workers [67].
In that work, two different techniques were used to produce n-type devices. An inverter gate was
created by combining two CNT-FETs: a p-type device in the ambient and a vacuum annealed
n-type device. A more compact and integrated approach uses potassium doping to convert one
of two CNT-FETs built on the same CNT to n-type. The masking of the other transistor which
remained p-type was accomplished by photo-resist. The circuit had a voltage gain of about two,
suggesting that integration, without signal degradation, of many devices along a single CNT
can be accomplished. Shortly thereafter, Bachtold and co-workers [87] used p-type CNT-
FETs along with resistors to build prototype logic gates based on an older transistor-resistor
scheme. They went a step further in complexity and wired three such inverter gates to form a
ring oscillator. The large parasitic capacitances severely degraded the performance of the circuit
which oscillated at only about 5 Hz. Later Javey and co-workers [70] used another scheme for
converting p-type into n-type CNT-FETs and to wire up CMOS inverters with gains in excess
of ten and CMOS ring oscillators with frequencies in the 100 Hz range. Very recently Chen

and co-workers [88] reported CMOS ring oscillators operating at frequencies up to 52 MHz
(see Fig. 2.20). However, these reported frequencies are well below the expected AC response
of CNT-FETs, which is difficult to assess because of the relatively small current signals in these
devices. Most recently, the non-linear current-voltage characteristics of CNT-FETs were used to
demonstrate that DC characteristics of CNT-FETs are not affected by AC fields at least up to
500 MHz [89]. However, operation up to 10 GHz [90] and later 50 GHz [91] have been reported,
albeit with considerable signal attenuation.

Figure 2.20: Image of CNT-FET circuit reported by Chen et al. [88].
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Chapter 3

Quantum Transport Models

THIS CHAPTER outlines the theory of the non-equilibrium Green’s function (NEGF) tech-
niques for modeling transport phenomena in semiconductor devices. The NEGF techniques,

initiated by Schwinger [92], Kadanoff, and Baym [93] allow ones to study the time evolution
of a many-particle quantum system. Knowledge of the single-particle Green’s function provides
both the complete equilibrium or non-equilibrium properties of the system and the excitation
energies of the systems containing one more or one less particle. The many-particle information
about the system is cast into self-energies, parts of the equations of motion for the Green’s
functions. Green’s functions can be expressed as a perturbation expansion, which is the key
to approximate the self-energies. The NEGF techniques provide a very powerful technique for
evaluating properties of many-particle systems both in thermodynamic equilibrium and also in
non-equilibrium situations.

The basic approach developed in the early 1970s has became increasingly popular during the
last 10 years. The motivation for the development of the NEGF tunneling formalism was the
metal-insulator-metal tunneling experiments that received much attention during the 1960s [94].
The accelerated use of the approach was motivated by experimental investigations of mesoscopic
physics made possible by high quality semiconductor hetero-structures grown by molecular beam
epitaxy. In 1988, Kim and Arnold were the first to apply the NEGF formalism to such
a system, specifically, a resonant tunneling diode [95]. As experimental methods progressed
allowing finer manipulation of matter and probing into the nano-scale regime, the importance of
quantum effects and tunneling continuously increased. The theory was adapted to address the
current systems of interest ranging from mesoscopics to single-electronics, nano-scaled FETs,
and molecular electronics.

The general formalism for NEGF calculations of current in devices was first described in a series
of papers in the early 1970s [96–99]. The partitioning of an infinite system into left contact,
device, and right contact, and the derivation of the open boundary self-energies for a tight-
binding model was presented in [96]. This theory was re-derived for a continuum representation
in [97], tunneling through localized impurity states was considered in [98], and a treatment of
phonon assisted tunneling was derived in [99]. In 1976, the formalism was first applied to a
multi-band model (two-bands) to investigate tunneling [100] and diagonal disorder [101], and in
1980 it was extended to model time-dependent potentials [102].
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The applications of the NEGF techniques have been extensive including quantum optics [103],
quantum corrections to the Boltzmann transport equation [104, 105], high field transport in
bulk systems [106], and electron transport through nano-scaled systems. Over the last decade,
NEGF techniques have become widely used for modeling high-bias, quantum electron and hole
transport in a wide variety of materials and devices: III-V resonant tunnel diodes [95,107–122],
electron waveguides [123], superlattices used as quantum cascade lasers [124], Si tunnel diodes
[125, 126], ultra-scaled Si MOSFETs [8, 127–130], Si nano-pillars [131–133], carbon nanotubes
[134–145], metal wires [146,147], organic molecules [148–164], superconducting weak links [165],
and magnetic leads [136,166,167]. Physics that have been included are open-system boundaries
[96], full-band-structure [116–118, 125, 126, 168], band-tails [126], the self-consistent Hartree

potential [109, 115, 169], exchange-correlation potentials within a density functional approach
[11,115,135,146,149,150,152], acoustic, optical, intra-valley, inter-valley, and inter-band phonon
scattering, alloy disorder and interface roughness scattering in Born type approximations [110–
116, 124–126], photon absorption and emission [124], energy and heat transport [120], single-
electron charging and non-equilibrium Kondo systems [170–176], shot noise [113, 119, 177],
A.C. [108,178–183], and transient response [180,184]. Time-dependent calculations are described
further in [185]. General tutorials on the NEGF techniques [60, 186] and the applications can
be found in [116,187,188].

This chapter continues with a tutorial derivation of the standard expressions, where one shall
rely on the second quantization formulation. A brief description to this formalism is presented
in Appendix A. Various formulations of many-particle Green’s function theory exist. For in-
stance, in equilibrium theory there is both a zero-temperature as well as a finite-temperature
(Matsubara) formalism [185, 189, 190], which are described briefly next. Then, the formula-
tion of the more general non-equilibrium finite-temperature theory which also applies to equi-
librium situations as a special case is introduced and the kinetic equations for this formalism
are discussed. Applying Wick theorem, a perturbation expansion of Green’s functions can be
achieved. Such expansions provide methods to approximate self-energies due to various scatter-
ing mechanisms. Finally, a comparison of the Green’s function formalism with other transport
models is presented.
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3.1 Equilibrium Zero Temperature Green’s Function

In many-particle problems it is common to use the interaction representation (see Appendix B)

Ĥ = Ĥ0 + Ĥ int , (3.1)

where H0 is the non-interacting Hamiltonian and H int is the perturbation, which contains all
the interactions, i.e. Ĥ int = Ĥel−el + Ĥel−ph.

3.1.1 Definition of the Green’s Function

The time-ordered single-particle Green’s function at zero temperature is defined as [189]

G(r, t; r′, t′) = − i

~

〈Ψ0|Tt{ψ̂H(r, t)ψ̂†
H(r′, t′)}|Ψ0〉

〈Ψ0|Ψ0〉
, (3.2)

where |Ψ0〉 is the ground-state of the interacting system in the Heisenberg picture (Ap-
pendix B) and Tt is the time-ordering operator defined in (B.21). The field operator ψ̂H(r, t) in
the Heisenberg picture is given by

ψ̂H(r, t) = eiĤt/~ψ̂(r)e−iĤt/~ . (3.3)

Inserting (3.3) into (3.2), the physical interpretation of the Green’s function becomes obvious

G(r, t; r′, t′) = − i

~

〈Ψ0|Tt{eiĤt/~ψ̂(r)e−iĤ(t−t′)/~ψ̂†(r′)e−iĤt′/~}|Ψ0〉
〈Ψ0|Ψ0〉

, (3.4)

If t > t′, the Green’s function G(r, t; r′, t′) is the probability amplitude that a particle created
at time t′ at place r′ moves to time t and place r. This follows from the definition of G(r, t; r′, t′).
At zero time the system is at the ground-state Ψ0. The system then evolves to time t′ with

the operator e−iĤt′/~. At this time ψ̂†(r′, t′) creates a particle at place r′. Then, the system

continues its evolution from t′ to t with the operator e−iĤ(t−t′)/~, after which ψ̂(r, t) annihilates

the particle at place r. The system returns to the initial ground-state with the operator eiĤt/~. In
a similar way, if t′ > t, the field operator creates a hole at time t, and the system then propagates
according to the Hamiltonian Ĥ. These holes can be interpreted as particles traveling backward
in time [191]. The probability amplitude that a hole created at time t at place r moves to time
t′ and place r′ is again just the Green’s function for t < t′.

To calculate G(r, t; r′, t′), a perturbation expansion is very useful. However, the definition of the
Green’s function in (3.2) does not allow a direct solution, since it involves the exact ground-
states of the interacting Hamiltonian Ĥ, which is one of the things to be calculated. In the
interaction representation the Hamiltonian is expressed in terms of the non-interacting and
interacting parts, see the equation (3.1). The ground state of the non-interacting part, Ĥ0,
can be calculated easily. Therefore, one tries to express the ground state of the interacting
system |Ψ0〉 in terms of the ground state of the non-interacting one |φ0〉. For that purpose, in
equation (B.18) one adds to the operator Ĥ int

I (t) a factor e−|ǫ|t, which switches the interaction
off at t→ ±∞ [189]. The non-interacting ground state |φ0〉 is assigned to the system at t→ −∞
and the connection to |Ψ0〉 is formed by the Gell-Mann and Low theorem [192]

|Ψ(0)〉 = Ŝ(0,−∞)|φ0〉 , (3.5)
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where the Ŝ operator in defined in Appendix B.4. The traditional argument is that one starts
from t→ −∞ with a wave function φ0 which does not contain the effects of the interaction Ĥ int.
The operator Ŝ(0,−∞) brings this wave function up to the present, t = 0 [189]. Thus one has
the wave function which contains the effects of the interaction Ĥ int, so that it is an eigenstate
of Ĥ. As t→ ∞, one gets

|Ψ(∞)〉 = Ŝ(∞,−∞)|φ0〉 . (3.6)

One possible assumption is that |Ψ(∞)〉 must be related to φ0. The system returns to its ground
state for t→ ∞ except for a phase factor [190] |Ψ(∞)〉 = eiL|φ0〉 which implies that,

〈φ0|Ŝ(∞,−∞)|φ0〉 = eiL. (3.7)

An alternative to this assumption is discussed in Section 3.3.2.

Using the relation (3.5) for the ground-state, equation (3.2) becomes

G(r, t; r′, t′) = − i

~

〈φ0|Ŝ(−∞, 0)Tt{ψ̂H(r, t)ψ̂†
H(r′, t′)}Ŝ(0,−∞)|φ0〉

〈φ0|Ŝ(−∞, 0)Ŝ(0,−∞)|φ0〉

= − i

~

〈Ŝ(−∞, 0)Tt{Ŝ(0, t)ψ̂I(r, t)Ŝ(t, 0)Ŝ(0, t′)ψ̂†
I (r

′, t′)Ŝ(t′, 0)}Ŝ(0,−∞)〉0
〈Ŝ(−∞, 0)Ŝ(0,−∞)〉0

= − i

~

〈Ŝ(∞, 0)Tt{Ŝ(0, t)ψ̂I(r, t)Ŝ(t, t′)ψ̂†
I (r

′, t′)Ŝ(t′, 0)}Ŝ(0,−∞)〉0
〈Ŝ(∞,−∞)〉0

= − i

~

〈Tt{Ŝ(∞,−∞)ψ̂I(r, t)ψ̂
†
I (r

′, t′)}〉0
〈Ŝ(∞,−∞)〉0

,

(3.8)

where the short-hand notation 〈. . .〉0 = 〈φ0| . . . |φ0〉 is introduced to represent the expectation
value over the ground-state of the non-interacting system at zero temperature. The transition
from the first to the second line is achieved by using (B.13) for converting the Heisenberg rep-
resentation of operators into the interaction representation. The second step is obtained by
taking account of the properties of the Ŝ operators described in Appendix B.4 and the return
of the system to its ground-state as t → ∞. In the forth line the operator Ŝ(∞,−∞) con-
tains several time intervals (∞, t), (t, t′), and (t′,−∞). The Tt operator automatically sorts
these intervals so that they act in their proper sequences. Replacing operator Ŝ with its formal
definition (see (B.24)) one gets

G(r, t; r′, t′) = − i

~

〈Tt{exp


− i

~

∞∫

−∞

dt1Ĥ
int
I (t1)


ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉0

〈Tt{exp


− i

~

∞∫

−∞

dt1Ĥ
int
I (t1)


}〉0

. (3.9)
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3.2 Equilibrium Finite Temperature Green’s Function

In Section 3.1 the Green’s function for a system under equilibrium at zero temperature has
been introduced. Furthermore, the Green’s function was readily expressed as perturbation
expansion in the interaction picture. In this section, the Green’s function for a system under
equilibrium at finite temperature is presented. The Green’s function at finite temperature has
a simple perturbation expansion similar to that for the Green’s function at zero temperature
and also enables us to evaluate the properties of the system.

3.2.1 Equilibrium Ensemble Average

At finite temperatures, one assumes that the particle, either electron or phonon, is interacting
with a bath of other particles. The exact state of all these other particles is not known, since they
are fluctuating between different configurations. At finite temperature under thermodynamic
equilibrium the state of a system is described by the equilibrium density operator ρ̂ (see Ap-
pendix C). In treating such systems, it will be most convenient to use the grand canonical
ensemble, which allows for a variable number of particles. Therefore, the system is considered
to be in contact with a heat bath of temperature T and a particle reservoir characterized by
the Fermi energy EF. With the definition K̂ = Ĥ − EFN̂ , where N̂ is the particle number
operator, the statistical operator can be written as

ρ̂ =
e−βK̂

Tr[e−βK̂ ]
, (3.10)

where the short-hand notation β = 1/kBT is used. The operator K̂ may be interpreted as a grand
canonical Hamiltonian. Given the density operator, the ensemble average of any operator Ô
can be calculated as

〈Ô〉 = Tr[ρ̂Ô] ,

=
Tr[e−βK̂Ô]

Tr[e−βK̂ ]
.

(3.11)

Therefore, the single-particle Green’s function at finite temperature can be defined as

G(r, t; r′, t′) = − i

~
〈Tt{ψ̂H(r, t)ψ̂†

H(r′, t′)}〉 ,

= − i

~

Tr[e−βK̂Tt{ψ̂H(r, t)ψ̂†
H(r′, t′)}]

Tr[e−βK̂ ]
.

(3.12)

At this stage, this form of the Green’s function does not admit the Wick decomposition, be-
cause the Wick theorem described in Section 3.4.1 requires a dependence on the non-interacting
Hamiltonian Ĥ0 for both the field operators and the thermal average. A way around this prob-
lem is the Matsubara technique [193], where one introduces a complex time τ = it and a new
physical quantity, the Matsubara (imaginary time) Green’s function G(r, τ ; r′, τ ′). The rep-
resentation of operators with imaginary time arguments is given in Appendix B.5.
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3.2.2 Matsubara Green’s Function

The single particle Matsubara Green’s function is defined as

G(r, τ ; r′, τ ′) = −1

~
〈Tτ{ψ̂K(r, τ)ψ̂†

K(r′, τ ′)}〉 ,

= −1

~

Tr[e−βK̂Tτ{ψ̂K(r, τ)ψ̂†
K(r′, τ ′)}]

Tr[e−βK̂ ]
.

(3.13)

The Green’s function now may be rewritten in the interaction picture

G(r, τ ; r′, τ ′) = −1

~

Tr[e−βK̂Tτ{ψ̂K(r, τ)ψ̂†
K(r′, τ ′)}]

Tr[e−βK̂ ]
,

= −1

~

Tr[e−βK̂0 Ŝ(β~, 0)Tτ{ψ̂K(r, τ)ψ̂†
K(r′, τ ′)}]

Tr[e−βK̂0 Ŝ(β~, 0)]
,

= −1

~

Tr[e−βK̂0 Ŝ(β~, 0)Tτ{Ŝ(0, τ)ψ̂I(r, τ)Ŝ(τ, 0)Ŝ(0, τ ′)ψ̂†
I (r

′, τ ′)Ŝ(τ ′, 0)}]
Tr[e−βK̂0 Ŝ(β~, 0)]

,

= −1

~

Tr[e−βK̂0Tτ{Ŝ(β~, τ)ψ̂I(r, τ)Ŝ(τ, τ ′)ψ̂†
I (r

′, τ ′)Ŝ(τ ′, 0)}]
Tr[e−βK̂0 Ŝ(β~, 0)]

,

= −1

~

Tr[e−βK̂0Tτ{Ŝ(β~, 0)ψ̂I(r, τ)ψ̂
†
I (r

′, τ ′)}]
Tr[e−βK̂0 Ŝ(β~, 0)]

,

(3.14)

where (B.34) is employed for the transition from the first to the second line and (B.27) for the
transition from the second to third line. Equation (3.14) has precisely the structure analyzed
in (3.8). The operator Ŝ can be expanded as (see (B.33))

G(r, τ ; r′, τ ′) =

−1

~

Tr


e−βK̂0

∞∑

n=0

1

n!

(−1

~

)n
β~∫

0

dτ1 . . .

β~∫

0

dτnTτ{K̂ int(τ1) . . . K̂
int(τn)ψ̂I(r, τ)ψ̂

†
I (r

′, τ ′)}




Tr


e−βK̂0

∞∑

n=0

1

n!

(−1

~

)n
β~∫

0

dτ1 . . .

β~∫

0

dτnTτ{K̂ int(τ1) . . . K̂
int(τn)}




,

(3.15)

where the denominator is just the perturbation expansion of the grand partition function. How-
ever, it serves to eliminate all disconnected diagrams, exactly as in the zero-temperature formal-
ism. It is apparent that the perturbation expansion of the Matsubara Green’s function (3.15)
is very similar to that of the zero temperature Green’s function (3.31). Matsubara [193] has
proved that there exists a generalized Wick theorem (see Section 3.4.1) that deals only with the

ensemble average of operators and relies on the detailed form of the statistical operator eβK̂0 .
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3.3 Non-Equilibrium Green’s Functions

In Section 3.2 the Green’s function for a system under equilibrium at finite temperature has
been introduced. In this section, a more general formalism for systems under non-equilibrium
conditions at finite temperature is presented. First, the ensemble average of an operator un-
der non-equilibrium is defined. Then the contour-ordered non-equilibrium Green’s function
(NEGF) formalism is introduced and the equation of motion for the Green’s function is pre-
sented. Finally, it will be shown that a perturbation expansion similar to the equilibrium theory
can be achieved.

3.3.1 Non-Equilibrium Ensemble Average

We employ the standard device for obtaining a non-equilibrium state. At time t0, prior to
which the system is assumed to be in thermodynamic equilibrium with a reservoir, the system
is exposed to a disturbance represented by the contribution Ĥext to the Hamiltonian. The
external perturbation can for instance be a time varying electric field, a light excitation pulse,
and so forth. The total Hamiltonian is thus given by

Ĥ (t) = Ĥ0 + Ĥ int + Ĥext = Ĥ + Ĥext , (3.16)

where Ĥext = 0 for t < t0. One is not restricted to using the statistical equilibrium state at
times prior to t0 as the initial condition. As shown by [194], a non-equilibrium situation can
be maintained through contact with a reservoir. A discussion of the coupling of a system to a
reservoir has been studied in [195].

Non-equilibrium statistical mechanics is concerned with calculating average values 〈ÔH (t)〉 of
physical observables for times t > t0. Given the density operator ρ̂, the average of any operator
Ô is then defined as (C.8)

〈ÔH (t)〉 ≡ Tr[ρ̂ ÔH (t)] , (3.17)

where ÔH (t) is an operator in the Heisenberg picture.

The non-equilibrium Green’s function can be defined as

G(r, t, r′, t′) = − i

~
〈Tt{ψ̂H (r, t)ψ̂†

H
(r′, t′)}〉 , (3.18)

where ψ̂H is the field operator in the Heisenberg picture evolving with the Hamiltonian Ĥ

defined in (3.16) and the bracket 〈. . .〉 is the statistical average with the density operator defined
in (3.17).

One can evaluate Green’s functions by using Wick’s theorem, which enables us to decompose
many-particle Green’s functions into sums and products of single-particle Green’s functions
(see Section 3.4.1). The restriction of the Wick theorem necessitates that the field operators and
the density operator have to be represented in the interaction picture, or equivalently, their time
evolution is governed by the non-interacting Hamiltonian Ĥ0. The contour-ordered Green’s
function, which is introduced next, provides a suitable framework for this purpose.

34



QUANTUM TRANSPORT MODELS 3.3 Non-Equilibrium Green’s Functions

3.3.2 Contour-Ordered Green’s Function

To express the field operators in the interaction representation an operator Ŝ is defined (see
Appendix B.4) and applied for calculating the Green’s functions as in Section 3.1.1. The
time in (3.8) is taken over the interval (−∞,∞). The state at t → −∞ is well defined as the
ground-state of the non-interacting system |φ0〉. The interactions are turned on slowly. At
t = 0 the fully interacting ground state is |Ψ(0)〉 = Ŝ(0,−∞)|φ0〉. The state at t → ∞ must
be defined carefully. If the interactions remain on, then this state is not well described by the
non-interacting ground state. Alternatively, one could require that the interactions are turned
off at large times, which returns the system to the ground-state |φ0〉.
Schwinger [92] suggested another method of handling the asymptotic limit t → −∞. He
proposed that the time integral in the Ŝ operator has two parts; one goes from (−∞, t) while
the second goes from (t,−∞). The integration path is a contour, which starts and ends at
−∞. The advantage of this method is that one starts and ends the S operator expansion with a
known state |Ψ(−∞)〉 = |φ0〉. Instead of the time-ordering operator (B.21), a contour-ordering
operator can be employed. The contour-ordering operator TC orders the time labels according
to their order on the contour C. Under equilibrium condition the contour-ordered method gives
results that are identical to the time-ordered method described in Section 3.1.1. The main
advantage of the contour-ordered method is in describing non-equilibrium phenomena using
Green’s functions. Non-equilibrium theory is entirely based upon this formalism, or equivalent
methods.

Any operator ÔH in the Heisenberg picture can be transformed into the interaction picture
(see (B.13))

ÔH = Ŝ(t0, t) ÔI Ŝ(t, t0) . (3.19)

Analogous to the derivation of (B.24), it can be shown that the Ŝ operator is given by

Ŝ(t, t0) = Tt{exp


− i

~

t∫

t0

dt′Ĥext
I (t′)


 exp


− i

~

t∫

t0

dt′Ĥ int
I (t′)


} , (3.20)

where the operators are in the interaction representation. The ordinary time-ordering can also
be written as ordering along contour branches C1 and C2 as depicted in Fig. 3.1

Ŝ(t, t0) = TC1
{exp


− i

~

∫

C1

dtĤext
I (t)


 exp


− i

~

∫

C1

dtĤ int
I (t)


}

Ŝ(t0, t) = TC2
{exp


− i

~

∫

C2

dtĤext
I (t)


 exp


− i

~

∫

C2

dτĤ int
I (t)


} .

(3.21)

By combining two contour branches, C = C1 ∪ C2, (3.19) can be rewritten as

ÔH(t) = TC{Ŝext
C ÔH} ,

= TC{Ŝext
C Ŝint

C ÔI} ,

= TC{ŜC ÔI} ,

(3.22)
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Figure 3.1: The contour C = C1 ∪ C2 runs on the real axis, but for clarity its two
branches C1 and C2 are shown slightly away from the real axis. The contour Ci runs
from t0 to t0 − iβ.

where,

ŜC = exp


− i

~

∫

C

dtĤext
I (t)


 exp


− i

~

∫

C

dtĤ int
I (t)


 ,

= Ŝext
C Ŝint

C .

(3.23)

In equation (3.17) ρ̂ describes the equilibrium state of the system before the external perturbation
Ĥext is turned on. Interactions Ĥ int, which are switched on adiabatically at −∞, are present
in ρ̂. However, to apply Wick’s theorem (Section 3.4.1), one has to work with non-interacting
operators. A methodology similar to the Matsubara theory can be applied to express the many-
particle density operator ρ̂ in terms of the single-particle density operator ρ̂0, see Appendix B.5.
If the contour Ci = [t0, t0 − iβ] is chosen (Fig. 3.1), then (B.34) takes the form

e−βK̂ = e−βK̂0 ŜCi . (3.24)

Therefore, (3.17) can be rewritten as

〈ÔH (t)〉 =
Tr[e−βK̂0TCiŜCiÔH (t)]

Tr[e−βK̂0TCiŜCi ]
, (3.25)

Using the relations (3.22) and (3.25), the Green’s function in (3.18) becomes [196]

G(r, t, r′, t′) = − i

~

Tr[e−βK̂0TCiŜCi TC ŜC ψ̂I(r, t)ψ̂
†
I (r

′, t′)]

Tr[e−βK̂0TCiŜCi TC ŜC ]
. (3.26)

The twofold expansion of the density operator and the field operators may conveniently be
combined to a single expansion. The two contours Ci and C can be combined together, C∗ =
C ∪Ci (Fig. 3.2), and a contour-ordering operator TC∗ = TCiTC , which orders along C∗, can be
introduced. Hence, a point on C is always earlier than a point on Ci. Furthermore, we define
an interaction representation with respect to Ĥ0 on C and with respect to K̂0 on Ci. Therefore,
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Figure 3.2: The contour C∗ = Ci ∪ C, runs from t0 to t0 and from t0 to t0 − iβ.

the Green’s function in (3.18) is given by

G(r, t, r′, t′) = − i

~

Tr[e−βK̂0TC∗{ŜC∗ψ̂I(r, t)ψ̂
†
I (r

′, t′)}]
Tr[e−βK̂0TC∗ŜC∗ ]

= − i

~
〈TC∗{ŜC∗ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉0 ,

(3.27)

where 〈. . .〉0 represents the statistical average with respect to ρ̂0. From here we assume that all
statistical averages are with respect to ρ̂0 and drop the 0 from the brackets 〈. . .〉0.

3.3.3 Keldysh Contour

If one does not consider initial correlations, one can let t0 → −∞. Since we assume that
the Green’s function falls off sufficiently rapidly as a function of the separation of its time
arguments, one can neglect the part of the contour Ci extending from t0 to t0 − iβ [197]. It has
been shown that by explicitly taking the initial correlations into account [198–201] the neglect of
this part of the contour corresponds to the neglect of initial correlations. The initial condition,
that the system is assumed to be in equilibrium before the external perturbation is turned
on, can then be imposed directly on the Dyson equation in integral form. This provides an
independent demonstration that, for cases where initial correlations can be neglected, one can
discard the contribution of the contour from t0 to t0 − iβ. The contours C∗ and C become
identical, as they both start and end at −∞. They can be extended beyond the largest time by
considering that the time-evolution operator is a unitary, and one then obtains the contour CK

introduced by Keldysh [202].

Figure 3.3: Keldysh contour branches C1 = (−∞,∞) and C2 = (∞,−∞).
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3.4 Perturbation Expansion of the Green’s Function

In previous sections Green’s functions at zero and finite temperatures have been defined. It
was shown that the Green’s functions can be written in terms of the Ŝ operator

G(r, t, r′, t′) = − i

~
〈T{Ŝ ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉 , (3.28)

where Ŝ includes the effects of interactions and external perturbations

Ŝ = exp

(
− i

~

∫
dt Ĥ int

I (t)

)
. (3.29)

Unfortunately, it is not possible to give an analytical solution for G(r, t; r′, t′), unless the inter-
action perturbation Ĥ int is set equal to zero. This gives the non-interacting Green’s function
(see Appendix D)

G0(r, t; r
′, t′) = − i

~
〈T{ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉 , (3.30)

which is central for any perturbation expansion.

This section proceeds the calculation of the Green’s function by expanding the Ŝ operator as
series of products of Ĥ int

I in the numerator and the denominator. By expanding the Ŝ operator
one obtains (see (B.20))

G(r, t; r′, t′) = − i

~

〈
∞∑

n=0

1

n!

(−i
~

)n ∫
dt1 . . .

∫
dtn T{Ĥ int

I (t1) . . . Ĥ
int
I (tn)ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉

〈
∞∑

n=0

1

n!

(−i
~

)n ∫
dt1 . . .

∫
dtn Tt{Ĥ int

I (t1) . . . Ĥ
int
I (tn)}〉

.

(3.31)

The expansion of the numerator of the Green’s function in (3.31) can be written as

GN = 〈Tt {ψ̂I(r, t)ψ̂
†
I (r

′, t′)}〉︸ ︷︷ ︸
G0

N

+ 〈Tt{−
i

~

∫
dt1Ĥ

int
I (t1)ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉
︸ ︷︷ ︸

G1
N

+ . . . , (3.32)

where the superscript denotes the order of perturbation. The zero-order perturbation leads to
non-interacting Green’s function G0

N = i~G0. Wick’s theorem allows us to write each of these
brackets in terms of non-interacting Green’s function and the interaction potential. The same
procedure can be applied to the denominator. The terms in the expansion of the denominator,
〈S(∞,−∞)〉, are called vacuum polarization terms [191].

Different expansion terms achieved from the Wick theorem can be translated into Feynman di-
agrams (Appendix E). Feynman introduced the idea of representing different contributions
obtained from the Wick decomposition by drawings. These drawings, called diagrams, are very
useful for providing an insight into the physical processes which these terms represent. The
Feynman diagrams provide an illustrative way to solve many-body problems and the pertur-
bation expansion of Green’s functions.
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3.4.1 Wick Theorem

The Wick decomposition allows a perturbation expansion of Green’s functions. It always
holds for zero-temperature Green’s functions and only under the condition that field operators
must be given in the interaction picture (Appendix B.2). Their time evolution is governed by
the non-interacting Hamiltonian Ĥ0, and Ĥ int is treated as a perturbation. If these conditions
are fulfilled, Wick’s theorem states that the expectation values of products of field operators is
equal to the sum of expectation values of all possible pairs of operators and that each of these
pairs will be a non-interacting single-particle Green’s function

〈Tt{Ô1Ô2 . . . Ôn}〉 =
∑

Pd

〈Tt{Ô1Ô2}〉0〈Tt{Ô3Ô4}〉0 . . . 〈Tt{Ôn−1Ôn}〉 . (3.33)

The sum runs over all Pd distinct permutations of the n indices. It should be noticed that
brackets such as (3.33) vanish if the number of creation and annihilation operators is not the
same. If the number of annihilated particles is not the same as the number of created particles,
then the system will not come back to its ground-state. As a result the expectation value over the
ground-state vanishes. With the same reasoning one concludes that if both operators appearing
in a bracket are annihilation or creation operators, the expectation value disappears, otherwise
one obtains an expression proportional to the non-interacting Green’s function G0.

The most general proof of this theorem is due to [203], where it is shown rigorously that the the-
orem holds exactly if the operators to be averaged are non-interacting and the density operator,
which appears in the finite temperature formalism (see (3.15) and (3.26)), is a single-particle
operator. Therefore, one can use the Wick theorem to get a perturbation expansion for the
Green’s function. The only formal difference from the equilibrium theory is the appearance of
integration over a contour instead of integration over the inverse temperature interval for the
case of finite temperature or the real axis for the case of zero temperature.

A few simple rules should be noted when making these pairings. The first is that a sign change
occurs each time the positions of two neighboring Fermion operators are interchanged.

The second rule concerns the time-ordering of combinations of operators representing different
excitations. For example, a bracket with a mixture of electron and phonon operators can be
separated into electron and phonon parts, since electron operators commute with phonon oper-
ators. Wick’s theorem can be also applied to brackets of phonon operators. Since phonons are
Bosons, sign does not change when exchanging positions of operators.

The third rule is a method of treating the time-ordering of two operators which are applied at
the same time. The time-ordered product is undefined at equal times. To remove this ambiguity,
the following interpretation can be applied

〈Tt{ψ̂I(r, t)ψ̂
†
I (r

′, t)} = lim
t′→t+

〈Tt{ψ̂I(r, t)ψ̂
†
I (r

′, t′)}〉0 . (3.34)

Wick’s theorem has been applied to calculate first-order perturbation expansions in Section 3.4.2.
It can be also applied for higher-order perturbations.
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3.4.2 First-Order Perturbation Expansion

The electron-electron interaction up to the first-order perturbation is studied here. In the
interaction representation the operator corresponding to this kind of interaction is given by

Ĥel−el
I (t1) = V̂I(t1) =

1

2

∫
dr1

∫
dr2ψ̂

†
I (r1, t1)ψ̂

†
I (r2, t1)V (r1−r2)ψ̂I(r2, t1)ψ̂I(r1, t1) , (3.35)

where the Coulomb interaction potential is assumed to be an instantaneous potential propor-
tional to a delta function δt1,t2 . The first-order term of the perturbation expansion is given by

G1
N = 〈Tt{−

i

~

∫
dt1V̂I(t1)ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉

=
1

2

(−i
~

)∫
dt1

∫
dr1

∫
dr2V (r1 − r2)

× 〈Tt{ψ̂†
I (r1, t1)ψ̂

†
I (r2, t1)ψ̂I(r2, t1)ψ̂I(r1, t1)ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉︸ ︷︷ ︸
F 1

N

,

(3.36)

F 1
N = [ +〈Tt{ψ̂I(r1, t1)ψ̂

†
I (r1, t1)}〉 〈Tt{ψ̂I(r2, t1)ψ̂

†
I (r2, t1)}〉 〈Tt{ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉

−〈Tt{ψ̂I(r1, t1)ψ̂
†
I (r1, t1)}〉 〈Tt{ψ̂I(r, t)ψ̂

†
I (r2, t1)}〉 〈Tt{ψ̂I(r2, t1)ψ̂

†
I (r

′, t′)}〉

+〈Tt{ψ̂I(r2, t1)ψ̂
†
I (r1, t1)}〉 〈Tt{ψ̂I(r, t)ψ̂

†
I (r2, t1)}〉 〈Tt{ψ̂I(r1, t1)ψ̂

†
I (r

′, t′)}〉

−〈Tt{ψ̂I(r2, t1)ψ̂
†
I (r1, t1)}〉 〈Tt{ψ̂I(r1, t1)ψ̂

†
I (r2, t1)}〉 〈Tt{ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉

+〈Tt{ψ̂I(r, t)ψ̂
†
I (r1, t1)}〉 〈Tt{ψ̂I(r1, t1)ψ̂

†
I (r2, t1)}〉 〈Tt{ψ̂I(r2, t1)ψ̂

†
I (r

′, t′)}〉

−〈Tt{ψ̂I(r, t)ψ̂
†
I (r1, t1)}〉 〈Tt{ψ̂I(r2, t1)ψ̂

†
I (r2, t1)}〉 〈Tt{ψ̂I(r1, t1)ψ̂

†
I (r

′, t′)}〉 ] .

(3.37)

By replacing the brackets by Green’s functions one gets

G1
N =

1

2

(−i
~

)∫
dt1

∫
dr1

∫
dr2V (r1 − r2)

× [ +i~ G0(r1, t1; r1, t1) i~ G0(r2, t1; r2, t1) i~ G0(r, t; r
′, t′)︸ ︷︷ ︸

(a)

−i~ G0(r1, t1; r1, t1) i~ G0(r, t; r2, t1) i~ G0(r2, t1; r
′, t′)︸ ︷︷ ︸

(b)

+i~ G0(r2, t1; r1, t1) i~ G0(r, t; r2, t1) i~ G0(r1, t1; r
′, t′)︸ ︷︷ ︸

(c)

−i~ G0(r2, t1; r1, t1) i~ G0(r1, t1; r2, t1) i~ G0(r, t; r
′, t′)︸ ︷︷ ︸

(d)

+i~ G0(r, t; r1, t1) i~ G0(r1, t1; r2, t1) i~ G0(r2, t1; r
′, t′)︸ ︷︷ ︸

(e)

−i~ G0(r, t; r1, t1) i~ G0(r2, t1; r2, t1) i~ G0(r1, t1; r
′, t′)︸ ︷︷ ︸

(f)

] .

(3.38)

40



QUANTUM TRANSPORT MODELS 3.4 Perturbation Expansion of the Green’s Function

(r′, t′) (r, t)
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(a)
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(r, t)
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(b)

(r′, t′)

(r1, t1) (r2, t1)

(r, t)

(c)

(r′, t′) (r, t)

(r1, t1) (r2, t1)

(d)

(r′, t′)

(r2, t1) (r1, t1)

(r, t)

(e)

(r′, t′)
(r1, t1)

(r, t)

(r2, t1)

(f)

Figure 3.4: Feynman diagrams of the first-order perturbation terms G1
N.

Feynman diagrams for the corresponding terms are shown in Fig. 3.4. In the first-order example
the connected diagrams (b) and (f) are equal, as are the diagrams (c) and (e); they differ only
in that the integration variables r1 and r2 are interchanged, whereas the Coulomb potential is
symmetric under this substitution. It is therefore sufficient to retain just one diagram of each
type, simultaneously omitting the factor 1/2 in front of (3.38). For the nth-order perturbation
there are n! possible interchanges of integration variables. Therefore, the repetition of the same
diagrams cancels the factor 1/n! in (3.31).

Diagram (a) and (d) contain sub-units that are not connected by any lines to the rest of the dia-
gram. Feynman diagrams in which all parts are not connected are called disconnected diagrams.
Equation (3.38) shows that such diagrams are typically have Green’s function and interactions
whose arguments close on themselves. As a result the contribution of this sub-unit can be fac-
tored out of the expression for GN. The same procedure can be applied for the denominator. In
this cases, the second term of the expansion includes only two non-vanishing terms which are
only disconnected diagrams of (3.38), namely (a) and (d).

G1
D =

1

2

(−i
~

)∫
dt1

∫
dr

∫
dr′V (r − r′)

× [ +i~ G0(r1, t1; r1, t1) i~ G0(r2, t1; r2, t1)

−i~ G0(r2, t1; r1, t1) i~ G0(r1, t1; r2, t1)] ,

(3.39)

As a result, these terms cancel the disconnected diagrams of the numerator and the resulting
Green’s function consists of only connected diagrams. It can be shown that in general the
vacuum polarization terms cancel the disconnected diagrams in the expansion of the Green’s
function [204]. As a result the Green’s function is just the summation of all topologically
different connected diagrams [185]

G(r, t; r′, t′) =

− i

~
〈

∞∑

n=0

1

n!

(−i
~

)n ∫
dt1 . . .

∫
dtn T{Ĥ int

I (t1) . . . Ĥ
int
I (tn)ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉conn .
(3.40)
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3.5 Dyson Equation

The Dyson equation can be achieved by classifying the various contributions in arbitrary Feyn-

man diagrams. Dyson’s equation summarizes the Feynman-Dyson perturbation theory in a
particularly compact form. The exact Green’s function can be written as the non-interacting
Green’s function plus all connected terms with a non-interacting Green’s function at each
end, see (3.40). This structure is shown in Fig. 3.5, where the double line denotes G and the
single line G0.

= + + +

+ +

+ + . . .

Figure 3.5: The Green’s function expanded in terms of connected diagrams.

By introducing the concept of self-energy Σ the structure in Fig. 3.5 takes the form shown Fig. 3.6.

(r′, t′) (r, t)
=

(r′, t′) (r, t)
+

(r′, t′)
Σ

(r, t)
(r2, t2) (r1, t1)

Figure 3.6: Feynman diagrams showing the general structure of G.

The corresponding analytic expression is given by

G(r, t; r′, t′) = G0(r, t; r
′, t′) +

∫
d1

∫
d2 G0(r, t; 1) Σ(12) G0(2; r′, t′) , (3.41)

where the abbreviation 1 ≡ (r1, t1) and
∫
d1 ≡

∫
dr1

∫
dt1 is used. The self-energy Σ describes

the renormalization of single-particle states due to the interaction with the surrounding many-
particle system and the Dyson equation determines the renormalized Green’s function.

Another important concept is the proper self-energy insertion which is a self-energy insertion
that can not be separated into two pieces by cutting a single-particle line. By definition, the
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ΣH = ΣF =

Figure 3.7: Feynman diagrams of the first-order proper self-energies.

proper self-energy is the sum of all proper self-energy insertions, and will be denoted by Σ∗.
Using the perturbation expansion, one can define the proper self-energy Σ∗ as an irreducible
part of the Green’s function. Based on this definition first-order proper self-energies, which are
resulted from the first-order expansion of the Green’s function (see Section 3.4.2), are shown
in Fig. 3.7. These diagrams are irreducible parts of Fig. 3.4-b and Fig. 3.4-c and are referred to
as the Hartree (ΣH) and the Fock (ΣF) self-energies.

The self-energy can also in principle be introduced variationally [203]. A variational derivation
of the self-energies for the electron-electron and electron-phonon interactions is presented in
Appendices F.1 and F.2, respectively. It follows from these definitions that the self-energy
consists of a sum of all possible repetitions of the proper self-energy

Σ(r, t; r′, t′) = Σ∗(r, t; r′, t′) +

∫
d1

∫
d2 Σ∗(r, t; 1) G0(12) Σ∗(2; r′, t′) + . . . . (3.42)

Correspondingly, the Green’s function in (3.41) can be rewritten as

G(r, t; r′, t′) = G0(r, t; r
′, t′) +

∫
d1

∫
d2 G0(r, t; 1) Σ∗(12) G0(2; r′, t′) + . . . , (3.43)

which can be summed formally to yield an integral equation (Dyson equation) for the exact
Green’s function which is shown in Fig. 3.8.

(r′, t′) (r, t)
=

(r′, t′) (r, t)
+

(r′, t′)
Σ∗ (r, t)

(r2, t2) (r1, t1)

Figure 3.8: Feynman diagrams representing Dyson’s equation.

The corresponding analytic expression is given by

G(r, t; r′, t′) = G0(r, t; r
′, t′) +

∫
d1

∫
d2 G0(r, t; 1) Σ∗(12) G(2; r′, t′) . (3.44)

The validity of (3.44) can be verified by iterating the right hand-side, which reproduces (3.43)
term by term. In a similar manner, one can show that the Dyson equation can be also written
as

G(r, t; r′, t′) = G0(r, t; r
′, t′) +

∫
d1

∫
d2 G(r, t; 1) Σ∗(12) G0(2; r′, t′) . (3.45)
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3.6 Approximation of the Self-Energy

An exact evaluation of the self-energy is possible only for some rather pathological cases. For
real systems one has to rely on approximation schemes. Hence, a natural approach is to retain
the single-particle picture and assume that each particle moves in a single-particle potential
that comes from its average interaction with all of the other particles. Thus, as a first-order
approximation one can keep just the first-order contribution to the proper self-energy Σ∗ ≈
Σ1 (see Fig. 3.7). This approximation corresponds to summing an infinite class of diagrams
containing arbitrary iterations of Σ1. Therefore, any approximation for Σ∗ generates an infinite-
order series for the Green’s function (see Fig. 3.5).

However, using non-interacting Green’s function in self-energies, which is referred to as Born

approximation, is not fully consistent, since the background particles contributing to the self-
energy are treated as non-interacting. In reality, of course, these particles also move in an
average potential coming from the presence of all the other particles. Thus instead of non-
interacting Green’s functions (single lines), one has to use the exact Green’s function (double
line) in the proper self-energy, as shown in Fig. 3.9. Since the exact Green’s function G
both determines and is determined by the proper self-energy Σ∗, this approximation is known
as the self-consistent Born approximation (see Appendix F.3). The self-consistent approach
preserves conservation laws (Appendix F.3), for example, the continuity equation holds valid
(Section 3.9.4). Throughout this work the self-consistent Born approximation is applied.

ΣH
SCBA = ΣF

SCBA =

Figure 3.9: Feynman diagrams of the self-consistent first-order proper self-energies.

3.6.1 Elecron-Electron Interaction

The self-consistent Hartree self-energy due to electron-electron interaction is given by [205]

Σel−el(r1, t1) = −i~
∫
dt3

∫
dr3 δt1,t3 V (r1 − r3)G(r3, t3; r3, t3) ,

= −i~
∫
dr3 V (r1 − r3)G(r3, t1; r3, t1) ,

=

∫
dr3 V (r1 − r3)n(r3, t1) ,

=

∫
dr3

q2

4πǫ|r1 − r3|
̺(r3, t1)

−q
,

= −qφ(r1) .

(3.46)

where ̺(r, t)/(−q) = n(r, t) = −i~G(r, t, r, t) (see Section 3.9.1). The potential φ resulting from
the Hartree self-energy is in fact the solution of the Poisson equation with the charge density
̺. The Hartree self-energy is instantaneous.
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3.6.2 Electron-Phonon Interaction

The electron-phonon interaction Hamiltonian can be written as [190]

Ĥel−ph
I (t1) =

∫
dr1 ψ̂

†
I (r1, t1)


∑

q1,λ

eiq1·r1Mq1
Âq1

(t1)


 ψ̂I(r1, t1) , (3.47)

where Âq,λ(t) = (bq,λe
−iωq,λt + b†−q,λe

+iωq,λt), bq,λ and b†q,λ are the annihilation and cre-
ation operators for phonons with wave-vector q, polarization λ, and energy ~ωq,λ, and Mq,λ

is the electron-phonon interaction matrix element. The zero-order perturbation gives the non-
interacting Green’s function. The first-order term of the perturbation expansion must vanish
because it contains the factor 〈Âq,λ〉 which is zero since the factors 〈bq,λ〉 and 〈b†q,λ〉 are zero [190].
Similarly, all the odd terms vanish because their time-ordered bracket for phonons contains an
odd number of Âq,λ factors. Applying the Wick theorem (Section 3.4.1), only the even terms
contribute to the perturbation expansion for the electron-phonon interaction

G1
N = 〈Tt{

1

2

(−i
~

)2 ∫
dt1 Ĥ

el−ph
I (t1)ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉

=
1

2

(−i
~

)2 ∫
dt1

∫
dt2

∫
dr1

∫
dr2

× 〈Tt{ψ̂†
I (r1, t1)ψ̂

†
I (r2, t2)ψ̂I(r2, t2)ψ̂I(r1, t1)ψ̂I(r, t)ψ̂

†
I (r

′, t′)}〉︸ ︷︷ ︸
F 1

N

×
∑

q1,q2,λ

eiq1·r1eiq2·r2Mq1,λMq2,λ〈Aq1,λ(t1)Aq2,λ(t2)〉
︸ ︷︷ ︸

K1
N

,

(3.48)

where the expansion of time-ordered products of electron operators (F 1
N) has been calculated

before, see (3.37). Notice that, due to the properties of the annihilation and creation operators
for Bosons [190], 〈Aq1,λ(t1)Aq2,λ(t2)〉 = 0 unless q2 = −q1, therefore, one obtains

K1
N =

∑

q1,λ

eiq1·(r1−r2)M2
q1,λ i~Dλ0

(q1, t1, t2) , (3.49)

where Dλ0
(q1, t1, t2) is the non-interacting phonon Green’s function (see Appendix D). Feyn-

man diagrams for this expansion are similar to Fig. 3.4, but one should only replace the
Coulomb interactions with non-interacting phonon Green’s functions [190]. However, the
contributions of the diagrams (a), (b), and (f) are zero. They are non-zero only if the phonon
wave-vector q is zero, but such phonon is either a translation of the crystal or a permanent
strain, and neither of these meant to be in the Hamiltonian. The lowest order self-energies due
to electron-phonon interaction are also referred to as Hartree and Fock self-energy by analogy
to the treatment of the electron-electron interaction. However, the Hartree self-energy due to
electron-phonon interaction is zero since it corresponds to phonons with q = 0. The analytical
expression regarding the contribution of the self-consistent Fock self-energy (Fig. 3.9) is given
by [112]

Σel−ph(r1, t1; r2, t2) = i~
∑

q1,λ

eiq1·(r1−r2)M2
q1,λG(r1, t1; r2, t2)Dλ(q1; t1, t2) . (3.50)
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3.7 Analytical Continuation

The contour representation is rather impractical in calculations, and one prefers to work with
real time integrals. The procedure of converting the contour into real-time integrals is called
analytic continuation [185]. We followed here the formulation by Langreth [206]. In this
section we are only concerned with temporal variables, therefore, spatial variables have been
suppressed.

3.7.1 Real Time Formalism

The contour CK depicted in Fig. 3.3 consists of two two branches, C1 and C2. Each of the time
arguments of the Green’s function can reside either on the first or second part of the contour.
Therefore, contour-ordered Green’s function thus contains four different Green’s functions

G(t, t′) =





G>(t, t′) t ∈ C2, t
′ ∈ C1

G<(t, t′) t ∈ C1, t
′ ∈ C2

Gt(t, t
′) t, t′ ∈ C1

Gt̃(t, t
′) t, t′ ∈ C2

.

The greater (G>), lesser (G<), time-ordered (Gt), and anti-time-ordered (Gt̃) Green’s functions
can be defined as

G>(t, t′) = −i~−1〈ψ̂H(t)ψ̂†
H(t′)〉 ,

G<(t, t′) = +i~−1〈ψ̂†
H(t′)ψ̂H(t)〉 ,

Gt(t, t
′) = −i~−1〈Tt{ψ̂H(t)ψ̂†

H(t′)}〉 ,

= −θ(t− t′)i~−1〈ψ̂H(t)ψ̂†
H(t′)〉 + θ(t′ − t)i~−1〈ψ̂†

H(t′)ψ̂H(t)〉 ,

= +θ(t− t′)G>(t, t′) + θ(t′ − t)G<(t, t′) ,

Gt̃(t, t
′) = −i~−1〈Tt̃{ψ̂H(t)ψ̂†

H(t′)}〉 ,

= −θ(t′ − t)i~−1〈ψ̂H(t)ψ̂†
H(t′)〉 + θ(t− t′)i~−1〈ψ̂†

H(t′)ψ̂H(t)〉 ,

= +θ(t′ − t)G>(t, t′) + θ(t− t′)G<(t, t′) ,

(3.51)

where the time-ordering operator Tt is defined in (B.21). The anti-time-ordering operator Tt̃

can be defined in a similar manner. Since Gt + Gt̃ = G> + G<, there are only three linearly
independent functions. The freedom of choice reflects itself in the literature, where a number
of different conventions can be found. For our purpose the most suitable functions are the G≷,
and the retarded (Gr) and advanced (Ga) Green’s functions defined as

Gr(t, t′) = +θ(t− t′)[G>(t, t′) −G<(t, t′)] ,

Ga(t, t′) = +θ(t′ − t) [G<(t, t′) −G>(t, t′)] .

(3.52)

It is straightforward to show that Gr −Ga = G> −G<.
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3.7.2 Langreth Theorem

The next step is replacing contour by real time integrals in the Dyson equation. In that equation
one encounters the following contour integrals

D(t, t′) =

∫

C

dτ A(t, τ)B(τ, t′) , (3.53)

and their generalizations involving products of three or more terms. To evaluate (3.53) one can
assume that t is on the first half of the contour and t′ is on the latter half. In view of the
discussion of (3.51), we are thus analyzing a lesser function. The next step is to deform the
contour as indicated in Fig. 3.10. Thus (3.53) becomes

D<(t, t′) =

∫

C1

dτ A(t, τ)B<(τ, t′) +

∫

C2

dτ A<(t, τ)B<(τ, t′) . (3.54)

Here, in appending the label < to the function B in the first term we made use of the fact that as
long as the integration variable τ is confined on the contour C1 it is less than t′ (in the contour
sense) . A similar argument applies to the second term. Considering the first term in (3.54) the
integration can be split into two parts

∫

C1

dτ A(t, τ)B<(τ, t′) =

t∫

−∞

dt1 A
>(t, t1)B

<(t1, t
′) +

−∞∫

t

dt1 A
<(t, t1)B

<(t1, t
′) ,

≡
∞∫

−∞

dt1 Ar(t, t1)B
<(t1, t

′) ,

(3.55)

where the definition of the retarded function (3.52) has been used. A similar analysis can be
applied to the second term involving contour C2, where the advanced function is generated.
Putting the two terms together, one gets the first of Langreth’s results [185]

D<(t, t′) =

∞∫

−∞

dt1 [Ar(t, t1)B
<(t1, t

′) + A<(t, t1)B
a(t1, t

′)] . (3.56)

The same result applies for the greater function just by replacing the < labels by the > labels.
It is easy to generalize the result (3.56) to a product of three functions. The retarded and
analogously the advanced component of a product of functions defined on the contour can be
derived by repeated use of the definitions (3.51) and (3.52) and the result (3.56).

Dr(t, t′) = θ(t− t′)[D>(t, t′) −D<(t, t′)]

= θ(t− t′)

∞∫

−∞

dt1 [Ar(B> −B<) + (A> −A<)Ba]

= θ(t− t′)




t∫

−∞

dt1(A
> −A<)(B> −B<) +

t′∫

−∞

dt1(A
> −A<)(B< −B>)




=

t∫

t′

dt1 A
r(t, t1)B

r(t1, t
′)

(3.57)
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Figure 3.10: Deformation of contour C into contours C1 and C2.

In the self-energies another structure occurs

D(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) , (3.58)

where τ and τ ′ are contour variables. The derivation of the required formula is similar to the
analysis presented above [185]

D≷(t, t′) = A≷(t, t′)B≷(t, t′) ,

Dr(t, t′) = A<(t, t′)Br(t, t′) + Ar(t, t′)B<(t, t′) + Ar(t, t′)Br(t, t′) .

(3.59)

The rules provided by the Langreth theorem are summarized in Table 3.1.

Contour Real axis

D =

∫

C

AB

D≷ =

∫

t

[ArB≷ +A≷Ba]

Dr =

∫

t

ArBr

D =

∫

C

ABC

D≷ =

∫

t

[ArBrC≷ +ArB≷Ca +A≷BaCa]

Dr =

∫

t

ArBrCr

D(τ, τ ′) = A(τ, τ ′)B(τ, τ ′)
D≷(t, t′) = A≷(t, t′)B≷(t, t′)

Dr(t, t′) = A<(t, t′)Br(t, t′) +Ar(t, t′)B<(t, t′) +Ar(t, t′)Br(t, t′)

Table 3.1: Rules for analytic continuation derived from the Langreth theorem.
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3.8 Quantum Kinetic Equations

In this section the equations of motion (in real time) for the non-equilibrium Green’s functions
are introduced. There are two different, but equivalent, formulations: the Kadanoff-Baym

and the Keldysh formulation. These are treated in the following subsections. Finally, kinetic
equations under steady-state condition are presented.

3.8.1 The Kadanoff-Baym Formulation

The starting point of the derivation is the differential form of the Dyson equation. By assuming
that [i~∂t1 − Ĥ0(1)]G0(12) = δ1,2 , equation (3.44) and (3.45) can be rewritten as [203]

[
+i~∂t1 − Ĥ0(1)

]
G(12) = δ1,2 − i~

∫

C

d3 Σ(13) G(32) , (3.60)

[
−i~∂t2 − Ĥ0(2)

]
G(12) = δ1,2 − i~

∫

C

d3 G(13) Σ(32) . (3.61)

Note that the singular part of the self-energy on the contour, which corresponds to the Hartree

self-energy (Section 3.6), does not appear explicitly in the kinetic equations, but is included in
the potential energy of the single-particle Hamiltonian Ĥ0, see (F.7).

Using the Langreth rules (Table 3.1) and fixing the time arguments of the Green’s func-
tions in (3.60) and (3.61) at opposite sides of the contour, one obtains the Kadanoff-Baym

equations [93,203]

[
+i~∂t1 − Ĥ0(1)

]
G≷(12) =

∫
d3 Σr(13) G≷(32) +

∫
d3 Σ≷(13) Ga(32) , (3.62)

[
−i~∂t2 − Ĥ0(2)

]
G≷(12) =

∫
d3 Gr(13) Σ≷(32) +

∫
d3 G≷(13) Σa(32) . (3.63)

One should note that the delta-function term in (3.60) and (3.61) vanishes identically, because
the time-labels required in the construction of G< and G> are, by the definition on different
branches of the contour.

The Kadanoff-Baym equations determine the time evolution of the Green’s functions, but
they do not determine the consistent initial values. This information is contained in the original
Dyson equations (3.44) and (3.45), and lost in the derivation. To have a closed set of equations,
the Kadanoff-Baym equations must be supplemented with Dyson equations for Gr and Ga.
By subtracting (3.63) from (3.62), one finds the equation satisfied by Gr [203]

[
+i~∂t1 − Ĥ0(1)

]
Gr(12) −

∫
d3 Σr(13) Gr(32) = δ1,2 , (3.64)

[
−i~∂t2 − Ĥ0(2)

]
Gr(12) −

∫
d3 Σr(13) Gr(32) = δ1,2 . (3.65)

Similar relations hold for the advanced Green’s functions.
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3.8.2 Keldysh Formulation

For certain applications in classical transport theory it is advantageous to write the Boltz-

mann equation as an integral equation, rather than an integro-differential equation. An analo-
gous situation holds in quantum kinetics. Instead of working with the Kadanoff-Baym equa-
tions (3.62) and (3.63), it may be useful to consider their integral forms. Historically, Keldysh

[202] derived his alternative form almost simultaneously and independently of Kadanoff and
Baym. However, the Keldysh and Kadanoff-Baym formalisms are equivalent.

By applying Langreth’s rules to the Dyson equation (3.44) one obtains

G< = G<
0 + Gr

0 Σr G< + Gr
0 Σ< Ga + G<

0 Σa Ga . (3.66)

For convenience a notation where a product of two terms is interpreted as a matrix product
in the internal variables (space, time, etc.) has been used. One can proceed by iteration with
respect to G<. Iterating once, and regrouping the terms one obtains

G< = (1 + Gr
0 Σr)G<

0 (1 + Σa Ga)

+ (Gr
0 + Gr

0 Σr Gr
0) Σ< Ga

+ Gr
0 Σr Gr

0 Σr G< .

(3.67)

The form of (3.67) suggests that infinite order iterations results in [185]

G< = (1 + Gr Σr)G<
0 (1 + Σa Ga) + Gr Σ< Ga . (3.68)

Equation (3.68) is equivalent to Keldysh’s results. In the original work, however, it was written
for another function, GK ≡ G< +G>. This difference is only of minor significance [185].

The first term on the right hand-side of (3.68) accounts for the initial conditions. One can show
that this term vanishes for steady-state systems, if the system was in a non-interacting state in
the infinite past [185]. Thus, in many applications it is sufficient to only keep the second term.

Similar steps can be followed to obtain the kinetic equation for G >. In integral form these
equations can be written as

G≷(12) =

∫
d3

∫
d4 Gr(13) Σ≷(34) Ga(42) . (3.69)

The relation between the Keldysh equation and the Kadanoff-Baym equation is analogous
to the relation between an ordinary differential equation plus a boundary condition and the
corresponding integral equation.
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3.8.3 Steady-State Kinetic Equations

Under steady-state condition the Green’s functions depend on time differences. One usually
Fourier transforms the time difference coordinate, τ = t− t′, to energy

G(r1, r2;E) =

∫
dτ

~
eiEτ/~G(r1, r2; τ) . (3.70)

Under steady-state condition the quantum kinetic equations, (3.64), (3.65), and (3.69), can be
written as [60]:

[
E − Ĥ0(r1)

]
Gr(r1, r2;E) −

∫
dr3 Σr(r1, r3;E) Gr(r3, r2;E) = δr1,r2 , (3.71)

G≶(r1, r2;E) =

∫
dr3

∫
dr4 G

r(r1, r3;E) Σ≶(r3, r4;E) Ga(r4, r2;E) , (3.72)

where Σ is the total self-energy. A similar transformation can be applied to self-energies. How-
ever, to obtain self-energies one has to first apply Langreth’s rules and then Fourier transform
the time difference coordinate to energy. We consider the self-energies discussed in Section 3.6.
The evaluation of the Hartree self-energy due to electron-electron interaction is straightfor-
ward, since it only includes the electron Green’s function. However, the lowest-order self-energy
due to electron-phonon interaction contains the products of the electron and phonon Green’s
functions. Using Langreth’s rules (Table 3.1) and then Fourier transforming the self-energies
due to electron-phonon interaction, (3.50) takes the form

Σ
≷
el−ph(r1, r2;E) = i

∑

q,λ

∫
d(~ωq,λ)

2π
eiq·(r1−r2) M2

q,λG
≷(r1, r2;E − ~ωq,λ)D

≷
λ (q, ~ωq,λ) ,

(3.73)

To calculate the retarded self-energy, however, it is more straightforward to Fourier transform
the relation Σr(τ) = θ(τ)[Σ>(τ) − Σ<(τ)], see (3.52). By defining the broadening function Γ

Γ(r1, r2;E) = i[Σ>(r1, r2;E) − Σ<(r1, r2;E)] = 2ℑmΣ<(r1, r2;E) , (3.74)

the retarded self-energy is given by the convolution of −iΓ(E) and the Fourier transform of
the step function [33]

Σr(E) = −iΓ(E) ⊗
(
δ(E)

2
+

i

2πE

)
, (3.75)

where ⊗ denotes the convolution. Therefore, the retarded self-energy is given by [116]

Σr(r1, r2;E) = − i

2
Γ(r1, r2;E) + P

∫
dE′

2π

Γ(r1, r2;E′)
E − E′ , (3.76)

where P stands for principal part.
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3.9 Relation to Observables

Observables such as particle and current densities are directly linked to the greater and lesser
Green’s functions. In this section some of the most important observables and their relations
to the Green’s functions are discussed.

3.9.1 Electron and Hole Density

The electron and hole concentration are respectively given by

n(r, t) = 〈ψ̂†(r, t)ψ̂(r, t)〉 ,

= −i~G<(r, t; r, t) ,

(3.77)

p(r, t) = 〈ψ̂(r, t)ψ̂†(r, t)〉 ,

= +i~G>(r, t; r, t) .

(3.78)

Under steady-state condition (see Section 3.8.3) these relations can be written as [60]

n(r) = −i
∫
dE

2π
G<(r, E) . (3.79)

p(r) = +i

∫
dE

2π
G>(r, E) . (3.80)

The total space charge density is given by

̺(r) = q (p(r) − n(r)) . (3.81)

3.9.2 Spectral Function and Local Density of States

The spectral function is defined as

A(r, r′;E) = i
[
Gr(r, r′;E) − Ga(r, r′;E)

]
. (3.82)

The spectral function provides information about the nature of the allowed electronic states,
regardless whether they are occupied or not, and can be considered as a generalized density of
states. The diagonal elements of the spectral function give the local density of states

ρ(r;E) =
1

2π
A(r, r;E) = − 1

π
ℑm [Gr(r, r;E)] . (3.83)

The trace of the spectral function represents the density of states

N(E) = Tr [A(E)] =

∫
dr A(r, r;E) . (3.84)
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3.9.3 Current Density

To derive an equation for the current density one uses the conservation law of quantum me-
chanical variables [93]. The starting point is the subtraction of equation (3.62) from (3.63)

i~ (∂t1 + ∂t2)G
<(12) +

~
2

2m
[(∇r1 + ∇r2)(∇r1 − ∇r2)]G

<(12) − [U(1) − U(2)]G<(12) =

+

∫
d3
[
Σr(13) G<(32) + Σ<(13) Ga(32) + Gr(13) Σ<(32) + G<(13) Σa(32)

]
,

(3.85)

where H0(1) = −~
2/2m∇2

1 + U(1) has been assumed. By taking the limit 1 → 2 (r2 → r1

and t2 → t1) and assuming that the right-hand-side of (3.85) approaches zero in this limit, one
obtains

i~ lim
t2→t1

[∂t1G
<(12) + ∂t2G

<(12)] + ∇ ·
(

~
2

2m
lim

r2→r1
(∇r1 − ∇r2)G

<(12)

)
= 0 . (3.86)

By multiplying both sides by −q and recalling the definition of the charge density, one recovers
the continuity equation

∂t1̺(r1, t1) + ∇ · J(r1, t1) = 0 , (3.87)

where the current density is defined as

J(r1, t1) = − i~
2q

2m
lim

r2→r1
(∇r1 − ∇r2)G

<(r1, t1; r2, t1) . (3.88)

Under steady-state condition the current density takes the form [60]

J(r1) = − i~q

2m

∫
dE

2π
lim

r2→r1
(∇r1 − ∇r2)G

<(r1, r2, E) . (3.89)

3.9.4 Current Conservation

The current is conserved as long as the right-hand-side of (3.85) approaches zero as 2 → 1

lim
2→1

∫
d3
[
Σr(13) G<(32) + Σ<(13) Ga(32) + Gr(13) Σ<(32) + G<(13) Σa(32)

]
= 0 ,

(3.90)

The current is obviously conserved if there is no interaction, whereas the situation is different
in the interacting case. As described in Section 3.6, the interactions are described in terms
of appropriate self-energies. However, self-energies can often be obtained approximately only.
Therefore, one could choose an approximation which violates the continuity equation, which, of
course, is not physical. It is straightforward to show that the approximated self-energy due to
electron-phonon interaction within the self-consistent Born approximation (3.50) preserves the
current continuity.
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3.10 Comparison of Transport Models

Established techniques used to address dissipative quantum transport can be classified according
to the state functions they are based upon: the non-equilibrium Green’s function (NEGF), the
density matrix, and the Wigner function. All three approaches are based on fundamental
equations of motion and are equivalent at the most general level of formal description of a
dissipative quantum system.

The resulting system of integral-differential equations for the Green’s function G(r1, t1; r2, t2),
or the density matrix ρ(r1, r2; t1, t2), or the Wigner function f(r,p, ω, t) would in many cases
too complex to allow for a direct numerical solution. For example, the lesser Green’s function
G<(r1, t1; r2, t2) in the coordinate representation depends on two positions arguments r1, r2 and
two time arguments t1, t2. For a numerical solution, each argument of the Green’s function
needs to be discretized. In the case of a three dimensional system the total number of unknowns
to be evaluated would be Ntot = (Nx ·Ny ·Nz ·Nt)

2. Assuming 100 grid points for each ar-
gument this results in the astronomical number Nt = 1016. Even in the two-dimensional case
the number of unknowns is still very large, Nt = 1010, resulting in prohibitively large memory
requirement.

Approximations and simplifications must necessarily be incorporated in order to make the prob-
lem numerically tractable. It is mainly these simplifying assumptions that make the difference
between the approaches. The assumptions are usually physically motivated and may be different
in the different formalisms. For instance, the approximations to simplify the equations for the
Green’s functions in real-space may not be suitable to the Wigner equation, and vice versa.

The hierarchy of the transport models is shown in Fig. 3.11. In what follows we briefly outline
strong points and shortcomings of techniques based on the Green’s function, the density matrix,
and the Wigner function.

Figure 3.11: The hierarchy of quantum and semi-classical transport models [207].
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3.10.1 Non-Equilibrium Green’s Function

Throughout this chapter the NEGF formalism has been described. Green’s functions in general
have two position and two time arguments G(r1, t1; r2, t2). Under steady-state condition one
can Fourier transform the time difference τ = t1 − t2 to energy E to obtain G(r1, r2;E) (Sec-
tion 3.8.3), which can further be transformed via the Wigner-Weyl procedure into G(r,k;E).

The NEGF method addresses the problem of dissipative quantum transport in a consistent and
complete way. Therefore, the method is computationally expensive and applied to systems in a
steady-state [60]. The quantum device region is coupled to the reservoirs by contact self-energies
(Appendix G), while dissipation is introduced via the scattering self-energies.

When scattering via a self-energy is introduced, the determination of the Green’s function
requires inversion of a matrix of huge rank. To reduce the computational cost, the local scattering
approximation is frequently used [112, 208]. In this approximation the scattering self-energy
terms are diagonal in coordinate representation. It allows one to employ the recursive algorithm
for computing the Green’s functions, see Appendix H [8,116]. The local approximation is well
justified for electron-phonon scattering caused by deformation potential interaction (Section 4.6).
However, it is not justified for scattering by polar optical phonons, surface roughness, and ionized
impurities.

In order to reduce the computational cost even further, systems with simplified grid requirements
are considered. The mode-space approach (Section 4.4) [9] takes only a relatively small number
of transverse modes, Nmode, into consideration. For the remaining, one-dimensional transport
problem the number of unknowns reduces to Ntot = Nmode ·N2

x ·NE , where NE is the number
of energy grid points.

It can be shown that the quantum ballistic formalism can be fully recovered from the NEGF
formalism as a special case, where no dissipative scattering occurs in the system [33]. An-
other important point is that the NEGF formalism looks very different from the Landauer-
Büttiker formalism [209, 210]. The NEGF formalism focuses on the internal state of the
conductor. By contrast, in the Landauer approach the central quantity is the transmission
function from one contact to another. The internal state of the conductor usually never appears
in this formalism. However, the transmission function can be expressed in terms of internal
quantities. One can precisely obtain this result from the NEGF formalism as well when non-
dissipative transport is assumed.
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3.10.2 Master Equation for the Density Matrix

The evolution for the density matrix is described by a quantum Liouville equation.

∂ρ

∂t
=

i

~
[ρ,H] . (3.91)

To simplify the equation, the limit of weak interaction between the device and the heat bath
is applied. Coarse-graining in time results in a Markovian system. The resulting quantum
Liouville equation for the reduced density matrix is ∂ρ

∂t = i
~
[ρ,H] + L{ρ} and describes the

quantum evolution of a system with loss [211].

Irreversible or energy-dissipating processes always involve transitions between quantum states.
Such processes are described, at the simplest level, by a master or rate equation. The time
evolution of such systems is determined by the rates of transition between states |k〉. These
rates are usually estimated using the Fermi golden rule

Wk′,k =
2π

~
|〈k′|H|k〉|2 δEk,Ek′

, (3.92)

where Wk′,k is the transition rate from the state k to the state k′. The δ function ensures energy
conservation. If one assumes that these transitions occur independently within any small time
interval (the Markov assumption), the transition rate from state k′ to state k will produce
changes in the corresponding occupation factors dρk = −dρk′ = Wk′,kρk′dt. The occupation of
the state k increases and that of the state k′ decreases as a result of this particular process, and
the amount of change depends only on the occupation of the initial state1. If one sums over all
possible transition processes, one obtains the master equation

∂ρk
∂t

=
∑

k′ 6=k

[
Wk,k′ρk′(t) − Wk′,kρk(t)

]
. (3.93)

The Pauli master equation [212] is a frequently used model of irreversible processes in sim-
ple quantum systems. It can be derived from elementary quantum mechanics along with a
Markov assumption.

In order to evaluate transport, the device under consideration must be coupled to external
reservoirs. Coupling introduces carrier exchange between device and reservoirs, which are as-
sumed to be in thermal equilibrium. The difference between the electrochemical potentials of
the reservoirs causes current through the device. Therefore, it is essential to properly include
the coupling to the reservoirs in the master equation.

In the the Pauli master equation approach developed by Fischetti, this coupling is intro-
duced in a phenomenological manner [213, 214]. Application of the Pauli master equation is
restricted to stationary systems, since in the non-stationary case the current continuity would
be violated [215]. Another issue is that the Pauli master equation can only be justified for
devices where the quantum region is shorter than the phase coherence length [213].

A solution free from the above mentioned shortcoming of phenomenological coupling of the
device to the reservoirs was suggested by Gebrauer and Car [216,217]. They impose periodic
boundary conditions upon the unperturbed system. This approach can be also used to describe
transients.

1Here the Pauli exclusion principle which leads to a nonlinear master equation is neglected
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3.10.3 The Wigner Distribution Function

Another approach capable of handling both quantum coherent propagation and dissipative scat-
tering effects is based on the Wigner distribution function. The Wigner quasi-probability
distribution was introduced by Wigner in 1932 [218] to study quantum corrections to classical
statistical mechanics. The goal was to replace the wave-function that appears in the Schrö-

dinger equation with a probability distribution in phase space. A classical particle has a definite
position and momentum and hence, is represented by a point in phase space. For a collection
(ensemble) of particles, the probability of finding a particle at a certain position in phase space
is given by a probability distribution. This does not hold in quantum mechanics due to the un-
certainty principle. Instead, the Wigner quasi-probability distribution plays an analogous role,
it is defined as the density matrix in a mixed coordinate/momentum representation [218, 219].
But the Wigner quasi-probability distribution does not satisfy all the properties of a prob-
ability distribution. On the other hand it satisfies boundedness properties unavailable to the
classical distributions. For instance, the Wigner distribution can and normally does go nega-
tive for states which have no classical model and a convenient indicator of quantum-mechanical
interference.

Applying the Wigner-Weyl transformation to the Liouville equation gives the kinetic equa-
tion for the Wigner function

∂fw(r,k, t)

∂t
+ v · ∇rfw +

F

~
· ∇kfw −

∫
dk′ Vw(r,k − k′) fw(r,k′, t) +

(
∂fw

∂t

)

coll

= 0 ,

(3.94)

where the kernel of the potential operator is given by

Vw(r,k) =
1

i~(2π)3

∫
ds
(
V (r +

s

2
) − V (r − s

2
) + s · F

)
exp(−ik · s) . (3.95)

A practically used approximation to incorporate realistic scattering processes into the Wigner

equation is to utilize the Boltzmann scattering operator [219, 220], or by an even simpler
scheme such as the relaxation time approximation [221]. The inclusion of dissipation through the
Boltzmann scattering operator, although intuitively appealing, raises some concerns about the
validity of such procedure. The Boltzmann scattering operator is semi-classical by its nature,
and represents a good approximation for sufficiently smooth device potentials. To account for
scattering more rigorously, spectral information has to be included into the Wigner function,
resulting in an energy-dependence in addition to the momentum dependence [190].

The kinetic equation for the Wigner function is similar to the semi-classical Boltzmann equa-
tion, except for a non-local potential term. In the case of a slowly varying potential this non-local
term reduces to the local classical force term, and the semi-classical description given by the
Boltzmann equation is obtained from the Wigner equation. The Boltzmann equation is
the basis for the standard models of electron transport in semiconductors in a semi-classical
approximation. By far the most widely used technique for solving the Boltzmann equation
has been the Monte Carlo method [222]. Transport models based on the Boltzmann transport
equation can be derived using the method of moments [223–225] which yields the drift-diffusion
model [226], the energy-transport and hydrodynamic models [227], or higher-order transport
models [228]. Furthermore, an approximate solution can be obtained by expressing the distribu-
tion function as a series expansion which leads to the spherical harmonics approach [229,230].
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Chapter 4

Implementation

NOVEL STRUCTURES and materials such as deca-nanometer Si bulk MOSFETs, multiple
gate MOSFETs, CNT-FETs and molecular based transistors, are expected to be introduced

to meet the requirements for scaling [1]. A deep understanding of quantum effects in nano-
electronic devices helps to improve their functionality and to develop new device types. For that
purpose extensive computer simulation are required.

A multi-purpose quantum-mechanical solver, the Vienna Schrödinger-Poisson solver (VSP),
with the aim to aid theoretical as well as experimental research on nano-scale electronic devices,
has been developed [231]. VSP is a quantum mechanical solver for closed as well as open bound-
ary problems. The software is written in C++ using state-of-the-art software design techniques.
The chosen software architecture allows one to add new models easily. Critical numerical cal-
culations are performed with stable and powerful numerical libraries such as BLAS, LAPACK,
and ARPACK. VSP holds a graphical user interface written in JAVA, as well as an XML based
interface. Furthermore, VSP has an open software application interface and can be used within
third party simulation environments.

This chapter describes the implementation of the outlined NEGF formalism into VSP. For an
accurate analysis it is essential to solve the coupled system of transport and Poisson equations
self-consistently [163]. The discretization of the Poisson equation and quantum transport
equation is studied in this chapter.

A tight-binding Hamiltonian is used to describe transport phenomena in CNT-FETs. The
mode-space transformation used in this work reduces the computational cost considerably. The
mode-space approach takes only a relatively small number of transverse modes into considera-
tion. To reduce the computational cost even further, we used the local scattering approxima-
tion [112]. In this approximation the scattering self-energy terms are diagonal in coordinate
representation. We show that the local approximation is well justified for electron-phonon scat-
tering caused by deformation potential interaction.

We investigate methods of generating adaptive energy grids for the transport equations and their
effect on the convergence behavior of the self-consistent iteration. Our results indicate that for
accurate and fast convergent simulations the energy grid must be carefully adapted.
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4.1 Electrostatic Potential and the Poisson Equation

Planar CNT-FETs constitute the majority of devices fabricated to date, mostly due to their rel-
ative simplicity and moderate compatibility with existing manufacturing technologies. However,
coaxial devices (see Fig. 4.1) are of special interest because their geometry allows for better elec-
trostatic control than their planar counterparts. These devices would exhibit wrap-around gates
that maximize capacitive coupling between the gate electrode and the CNT channel. Presently,
the closest approximation to this geometry are electrolyte-gated devices [232, 233]. Alternative
structures that place CNTs vertically with respect to the substrate have already been used for
field-emission applications [234, 235]. Coaxial CNT-FETs could be fashioned by placing CNTs
inside the cavities of a porous material such as alumina, surrounding them by gate electrodes.

Appropriate treatment of the electrostatic potential in the device is essential for accurately
predicting the device characteristics [236]. The electron-electron interaction self-energy of lowest
order yields the Hartree potential, which is the solution of the Poisson equation

∇ · ε∇φ = −̺ (4.1)

where ̺ is the total charge density, given (in cylindrical coordinates) by [237]

̺ =
q[p(z) − n(z)]δ(r − rCNT)

2πr
. (4.2)

Here, n and p denote the electron and hole concentration per unit length, respectively, and
rCNT is the radius of the CNT. In (4.2) δ(r)/r is the Dirac delta function in cylindrical coor-
dinates, implying that the carrier density is approximated by a sheet charge distributed along
the insulator-CNT interface [237]. Due to azimuthal symmetry in wrap-around gate devices,
the carriers are uniformly distributed as a function of the azimuthal angle.

Figure 4.1: Schematic of the coaxial CNT-FET.
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4.1.1 Discretization of the Poisson Equation

To solve partial differential equations numerically, they are usually discretized. For that reason,
the domain V where the equations are posed has to be partitioned into a finite number of
sub-domains Vi, which are usually obtained by a Voronoi tessellation [238, 239]. In order to
obtain the solution with a desired accuracy, the equation system is approximated in each of
these sub-domains by algebraic equations. The unknowns of this system are approximations of
the continuous solutions at the discrete grid points in the domain [226]. Several approaches for
the discretization of the partial differential equations have been proposed. It has been found
to be advantageous to apply the finite boxes discretization scheme for semiconductor device
simulation [226]. This method considers the integral form of the equation for each sub-domain,
which is the so-called control volume Vi associated with the grid point Pi. By applying the
Gauss integral theorem, the Poisson equation (4.1) is integrated as

∮

∂V

ε∇φ · dA +

∫

V

̺ dV = 0 . (4.3)

Finally, the discretized equation for point i with neighbor points j can be written implicitly as

Fi =
∑

j

εij
φj − φi

dij
Aij + ̺iVi = 0 , (4.4)

with dij is the distance between grid point Pi and Pj , Aij as the interface area between the
domains Vi and Vj , and Vi as the volume of the domain Vi. For position-dependent ε, one can
use here some average, e.g. εij = (εi + εj)/2. Equation (4.4) can be generally written as

Fi =
∑

j

Fji +Gi = 0 , (4.5)

where j runs over all neighboring grid points in the same segment, Fji is the flux between points
j and i, and Gi is the source term (see Fig. 4.2). Grid points on the boundary ∂V are defined
as having neighbor grid points in other segments. Thus, for boundary elements (4.5) does not
represent the complete control function Fi, since all fluxes into the contact or the other segment
are missing. For that reason, the information for these boxes has to be completed by taking the
boundary conditions into account.

F5i

F6i

F4iBox i

F3i

F2i

F1i

Gi

4

5

6

2

1

3
i

Figure 4.2: Box i with six neighbors [240].
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4.1.2 Boundary Conditions

Dirichlet boundary conditions are introduced at the source, drain, and gate contacts. Poten-
tials are conveniently measured relative to the source potential. The amount of bending of the
vacuum enegy level along the length of the CNT is given by Evac(z) = −qφ(z), since we assume
that the local electrostatic potential rigidly shifts the CNT band-structure. The conduction and
valence band-edges of the CNT are given by

Ec(z) = − qφ(z) + qΦBe ,

Ev(z) = − qφ(z) − qΦBh .
(4.6)

The Schottky barrier heights for electrons (qΦBe) and holes (qΦBh) at the metal-CNT interface
are given by (see Fig. 4.3)

qΦBe = + qΦM − qχCNT ,

qΦBh = − qΦBe + Eg ,
(4.7)

where qΦM is the work function of the metal contact, qχCNT is the electron affinity of the
CNT, and Eg is the band-gap of the CNT. The work function of CNT qΦCNT is defined as the
sum of the CNT electron affinity and half of the band-gap in the bulk. Figure 4.3 shows the
band diagram at the metal-CNT interface with ΦM = ΦCNT. The work function of the CNT
is assumed to be ΦCNT = 4.5 eV [4]. In an intrinsic CNT (un-doped) the Fermi level of the
CNT is located in the middle of the band-gap. Under these conditions, equal Schottky barrier
heights for both electrons and holes are achieved. If the work functions of metal and CNT do
not align, band-bending near the contact occurs and Schottky barrier heights for electrons
and holes will be different. For example, if the work function of the metal contact is larger than
that of the CNT (ΦM > ΦCNT) the Schottky barrier height for holes is smaller than that for
electrons. As a result, a p-type CNT-FET is achieved, where holes are the majority carriers.

Figure 4.3: Band diagram at the metal-CNT interface with ΦM = ΦCNT.
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4.1.3 Interface Conditions

To account for interface conditions, grid points located at the boundary of the segments (see
Fig. 4.4-a) are assigned three values, one for each segment (see Fig. 4.4-b) and a third value
assigned directly to the interface, which can be used to formulate more complicated interface
conditions such as, for example, interface charges.

As discussed in Section 4.1, charges on the CNT are approximated as sheet charges at the CNT-
insulator interface. The boundary flux due to interface charges is simply added to the segment
fluxes given by (4.5)

Fi + Fi′′,i = 0 ,

Fi′ + Fi′′,i′ = 0 ,
(4.8)

with

Fi′′,i =
̺i′′Ai

2
,

Fi′′,i′ =
̺i′′Ai′

2
,

(4.9)

where Ai = Ai′ and ̺i′′ is the interface charge density at some point i′′ along the insulator-
CNT interface given by (4.2). This method satisfies the condition of the discontinuity of the
electric displacement in the presence of interface charges. For the CNT the free-space relative
permittivity, εCNT = 1, is assumed [241].
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Figure 4.4: Interface points as given in a) are split into three different points having
the same geometrical coordinates b) [240].
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4.2 Basis Functions and Matrix Representation

For the purpose of discretization one can expand the Hamiltonian, self-energies, and Green’s
functions in terms of some basis functions to obtain the corresponding matrices. In the tight-
binding method one can take the basis functions to be any set of localized functions, such
as atomic s- and p-orbitals [116, 122], Wannier functions [242], and so forth. A common
approximation used to describe the Hamiltonian of layered structures consists of non-vanishing
interactions only between nearest neighbor layers. That is, each layer i interacts only with itself
and its nearest neighbor layers i−1 and i+1. Then the single particle Hamiltonian of the layered
structure is a block tri-diagonal matrix, where diagonal blocks H i represent the Hamiltonian of
layer i and off-diagonal blocks ti,i+1 represent interaction between layers i and i+ 1

H =




• • •
• H1 t12

t†12 H2 t2,3

• • •
• • •

t†N−2,N−1 HN−1 tN−1,N

t†N−1,N HN •
• • •




, (4.10)

where ti+1,i = t†i,i+1. The matrix representation of the kinetic equations (3.71) and (3.72) are

[EI −H − Σr
Scat] G

r = I , (4.11)

G≷ = Gr Σ
≷
Scat G

a , (4.12)

where ΣScat is the self-energy due to scattering processes and Ga = [Gr]† [60]. One can partition
the layered structure into left contact with index L, device region with index D, and right
contact with index R (Fig. 4.5). The device corresponds to the region where one solves the
transport equations and the contacts are the highly conducting regions connected to the device.
While the device region consists of only N layers, the matrix equation corresponding to (4.11) is
infinitely dimensional due to the semi-infinite contacts. As shown in Appendix G the influence
of the semi-infinite contacts can be folded into the device region by adding a self-energy to the
device region. This can be viewed as an additional self-energy due to the transitions between
the device and the contacts. In the next sections the matrix representation of the Hamiltonian
and self-energies are discussed in detail.

Figure 4.5: Partitioning of the simulation domain into device region and left and
right contacts. Each point corresponds to a layer.
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4.3 Tight-Binding Hamiltonian

The general form of the tight-binding Hamiltonian for electrons in a CNT can be written as

Ĥ =
∑

i,p

Up
i c

†
i,pci,p +

∑

i,j,p,q

tp,q
i,j c

†
i,pcj,q . (4.13)

The sum is taken over all rings i, j along the transport direction, which is assumed to be the
z-direction of the cylindrical coordinate system, and over all atomic locations p,q in a ring. We
use a nearest-neighbor tight-binding π-bond model [10, 243]. Each atom in an sp2-coordinated
CNT has three nearest neighbors, located aC−C away. The band-structure consists of π-orbitals
only, with the hopping parameter t = Vppπ = −2.77 eV and zero on-site potential. Furthermore,
it is assumed that the electrostatic potential U rigidly shifts the on-site potentials. Such a
tight-binding model is adequate to model transport properties in un-deformed CNTs.

In this work we consider zigzag CNTs. However, this method can be readily extended to armchair
or chiral CNTs. Within the nearest-neighbor approximation, only the following parameters are
non zero [10]

tp,q
i,i−1 = tp,q

i−1,i = t δp±a/2,q , ∀i = 2k ,

tp,q
i,i+1 = tp,q

i+1,i = t δp,q . ∀i = 2k .
(4.14)

Figure 4.6 shows that a zigzag CNT is composed of rings (layers) of A- and B-type carbon
atoms, where A and B represent the two carbon atoms in a unit cell of graphene. Each A-type
ring is adjacent to a B-type ring. Within nearest-neighbor tight-binding approximation the total
Hamiltonian matrix is block tri-diagonal [243]

H =




H1 t2
t†2 H2 t1

t1 H3 t†2
t2 H4 t1

t1 H5 •
• •




, (4.15)

where the diagonal blocks, H i, describe the coupling within an A-type or B-type carbon ring
and off-diagonal blocks, t1 and t2, describe the coupling between adjacent rings. It should be
noted that the odd numbered Hamiltonian H i refer to A-type rings and the even numbered
one to B-type rings. Each A-type ring couples to the next B-type ring according to t2 and to
the previous B-type ring according to t1. Each B-type ring couples to the next A-type ring
according to t1 and to the previous A-type ring according to t2. In a (n, 0) zigzag CNT, there
are n carbon atoms in each ring, thus, all the sub-matrices in (4.15) have a size of n× n.

In the nearest-neighbor tight binding approximation, carbon atoms within a ring are not coupled
to each other so that H i is a diagonal matrix. The value of a diagonal entry is the potential at
that carbon atom site. In the case of a coaxially gated CNT, the potential is constant along the
CNT circumference. As a result, the sub-matrices H i are given by the potential at the respective
carbon ring times the identity matrix

H i = U i = Ui I , (4.16)
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Figure 4.6: Layer layout of a (n, 0) zigzag CNT. Circles are rings of A-type carbon
atoms and squares rings of B-type carbon atoms. The coupling coefficient between
nearest neighbor carbon atoms is t. The coupling matrices between rings are denoted
by t1 and t2, where t1 is a diagonal matrix and t2 is non-diagonal.

There are two types of coupling matrices between nearest carbon rings, t1 and t2. As shown in
Fig. 4.6, the first type, t1, only couples an A(B) carbon atom to its B(A) counterpart in the
neighboring ring. The coupling matrix is just the tight-binding coupling parameter times an
identity matrix,

t1 = tI . (4.17)

The second type of coupling matrix, t2, couples an A(B) atom to two B(A) neighbors in the
adjacent ring. The coupling matrix is

t2 =




t t

t t

t t

• •


 . (4.18)

The period of the zigzag CNT in the longitudinal direction contains four rings, ABAB, and has
a length of 3aC−C. Therefore, the average distance between the rings is

∆z =
3aC−C

4
. (4.19)
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4.4 Mode-Space Transformation

A mode space approach significantly reduces the size of the Hamiltonian matrix [9]. Due to
quantum confinement along the CNT circumference, circumferential modes appear and transport
can be described in terms of these modes. If M modes contribute to transports, and if M < n,
then the size of the problem is reduced from n × N to M × N , where N is number of carbon
rings along the CNT. If the potential profile does not vary sharply along the CNT, subbands
are decoupled [9] and one can solve M one-dimensional problems of size N .

Mathematically, one performs a basis transformation on the Hamiltonian of the (n, 0) zigzag
CNT to decouple the problem into n one-dimensional mode space lattices [243]

H
′

=




S†

S†

S†

S†

S†

•







U1 t2

t†2 U2 t1

t1 U3 t†2
t2 U4 t1

t1 U5 •
• •







S

S

S

S

S

•




=




U
′

1 t
′

2

t
′

2
†

U
′

2 t
′

1

t
′

1 U
′

3 t
′

2
†

t
′

2 U
′

4 t
′

1

t
′

1 U
′

5 •
• •




,

(4.20)

with

U
′

i = S† U i S ,

t
′

1 = S† t1 S ,

t
′

2 = S† t2 S ,

(4.21)

where S is the transformation matrix from the real space basis to the mode space basis. The
purpose is to decouple the modes after the basis transformation, i.e., to make the Hamiltonian
matrix blocks between different modes equal to zero. This requires that after the transformation,
the matrices U i, t1, and t2, become diagonal. Since U i and t1 are identity matrices multiplied
by a constant, they remain unchanged and diagonal after any basis transformation, U

′

i = U i and
t
′

1 = t1. To diagonalize t2, elements of the transformation matrix S have to be the eigen-vectors
of t2. These eigen-vectors are plane waves with wave-vectors satisfying the periodic boundary
condition around the CNT. The eigen-values are

tν2 = 2te−iπν/n cos(πν/n) , (4.22)

where ν = 1, 2, . . . , n [243]. The phase factor in (4.22) has no effect on the results such as charge
and current density, thus it can be omitted and tν2 = 2t cos(πν/n) can be used instead.
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After the basis transformation all sub-matrices, U i, t1, and t2 are diagonal. By reordering the
basis according to the modes, the Hamiltonian matrix takes the form

H
′

=




H1

H2

•
Hν

•



, (4.23)

where Hν is the Hamiltonian matrix for the νth mode [243]

Hν =




U1 tν2
tν2 U2 t

t U3 tν2
tν2 U4 t

t U5 •
• •




. (4.24)

The one-dimensional tight-binding Hamiltonian Hν describes a chain of atoms with two sites
per unit cell and on-site potential U and hopping parameters t and tν2 (Fig. 4.7). The spatial grid
used for device simulation corresponds to the circumferential rings of carbon atoms. Therefore,
the rank of the matrices for each subband are equal to the total number of these rings N .
Self-energies can be also transformed into mode space Σν , see Section 4.5 and Section 4.6. The
Green’s functions can therefore be defined for each subband (mode) and one can solve the
system of transport equations for each subband independently

[EI −Hν − Σrν
] Grν

= I , (4.25)

G≷ν
= Grν

Σ≷ν
Gaν

. (4.26)

Figure 4.7: Zigzag CNT and the corresponding one-dimensional chain with two
sites per unit cell with hopping parameters t and tν2 = 2t cos(πν/n).
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4.5 Contact Self-Energies

Boundary conditions have to be specified to model the contacts, which act as a source or drain for
electrons. While the matrix representing the Hamiltonian of the device has a finite dimension,
the total Hamiltonian matrix is infinite dimensional due to the semi-infinite contacts.

The influence of the contacts can be folded into the device region. Due to the transitions between
the device and the contacts, the influence of the contacts can be demonstrated by adding contact
self-energies to the total self-energy [60]. The self-energy matrices for the contacts and the
Hamiltonian matrix for the device have the same rank, but the self-energy matrices are highly
sparse. For example, only one carbon ring at the source end of the channel couples to the source,
thus only one sub-matrix is non-zero for the source self-energy. Similarly, only one sub-matrix
is non-zero for the drain self-energy. As shown in Appendix G, non-zero blocks of the contact
self-energies are given by

Σr
L = t†LD gr

L1,1
tLD ,

Σr
R = t†RD gr

R1,1
tRD ,

(4.27)

Σ<
L = +i ΓL fL ,

Σ<
R = +i ΓR fR , (4.28)

Σ>
L = −i ΓL (1 − fL) ,

Σ>
R = −i ΓR (1 − fR) , (4.29)

where sub-scripts L and R denote the left (source) and right (drain) contacts, respectively, fL,R

are the Fermi factor of the contacts, gr
L,R

are the surface Green’s function of the contacts, and

finally the broadening functions are defined as

ΓL = i (Σr
L − Σa

L) = −2ℑm[Σr
L] ,

ΓR = i (Σr
R − Σa

R) = −2ℑm[Σr
R] .

(4.30)

Surface Green’s functions can be calculated using a recursive relation described in Appendix G.3.
In this section two types of contacts are discussed: semi-infinite CNTs acting as the source and
drain contacts and Schottky type metal-CNT contacts. The respective surface Green’s func-
tions and self-energies for the both contact types are derived next.

In mode-space representation (see Section 4.4) the matrices in (4.27) to (4.30) become one-
dimensional. Thus, the respective quantities for each mode can be treated as numbers and the
computational cost decreases considerably.
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4.5.1 Semi-Infinite CNT Contacts

Figure 4.8 shows carbon rings of A or B-type coupled to a semi-infinite CNT acting as a contact.
Each circle (rectangle) represents a carbon ring consisting of A or B-type carbon atoms. The
carbon ring couples to the nearest ring, with a coupling matrix of t1 or t2, and gr

Li,i
is the

surface Green’s function for the ith ring in the left extension, ordered from the channel-contact
interface. The recursive relation (G.22) can be applied to the CNT in Fig. 4.8 and gives

[AL1
− t2 g

r
L2,2

t†2] g
r
L1,1

= I ,

[AL2
− t1 g

r
L3,3

t†1] g
r
L2,2

= I ,
(4.31)

where ALi
= EIi−ULi

−Σr
Scati,i

(see Appendix G.1), and t1 and t2 are given by (4.17) and (4.18),
respectively. Since the potential is invariant inside the contact, AL1

= AL2
. Furthermore,

gr
L3,3

= gr
L1,1

due to the periodicity of the CNT lattice. Using these relations, (4.31) represent two

coupled matrix equations with two unknowns, gr
L1,1

and gr
L2,2

, which can be solved by iteration.

However, in mode-space representation matrices t1 and t2 are replaced by the numbers t1 = t
and tν2 , respectively. As a result, the surface Green’s function for each mode can be calculated
analytically by solving a quadratic equation

grν

L1,1
=

A2
L1

+ t21 − tν
2

2 −
√

[A2
L1

+ t21 − tν
2

2 ]
2 − 4A2

L1
t21

2AL1
t21

. (4.32)

The self-energy of the left contact for the νth mode is therefore given by

Σrν

L = t21 g
rν

L1,1
(4.33)

A similar relation holds for the right contact self-energy.

Figure 4.8: Computing the surface Green’s function for the left contact. The
surface Green’s function for the ith ring inside the contact is gi.
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4.5.2 Schottky Type Metal-CNT Contacts

At the metal-CNT interface a Schottky barrier (SB) forms, which governs the operation of
CNT-FETs (Section 2.8.2). The metal region acts as a source and a sink of electrons in the
device region. In this work Pd contacts are assumed. For transport calculation based on a
simplified tight-binding Hamiltonian, describing only the interaction between dz orbitals of Pd
and pz orbitals of the carbon atoms, the self-energy for this SB contact can be written as

Σrν

SB = t2M−C gr
M1,1

(4.34)

where tM−C is the hopping parameter between metal and carbon atoms and gr
M1,1

is the surface

Green’s function of the metal contact. The contact model in (4.34) assumes injection from the
contact into all CNT subbands.

Based on ab-initio calculations, it has been shown that the electronic band structure of the
Pd-graphene system near the Fermi level can be reproduced by considering the hybridization
between graphene and Pd bands, using tPd−C = 0.15 eV [244].

The surface Green’s function contains information about the band-structure of the metal con-
tact. To calculate the surface Green’s function, one has to specify an appropriate Hamiltonian
for the contacts, for example one can employ the tight-binding method [156], density functional
theory [244], or extended Hückel theory [245]. Contacts can be approximated as semi-infinite
leads along the transport axis, and infinite in the transverse direction. Therefore, the surface
Green’s function can be calculated iteratively along the transport direction (Section G.3).

Figure 4.9 shows the bulk and surface density of states of an Au-contact modeled using extended
Hückel theory [245]. The density of states and as a result the contact self-energy depend on
energy. However, the density of states near the Fermi level does not vary sharply. Since
transport phenomena occur mostly due to electrons close to the Fermi level, one can assume
that the contact self-energy at all energies is equal to Σ(EF). For Pd contacts we used the results
of ab-initio calculations reported in [244].

Figure 4.9: Calculated bulk and surface density of states for Au (EF = −10 eV) [245].
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4.6 Scattering Self-Energies

The lowest-order electron-phonon self-energies are introduced in Section 3.6 and the steady-
state form of these self-energies has been derived in Section 3.8.3. By transforming the self-
energies (3.73) into mode-space one obtains [10]

Σ
≷ν

el−phi,j
(E) = i

∑

q,λ

∫
d(~ωq,λ)

2π
eiq(zi−zj)M2

q,λ,νG
≷ν

i,j
(E − ~ωq,λ)D

≷
λ (q, ~ωq,λ) , (4.35)

where zi is the position of some lattice point i along the CNT axis. Note that due to the one-
dimensional nature of CNTs, the coordinate and wave-vector variables are all one-dimensional.
In (4.35) only intra-subband scattering process are considered (see Section 2.6). To include inter-
subband scattering processes the summation in (4.35) would have to run over the all subbands
ν ′ with the electron-phonon matrix elements Mq,λ,ν,ν′ .

The electron-phonon self-energies in the self-consistent Born approximation are expressed in
terms of the full electron and phonon Green’s functions. One should therefore study the
influence of the bare electron states on the phonons first, and then calculate the effect on the
electrons of the renormalized phonon states [190]. In this work we assume that the phonon
renormalization can be neglected. By doing so we miss to capture a possible reduction of the
phonon lifetime. The above considerations also appeal to the Migdal theorem [246] which states
that the phonon-induced renormalization of the electron-phonon vertex (see Appendix F.2) scales
with the ratio of the electron mass to the ion mass [189]. Therefore, one can assume that the
phonon bath is in thermal equilibrium so that the full phonon Green’s function Dλ can be
replaced by the non-interacting Green’s functions Dλ0

from (D.16). As a result (4.35) can be
written as

Σ<ν

el−phi,j
(E) =

∑

q,λ

eiq(zi−zj)M2
q,λ

×[(nB(~ωq,λ) + 1)G<ν

i,j
(E + ~ωq,λ) + nB(~ωq,λ)G<ν

i,j
(E − ~ωq,λ)] ,

(4.36)

Σ>ν

el−phi,j
(E) =

∑

q,λ

eiq(zi−zj)M2
q,λ

×[(nB(~ωq,λ) + 1)G>ν

i,j
(E − ~ωq,λ) + nB(~ωq,λ)G>ν

i,j
(E + ~ωq,λ)] ,

(4.37)

where the first term on the right hand side is due to phonon emission and the second term due
to phonon absorption. The summation over wave-vector q in (4.36) and (4.37) can be generally
transformed into an integral over the first Brillouin zone

∑

q

=
L

2π

∫
dq , (4.38)

where L is the normalization length and the limits of the integral are ±3aC−C which is the period
of the carbon rings, see (4.3). To calculate electron-phonon self-energies the integral in (4.38)
must be evaluated.

71



IMPLEMENTATION 4.6 Scattering Self-Energies

4.6.1 Scattering with Optical Phonons

In this section the self-energies due to the interaction of electrons with optical phonons (OP)
are evaluated. As discussed in Section 2.6, the phonon energy and the reduced electron-phonon
matrix elements for OP phonons are approximately constant and independent of the phonon
wave-vector. Under this assumption all terms except the exponential term in (4.36) and (4.37)
can be taken out of the integral (4.38) and one obtains [55]

π/(3aC−C)∫

−π/(3aC−C)

dq

2π
exp(iq(zi − zj)) =





1

3aC−C
, zi − zj = 0

0 , zi − zj = k × 3aC−C

, (4.39)

where k is an integer number. One has to multiply the above result by a factor of 4, for the
number of rings in the lattice period [55]. Equation (4.39) justifies the approximation which only
considers diagonal elements of the electron-phonon self-energy. As discussed in Section 4.3, by
employing the nearest neighbor tight-binding method (block) tri-diagonal matrices are achieved.
Keeping only diagonal elements of the electron-phonon self-energy, the matrices remain (block)
tri-diagonal. Therefore, an efficient recursive method (Appendix H) can be used to calculate
the inverse matrices. This implies considerable reduction of computational cost and memory
requirement.

Using the result of (4.39) and the relations (2.15) and (2.19) the self-energy due to scattering
with optical phonons can be written as

Σ<ν

OPi,j
(E) = δi,jDOP[(nB(~ωOP) + 1)G<ν

i,j
(E + ~ωOP) + nB(~ωOP)G<ν

i,j
(E − ~ωOP)] , (4.40)

Σ>ν

OPi,j
(E) = δi,jDOP[(nB(~ωOP) + 1)G>ν

i,j
(E − ~ωOP) + nB(~ωOP)G>ν

i,j
(E + ~ωOP)] , (4.41)

where DOP is given by

DOP =
~

2ρCNT L ωOP
M̃2

OP

L

∆z
,

=
~

2n mC ωOP
M̃2

OP ,

(4.42)

where ∆z = 3aC−C/4 (see (4.3)). In the second line in (4.42) the mass density of a (n, 0) zigzag
CNT has been replaced ρCNT = nmC/∆z, where mC is the mass of a carbon atom.

The retarded self-energy can be calculated as (3.76)

Σr
OPi,j

(E) = − i

2
ΓOPi,j (E) + P

∫
dE′

2π

ΓOPi,j (E
′)

E − E′ , (4.43)

where

ΓOPi,j (E) = i[Σ>
OPi,j

(E) − Σ<
OPi,j

(E)] = 2ℑm[Σ<
OPi,j

(E)] . (4.44)

Since the lesser and greater self-energies are assumed to be diagonal the retarded self-energy is
also diagonal.
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4.6.2 Scattering with Acoustic Phonons

Interaction with acoustic phonons (AP) can be approximated as elastic scattering, E±~ωAP ≈ E.
As discussed in Section 2.6, near the Γ-point a linear dispersion relation for acoustic phonons
is assumed, ωAP(q) ≈ υAP|q|, where υAP is the acoustic phonon velocity. Furthermore, at room
temperature low energy phonons have an appreciable occupation, such that

nB ≈ nB + 1 ≈ kBT

~υAP|q|
≫ 1 . (4.45)

With equation (4.45) and the elastic approximation the contributions due to phonon emission
and absorption become equal and can be lumped into one term. As a result, by using the
relations (2.15) and (2.19) the self-energies due to acoustic phonon interaction are written as

Σ
≷ν

APi,j
(E) =

∑

q

eiq(zi−zj)
~

2ρCNT L υAP|q|
M̃2

AP|q|2 × 2
kBT

~υAP|q|
G≷ν

i,j
(E) ,

=
∑

q

eiq(zi−zj)
kBT

ρCNT L υ2
AP

M̃2
AP G≷ν

i,j
(E) .

(4.46)

With the exception of the exponential term all terms in (4.46) can be taken out of the sum and
one can convert the sum into an integral over q, see (4.38) and (4.39). The self-energies simplify
to

Σ
≷ν

APi,j
(E) = δi,j DAP G≷ν

i,j
(E) , (4.47)

where similar to (4.42) DAP is given by

DAP =
kBT

ρCNT L υ2
AP

M̃2
AP

L

∆z
,

=
kBT

n mC υ2
AP

M̃2
AP .

(4.48)

A discussion similar to that in Section 4.6.1 gives a justification to keep only diagonal elements
of the self-energy due to the interaction of electrons with acoustic phonons.

By substituting (4.47) in (3.76) the retarded self-energy is obtained as

Σrν

APi,j
(E) = δi,j DAP Grν

i,j
(E) , (4.49)

Due to the approximations made the retarded self-energy for scattering with acoustic phonons
is simplified and directly related to the retarded Green’s function.Therefore, one does not need
to evaluate the integrals like (4.43), which implies a considerable saving of computational cost.
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4.7 Evaluation of Observables

To solve the Poisson equation in a self-consistent scheme one has to know the carrier density
profile in the device. To study device characteristics the current through the device needs to be
calculated. In this section the numerical evaluation of these two observables is discussed.

4.7.1 Carrier Density

The Green’s function matricesG≷ν

i,j
are defined in the basis set of ring numbers i, j and subbands

ν. Thus the diagonal elements correspond to the spectrum of carrier occupation (3.79) of those
basis sites with a given energy E. So the total electron and hole density (per unit length) at a
site i is given by [55]

ni = −4i
∑

ν

∫
dE

2π

G<ν

i,i

∆z
, (4.50)

pi = +4i
∑

ν

∫
dE

2π

G>ν

i,i

∆z
, (4.51)

where the summation runs over all the subbands contributing to transport and ∆z is the average
distance between rings (4.3). The factor 4 in (4.50) and (4.51) is due to double spin and double
subband degeneracy (Section 2.4.2). To evaluate these integrals numerically the energy grid
should be selected such that the numerical error of the calculation can be controlled. This issue
is discussed in Section 4.8.

4.7.2 Current

By expanding the Green’s function in terms of the basis functions the continuity equation
(3.87) can be derived as

− i~q

∆z
lim

t2→t1

(
∂t1G

<
i,i

(t1, t2) + ∂t2G
<
i,i

(t1, t2)
)

︸ ︷︷ ︸
∂t̺

+
J

i+1/2
(t1) − J

i−1/2
(t1)

∆z︸ ︷︷ ︸
∇·J

= 0 ,
(4.52)

where J
i+1/2

represents the current passing through a point between i+1 and i. Note that J has

a unit of A rather than A/m2 due to the one-dimensional nature of CNTs. The time derivative
of the Green’s functions can be replaced by the relation (3.62)

∂t̺i = − q

∆z

∑

j

{
[Hi,jG

<
j,i

(t, t) − G<
i,j

(t, t)Hj,i ]

+

∫
dt′ [Σr

i,j
(t, t′) G<

j,i
(t′, t) + Σ<

i,j
(t, t′) Ga

j,i
(t′, t)

+ Gr
i,j

(t, t′) Σ<
j,i

(t′, t) + G<
i,j

(t, t′) Σa
j,i

(t′, t) ]
}
,

= −
J

i+1/2
(t) − J

i−1/2
(t)

∆z
,

(4.53)
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where the term inside the integral is zero due to the condition stated in (3.90).

The next step is separating J
i+1/2

from J
i−1/2

by decomposing equation (4.52). Caroli proposed
the following ansatz in [96]. The current J is the difference between the flow of particles from
left to right and from right to left. This leads to the following expression for Ji [96]

J
i+1/2

(t) = −q
∑

j≥i+1

∑

k≤i

(
H

j,k
G<

k,j
(t, t) − G<

j,k
(t, t)H

k,j

)
. (4.54)

It is straightforward to show that (4.54) along with an expression for Ji−1
satisfies (4.53).

Under steady-state condition one can transform the time difference coordinate to energy to
obtain

J
i+1/2

= −q

~

∑

j≥n+1

∑

k≤n

∫
dE

2π

(
H

j,k
G<

k,j
(E) − G<

j,k
(E)H

k,j

)
,

= −q

~

∑

j≥n+1

∑

k≤n

∫
dE

2π
2 ℜe[H

j,k
G<

k,j
(E)] ,

(4.55)

Based on the nearest neighbor tight-binding method in mode-space (see Section 4.4) equa-
tion (4.55) can be simplified to

J
ν

i+1/2
=

4q

~

∑

ν

∫
dE

2π
2 ℜe[t

ν

i+1,i
G<ν

i,i+1
] , (4.56)

where the summation runs over all the subbands contributing to transport. The factor 4 in (4.56)
is due to double spin and double subband degeneracy.

4.7.3 Discussion

The carrier concentration is related to the diagonal elements of the Green’s function. The
calculation of the current requires only the nearest off-diagonal elements of the Green’s function.
Furthermore, the Hamiltonian matrix is tridiagonal. Considering these factors one can employ
an efficient method, such as the recursive Green’s method, to calculate only the required
elements of the Green’s functions.

The recursive method has been proposed in [8, 116]. A brief description of the method is
presented in Appendix H. The operations required to solve for all elements of Gr with a size of
N ×N scales as N3. However, the required operations for the recursive method scales linearly
with N [8].
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4.8 Selection of the Energy Grid

For a numerical solution of the transport equations one has to discretize the Green’s functions
in the energy domain. However, due to the presence of narrow resonances at some energies one
has to be careful about the selection of the energy grid. An approximation for the electron
concentration due to a confined state is derived. This analytical function is used as a reference
for comparing the results of the non-adaptive and adaptive methods of selecting the energy grid.

4.8.1 Confined States

The non-interacting Green’s functions for electrons are given by (D.6). For a bound state with
the well-defined energy E0 the Green’s function is given by Gr

0(E) = [E − E0 + iη]−1, where
η = 0+ is a small positive number. The renormalized retarded Green’s function in the presence
of interaction is given by the Dyson equation

Gr(E) =
1

[Gr
0(E)]−1 − Σr(E)

=
1

E − E0 − Σr(E)
,

(4.57)

The self-energy has imaginary and real parts

Σr = ∆ + iΓ/2 . (4.58)

The imaginary part is interpreted as damping of the particle motion. It is related to the finite
life-time of the state. The real part causes an energy shift, which may also change the effective
mass or group velocity. Under equilibrium condition the lesser Green’s function is given by
(see (D.10))

G<(E) = inFA(E)

= inF ×−2ℑm[Gr
0(E)]

= inF
Γ

(E − E0 + ∆)2 + (Γ/2)2
.

(4.59)

The lesser Green’s function is of Lorentzian shape [60]. The peak of the resonance is shifted
by ∆ and is broadened by Γ, as shown in the inset of Fig. 4.10. In open systems, localized states
broaden due to the coupling to contacts (Γ > 0), even in the absence of scattering processes.

The electron concentration for each of the confined states can be calculated as

n =

Emax∫

Emin

dE

2π
nF

Γ

(E − E0 + ∆)2 + (Γ/2)2
. (4.60)

We assume that the Fermi level is far above the resonance, EF ≫ E0 − ∆, so that the Fermi

factor can be replaced by 1. Equation (4.60) is used as a reference function for comparing the
results of different numerical integration methods.
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4.8.2 Non-adaptive Energy Grid

One can straightforwardly divide the integration domain into NE equidistant intervals ∆E =
(Emax − Emin)/NE. A disadvantage of this method is that the numerical error can not be pre-
defined. This problem is more pronounced when the integrand is not smooth. To evaluate (4.60)
numerically a trapezoidal rule and an equidistant grid spacing are used. The dependence of the
accuracy on the following two parameters is studied, namely the grid spacing, ∆E, and the
relative distance between the peak and the nearest grid point, δE. These parameters are nor-
malized as α = ∆E/Γ and β = δE/Γ. The relative error in calculating the carrier concentration,
(n − ñ(α))/n, as a function of grid spacing is shown in Fig. 4.10. Here, n is the analytically
exact value of the carrier concentration (4.60) and ñ refers to the numerically calculated carrier
concentration as a function of α and β.

The variation of the calculated carrier concentration (ñ(0)− ñ(β))/ñ(0) with respect to the shift
of energy points is shown in Fig. 4.11. The reference β = 0 implies that one of the grid points
aligns with the peak of the resonance. The oscillatory behavior depends on the grid spacing.
A shift equal to the grid spacing gives the same result. As a measure of the sensitivity of the
calculated carrier concentration with respect to grid positions ∂ñ/ñ∂β is shown in Fig. 4.12. To
reduce this sensitivity, a very fine grid spacing has to be adopted. This quantity is characteristic
of the numerical error, and needs to be controlled to avoid convergence problem in the self-
consistent iteration loop (see Section 4.9.2).

Figure 4.10: The relative error in evaluating the carrier concentration, (n−ñ(α))/n,
with respect to the grid spacing is shown. The inset shows the normalized Lorentzian
shape of the density of states of a bound state. The peak of the resonance is shifted to
the zero point. At E = ±Γ/2 the function is half of its maximum. The solid line shows
the exact function and the dashed curve shows the approximation of the function based
on the Trapezoidal rule. The grid spacing is ∆E and the shift of energy grids from the
reference point is δE. These parameters are normalized as α = ∆E/Γ and β = δE/Γ.
The reference β = 0 implies that the one of the grid points aligns with the peak of the
resonance. The parameters in this figure are α = 1/3 and β = 0.
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Figure 4.11: The relative variation of the calculated carrier concentration
(ñ(0) − ñ(β))/ñ(0) with respect to the normalized position β of energy grid points.

Figure 4.12: The relative sensitivity of the calculated carrier concentration ∂ñ/ñ∂β
with respect to the position of energy grid points. This term originates from the
numerical error in the evaluation of the carrier concentration. For coarse grid spacing
α > 1, this quantity increases considerably.

In summary, the accuracy of the non-adaptive method strongly depends on the grid spacing and
the position of grid points. If the grid spacing is sufficiently fine, α < 1, the numerical error is
small, but it increases considerably for coarser grid spacing, α > 1. For accurate results a grid
spacing smaller than Γ has to be employed. For example, to resolve a resonance of Γ ≈ 1 µeV
width in an energy range of 1 eV more than 106 energy grid points are required, which would
severely increase the computational cost. For even narrower resonances, (eg. Γ ≈ 1 neV), an
equidistant grid is no longer feasible. To avoid these problems an adaptive method needs to be
employed.
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4.8.3 Adaptive Energy Grid

There is a variety of methods available for numerical adaptive integration [247]. Adaptive
strategies divide the integration interval into sub-intervals and, typically, employ a progressive
formula in each sub-interval with some fixed upper limit on the number of points. If the required
accuracy is not achieved by the progressive formula, the sub-interval is bisected and a similar
procedure carried out on each half. This sub-division process is carried out recursively until
the desired accuracy is achieved. An obvious way to obtain an error estimate is based on the
comparison between two quadrature approximations [248]. However, due to the dependence of
such procedures on the underlying integration formulae, this method may not be reliable [249].
Error estimation with sequences of null rules has been proposed as a simple solution [250]. In
adaptive quadrature algorithms the error estimate governs the decision on whether to accept
the current approximation and terminate or to continue. Therefore, both the efficiency and
the reliability depend on the error estimation algorithm. The decision to further subdivide a
region may be based on either local or global information. Local information refers only to the
region being currently processed, while global information refers obviously to data concerning
all regions. Integration programs based on global subdivision strategies are more efficient and
reliable [251].

In this work a global error estimator based on the null rules method has been employed [249].
The efficiency of this method is studied for the Lorentzian function (4.60). Figure 4.13-a shows
the number of required energy grid points for an interval [−1, 1] eV versus the relative error ǫ of
the integration. The required number of energy grid points versus the width of the resonance,
Γ, is shown Fig. 4.13-b. To resolve a very narrow resonance (Γ ≈ 10−9 eV) with a very high
accuracy (ǫ = 10−6) only a few hundred grid points (NE ≈ 500) are required.

Figure 4.13: a) shows the number of required energy grid points versus the maximum
desired relative error, ǫ, in the adaptive integration method. b) shows the number of
required energy grid points versus the width of the resonance, Γ. The Lorentzian
function (4.60) is used as a reference.

79



IMPLEMENTATION 4.8 Selection of the Energy Grid

Figure 4.14: The left figure shows the normalized spectrum of the carrier
concentration in a Schottky type CNT-FET. The right figure shows the spectrum of
the carrier concentration in the middle of the device for the energy range shown by the
arrow. The results achieved from the adaptive and non-adaptive method are compared.
With the aid of the adaptive method narrow and close resonances are resolved with
a total number of NE ≈ 1000 energy grid points, whereas the non-adaptive method
misses some resonances with the same number of energy grid points.

Figure 4.14 shows the normalized spectrum of the carrier concentration in a Schottky type CNT-
FET (see Section 2.8.2). The length of the device is 50 nm. Energy barriers at the metal-CNT
interfaces cause longitudinal confinement in the tube. Since the device is quite long, the spacing
between confined states is very small. In CNTs the electron-phonon interaction is rather weak
and the confining Schottky barriers are thick, such that resonances are only weakly broadened,
(see Chapter 5). Due to phonon absorption and emission processes there will be more resonances
compared to the ballistic case. In this case, if a non-adaptive method is employed the numerical
error in the calculation of the carrier concentration can be large. The right part of Fig. 4.14
compares the results achieved from the adaptive and non-adaptive methods. The relative error
in the electron density of the non-adaptive method reaches up to 53% in the middle of the device.

In [252] the resonant states have been determined by an eigenvalue solver for finding the roots
of the characteristic equation. However, this method has several drawbacks. Due to the non-
linearity introduced by the self-energies, a non-linear eigenvalue solver has to be employed.
Usually non-linear solvers are based on Newton’s method. Using a non-linear solver for each
iteration can increase the simulation time severely and introduce additional convergence prob-
lems. For example, most solvers fail to find narrow resonances located closely to each other. The
output of the solver is the energy position and the width of the resonance, but not any infor-
mation about the shape of the resonance. In general the shape of resonances deviates from the
ideal Lorentzian shape. The grid has to be allocated based on an initial guess. This implies
that the accuracy of the calculated carrier concentration can not be predefined and strongly
depends on the how close the initial guess is to the actual solution. With the adaptive method
the discussed problems do not occur.
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4.9 Self-Consistent Simulations

For an accurate analysis it is essential to solve the coupled system of transport and Poisson

equations self-consistently [163]. The iterative method for solving this coupled system is pre-
sented. Thereafter, the convergence behavior of the self-consistent iteration is studied.

4.9.1 Self-Consistent Iteration Scheme

Figure 4.15 depicts the block diagram of the iterative procedure employed to solve the coupled
system of transport and Poisson equations. All the procedures are discussed in the following.

We solve the kinetic equations in mode-space, (4.25) and (4.26), to obtain the Green’s functions.
The required elements for calculating the Green’s functions are the Hamiltonian, and the
electron-phonon and contact self-energies. As discussed in Section 4.4, diagonal elements of the
Hamiltonian are potential energies, which can be obtained from the solution of the Poisson

equation, and off-diagonal elements represent the coupling between adjacent rings of carbon
atoms in the CNT. Given the contact properties and the contact-device coupling parameters,
the contact self-energy Σrν

C can be calculated once at the start of the simulation (see Section 4.5).

The calculation of the electron-phonon self-energy is presented in Section 4.6. Within the
self-consistent Born approximation of the electron-phonon self-energy (Section 3.6), the non-
interacting Green’s function G0 is replaced by the full Green’s function G. However, the full
Green’s is the not known and has to be calculated. As a result, a coupled system of equations
is achieved which can be solved by iteration

Grν〈m〉

= [EI −Hν − Σrν〈m−1〉

e−ph − Σrν

C ] , (4.61)

where m denotes the iteration number. For the first step the electron-phonon self-energy is
assumed to be zero and the Green’s function is calculated from the kinetic equation. The next
iteration starts with the calculation of the electron-phonon self-energy based on the Green’s
function from the previous iteration. The updated electron-phonon self-energy is then used for
the calculation of the Green’s function. This iteration continues till a convergence criterion is
satisfied. The mentioned procedure should be followed for each subband (mode) and finally the
total charge density is calculated.

In semi-classical simulations, the coupled system of the transport and Poisson equations is
solved by Gummel’s or Newton’s method [226]. Both Gummel’s method [253] and a variation
of Newton’s method [254] can be employed in self-consistent quantum mechanical simulations.
While Gummel’s method has a fast initial error reduction, for Newton’s method it is very
important that the initial guess is close to the solution. The computational cost per iteration of
Newton’s method can be much higher than that for Gummel’s method.

We employed Gummel’s method, where after convergence of the electron-phonon self-energy the
Poisson equation is solved once. Based on the updated electrostatic potential, the Green’s
functions and the electron-phonon self-energy are iterated again. These two iterations con-
tinue until a convergence criterion is satisfied. Finally, the total current through the device is
calculated.
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Figure 4.15: Block diagram of the iterative procedure employed to solve the coupled
system of transport and Poisson equations. For the first step an initial guess for the
electron-phonon self-energy is required, here we assumed Σe−ph = 0.
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4.9.2 Convergence of the Self-Consistant Simulations

The coupled system of transport and Poisson equation can be solved by iteration with appro-
priate numerical damping, which terminates if a convergence criterion is satisfied [255]. In this
work, the maximum element of the potential update, corresponding to L∞ = |φk − φk−1|∞, is
considered as a measure of convergence.

One of the reasons causing convergence problems [256, 257] is the exponential dependence of
the carrier concentration on the electrostatic potential, n ∝ exp(qφ/kBT ). A small potential
variation causes large variation in the carrier concentration

∂n

n∂φ
≈ q

kBT
. (4.62)

As a result, a strong damping is required in many cases, which increases the simulation time.
To avoid this problem a non-linear Poisson equation is generally employed [258]. Solving a
non-linear Poisson equation takes that exponential dependence into account. Compared to the
linear Poisson equation, it leads to faster convergence in both semi-classical [258] and quantum
mechanical [257, 259] transport simulations. In this work the Gummel method along with a
non-linear Poisson equation is employed.

However, we show that an inappropriate energy grid for the discretization of the transport
equations can be another reason of convergence problems in quantum transport simulations. It
is demonstrated that with adaptive energy grids the iterative solution can converge very fast
and the simulation time can decrease considerably.

In Section 4.8.2 it was shown that with a shift of an equidistant grid the calculated carrier
concentration can change sharply. This sensitivity resulting from the numerical error causes
convergence problems in the self-consistent loop. In all non-adaptive methods some fixed energy
grid is adopted. In successive iterations of the Poisson and transport equations, the electrostatic
potential changes and this in turn affects the relative distance between resonance energies and
the energy grid points. As a result, the evaluated carrier concentration can vary sharply in one
iteration step, which affects the calculated electrostatic potential for the next iteration. For a
quantitative analysis one can assume that the shift of energy grid is due to the variation of the
electrostatic potential, q∂φ = δE = Γ∂β.

∂ñ

ñ∂φ
=

q

Γ

∂ñ

ñ∂β
(4.63)

The sensitivity of the calculated carrier concentration with respect to energy grid shifts defined
by (4.63) is shown in Fig. 4.12. For a relatively coarse grid, α ≈ 2− 3, the sensitivity (4.63) can
be approximated as

∂ñ

ñ∂φ
≈ q

Γ
(4.64)

In this case the contribution of a resonance of width Γ ≤ kBT will be larger than (4.62). To
reduce the effect of this term, a fine grid spacing must be used (α ≤ 1). The non-adaptive
method requires many grid points to resolve fine resonances, while the adaptive method puts
many energy grid points only close to resonances and few ones off the resonance. Therefore, the
adaptive method keeps the total number of grid points quite low and maintains a high accuracy.
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Figure 4.16: The infinity norm of the potential update after each iteration.

The convergence of the self-consistent loop using the adaptive and non-adaptive methods is
studied. With the non-adaptive method 104 energy grid points are used. For the adaptive
method, relative errors of ǫ = 10−3 and ǫ = 10−6 are assumed. Fig. 4.16 shows the infinity
norm of the potential update after each iteration. With the adaptive method the norm of the
potential update decreases exponentially and finally reaches a limit which depends on the error
tolerance of the integration. With the non-adaptive method the norm of the potential update
oscillates and no convergence is achieved. Fig. 4.17 shows the calculated carrier concentration
due to several confined states, based on four successive iterations of the non-adaptive method.
From the first to the second iteration the carrier concentration changes very sharply. Therefore,
at the first iteration one is close to the highly sensitive region (see Fig. 4.12). From the second
to the third iteration the carrier concentration changes only little, which can be mapped to
the low sensitive region. From the third to the forth iteration the variation is large, which
implies that we are again close to the highly sensitive region. This sequence continues and
prevents convergence. To avoid this problem a fine grid spacing can be used, which decreases
the sensitivity in all regions. As it was shown in Fig. 4.10 the non-adaptive method requires a
grid spacing smaller than Γ for accurate result.

By reducing ǫ = 10−3 to ǫ = 10−6 in the adaptive method the self-consistent iteration yields
more accurate results, but the number of required energy grid points increases, which increases
the simulation time of each iteration. Fig. 4.18 shows the infinity norm of the potential update
versus CPU-time. A suitable criterion for the termination of the self-consistent loop was found
as q|φk − φk−1|∞ < kBT/10. If the maximum potential update in the device is much smaller
than kBT, the carrier concentration will change only weakly during the next iteration. For most
of the simulations performed such a criterion was satisfied for ǫ ≈ 10−3.
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Figure 4.17: Explanation of the oscillation in the calculated carrier concentration in
successive self-consistent iterations. The results are for a non-adaptive method with
104 grid points. The sensitivity of the calculations for each of these iterations is shown
in Fig. 4.12. The first and the third iterations are in a high sensitive region, while the
second and the forth iterations are in a low sensitive region.

Figure 4.18: The infinity norm of the potential update versus CPU-time. Simulations
based on the adaptive method converge fast and the minimum achievable norm of the
potential update depends on the accuracy of the integration. The non-adaptive method
does not convergence.
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Chapter 5

Applications

FAST SWITCHING and high Ion/Ioff current ratio are the most important characteristics
required for future nano-electronic applications. Based on the quantum transport model

outlined in Chapter 4 both the static and dynamic response of CNT-FETs are investigated.
Based on the result we propose methods to improve the functionality and performance of such
devices.

In the first section the ambipolar conduction of CNT-FETs, which results in performance lim-
itation, is studied in detail. We propose a double-gate structure to suppress this behavior.
Simulation results indicate that a considerable improvement of device characteristics can be
achieved by employing this structure. In this device type carrier injection at the source and
drain contacts are controlled separately.

However, since the fabrication of single-gate devices is more feasible than their double-gate
counterpart, we focus on such devices in the next section. Scaling of the gate-insulator thickness
and the effect of relative permittivity of the gate-insulator on the performance of single-gate
CNT-FETs have been studied in the literature [5, 260,261].

We analyze scaling of the gate-source and gate-drain spacer length of single-gate CNT-FETs,
which has not yet been studied in the literature. By increasing the gate-drain spacer length
the ambipolar conduction decreases and the Ion/Ioff ratio increases. Furthermore, the parasitic
capacitances are reduced which results in reduced switching time. By increasing the gate-
source spacer length both the on-current and parasitic capacitances decrease. We show that by
optimizing this spacer length the performance of the device can be significantly enhanced. The
results indicate that these effects can be very different from that in conventional MOSFETs.

Next we study a new device type, the gate controlled tunneling CNT-FET. The effect of the
source and drain doping on the performance of these devices is investigated. We show that by
using an asymmetric doping the Ion/Ioff ratio increases.

Finally, the effect of electron-phonon interactions on the device characteristics is discussed in
detail. In agreement with experimental data, our results indicate that electron phonon interac-
tions can affect the DC current of CNT-FETs only weakly whereas the switching response of
such devices can be affected significantly.
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5.1 Double-Gate Design

The operation of CNT-FETs can be described in terms of carrier injection through the Schot-

tky barrier at the metal-CNT interface (see Section 2.8.2). However, the ambipolar conduction
results in performance limitation [64,261,262]. In this section the ambipolar conduction is stud-
ied in detail. Then, a double-gate design is proposed to suppress this behavior effectively. The
first gate controls carrier injection at the source contact and the second one controls carrier
injection at the drain contact, which can be used to suppress parasitic carrier injection. The
effect of the second gate voltage on the performance of the device has been investigated. Our
results indicate that by applying a proper voltage range to the second gate improved device
characteristics can be achieved.

5.1.1 Ambipolar Conduction

A single-gate CNT-FET with symmetric gate-source and gate-drain spacer lengths is shown
in Fig. 5.1. It is assumed that the Schottky barrier heights for electrons and holes are equal.
The output and transfer characteristics of this device for different biases are shown in Fig. 5.2
and Fig. 5.3, respectively. To obtain a better insight into the device operation the band-edge
profiles along the device are also shown.

Fig. 5.2 and Fig. 5.3 show that electron current through the source-sided barrier is both tunneling
and thermionic emission. However, there is a parasitic current due to the thermionic emission of
holes across the drain sided barrier. If the drain voltage becomes higher than the gate voltage,
the thickness of the drain-sided Schottky barrier for holes is reduced. As a result, the parasitic
band-to-band tunneling current of holes increases and ambipolar conduction occurs.

The current contributions of electrons and holes are represented by blue and red curves, respec-
tively. Note that at transition points electrons and holes have the same contribution to the total
current, whereas in other regions either the electron or hole contribution will dominate. The
results indicate that the ambipolar conduction has a detrimental effect on the device operation
in both the on- and off-state.

Figure 5.1: Sketch of the single-gate (SG) structure. TIns = 10 nm and LGS =
LGD = 4 nm.
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Figure 5.2: Right figures show the output characteristics and left ones the
corresponding band-edge profile. a) VD = 0.2 V, b) VD = 0.4 V, and c) VD = 0.6 V.
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Figure 5.3: Right figures show the transfer characteristics and left ones the
corresponding band-edge profile. a) VG = 0.3 V, b) VG = 0.1 V, and c) VG = 0.0 V.
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5.1.2 Double-Gate CNT-FET

To suppress the ambipolar behavior of CNT-FETs and improve the performance of these devices,
we propose a double-gate structure as shown in Fig. 5.4. The first gate controls the carrier
injection at the source contact, which determines the on-current, and the second one controls
the carrier injection at the drain contact, which determines the off-current.

If the drain voltage is applied to the second gate, at any drain voltage the band edge profile
near the drain will be nearly flat, as shown in Fig. 5.5-b. In consequence the parasitic tunneling
current of holes is suppressed and the parasitic current is limited to thermionic emission of holes
over the drain-sided Schottky barrier.

By applying a voltage higher than the maximum drain voltage to the second gate, thermionic
emission of holes over the drain-sided barrier decreases exponentially and consequently a lower
off-current is achieved (Fig. 5.5). It should be noted that if the drain voltage reaches a value
higher than the second gate voltage, parasitic hole current will increase again.

The output characteristics of the double-gate structure is shown in Fig. 5.6-a. If the second
gate is biased at the drain voltage, the drain current will not increase until the drain voltage
reaches the first gate voltage. The reason for this behavior is that carriers in the channel see a
thick barrier near the drain contact until the drain voltage reaches a value higher than the first
gate voltage (see Fig. 5.6-b). If the second gate is biased at a voltage higher than the maximum
drain voltage, carries in the channel face a thin barrier even at low drain voltages while the holes
barrier at the drain contact is thick.

It is of advantage to apply the drain voltage to the second gate, because parasitic capacitances
between the second gate and the drain are avoided, no separate voltage source for the second gate
is needed, and the fabrication is more feasible. The off-current is determined by the thermionic
emission current over the Schottky barrier. The drain current, however, is small until the
drain voltage reaches a value higher than the first gate voltage. By applying a voltage higher
than the maximum drain voltage to the second gate, a high Ion/Ioff ratio can be obtained.

Figure 5.4: Sketch of the double-gate (DG) structure.

90



APPLICATIONS 5.1 Double-Gate Design

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
V

G
 [V]

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

I D
 [

A
]

SG                    

DG    V
G2

 = V
D

DG    V
G2

 = 0.8 V

a)

0 20 40 60 80 100 120
Position [nm]

-1.5

-1.2

-0.9

-0.6

-0.3

0

0.3

E
ne

rg
y 

[e
V

]

SG

DG   V
G2

 = V
D

DG   V
G2

 = 0.8 V

Tunneling

Thermionic Emission

Tunneling

Thermionic Emission

Electron Injection

Hole Injection

V
G1

 = 0.3 V

V
D

  = 0.6 VE
C

E
V

b)

Figure 5.5: a) Comparison of the transfer characteristics of the single-gate (SG) and
double-gate (DG) structure at VD = 0.6 V. Two different biases are assumed for the
second gate. b) Comparison of the band edges profile, along the SG and DG structure.
TIns = 4 nm and LGS = LGD = 2 nm.

Regarding the separation between the two gates several parameters should be considered: By
decreasing this separation, the parasitic capacitance between the gates increases which deterio-
rates the frequency response of the device. Also because of the narrow band gap of CNTs, at
certain operating voltages the band to band tunneling current will increase by decreasing this
distance, which affects the off-current.
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Figure 5.6: a) Output characteristics of the double-gate (DG) structure.
b) Conduction band edge profile of the DG structure at low drain biases.
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5.2 Asymmetric Single-Gate Design

In Section 5.1 we showed that an extra gate close to the drain-sided Schottky barrier can
effectively suppress the parasitic current, which results from ambipolar conduction. However,
due to some technological limitations using an extra gate may not be suitable for some appli-
cations. In this section we show that by asymmetric scaling of the gate-source and gate-drain
spacer length of a single-gate device the ambipolar conduction can be reduced. Furthermore,
appropriate selection of the gate-source and gate-drain spacer length results in considerable re-
duction of parasitic capacitances. As a result, improved device characteristics can be achieved.
Results for devices with different barrier heights at the metal-CNT interface are discussed.

5.2.1 Gate-Source Spacer Length

The output and transfer characteristics for a device with zero barrier height for electrons is
shown in Fig. 5.7. The increase of the gate-source spacer length results in a decrease of the
on-current while the off-current is not affected. The on-current is mostly due to carrier injection
through the source sided Schottky barrier whereas the off-current in CNT-FETs is mostly due
to parasitic carrier injection at the drain sided Schottky barrier, (see Section 5.2.2). Therefore,
the off-current is not affected by the scaling of the gate-source spacer length.

Both tunneling and thermionic emission contribute to the current. The thermionic emission
current is controlled by the barrier height and is independent of the barrier width. On the
other hand, the tunneling current decreases exponentially with the barrier width. Fig. 5.8 shows
that by increasing the gate-source spacer length the width of the Schottky barrier at the
source-sided metal-CNT interface is increased. As a result, the current is reduced.
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Figure 5.7: The effect of the gate-source spacer length (LGS) on a) the output
characteristics with VG = 0.5 V and b) the transfer characteristics with VD = 0.8 V.
The results are for a device with zero barrier height for electrons (qΦBe = 0).
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Figure 5.8: The effect of the gate-source spacer length (LGS) on the current. The
normalized current spectrum based on a ballistic transport model for a devices with
zero barrier height for electrons is shown for a) LGS = 1 nm, b) LGS = 5 nm, and c)
LGS = 10 nm. The bias point is VG = 0.6 V and VD = 0.8 V.
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Figure 5.9 shows the relative variation of the on-current versus the gate-source spacer length for
devices with negative, zero, and positive barrier height for electrons, assuming ballistic transport.
The results indicate that scaling of the gate-source space length affects the on-current of devices
with positive barrier height more effectively.

Figure 5.10 shows the current density spectrum for devices with negative, zero, and positive
barrier height for electrons, assuming ballistic transport. Electrons with energies lower than
the barrier height have to tunnel through the source-sided metal-CNT interface barrier to reach
the channel, whereas electrons with higher energies are injected by thermionic emission. The
relative contributions of thermionic and tunneling strongly depend on the barrier height and
the bias point. As shown in Fig. 5.10, at high gate bias even for devices with zero or negative
barrier height the tunneling current contributes considerably to the total current. However, in a
device with negative barrier height the tunneling current has a smaller contribution to the total
current as compared to devices with non-negative barrier height. Therefore, the current is less
sensitive to the variation of the gate-source spacer length (Fig. 5.9).

In conclusion, the on-current of all device types decreases as the gate-source spacer length
increases. The reduction of the on-current strongly depends on the relative contribution of
the tunneling current. To improve the static response it is more appropriate to reduce the
gate-source spacer length. However, the reduction of this spacer results in an increase of the
gate-source parasitic capacitances which can severely affect the dynamic response of the device.
For optimal performance the length of this spacer has to be carefully selected, see Section 5.3.
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Figure 5.9: The relative variation of the on-current versus the gate-source spacer
length (LGS) for devices with different barrier heights for electrons. In a device with
negative barrier height the tunneling current has a smaller contribution to the total
current as compared to other device types. Therefore, the current is less sensitive to
the variation of the gate-source spacer length.
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Figure 5.10: The effect of the barrier height at the metal-CNT interface on the
current. The normalized current spectrum based on a ballistic model transport is
shown for a device with a) negative (qΦBe = −0.3 eV), b) zero (qΦBe = 0), and
c) positive barrier height for electrons (qΦBe = +0.3 eV). The operating point is
VG = 0.6 V and VD = 0.8 V.
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5.2.2 Gate-Drain Spacer Length

The transfer characteristics for a device with zero barrier height for electrons is shown in Fig. 5.11-
a. In the off-regime the drain current starts to increase due to ambipolar conduction. By further
increasing the drain bias this phenomenon becomes more apparent (see Section 5.1.1). Fig. 5.11-b
shows that if the drain voltage becomes higher than the gate voltage, the thickness of the drain-
sided metal-CNT barrier for holes is reduced. As a result, the parasitic band-to-band tunneling
current of holes increases. By increasing the gate-drain spacer length, the band edge profile near
the drain contact is less affected by the gate voltage. Therefore, the barrier for holes at the
drain-side is thicker and the parasitic tunneling current of holes is suppressed. Fig. 5.11-a shows
that, the off-current decreases considerably, as the gate-drain spacer length increases, while the
on-current is only weakly affected.

Fig. 5.12 compares the increase of the Ion/Ioff ratio as a function of the gate-drain spacer
length. In a device with negative barrier height more improvement is achieved. A smaller barrier
height for electrons results in a larger barrier height for holes. A negative barrier height for
electrons gives a positive barrier height for holes, implying that the tunneling process contributes
predominantly the hole current. As a result, for a device with negative barrier height for electrons
the parasitic hole tunneling current can be more effectively suppressed than for other device
types.

Fig. 5.13 compares the effect of the gate-drain spacer length on the output characteristics for
devices with different barrier heights. In the device with positive barrier height for electrons, the
current at low drain biases decreases as the gate-drain spacer length increases. This behavior
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Figure 5.11: a) Transfer characteristics at different drain biases. The increase of
the off-current is due to parasitic hole injection at the drain contact. By increasing
the gate-drain spacer length (LGD) the parasitic current of holes at the drain contact
decreases. b) Comparison of the band-edge profile for devices with LGD = 4 nm and
LGD = 20 nm. VG = 0.6 V and VD = 0.8 V. As LGD increases, the band-bending near
the drain contact decreases, and the drain-sided metal-CNT barrier is thicker.
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Figure 5.12: The ratio of the Ion/Ioff ratio versus the gate-drain spacer length (LGD)
for devices with different barrier heights for electrons. Increasing the gate-drain spacer
length improves the Ion/Ioff ratio for all devices. The device with negative barrier
height shows the largest improvement. As the barrier height for electrons decreases,
the barrier height for holes increases. Therefore, in a device with negative barrier
height for electrons the barrier height for holes is positive. In this case the hole current
is more sensitive to the variation of the gate-drain spacer length than it is for other
device types. For all results VD = 0.6 V was assumed.

can well be understood by considering Fig. 5.10-c. In a device with positive barrier height,
electrons in the channel face a barrier at the drain-sided metal-CNT interface. Similar to what
we discussed for the gate-source spacer length, with increasing gate-drain spacer length the
thickness of the drain-sided metal-CNT barrier increases, such that the drain current will be
reduced. If the drain voltage becomes higher than the gate voltage, most of the electrons can
reach the drain contact by thermionic emission. In devices with negative and zero barrier height
this problem is less apparent, since even at low drain voltages a drain sided-barrier does not
form, see Fig. 5.10-a and Fig. 5.10-b.

It should be noticed that, as opposed to conventional MOSFETs, increasing the length of the
un-gated area determined by the gate-drain spacer does not increase the channel resistance.
In conventional MOSFETs the resistivity of the channel is modulated, when the gate voltage
attracts or repels carriers from the channel. For an enhancement-type device the resistance of
the un-gated region is high. In contrast, the intrinsic conductance of CNTs is independent from
the gate voltage. In conventional MOSFETs carrier transport is diffusive, while in CNT based
transistors carrier transport is nearly ballistic. To make a fair comparison with conventional
MOSFETs, the effect of the gate-drain spacer length on the output characteristics is investigated
for both the ballistic and diffusive transport limit. To study diffusive transport in CNT based
transistors an artificially large value for the electron-phonon coupling strength and a small value
for the phonon energy is chosen (see Section 5.5.3). Fig. 5.13 shows that even in the case of
diffusive transport the length of the un-gated region has a negligible effect on the on-current.
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Figure 5.13: The effect of the gate-drain spacer length (LGD) on the output
characteristics for a device with a) negative, b) zero, and c) positive barrier height for
electrons. In all cases the results are shown for both ballistic and diffusive transport.
For diffusive transport the parameters D = 10−1 eV2 and ~ω = 25 meV were used.

98



APPLICATIONS 5.3 Device Optimization

5.3 Device Optimization

The gate-delay time with respect to the Ion/Ioff ratio can be used to compare devices with
different geometries and material properties [263]. The gate-delay time is defined next and it is
approximated for CNT-FETs. Then we show that by appropriate selection of the spacer lengths
the gate-delay time with respect to the Ion/Ioff ratio can be well optimized.

5.3.1 Gate-Delay Time of CNT-FETs

The gate-delay time, which characterizes the switching response of the transistor, is an important
metric for digital electronic applications. The gate-delay time of a transistor is defined as time
taken to charge a constant gate capacitance CG to a voltage VDD at a constant current Ion

τ =
CG VDD

Ion
. (5.1)

The total gate capacitance is given by CG = CGG+CGS+CGD, where CGS and CGD are the gate-
source and gate-drain parasitic capacitances, and CGG can be written as C−1

G = CIns
−1+CCNT

−1,
where CIns is the gate insulator capacitance and CQ is the so called quantum capacitance given
by [264]

CQ =
∂QCNT

∂φCNT
, (5.2)

where φCNT is the electrostatic potential on the surface of the CNT and QCNT is the total
charge along the CNT. Given the one-dimensional density of states and assuming equilibrium
conditions, (5.2) can be approximated as [264–266]

CQ ≈ 8q2

hυF
≈ 400 aF/µm , (5.3)

where the twofold band and spin degeneracy is included. If thin and high-κ insulators are used,
then CIns ≫ CQ and CGG ≈ CQ, implying that the potential on the CNT becomes equal to
the gate potential (perfect coupling). This regime is called quantum capacitance limit in which
the device is potential-controlled rather than charge-controlled [267]. The insulator capacitance,
occurring between the CNT and a cylindrical gate, is given by

CIns =
2πκε0

ln(TIns/RCNT + 1)
, (5.4)

where TIns is the gate insulator thickness and RCNT is the radius of the CNT. Assuming a
HfO2 gate insulator with a thickness of 2 nm, CIns≈ 1500aF/µm, satisfying the condition of the
quantum capacitance limit (CQ ≪ CIns). Parasitic capacitances are usually much larger than
the quantum capacitance (CGS +CGD ≫ CQ) [268,269]. Therefore, the gate capacitance can be
approximated as

CG ≈ CGS + CGD . (5.5)
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5.3.2 Optimized Spacer Length

In Section 5.2.1 it was shown that by increasing the gate-source spacer length the parasitic
capacitance between these two contacts is reduced, and so does the on-current. In Section 5.2.2
it was shown that by increasing the gate-drain spacer length the Ion/Ioff ratio increases. At the
same time, by increasing the gate-drain spacer length the parasitic capacitance between these
two contacts decreases, which results in a reduced gate-delay time. Fig. 5.14 shows the effect of
the gate-drain spacer length on the gate-delay time versus the Ion/Ioff ratio, which indicates a
significant performance improvement by increasing the gate-drain spacer length.

Since the gate-delay time is proportional to the parasitic capacitance and inversely proportional
to the on-current (5.1), there is an optimal value for the gate-source spacer length, LGS0, which
minimizes the gate-delay time. The optimal value for the gate-source spacer length is achieved
if

∂τ

∂LGS


LGS0

=
1

CG

∂CG

∂LGS


LGS0

− 1

Ion

∂Ion
∂LGS


LGS0

= 0 . (5.6)

Fig. 5.15 shows the sensitivity of the on-current with respect to the gate-source spacer length
for devices with zero and positive barrier heights for electrons. For thinner insulators the width
of the source-sided barrier decreases, resulting in a higher tunneling current contribution to the
total current and a higher sensitivity of the on-current to LGS (see Section 5.2.1).

The optimal gate-source spacer length for a device with zero barrier height for electrons is
LGS≈ 6 nm for TIns = 2 nm and LGD = 20 nm. For devices with positive barrier heights the
optimal value of the gate-source spacer length is smaller than that of a device with zero barrier
height due to the higher sensitivity of the on-current with respect to the gate-source spacer
length.

Note that the optimal value for LGS depends on LGD. For small values of LGD the gate-drain
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Figure 5.14: The effect of LGD on the gate-delay time versus the Ion/Ioff ratio for a
device with zero barrier height for electrons (qΦBe = 0). LGS = 2 nm and VD = 0.8 V.
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Figure 5.15: The sensitivity of the parasitic capacitance and the on-current with
respect to LGS for a device with a) zero barrier height (qΦBe = 0) and b) positive
barrier height (qΦBe = 0.3 eV) for electrons. The intersection of the curves gives the
optimum LGS0 which minimizes τ .

parasitic capacitance dominates the gate-source parasitic capacitance. Therefore, any further
decrease of the gate-source spacer length does not improve the gate-delay time. As shown
in Fig. 5.16, the optimal value of the gate-source spacer length for the given material and
geometrical parameters results in optimized device characteristics.
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Figure 5.16: The effect of LGS on the gate-delay time versus the Ion/Ioff ratio for
a device with zero barrier height for electrons (qΦBe = 0). VD = 0.8 V. The optimal
LGS for both device types are shown.
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5.4 Tunneling CNT-FETs

To reduce the parasitic capacitance the spacing between the gate-source and the gate-drain
contacts can be increased. The extension region can be of n or p-type leading to n/i/n or p/i/p
devices. Unlike conventional semiconductors in which doping is introduced by ion implantation,
doping of CNTs requires controlling the electrostatics of the CNT environment (see Section 2.8.3)
by additional gates [270], molecules [271], or metal ions [272].

In n/i/n or p/i/p devices the gate controls the thermionic emission current [270]. Aggressively
scaled devices of this type suffer from charge pile-up in the channel [273,274], which deteriorates
the off-current substantially and ultimately limits the achievable Ion/Ioff ratio [273]. To overcome
this obstacle a gate-controlled tunneling FET (T-CNT-FET) has been proposed [275].

In T-CNT-FET devices either a p/i/n or n/i/p doping profile can be used. The gate voltage
modulates the band to band tunneling current. T-CNT-FETs benefit from a steep inverse sub-
threshold slope and a better controlled off-current. In this section the effect of symmetric and
asymmetric doping on the device characteristics is discussed.

5.4.1 Symmetric and Asymmetric Doping

The operation of the device can be well understood by considering the spectrum of the electron
density along the device (Fig. 5.17). At high negative gate voltages, due to strong band bending
near the source contact, band to band tunneling contributes significantly to the total current.
By increasing the gate voltage to positive values the band bending near the source contact
decreases, and as a result band to band tunneling decreases.

On the other hand, the increase of the gate voltage results in strong band to band tunneling near

Figure 5.17: The electron density spectrum along the device with a) symmetric and
b) asymmetric doping profile.
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Figure 5.18: The transfer characteristics for a) symmetric and b) asymmetric doping.

the drain contact. As a result the total current increases in the off-regime (Fig. 5.18-a) which
has a detrimental effect on the device performance. Fig. 5.19-a shows that the parasitic current
increases if the drain voltage becomes much higher than the gate voltage. For the device with
symmetric doping we assumed that the donor and acceptor concentrations at the source and
drain contacts are NDS

= NAD
= 2 × 109 m−1. By decreasing the doping of the drain side, the

band bending decreases for the same gate voltage (Fig. 5.17-b) and the band to band tunneling
current near the drain contact decreases considerably (see Fig. 5.18-b and Fig. 5.19-b). For the
device with asymmetric doping profile, NDS

= 2 × 109 m−1 and NAD
= 5 × 108 m−1.
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Figure 5.19: The output characteristics for a) symmetric and b) asymmetric doping.
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5.5 The Effect of Electron-Phonon Interaction

The electron-phonon coupling strength and the phonon energy depend on the chirality and the
diameter of the CNT (see Section 2.6.1). In this section the device response is studied for a wide
range of electron-phonon interaction parameters.

5.5.1 Electron-Phonon Coupling Strength

Fig. 5.20-a shows the ballisticity as a function of the electron-phonon coupling strength. The
ballisticity is defined as ISc/IBl, the ratio of the on-current in the presence of electron-phonon
interaction to the current in the ballistic case [276]. With increasing electron-phonon coupling
strength the self-energy increases.

The left part of Fig. 5.20-b illustrates an electron losing its kinetic energy by emitting a phonon.
The electron will be scattered either forward or backward. In the case of backward scattering the
electron faces a thick barrier near the source contact and will be reflected with high probability,
such that its momentum will again be directed towards the drain contact.

Elastic scattering conserves the energy of carriers, but the current decreases due to elastic back-
scattering of carriers. Fig. 5.21-a shows that for elastic scattering the source and drain current
spectra are symmetric. As the electron-phonon coupling strength increases, resonances in the
current spectrum are washed out and the total current decreases due to elastic back-scattering.
In the case of inelastic scattering, carriers acquiring enough kinetic energy can emit a phonon
and scatter into lower energy states. Therefore, as shown in Fig. 5.21-b, the source and drain
current spectra are not symmetric.

Figure 5.20: a) Ballisticity versus electron-phonon coupling strength for a CNT of
50 nm length. Results for both elastic and inelastic scattering with different phonon
energies are shown. The operating point is VG = VD = 1 V. b) Sketch of phonon
emission and absorption processes in the channel.
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Figure 5.21: The spectra of the source and drain currents. a) The effect of elastic
phonon scattering with different coupling strengths is shown. As the coupling strength
increases resonances in the current spectrum wash out and the total current decreases
due to elastic back-scattering. b) The effect of inelastic phonon scattering with different
coupling strengths is shown. The phonon energy is ~ω = 100 meV. Carriers acquiring
enough kinetic energy can emit phonons and scatter into lower energy states. Since
the energy of electrons is not conserved in this process, the source and drain current
spectrum are not symmetric. As the coupling strength increases more electrons are
scattered into lower energy states.
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5.5.2 Phonon Energy

Figure 5.22-a shows the dependence of the ballisticity with respect to the phonon energy. With
increasing phonon energy the effect of phonon scattering on the current is reduced, because
scattered electrons lose more kinetic energy and the probability for traveling back to the source
contact decreases. The considerable decrease of ballisticity for low energy phonons is due to the
phonon absorption process.

The right part of Fig. 5.20-b shows an electron absorbing energy from a phonon and scattering
into a higher energy state. In this case, the probability for arriving at the source contact
increases. This process can severely reduce the total current.

Fig. 5.22-b separately shows the effects of the phonon emission and absorption processes on the
ballisticity. As the phonon energy decreases, the phonon occupation number (C.18) increases
exponentially, and the self-energy contributions of these two components increase. However, due
to the higher probability for back-scattering of electrons in the case of phonon absorption, this
component reduces the total current more effectively than the phonon emission process does.

Fig. 5.23-a shows the ratio of the gate-delay time (Section 5.3.1) in the presence of electron-
phonon interaction to that in the ballistic case, τSc/τBl, as a function of the electron-phonon
coupling strength. As the phonon energy increases the gate-delay time increases. This behavior
can be attributed to the average electron velocity in the channel, which is high for ballistic
electrons and low for electrons scattered to lower energy states.

Figure 5.22: a) Ballisticity versus phonon energy for a CNT of 50 nm length. Results
for inelastic scattering with different electron-phonon couplings are shown. VG =
VD = 1 V. b) Ballisticity versus phonon energy with D = 10−1 eV2 at the bias point
VG = VD = 1 V. The contributions due to phonon absorption and emission are shown.
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Figure 5.23: a) The ratio of the gate-delay time in the presence of electron-phonon
interaction to the gate-delay time in the ballistic case, τSc/τBl, as a function of the
electron-phonon coupling strength. For comparison, the ratio ISc/IBl is also shown.
As the phonon energy increases the gate-delay time increases. This behavior is due
to the reduction of the electron velocity in the channel and the resulting charge pile
up. b) The spectra of the source and drain currents. The effect of inelastic scattering
with different phonon energies is shown. The electron-phonon coupling strength is
D = 2 × 10−1 eV2. The figure shows a considerable increase of the electron population
close to the conduction band-edge as the phonon energy increases.

Figure 5.24: a) The profile of the electron velocity near the source contact. b)
The profile of the electron concentration along the device. The results for the ballistic
case and for electron-phonon interaction are shown. As the phonon energy increases
the electrons scatter to lower energy states. Therefore, the electron velocity decreases
and the carrier concentration increases. The electron-phonon coupling strength is
D = 10−1 eV2 and the bias point is VG = VD = 1 V.
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Fig. 5.23-b shows the spectra of the source and drain currents for different inelastic phonon
energies. Electrons can emit a single phonon or a couple of phonons to reach lower energy
states. The probability of multiple phonon emissions decreases as the number of interactions
increases. Therefore, as the phonon energy increases, the occupation of electrons at lower energy
states increases.

As shown in Fig. 5.23-b, the electron population close to the conduction band-edge considerably
increases as the phonon energy increases. Therefore, as the phonon energy increases the mean
velocity of electrons decreases and the carrier concentration in the channel increases (Fig. 5.24).
The increased charge in the channel results in an increased gate-delay time.

5.5.3 Diffusive Limit

All the above discussed results were calculated for a device with a CNT length of 50 nm. In the
case of ballistic transport the current is independent of the device length, but in the presence
of scattering it decreases as the device length increases. Fig. 5.25-a shows the ballisticity as a
function of the CNT length in the presence of elastic and inelastic electron-phonon interaction.
An artificially large value for the electron-phonon coupling strength and a small value for the
phonon energy is chosen to simulate the diffusive limit (see Fig. 5.25-b). In this case, the current
is expected to be inversely proportional to the device length according to Ohm’s law.
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Figure 5.25: a) Ballisticity versus CNT length. The electron-phonon coupling
strength for both elastic and inelastic scattering is D = 10−1 eV2, and ~ω = 25 meV
for inelastic scattering. These scattering parameters simulate the diffusive regime.
In this case the ballisticity is inversely proportional to the device length [277]. b)
Ballisticity as a function of the electron-phonon coupling strength and phonon energy
for inelastic scattering. The scale of the ballisticity is shown in the color bar. The
regions of ballistic and diffusive transport are shown. As the strength of the electron-
phonon interaction increases transport of carriers deviates from the ballistic limit and
becomes more diffusive.
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APPLICATIONS 5.5 The Effect of Electron-Phonon Interaction

5.5.4 Discussion

In general the electron-phonon interaction parameters depend on the diameter and the chirality
of the CNT (see Section 2.6.1). CNTs with a diameter dCNT > 2 nm have a band gap EG <
0.4 eV (2.10), which render them unsuitable as channel for transistors. Since the fabrication of
devices with a diameter dCNT < 1 nm is very difficult, we limit our study to zigzag CNTs with
diameters in the range of dCNT = 1 − 2 nm.

Scattering with acoustic phonons is treated as an elastic process. The electron-phonon coupling
is also weak for acoustic phonons (DAP < 10−3 eV2), which implies that elastic back-scattering
of carriers is weak. Inelastic scattering is induced by OP, RBM, and K-point phonons (Sec-
tion 2.5.2). Considering the class of CNTs discussed above, the energies of the these phonons
are ~ωOP ≈ 200 meV, ~ωRBM ≈ 25 meV, and ~ωK1

≈ 160 meV and ~ωK2
≈ 180 meV [276,279].

The corresponding coupling coefficients are DOP ≈ 40 × 10−3 eV2, DRBM ≈ 10−3 eV2, and
DK1

≈ 10−4 eV2, and DK2
≈ 10−3 eV2 [276].

As discussed in Section 5.5.2, high energy phonons such as OP and K-point phonons reduce
the on-current only weakly, but can increase the gate-delay time considerably due to charge
pileup in the channel. Low energy phonons such as the RBM phonon can reduce the on-
current more effectively, but have a weaker effect on the gate-delay time. However, due to
strong coupling, scattering processes are mostly due to electron-phonon interaction with high
energy phonons. Therefore, the on-current of short CNT-FETs can be close to the ballistic
limit [278] (see Fig. 5.26), whereas the gate-delay time can be significantly below that limit [89,
280]. The intrinsic (without parasitic capacitances) gate-delay time for the ballistic case can be
approximated as τ ≈ 1.7 ps/µm, or equivalently fT ≈ 100 GHz/µm [281]. The highest reported
cutoff frequency for a device with a length of less than 1µm is fT ≈ 10 GHz [90], which is far
below the ballistic limit. Apart from parasitic capacitances, inelastic electron-phonon interaction
with high energy phonon has to be considered to explain the results.
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Figure 5.26: Comparison of the simulation results and experimental data for the a)
output and b) transfer characteristics. Lines show the simulation results and symbols
show experimental data. The result for VG = −1.3 V is compared with the ballistic
limit. Experimental data have been adopted from [278].
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Chapter 6

Summary and Conclusions

EVER SINCE the first demonstration of carbon nanotube FETs (CNT-FETs), their perfor-
mance is improving very rapidly and the understanding of such devices is evolving. The

one-dimensional nature of CNTs severely reduces the phase space for scattering, allowing CNTs
to operate close to the ballistic limit even at room temperature. The low scattering probability
and high mobility are responsible for high on-current of CNT-FETs.

Furthermore, the chemical stability and perfection of the CNT structure suggests that the carrier
mobility at high gate fields may not be affected by processing and roughness scattering as it is
the case in the conventional semiconductor channel. Electrostatic control is improved as well.
The fact that there are no dangling bond states at the surface of CNTs allows for a much
wider choice of gate insulators beyond the conventional SiO2. Also, the strong one-dimensional
electron confinement of the single-wall CNTs (typically 1 − 2 nm diameter) should lead to a
suppression of short-channel effects in transistor devices [5].

As far as integration is concerned, semiconducting CNTs benefit from their band structure
which gives essentially the same effective mass for electrons and holes. This should enable
similar mobilities and performance of n-type and p-type transistors, which is necessary for
a complementary metal-oxide semiconductor (CMOS)-like technology. The most important
appeal of this approach is the ability to fabricate one of the critical device dimensions (the CNT
diameter) reproducibly using synthetic chemistry.

The purposes of this work are to develop a simulation approach and tools for CNT-FETs and
apply them to understand device physics and explore device issues, which are crucial for improv-
ing device performance. We employed the non-equilibrium Green’s function (NEGF) technique
for modeling transport phenomena in CNT-FETs. The NEGF technique allow one to study the
time evolution of a many-particle quantum system. Knowledge of the single-particle Green’s
function provides properties of the system and the excitation energies of the systems containing
one more or one less particle. The many-particle information about the system is cast into
self-energies, parts of the equations of motion for the Green’s functions. Green’s functions
can be expressed as a perturbation expansion, which is the key to approximate the self-energies.
Green’s functions provide a very powerful technique for evaluating properties of many-particle
systems both in thermodynamic equilibrium and also in non-equilibrium situations.
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SUMMARY AND CONCLUSIONS

We solve the coupled system of transport and Poisson equations self-consistently. A tight-
binding Hamiltonian is used to describe transport phenomena in CNT-FETs. The mode-space
transformation used in this work reduces the computational cost considerably. The mode-space
approach takes only a relatively small number of transverse modes into consideration. To reduce
the computational cost even further, we used the local scattering approximation [112]. In this
approximation the scattering self-energy terms are diagonal in coordinate representation. We
show that the local approximation is well justified for electron-phonon scattering caused by
deformation potential interaction.

The carrier concentration is related to the diagonal elements of the Green’s function. The cal-
culation of the current requires only the nearest off-diagonal elements of the Green’s function.
Furthermore, by using a nearest tight-binding Hamiltonian and assuming the local scatter-
ing approximation the achieved matrix is tridiagonal. Considering these factors we employed
the efficient recursive Green’s function method to calculate only the required elements of the
Green’s functions.

We also investigated methods of generating energy grids for numerical integration and their
effects on the convergence behavior of the self-consistent iteration. Our results indicate that
for accurate and fast convergent simulations the energy grid must be carefully adapted. All
methods were implemented into the multi-purpose quantum-mechanical solver VSP.

Employing the described model, we investigated both the static and dynamic response of CNT-
FETs. Based on the result we propose methods to improve the functionality and performance of
such devices. The ambipolar conduction of CNT-FETs, which limits the performance, is studied
in detail. We propose a double-gate structure to suppress this behavior. The first gate controls
carrier injection at the source contact and the second one controls carrier injection at the drain
contact, which can be used to suppress parasitic carrier injection.

We also considered single-gate devices. Scaling of the gate-source and gate-drain spacer length
of single-gate CNT-FETs is studied in this work. By increasing the gate-drain spacer length
the ambipolar conduction decreases and the Ion/Ioff ratio increases. Furthermore, the parasitic
capacitances are reduced which results in a decrease of the switching time. By increasing the
gate-source spacer length both the on-current and parasitic capacitances decrease. We show that
by appropriately selecting this spacer length the performance of the device can be significantly
enhanced. The results indicate that these effects can be very different from that in conventional
MOSFETs.

Finally, the effect of electron-phonon interaction on the device characteristics is discussed in
detail. In agreement with experimental data, our results indicate that electron phonon interac-
tion affects the DC current of CNT-FETs only weakly, whereas the switching response of such
devices can be significantly affected.

The implementation of these techniques allows the simulation and analysis of nano-electronic
devices where quantum effects are either a parasitic effect or deliberately used as a part of the
device functionality. Future work will concentrate on using these techniques to study transport
in novel devices such as multiple gate MOSFETs, silicon nano-wires, and molecular devices.
Furthermore, scattering processes can be more rigorously approximated. One can consider
electron-electron interaction beyond the Hartree approximation. Regarding electron-phonon
interaction, one can relax the assumption of equilibrium phonons and calculate the renormal-
ization of the phonon Green’s function due to interaction with electrons.
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Appendix A

First and Second Quantization

In condensed matter physics one is typically concerned with calculating physical observables
from a microscopic description of the system under consideration. Such microscopic models are
usually defined by the system Hamiltonian H. In many cases of interest the Hamiltonian
takes the form

H =
∑

i

H(ri) +
1

2

∑

i6=j

V (ri − rj) , (A.1)

where the first term contains a summation of single-particle Hamiltonians and V is the inter-
action potential between particles. The quantity ri denotes the coordinate of the ith particle,
including any discrete variables such as spin for a system of Fermions. The summation of
single-particle Hamiltonians by itself is just as simple to solve as each Hamiltonian alone.
One solves the dynamics of one particle, and the total properties are the summation of the
individual ones. The term which makes the Hamiltonian hard to solve is the particle-particle
interaction V (ri − rj). This term is multiplied by one-half since the double summation over (ij)
counts each pair twice.

Together with an appropriate number of boundary conditions the basic problem is the solution
of the many-particle Schrödinger equation

i~∂tΨ(r1, r2, . . . , rN , t) = HΨ(r1, r2, . . . , rN , t) , (A.2)

where Ψ(r1, r2, . . . , rN , t) is the many-particle wave function that in principle contains all rel-
evant information about the state of the system. One can start by expanding the many-
particle wave function Ψ in a complete set of symmetrized or anti-symmetrized products of
time-independent single-particle wave functions for Bosons or Fermions, respectively [189]. In
principle, theN -body wave function contains all information, but a direct solution of the Schrö-

dinger equation is impractical. Therefore, it is necessary to apply other techniques, and we
shall rely on second quantization, quantum field theory, and the use of Green’s functions.

Historically, quantum physics first dealt only with the quantization of the motion of particles,
leaving the electromagnetic field classical (Schrödinger, Heisenberg, and Dirac, 1925-26).
Later also the electromagnetic field was quantized (Dirac, 1927), and even the particles them-
selves got represented by quantized fields (Jordan and Wigner, 1927), resulting in the devel-
opment of quantum electrodynamics and quantum field theory in general.
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FIRST AND SECOND QUANTIZATION

By convention, the original form of quantum mechanics is denoted first quantization, while
quantum field theory is formulated in the language of second quantization. Second quantization
greatly simplifies the discussion of many interacting particles. This approach merely reformu-
lates the original Schrödinger equation. Nevertheless, it has the advantage that in second
quantization operators incorporate the statistics, which contrasts with the more cumbersome
approach of using symmetrized or anti-symmetrized products of single-particle wave functions.

In the second quantization formalism a quantum mechanical basis is used that describes the
number of particles occupying each state in a complete set of single-particle states. For this
purpose the time-independent abstract state vectors for an N -particle system are introduced

|n1, n2, . . .〉 , where
∑

j

nj = N . (A.3)

The notation means that there are n1 particles in the state 1, n2 particles in the state 2, and
so forth. It is therefore natural to define occupation number operators n̂j which have the basis
states |nj〉 as eigenstates, and have the number nj of particles occupying the state j as eigenvalues
n̂j |nj〉 = nj |nj〉. For Fermions nj can be 0 or 1, while for Bosons it can be any non-negative
number.

To connect first and second quantization, annihilation and creation operators c and c† for
Fermions and b and b† for Bosons are introduced. These operators satisfy either the com-
mutation1 or anti-commutation2 rules

[ci, cj ]+ = 0 , [bi, bj ]− = 0

[ci, c
†
j ]+ = δi,j , [bi, b

†
j ]− = δi,j

[c†i , c
†
j ]+ = 0 , [b†i , b

†
j ]− = 0 .

(A.4)

All of the properties of these operators follow directly from the commutation or anti-commutation
rules. The annihilation operators, ci and bi, decrease the occupation number of the state i by 1,
whereas the creation operators, c†i and b†i , increase the occupation number of the state i by 1.

The Hamiltonian in (A.1) can be written in terms of annihilation and creation operators

Ĥ =
∑

ij

〈i|H|j〉c†icj +
1

2

∑

ijkl

〈ij|V |kl〉c†ic
†
jclck ,

〈i|H|j〉 =

∫
drφ∗i (r)H(r)φj(r) ,

〈ij|V |kl〉 =

∫
dr

∫
dr′φ∗i (r)φ

∗
j (r

′) V (r − r′)φk(r)φl(r
′) ,

(A.5)

where φi(r) are the single-particle wave functions and the circumflex denotes an operator in
the abstract occupation-number Hilbert space. In this form, the matrix elements of the single-
particle Hamiltonian and the interaction potential taken between the single-particle eigenstates
of the Schrödinger equation in first quantization are merely complex numbers multiplying
operators.

1The commutation relation for Bosons is defined by [A, B]− = [A, B] = AB − BA.
2The anti-commutation relation for Fermions is defined by [A, B]+ = {A, B} = AB + BA.
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It is often convenient to form a linear combination of the annihilation and creation operators

ψ̂(r) =
∑

i

φi(r)ci ,

ψ̂†(r) =
∑

i

φ†i (r)c
†
i ,

(A.6)

where the sum is over the complete set of single-particle quantum numbers. The so-called field
operators ψ̂(r) and ψ̂†(r) satisfy simple commutation or anti-commutation relations

[ψ̂(r), ψ̂(r′)]± = 0 ,

[ψ̂(r), ψ̂†(r′)]± = δr,r′ ,

[ψ̂†(r), ψ̂†(r′)]± = 0 ,

(A.7)

where the plus (minus) sign refers to Fermions (Bosons). The field operator ψ̂(r) annihilates
and ψ̂†(r) creates a particle at place r. The Hamiltonian operator can be rewritten in terms
of these field operators as follows

Ĥ =

∫
drψ̂†(r)H(r)ψ̂(r) +

1

2

∫
dr

∫
dr′ψ̂†(r)ψ̂†(r′)V (r − r′)ψ̂(r′)ψ̂(r) . (A.8)

In this form, the Hamiltonian suggests the name second quantization, since the above expression
looks like the expectation value of the Hamiltonian taken between wave functions. Both (A.5)
and (A.8) are equivalent since the integration over spatial coordinates produces the single-
particle matrix elements of the kinetic energy, potential and interaction potential energy, leaving
a sum of these matrix elements multiplied by the appropriate annihilation and creation operators.

The methods of quantum field theory also allow us to concentrate on the few matrix elements
of interest, thus avoiding the need for dealing directly with the many-particle wave function
and the coordinates of all the remaining particles. Finally, the Green’s functions contain the
most important physical information such as the ground-state energy and other thermodynamic
functions, the energy and life time of excited states, and the response to external perturbations.
Unfortunately, the exact Green’s functions are not easier to determine than the original wave
function, and we therefore make use of perturbation theory which can be expressed in the
systematic language of Feynman rules and diagrams. These rules allow one to evaluate physical
quantities to any perturbation order.
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Appendix B

Time Evolution Pictures

The time evolution of operators and state vectors in quantum mechanics can be expressed in
different representations. The Schrödinger, the interaction, and the Heisenberg represen-
tations are useful in analyzing the second-quantized form of the Schrödinger equation. The
Hamiltonian is assumed to be of the form (see (3.1))

Ĥ = Ĥ0 + Ĥ int, (B.1)

where Ĥ0 is the non-interacting part, which is assumed to be exactly solvable. Ĥ int contains all
the interactions, such as carrier-carrier, carrier-phonon, impurity scattering, and so forth.

B.1 Schrödinger Picture

In the Schrödinger picture the operators ÔS are time-independent

ÔS(t) = ÔS(t0) = ÔS , (B.2)

where t0 is assumed to be the time reference point. The time dependence of the state vector
ΨS(t) is obtained from the Schrödinger equation

i~∂t|ΨS(t)〉 = Ĥ|ΨS(t)〉 , (B.3)

which has the formal solution

|ΨS(t)〉 = e−iĤ(t−t0)/~|ΨS(t0)〉 (B.4)
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B.2 Interaction Picture

In the interaction representation both the state vectors and the operators are time-dependent.
The state vector in the interaction representation is given by

|ΨI(t)〉 = eiĤ0t/~|ΨS(t)〉 , (B.5)

which is merely a unitary transformation at the time t. The equation of motion of this state
vector is found by taking the time derivative

i~∂t|ΨI(t)〉 = −Ĥ0e
iĤ0t/~|ΨS(t)〉 + eiĤ0t/~i~∂t|ΨS(t)〉 ,

= eiĤ0t/~[−Ĥ0 + Ĥ0 + Ĥ int]e−iĤ0t/~|ΨI(t)〉 .
(B.6)

Therefore, one obtains the following set of equations in the interaction picture

i~∂t|ΨI(t)〉 = Ĥ int(t)|ΨI(t)〉 ,

Ĥ int(t) ≡ eiĤ0t/~Ĥ inte−iĤ0t/~ .
(B.7)

An arbitrary matrix element in the Schrödinger picture can be written as

〈Ψ′

S(t)|ÔS|ΨS(t)〉 = 〈Ψ′

I(t)|eiĤ0t/~ÔSe
−iĤ0t/~|ΨI(t)〉 , (B.8)

which suggests the following definition of an operator in the interaction picture

ÔI(t) = eiĤ0t/~ÔSe
−iĤ0t/~ . (B.9)

B.3 Heisenberg Picture

In the Heisenberg representation state vectors are defined as

|ΨH(t)〉 = eiĤt/~|ΨS(t)〉 . (B.10)

Its time derivative may be combined with (B.3) to yield i~∂t|ΨH(t)〉 = 0, which shows that
|ΨH(t)〉 is time-independent. Since an arbitrary matrix element in the Schrödinger picture
can be written as

〈Ψ′

S(t)|ÔS|ΨS(t)〉 = 〈Ψ′

H(t)|eiĤt/~ÔSe
−iĤt/~|ΨH(t)〉 , (B.11)

a general operator in the Heisenberg picture is given by

ÔH(t) = eiĤt/~ÔSe
−iĤt/~ . (B.12)

Equation (B.12) can be rewritten in terms of the interaction picture operators

ÔH(t) = eiĤt/~e−iĤ0t/~ÔI(t)e
iĤ0t/~e−iĤt/~ , (B.13)

or in terms of the operator Ŝ derived in the next section

ÔH(t) = Ŝ(0, t)ÔI(t)Ŝ(t, 0) . (B.14)
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B.4 The Evolution Operator Ŝ

To solve the equations of motion in the interaction picture (B.7), a unitary operator Ŝ(t, t0) that
determines the state vector at time t in terms of the state vector at time t0 is introduced

|ΨI(t)〉 = Ŝ(t, t0)|ΨI(t0)〉 , (B.15)

Ŝ satisfies the initial condition Ŝ(t0, t0) = 1. For finite times Ŝ(t, t0) can be constructed explicitly
by employing the Schrödinger picture

|ΨI(t)〉 = eiĤ0t/~|ΨS(t)〉 ,

= eiĤ0t/~e−iĤ(t−t0)/~|ΨS(t0)〉 ,

= eiĤ0t/~e−iĤ(t−t0)/~e−iĤ0t0/~|ΨI(t0)〉 ,

(B.16)

which therefore identifies

Ŝ(t, t0) = eiĤ0t/~e−iĤ(t−t0)/~e−iĤ0t0/~ . (B.17)

Since Ĥ and Ĥ0 do not commute with each other, the order of the operators must be carefully
maintained. Equation (B.17) immediately yields several general properties of Ŝ [189]� Ŝ†(t, t0)Ŝ(t, t0) = Ŝ(t, t0)Ŝ

†(t, t0) = 1, implying that Ŝ is unitary Ŝ†(t, t0) = Ŝ−1(t, t0),� Ŝ(t1, t2)Ŝ(t2, t3) = Ŝ(t1, t3), which shows that Ŝ has the group property, and� Ŝ(t, t0)Ŝ(t0, t) = 1, implying that Ŝ(t0, t) = Ŝ†(t, t0) .

Although (B.17) is the formal solution to the problem posed by (B.15), it is not very useful for
computational purposes. Instead one can construct an integral equation for Ŝ, which can then
be solved by iteration. It follows from (B.7) and (B.15) that Ŝ satisfies the differential equation

i~∂tŜ(t, t0) = Ĥ int
I (t)Ŝ(t, t0) . (B.18)

Integrating both sides of the (B.18) with respect to time with the initial condition Ŝ(t0, t0) = 1
yields

Ŝ(t, t0) = Ŝ(t0, t0) − i

~

t∫

t0

dt1Ĥ
int
I (t1)Ŝ(t1, t0)

= 1 − i

~

t∫

t0

dt1Ĥ
int
I (t1)Ŝ(t1, t0) .

(B.19)
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By iterating this equation repeatedly one gets

Ŝ(t, t0) = 1 − i

~

t∫

t0

dt1Ĥ
int
I (t1) +

(−i
~

)2
t∫

t0

dt1

t1∫

t0

dt2Ĥ
int
I (t1)Ĥ

int
I (t2) +

. . . +

(−i
~

)n
t∫

t0

dt1

t1∫

t0

dt2 . . .

tn−1∫

t0

dtnĤ
int
I (t1)Ĥ

int
I (t2) . . . Ĥ

int
I (tn)

=
∞∑

n=0

(−i
~

)n
t∫

t0

dt1

t1∫

t0

dt2 . . .

tn−1∫

t0

dtnĤ
int
I (t1)Ĥ

int
I (t2) . . . Ĥ

int
I (tn) .

(B.20)

Equation (B.20) has the characteristic feature that the operator containing the latest time stands
farthest to the left. At this point it is convenient to introduce the time-ordering operator denoted
by the symbol Tt

Tt{Â(t1)B̂(t2)} = θ(t1 − t2)Â(t1)B̂(t2) + θ(t2 − t1)B̂(t2)Â(t1) . (B.21)

where θ(t) is the step function1. Each time two Fermions are interchanged, the resulting
expression changes its sign. By rearranging the integral using Tt

1

2!

t∫

t0

dt1

t∫

t0

dt2Tt{Ĥ int
I (t1)Ĥ

int
I (t2)} =

1

2!

t∫

t0

dt1

t1∫

t0

dt2Ĥ
int
I (t1)Ĥ

int
I (t2) +

1

2!

t∫

t0

dt2

t1∫

t0

dt1Ĥ
int
I (t2)Ĥ

int
I (t1) .

(B.22)

The second term on the right hand-side is equal to the first, which is easy to see by just redefining
the integration variables t1 → t2, t2 → t1. Thus one gets

1

2!

t∫

t0

dt1

t∫

t0

dt2 Tt{Ĥ int
I (t1)Ĥ

int
I (t2)} =

t∫

t0

dt1

t1∫

t0

dt2 Ĥ
int
I (t1)Ĥ

int
I (t2) . (B.23)

Thus for the expansion of the Ŝ(t, t0) one obtains

Ŝ(t, t0) =
∞∑

n=0

1

n!

(−i
~

)n
t∫

t0

dt1

t∫

t0

dt2 . . .

t∫

t0

dtn Tt{Ĥ int
I (t1)Ĥ

int
I (t2) . . . Ĥ

int
I (tn)}

= Tt{exp


− i

~

t∫

t0

dt′Ĥ int
I (t′)


} .

(B.24)

1The step function is defined as θ(t) =

8

>

<

>

:

1 t > 0
1

2
t = 0

0 t < 0
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B.5 Imaginary Time Operators

At finite temperature under thermodynamic equilibrium the state of a system is described by
the equilibrium density operator ρ̂. For a given ρ̂ the ensemble average of any operator Ô can
be calculated as (see (3.11))

〈Ô〉 =
Tr[e−βK̂Ô]

Tr[e−βK̂ ]
, (B.25)

where K̂ = Ĥ −EFN̂ may be interpreted as a grand canonical Hamiltonian. For any Schrö-

dinger operator ÔS, the so called modified Heisenberg and interaction pictures can be intro-
duced as

ÔK(τ) ≡ eK̂τ/~ ÔS e
−K̂τ/~ ,

ÔI(τ) ≡ eK̂0τ/~ ÔS e
−K̂0τ/~ ,

(B.26)

where K̂0 includes only the non-interacting part of K̂. It should be noticed that Ô†
K(τ) =

eK̂τ/~Ô†
Se

−K̂τ/~ is not the adjoint of ÔK(τ) as long as τ is real. If τ is interpreted as a complex
variable, however, it may be analytically continued to a pure imaginary value τ = it. The
resulting expression Ô†

K(τ) then becomes the true adjoint of ÔK(τ) and is formally identical

with the original Heisenberg picture defined in (B.12), apart from the substitution of K̂ for
Ĥ. For this reason (B.26) are sometimes called imaginary-time operators.

The modified Heisenberg and interaction pictures are related by (compare (B.13) and (B.14))

ÔK(τ) = eK̂τ/~e−K̂0τ/~ÔI(τ)e
K̂0τ/~e−iK̂τ/~ ,

= Ŝ(0, τ)ÔI(τ)Ŝ(τ, 0) ,
(B.27)

where the operator Ŝ is defined by (compare (B.17))

Ŝ(τ, τ0) = eK̂0τ/~ e−K̂(τ−τ0)/~ e−K̂0τ0/~ . (B.28)

Note that Ŝ is not unitary, but it still satisfies the group property

Ŝ(τ1, τ2) Ŝ(τ2, τ3) = Ŝ(τ1, τ3) , (B.29)

and the boundary condition

Ŝ(τ0, τ0) = 1 . (B.30)

In addition, the equation of motion of Ŝ is calculated as

~∂τ Ŝ(τ, τ0) = eK̂0τ/~ (K̂0 − K̂) e−K̂(τ−τ0)/~ e−K̂0τ0/~ ,

= eK̂0τ/~ (K̂0 − K̂) e−K̂0τ/~Ŝ(τ, τ0) ,

= K̂ int(τ)Ŝ(τ, τ0) ,

(B.31)

119



TIME EVOLUTION PICTURES B.5 Imaginary Time Operators

where

K̂ int(τ) ≡ eK̂0τ/~K̂ inte−K̂0τ/~ . (B.32)

It follows that the operator Ŝ obeys essentially the same differential equation as the unitary
operator introduced in (B.15), and one may immediately write down the solution (compare
(B.24))

Ŝ(τ, τ0) =
∞∑

n=0

1

n!

(−1

~

)n
τ∫

τ0

dτ1

τ∫

τ0

dτ2 . . .

τ∫

τ0

dτn Tτ{K̂ int
I (τ1)K̂

int
I (τ2) . . . K̂

int
I (τn)} ,

= Tτ{exp


−1

~

τ∫

τ0

dτ ′K̂ int
I (τ ′)


} .

(B.33)

If τ is set equal to β~, (B.28) may be rewritten as

e−βK̂ = e−βK̂0 Ŝ(β~, 0) , (B.34)

which relates the many particle density operator to the single-particle density operator by means
of an imaginary time-evolution operator.
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Appendix C

Review of Thermodynamics and

Statistical Mechanics

The fundamental thermodynamic identity

dE = TdS − PdV + EFdN , (C.1)

specifies the change in the internal energy E arising from small independent changes in the
entropy S, the volume V , and the number of particles N . Equation (C.1) shows that the
internal energy is a function of these three variables, E = E(S, V,N), and that the temperature
T , the pressure P , and the Fermi energy EF (also called the chemical potential) are related to
the partial derivatives of E

T =

(
∂E

∂S

)

V N

, P = −
(
∂E

∂V

)

SN

, EF =

(
∂E

∂N

)

SV

. (C.2)

In practice, however, experiments are usually performed at fixed T and it is convenient to
make Legendre transformation to the variables (T, V,N) or (T, P,N). The resulting functions
are known as Helmholtz free energy F (T, V,N) and Gibbs free energy G(T, P,N). It is
often important to consider the set of independent variables (T, V,EF), which is appropriate for
variable N . A further Legendre transformation leads to the thermodynamic potential

Ω(T, V,EF) = F − EFN = E − TS − EFN , (C.3)

with the corresponding differential and coefficients

dΩ(T, V,EF) = − SdT − PdV −NdEF , (C.4)

S = −
(
∂Ω

∂T

)

V EF

, P = −
(
∂Ω

∂V

)

TEF

, N = −
(
∂Ω

∂EF

)

TV

. (C.5)

Although E, F , G, and Ω represent equivalent ways of describing the same system, their nat-
ural independent variables differ in one important way. In particular, the set (S, V,N) consists
entirely of extensive variables, proportional to the actual amount of matter present. The trans-
formation to F and then to G or Ω may be interpreted as reducing the number of extensive
variables in favor of intensive ones that are independent of the total amount of matter.
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REVIEW OF THERMODYNAMICS AND STATISTICAL MECHANICS

To this point, only macroscopic thermodynamics has been discussed. The microscopic content of
the theory must be added separately through statistical mechanics, which relates the thermody-
namic functions to the Hamiltonian of the many-particle system. The elementary discussions
of statistical mechanics usually consider systems containing a fixed number of particles. This
approach, which is refereed to as canonical ensemble, is too restricted for our purposes. To
include the possibility of a variable number of particles the grand canonical ensemble can be
employed. For a grand canonical ensemble at Fermi energy EF and temperature T , the grand
partition function Z is defined as

Z ≡
∑

N

∑

i

e−β(Ei−EFN) ,

=
∑

N

∑

i

〈Ni|e−β(Ĥ−EFN̂)|Ni〉 ≡ Tr[e−β(Ĥ−EFN̂)] ,
(C.6)

where i denotes the set of all states for a fixed number of particles N , and the sum implied in
the trace is over both i and N . Short-hand notation β = 1/kBT has been introduced, where kB

is the Boltzmann constant. A fundamental result from statistical mechanics states that

Ω(T, V,EF) = −kBT ln(Z) , (C.7)

which allows one to compute all the macroscopic equilibrium thermodynamics from the grand
partition function. The statistical operator ρ corresponding to (C.6) is given by

ρ =
e−β(Ĥ−EFN̂)

Z
. (C.8)

For any operator Ô, the ensemble average 〈Ô〉 is achieved with the prescription

〈Ô〉 = Tr[ρÔ] ,

=
Tr[e−β(Ĥ−EFN̂)Ô]

Tr[e−β(Ĥ−EFN̂)]
.

(C.9)

By applying these results the properties of a gas of non-interacting Bosons or Fermions can
be studied. If (C.6) is written out in detail with the complete set of states in the abstract
occupation number Hilbert space, one gets

Z = Tr[e−β(Ĥ−EFN̂)] ,

=
∑

n1 ... n∞

〈n1 . . . n∞|e−β(Ĥ−EFN̂)|n1 . . . n∞〉 . (C.10)

Since these states are eigen-states of the non-interacting Hamiltonian Ĥ0 and the number
operator N̂ , both operators can be replaced by their eigen-values

Z =
∑

n1...n∞

〈n1 . . . n∞|exp

[
−β
(
∑

i

Eini − EF

∑

i

ni

)]
|n1 . . . n∞〉 . (C.11)

The exponential is now a number and is equivalent to a product of exponentials. Therefore, the
sum over expectation values factor into a product of traces

Z =
∑

n1

〈n1|e−β(E1n1−EFn1)|n1〉 . . .
∑

n∞

〈n∞|e−β(E∞n∞−EFn∞)|n∞〉 ,

=
∞∏

i=1

∑

ni

e−β(Ei−EF)ni .
(C.12)
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REVIEW OF THERMODYNAMICS AND STATISTICAL MECHANICSC.1 Fermi-Dirac Statistics

C.1 Fermi-Dirac Statistics

For Fermions the occupation numbers are either 0 or 1, and the sum in (C.12) is restricted to
these values

ZF =
∞∏

i=1

1∑

ni=0

(
e−β(Ei−EF)

)ni

,

=
∞∏

i=1

(
1 + e−β(Ei−EF)

)
.

(C.13)

Taking the logarithm of both sides, one gets

ΩF(T, V,EF) = kBT
∞∑

i=1

ln
(
1 + e−β(Ei−EF)

)
, (C.14)

while the mean number of Fermions is given by the Fermi-Dirac distribution function

nF ≡
∞∑

i=1

ni =
∞∑

i=1

1

eβ(Ei−EF) + 1
. (C.15)

C.2 Bose-Einstein Statistics

For Bosons the occupation number is not restricted, so one must sum ni over all integers in (C.12)

ZB =
∞∏

i=1

∞∑

ni=0

(
e−β(Ei−EF)

)ni

,

=

∞∏

i=1

(
1 − e−β(Ei−EF)

)−1
.

(C.16)

The logarithm of (C.16) yields the thermodynamic potential

ΩB(T, V,EF) = − kBT ln

( ∞∏

i=1

(
1 − e−β(Ei−EF)

)−1
)
,

= kBT
∞∑

i=1

ln
(
1 − e−β(Ei−EF)

)
.

(C.17)

The mean number of particles is obtained from Ω0 by differentiating with respect to the Fermi

energy, as in (C.5), by keeping T and V (equivalently the Ei) fixed. As a result, the mean
number of Bosons is given by the Bose-Einstein distribution function

nB ≡
∞∑

i=1

ni =
∞∑

i=1

1

eβ(Ei−EF) − 1
, (C.18)

where ni is the mean occupation number in the ith state.

123



Appendix D

Non-Interacting Green’s Functions

The non-interacting or free Green’s function is used in the perturbation expansions described
in Section 3.4. In this appendix real-time Green’s functions for both electrons and phonons
are derived.

D.1 Non-Interacting Fermions

The Hamiltonian for non-interacting electrons (Fermions) in momentum representation is

H0 =
∑

k

ξkc
†
kck , (D.1)

where ξk = Ek −EF is the single-particle energy measured with respect to the Fermi energy ck
and c†k are the Fermion annihilation and creation operators, respectively (Appendix A). The
time-evolution of the annihilation operator in the Heisenberg picture is (Appendix B)

ck(t) = eiH0t/~ ck e
−iH0t/~ , (D.2)

so the operator obeys the equation

i~∂tck(t) = [ck(t), H0] = ξkck(t) , (D.3)

which has the solution

ck(t) = e−iξkt/~ ck . (D.4)

The creation operator for Fermions is the just the Hermitian conjugate of ck, i.e.

c†k(t) = eiξkt/~ c†k . (D.5)
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NON-INTERACTING GREEN’S FUNCTIONS D.1 Non-Interacting Fermions

The non-interacting real-time Green’s functions (Section 3.7.1) for Fermions in momentum
representation are now given by

G<
0 (k, t;k′, t′) ≡ +i~−1〈c†

k′(t
′)ck(t)〉0 ,

= +i~−1e−iξk(t−t′)/~nkδk,k′ ,

G>
0 (k, t;k′, t′) ≡ −i~−1〈ck(t)c†

k′(t
′)〉0 ,

= −i~−1e−iξk(t−t′)/~[1 − nk]δk,k′ ,

Gr
0(k, t;k

′, t′) ≡ −i~−1θ(t− t′)〈ck(t)c†
k′(t

′) + c†
k′(t

′)ck(t)〉0 ,

= −i~−1θ(t− t′)e−iξk(t−t′)/~δk,k′ ,

Ga
0(k, t;k

′, t′) ≡ +i~−1θ(t′ − t)〈ck(t)c†
k′(t

′) + c†
k′(t

′)ck(t)〉0 ,

= +i~−1θ(t′ − t)e−iξk(t′−t)/~δk,k′ ,

(D.6)

where nk = 〈c†kck〉 is the average occupation number of the state k. The Green’s functions
depend only on time differences. One usually Fourier transforms the time difference coordinate,
t− t′, to energy

G<
0 (k, E) = +2πinkδ(E − ξk) ,

G>
0 (k, E) = +2πi[1 − nk]δ(E − ξk) ,

Gr
0(k, E) =

1

E − ξk + iη
,

Ga
0(k, E) =

1

E − ξk − iη
,

(D.7)

where η = 0+ is a small positive number. Assuming that the particles are in thermal equilibrium
one obtains nk = nF(ξk), where nF is the Fermi-Dirac distribution function (Appendix C.1).
The result (D.7) shows that G< and G> provide information about the statistics, such as occu-
pation nk or un-occupation 1 − nk of the states, and Gr and Ga provide information about the
states regardless of their occupation. The spectral function A0(k, E) for Fermions is therefore
defined as

A0(k, E) = +i[Gr
0(k, E) −Ga

0(k, E)] = −2ℑm[Gr
0(k, E)] ,

= +2πδ(E − ξk) ,
(D.8)

where the following relation is used

1

x± iη
= P

(
1

x

)
∓ iπδ(x) , (D.9)

where P indicates the principal value. Under equilibrium the lesser and greater Green’s func-
tions can be rewritten as

G<
0 (k, E) = inFA0(k, E) ,

G>
0 (k, E) = i[1 − nF]A0(k, E) .

(D.10)
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D.2 Non-Interacting Bosons

The Hamiltonian for non-interacting phonons (Bosons) in momentum representation is

H0 =
∑

q,λ

~ωq,λ

(
b†q,λbq,λ +

1

2

)
, (D.11)

where ~ωq,λ is the energy of mode q with the polarization λ, bq,λ, and b†q,λ are the Bosons
annihilation and creation operators. The time-evolution of the annihilation operator in the
Heisenberg picture is

bq,λ(t) = eiH0t/~ bq,λ e
−iH0t/~ , (D.12)

so the operator obeys the equation

i~∂tbq,λ(t) = [bq,λ(t), H0] = ~ωq,λbq,λ(t) , (D.13)

which has the solution

bq,λ(t) = e−iωq,λt bq,λ . (D.14)

The creation operator for Bosons is the just the Hermitian conjugate of bq, i.e.

b†q,λ(t) = e+iωq,λt b†q,λ . (D.15)

The non-interacting real-time Green’s functions for Bosons in momentum representation are
now given by

D<
λ0

(q, t;q′, t′) ≡ −i~−1〈Â†
q′,λ(t′)Âq,λ(t)〉0 ,

= −i~−1〈b†
q′,λ(t′)bq,λ(t) + b−q′,λ(t′)b†−q,λ(t)〉0 ,

= −i~−1
[
e−i(ωq,λt−ωq′,λt′)〈b†

q′,λbq,λ〉0 + e−i(ωq′,λt′−ωq,λt)〈b−q′,λb
†
−q,λ〉0

]
δq,q′ ,

= −i~−1
[
e−iωq,λ(t−t′)nq,λ + e+iωq,λ(t−t′)(nq,λ + 1)

]
δq,q′ ,

≡ D<
λ0

(q; t, t′) ,

D>
λ0

(q; t, t′) = D<
λ0

(q; t′, t) ,

= −i~−1
[
e+iωq,λ(t−t′)nq,λ + e−iωq,λ(t−t′)(nq,λ + 1)

]
,

Dr
λ0

(q; t, t′) ≡ −i~−1θ(t− t′)〈Â†
q,λ(t′)Âq,λ(t) + Âq,λ(t)Â†

q,λ(t′)〉0 ,

= −i~−1θ(t− t′)
[
e−iωq,λ(t−t′) − e+iωq,λ(t−t′)

]
,

Da
λ0

(q; t, t′) = −i~−1θ(t′ − t)
[
e+iωq,λ(t−t′) − e−iωq,λ(t−t′)

]
,

(D.16)
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where Âq,λ(t) = bq,λ(t) + b†−q,λ(t), Â†
q,λ(t) = Â†

−q,λ(t), ω−q,λ = ωq,λ, and nq,λ = 〈b†q,λbq,λ〉
is the occupation number of the state (q, λ), where under thermal equilibrium one obtains
nq,λ = nB(~ωq,λ), with nB denoting the Bose-Einstein distribution function (Appendix C.2).
The Green’s functions depend only on time differences. One usually Fourier transforms the
time difference coordinate, t− t′, to energy

D<
λ0

(q, E) = −2πi [nq,λδ(E − ~ωq,λ) + (nq,λ + 1)δ(E + ~ωq,λ)] ,

D>
λ0

(q, E) = −2πi [nq,λδ(E + ~ωq,λ) + (nq,λ + 1)δ(E − ~ωq,λ)] ,

Dr
λ0

(q, E) =
1

E − ~ωq,λ + iη
− 1

E + ~ωq,λ + iη
,

Da
λ0

(q, E) =
1

E − ~ωq,λ − iη
− 1

E + ~ωq,λ − iη
,

(D.17)
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Appendix E

Feynman Diagrams

The Wick theorem allows us to evaluate the exact Green’s functions as a perturbation ex-
pansion involving expressions of free Green’s functions G0 and the perturbation potential V
(see Section 3.4.1). This expression can be analyzed directly in coordinate or momentum space,
in time or energy domain. Feynman introduced the idea of representing different contributions
obtained from the Wick decomposition by drawings. These drawings, called diagrams, are
very useful for providing an insight into the physical process which these terms represent. The
Feynman diagrams provide an illustrative way to solve the many-particle problems and the
perturbation expansion of the Green’s functions.

A diagram dictionary for electrons, which are Fermions, and phonons, which are Bosons, are
shown in Table E. Diagrams for electrons are in coordinate-time space, while phonon diagrams
are in momentum-energy space. As described in Section 3.1.1, the Green’s function can be
interpreted as the creation of a particle at (r′, t′) in space-time, the propagation of the corre-
sponding perturbation to the point (r, t) in space-time, where the particle is annihilated. Hence,
the full Green’s function is represented by a double line joining these two points. The free
Green’s function is characterized by a single line.

The Coulomb potential is represented by a wavy line with two inputs and outputs which can
be coupled together to describe a self-interaction. The Coulomb interaction is assumed to be
instantaneous. It is convenient to consider the inter-particle potential as a static instantaneous
potential proportional to a delta function δt1,t2 .

Intermediate variables describe events taking place between the two space-time arguments of the
Green’s function, but without any constraints for exact time or place. The overall amplitude
involves an integration over these variables. Each time a Fermion loop appears, the perturbation
expression corresponding to this Feynman diagram must be multiplied by a factor −1.

Electrons can also interact with phonons. For phonons it is more convenient to work in the
momentum-energy rather than in the space-time domain. Diagrams concerning a free phonon
Green’s functions and the interaction between electrons and phonons are also shown in Table E.
The factor Mq refers to the electron-phonon interaction matrix elements.
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FEYNMAN DIAGRAMS

Expression Description Diagram

i~G(r, t; r′, t′) Full Green’s function (r′, t′) (r, t)

i~G0(r, t; r
′, t′) Free Green’s function (r′, t′) (r, t)

−iV (r1, r2)/~ Coulomb interaction r1 r2

∫
r1

∫
t1 Intermediate variable(s) (r′, t′)

(r1, t1)
(r, t)

Factor −1 Any Fermion loop

i~D0(q;ω) Free phonons

−iMq/~ Electron-phonon interaction

k

q
k′

Table E.1: Feynman Diagrams for electrons (Fermions) and phonons (Bosons).
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Appendix F

Variational Derivation of

Self-Energies

We consider the time evolution of the Green’s function under the action of the time-independent
Hamiltonian Ĥ = Ĥ0 + Ĥ int and the time-dependent external perturbation Ĥext. The latter
is included through the evolution operator Ŝext

C

G(12) = − i

~
〈TC{Ŝext

C ψ̂H(1) ψ̂†
H(2)}〉0 , (F.1)

where the abbreviation 1 ≡ (r1, t1) is used. To obtain the equation of motion, one can take the
derivative of the Green’s function with respect to time

i~∂tG(12) = δt1,t2 〈ψ̂H(1) ψ̂†
H(2) + ψ̂†

H(2) ψ̂H(1)〉0

+ 〈TC{Ŝext
C [ψ̂H(1), Ĥ]− ψ̂†

H(2)}〉0

+ 〈TC{Ŝext
C U(1) ψ̂H(1) ψ̂†

H(2)}〉0 .

(F.2)

The first contribution results from ∂tθ(t1, t2) (see Section 3.7.1). Because of the anti-commutation
relation of the field operators it can be reduced to δ1,2 = δr1,r2δt1,t2 . The equation of motion for

the field operator, i~∂t1ψ̂H(1) = [ψ̂H(1), Ĥ]−, has been used in the second term, and the third
contribution results from ∂tŜ

ext
C . Inserting the commutator with the Hamiltonian, one obtains

[
i~∂t1 − Ĥ0(1)

]
G(12) = δ1,2 − i~

∫

C

d3 V (1 − 3) G(1323) , (F.3)

where the two-particle Green’s function G(1234) is defined by

G(1234) =

(
− i

~

)2

〈TC{Ŝext
C ψ̂H(1) ψ̂H(2) ψ̂†

H(4) ψ̂†
H(3)}〉0 . (F.4)

To evaluate the two-particle Green’s functions, one can express it as products of single-particle
Green’s functions G(12), yielding an infinite perturbation expansion [203, 205, 282]. This can
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VARIATIONAL DERIVATION OF SELF-ENERGIES F.1 Electron-Electron Interaction

be accomplished by utilizing the Green’s functions as generating functional. The two-particle
Green’s function can be expressed by means of functional derivatives of the single-particle
Green’s functions with respect to the external potential. Based on the variational method, the
electron-electron and electron-phonon self-energies are derived next.

F.1 Electron-Electron Interaction

By taking the functional derivative of (F.4) with respect to U one obtains

δG(12)

δU(3)
= − i

~

1

〈TCŜext
C 〉0

〈TC{
δŜext

C

δU(3)
ψ̂H(1) ψ̂†

H(2)}〉0

+
i

~

〈TC{Ŝext
C ψ̂H(1) ψ̂†

H(2)}〉0
〈TCŜext

C 〉0
2 〈TC

δŜext
C

δU(3)
〉0 ,

= −
(
− i

~

)2 〈TC{Ŝext
C ψ̂(1) ψ̂H(3) ψ̂†

H(3) ψ̂†
H(2)}〉0

〈TCŜext
C 〉0

+G(12)

(
− i

~

)〈TC{Ŝext
C ψ̂H(3) ψ̂†

H(3)}〉0
〈TCŜext

C 〉0
,

= −G(121′2) +G(12)G(33) ,

(F.5)

Equation (F.5) relates the two-particle Green’s function to the functional derivative of the
single-particle Green’s function, which allows one to write the equation of motion (F.3) as

(
i~∂t1 +

~
2

2m
∇2

1 − Ueff(1)

)
G(12) = δ1,2 + i~

∫

C

d3 V (1 − 3)
δG(12)

δU(3)
, (F.6)

where H0(1) = − ~
2

2m∇2
1 + U(1) and the effective potential is given by

Ueff(1) = U(1) − i~

∫

C

d2 V (1 − 2) G(22) . (F.7)

Since −i~G(22) is nothing but the electron density, the second term in (F.7) can be easily
identified as the Hartree potential. Exchange and correlation effects are described by the
functional derivative contribution, which still requires the calculation of a two-particle Green’s
function. In order to decouple the hierarchy formally, one can introduce the single-particle
self-energy. This is accomplished by the identity

G(12) =

∫

C

d4

∫

C

d5 G(14) G−1(45) G(52) , (F.8)

Differentiating with respect to U , one obtains

δG(12)

δU(3)
=

∫

C

d4

∫

C

d5 G(14)
δG−1(45)

δU(3)
G(52) , (F.9)
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where the following relation was used

δ

δUeff(4)

∫

C

d3 G(13)G−1(32) =
δ1,2

U(4)
= 0 ,

=

∫

C

d3
G(13)

U(4)
G−1(32) +

∫

C

d3 G(13)
G(32)

U(4)
,

(F.10)

which allows us to express the functional derivative of G by means of the functional derivative
of G−1. Therefore, the equations of motion can be cast into a closed form

(
i~∂t1 +

~
2

2m
∇2

1 − Ueff(1)

)
G(12) −

∫

C

d3 G(13) Σ(32) = δ1,2 , (F.11)

where the self-energy is defined as

Σ(12) = −i~
∫

C

d3

∫

C

d4 V (1 − 3) G(14)
δG−1(42)

δU(3)
. (F.12)

F.1.1 Screened Interaction, Polarization, and Vertex Function

The equation (F.12) can be used as a starting point for a diagrammatic expansion. One possible
way is to iterate G(12) in the functional derivative with respect to U(3), starting from the
non-interacting Green’s function G0. This procedure is described e.g. in [93], and specifically
for the Keldysh formalism, in [203]. This expansion scheme is based on the non-interacting
Green’s function. In order to avoid the appearance of non-interacting Green’s functions in
the diagrammatic expansion without simultaneously complicating the rules for constructing the
diagrams, one has to extend the equations for G(12). Technically, this extension is based on the
repeated change of variables and the consequent application of the chain-rule in the evaluation
of the functional derivatives. One usually generates the following additional function� the self-energy Σ(12), which contains information on both the renormalization of the single-

particle energies and the scattering rates.� the longitudinal polarization function Π(21), which describes the possible single-particle
transitions as a result of a longitudinal electric field (which can either be an external field
or the result of charge density fluctuations in the system),� the screened Coulomb potential W (12), which differs from the bare Coulomb potential
because of the possibility of single-particle transitions as described by Π, brought about by
charge density fluctuations, and because of the related possibility of collective excitations,� the vertex function Γ(123), which serves to formally complete the set of equations.

Although the expanded set of functions still does not lead to a closed set of equations (an
additional function, δΣ/δG, occurs), it allows for a perturbative solution by means of iterating
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Σ in the derivative δΣ/δG. The formal structure of these equations will turn out to be essentially

Σ = W G Γ ,

Π = G Γ G ,

W = V + V Π W ,

Γ = 1 +
δΣ

δG
G Γ G .

(F.13)

By applying the chain rule for functional derivatives, one can introduce the derivative with
respect to the effective potential. This allows one to write the self-energy (F.12) as [203]

Σ(12) = −i~
∫

C

d3

∫

C

d4 V (1 − 3) G(14)
δG−1(42)

δU(3)
,

= −i~
∫

C

d3

∫

C

d4

∫

C

d5 V (1 − 3) G(14)
δG−1(42)

δUeff(5)

Ueff(5)

U(3)
,

= −i~
∫

C

d3

∫

C

d4 W (51) G(14) Γ(425) ,

(F.14)

where the screened interaction is defined as

W (12) =

∫

C

d3 V (2 − 3)
δUeff(1)

δU(3)
, (F.15)

and the vertex function

Γ(123) =
δG−1(12)

δUeff(3)
. (F.16)

Using the definition of the effective potential (F.7) together with (F.9) and the chain rule, the
screened Coulomb potential, or equivalently, the inverse dielectric function1

ǫ−1(12) =
δUeff(1)

δU(2)
, (F.17)

can be written in terms of the polarization function

Π(12) = −i~ δG(11)

δUeff(2)
, (F.18)

in the following way

δUeff(1)

δU(2)
=

δU(1)

δU(2)
− i~

∫

C

d3

∫

C

d4 V (1 − 3)
δG(33)

δUeff(4)

δUeff(4)

δU(2)
,

= δ1,2 +

∫

C

d3

∫

C

d4 V (1 − 3) Π(34)
δUeff(4)

δU(2)
.

(F.19)

1 Screening is defined by the inverse dielectric function. An external potential induces a charge density in the
system. This induced charge density gives rise to a change in the potential via the Coulomb interaction, which
in turn yields an induced charge density and so forth. The result of this infinite series of charge redistribution
process is the screening of the external potential.
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In this way, one obtains

ǫ−1(12) = δ1,2 +

∫

C

d3

∫

C

d4 V (1 − 3) Π(34) ǫ−1(42) . (F.20)

and from (F.15)

W (12) = V (2 − 1) +

∫

C

d3

∫

C

d4 V (1 − 3) Π(34) W (42) . (F.21)

By using the relation (F.10) one can express the polarization in terms of the vertex function

Π(12) = −i~ δG(11)

δUeff(2)
,

= −i~
∫

C

d3

∫

C

d4 G(13)
δG−1(34)

δUeff(2)
G(41) ,

= −i~
∫

C

d3

∫

C

d4 G(13) Γ(342) G(41) .

(F.22)

The system of equations defining the self-energy is closed by the equation for the vertex functions.
For that purpose one needs an explicit expression for G−1 in terms of G. One can multiply
and integrate both sides of the equation of motion (F.11) by G−1

0 (32) and G−1(32), where

G−1
0 (12) = (i~∂t1 + ~

2

2m∇2
1−Ueff(1))δ1,2. Finally, one obtains G−1(12) = G−1

0 (12)−Σ(12), which
can be used to rewrite the vertex function (F.16) as

Γ(123) =
δG−1(12)

δUeff(3)
=

δG−1
0 (12)

δUeff(3)
− δΣ(12)

δUeff(3)
,

= −δ1,2δ1,3 −
∫

C

d4

∫

C

d5
δΣ(12)

δG(45)

δG(45)

δUeff(3)
,

= −δ1,2δ1,3 +

∫

C

d4

∫

C

d5
δΣ(12)

δG(45)

∫

C

d6

∫

C

d7 G(46)
δG−1(67)

δUeff(3)
G(75) ,

= −δ1,2δ1,3 +

∫

C

d4

∫

C

d5

∫

C

d6

∫

C

d7
δΣ(12)

δG(45)
G(46) Γ(673) G(75) ,

(F.23)

where the relation (F.10) has been used. Contributions proportional to δΣ/δG are referred to
as vertex corrections and describe interaction processes at the two-particle level.
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F.2 Electron-Phonon Interaction

The coupling of electrons and nuclei in the lattice to the external sources is given by

Ĥext =

∫
dr U(r, t) (ρel(r) + ρn(r)) + J(r, t)ρn(r) , (F.24)

where 〈ρel(r)〉 = iq~G<(r, t; r, t) is the density of electrons. The density of the nuclei in the
lattice 〈ρn(r)〉 is represented as a sum of local charge densities ρκ

ρn(r, t) =
∑

Lκ

ρκ(r − R(Lκ)) , (F.25)

where the actual positions of the nuclei R(Lκ) = L + κ + u(Lκ), is defined in terms of the
equilibrium lattice vector L, the basis vector within the unit cell κ, and the lattice displacement
u(Lκ). In case of bare nuclei, ρκ would approximately be δ functions. However, it is more
convenient to consider rigid ion cores instead of bare nuclei. In this case ρκ denotes the charge
density of the ion cores.

For a simple derivation of the electron-phonon interaction, one has to add an additional external
source J(r, t) in (F.24) [203], which couples to the charge density of the nuclei and is merely a
mathematical trick, see (F.32)-(F.35). With similar steps for deriving (F.7), one can show that
under the Hamiltonian in (F.24) the effective potential can be written as

Ueff(1) = U(1) − i~

∫

C

d2 V (1 − 2) G(22) +

∫

C

d2 V (1 − 2) 〈ρn(2)〉 ,

= U(1) +

∫

C

d2 V (1 − 2) (〈ρel(2)〉 + 〈ρn(2)〉) .
(F.26)

The aim is the calculation of the total linear response of the system, including the contribu-
tion from the nuclei, i.e. the variation of the total electrostatic potential with the external
potential [205]

δUeff(1)

δU(2)
=

δU(1)

δU(2)
− i~

∫

C

d3 V (1 − 3)

(
δ〈ρel(3)〉
δU(2)

+
δ〈ρn(3)〉
δU(2)

)
,

= δ1,2 +

∫

C

d3

∫

C

d4 V (1 − 3)
δ〈ρel(3)〉
δUeff(4)

δUeff(4)

δU(2)
+

∫

C

d3 V (1 − 3)
δ〈ρn(3)〉
δU(2)

.

(F.27)

Solving with respect to δUeff/δU , one obtains

δUeff(1)

δU(2)
= ǫ−1(12) +

∫

C

d3 W (13)
δ〈ρn(3)〉
δU(2)

, (F.28)

where the dielectric function is

ǫ(12) = δ1,2 +

∫

C

d3 V (1 − 3)
δ〈ρel(3)〉
δUeff(2)

, (F.29)
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and W is the screened interaction. The derivative δ〈ρel〉/δUeff differs from the purely electronic
polarization which is introduced in Appendix F.1.1, owing to the phonon contribution to the
total potential. Neglecting this phonon contribution to the polarization function is one of the
ingredients of the adiabatic approximation [246]. This approximation reduces the dielectric
function and the screened interaction in (F.28) to the purely electronic quantities which are
introduced in (F.20) and (F.21). The next step is the calculation of the lattice contribution.
Similar to the Green’s function for electrons, one can consider the expectation value of the
density of nuclei

〈ρn(1)〉 =
〈TC{Ŝext

C ρn(1)}〉
〈TCŜext

C 〉
. (F.30)

With similar steps for deriving (F.5), the density response of the nuclei under the action of Ĥext

can be calculated as

δ〈ρn(1)〉
δU(2)

= − i

~

〈TC{Ŝext
C [ρel(2) + ρn(2)]ρn(1)}〉

〈TCŜext
C 〉

+
i

~

〈TC{Ŝext
C ρn(1)}〉〈TC{Ŝext

C [ρel(2) + ρn(2)]}〉
〈TCŜext

C 〉2
,

= − i

~

〈TC{Ŝext
C [∆ρel(2) + ∆ρn(2)]∆ρn(1)}〉

〈TCŜext
C 〉

.

(F.31)

In the last step, the deviation operator ∆ρ = ρ − 〈ρ〉 is introduced. Furthermore, the relation
〈AB〉 − 〈A〉〈B〉 = 〈(A− 〈A〉)(B − 〈B〉)〉 is used. Now the additional external field J comes into
play, which allows us to eliminate the mixed electron-nuclei contribution. By steps completely
analogous to those used before, one finds

δ〈ρel(1)〉
δJ(2)

= − i

~

〈TC{Ŝext
C ∆ρel(1) ∆ρn(2)}〉

〈TCŜext
C 〉

, (F.32)

which together with (F.31), yields the result

δ〈ρn(1)〉
δU(2)

=
δ〈ρel(1) + ρn(1)〉

δJ(2)
,

= D(12) +
δ〈ρel(1)〉
δJ(2)

,

(F.33)

where the density-density correlation function of the nuclei is defined as

D(12) = − i

~

〈TC{Ŝext
C ∆ρn(2)∆ρn(1)}〉

〈T ext
C ŜC〉

,

=
δ〈ρn(1)〉
δJ(2)

.

(F.34)
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One can again apply the chain rule to (F.33) to eliminate the δ〈ρel〉/δJ contribution.

δ〈ρn(1)〉
δU(2)

= D(12) +

∫

C

d3

∫

C

d4
δ〈ρel(2)〉
δUeff(3)

V (3 − 4)
δ〈ρel(4) + ρn(4)〉

δJ(1)
. (F.35)

Making use of the relation (F.33) once more, one can solve the resulting equation with respect to
δ〈ρn〉/δU and express the solution in terms of the dielectric function. After insertion in (F.28),
this yields the total dielectric screening function as

δUeff(1)

δU(2)
= ǫ−1(12) +

∫

C

d3

∫

C

d4 W (13) D(34) ǫ−1(42) . (F.36)

The desired effective electron-electron interaction induced by lattice vibrations is thus finally
given by [205]

Weff(12) = W (12) +

∫

C

d3

∫

C

d4 W (13) D(34) W (42)

︸ ︷︷ ︸
Wph

.
(F.37)

Therefore, the problem of electron-phonon interaction is reduced to the replacement of the elec-
tronically screened interaction introduced in Appendix F.1.1 by the effective interaction (F.37).

F.2.1 The Phonon Green’s Function

The density-density correlation function of the nuclei is reduced in the following to a quantity
of more practical interest, namely the phonon Green’s function within the harmonic approxi-
mation. One can expand the ionic charge density up to first-order in the lattice displacement
uα(Lκ) with respect to the equilibrium positions of ions (see (F.25)) [205]

ρn(r, t) =
∑

Lκ

ρκ(r − L − κ) +
∑

Lκα

∇α ρκ(r − L − κ)uα(Lκ, t) , (F.38)

where α denotes the Cartesian components. This expansion reduces the density-density corre-
lation function (F.34) to

Dαβ(r, t; r′, t′) =
∑

Lκα,L′κ′β

∇α ρκ(r − L − κ) Dαβ(Lκ, t;L′κ′, t′) ∇β ρκ′(r′ − L′ − κ′) ,

(F.39)

where the phonon Green’s function in real space is

Dαβ(Lκ, t;L′κ′, t′) = − i

~
〈TC{ uα(Lκ, t) uβ(L′κ′, t′) }〉 . (F.40)

Owing to the lattice periodicity of the ionic charge densities, the spatial Fourier transformation
of (F.39) takes the form

Dαβ(G + q,G′ + q; t, t′) =

∑

κα,κ′β

(Gα + qα) ρκ(G + q) eiGκ Dακ,βκ′(q; t, t′)√
MκMκ′

ρκ′(G′
β + qβ) eiG

′κ′
.

(F.41)
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The Fourier expansion of the lattice displacement can be written as

uα(Lκ, t) =
1√
NMκ

∑

q

eiq(L+κ)uακ(q, t) , (F.42)

where Mκ are the mass of the atoms and N is the number of atoms in the unit cell. By means
of (F.42), the Fourier transformation of (F.40) is given by

Dακ,βκ′(q, t;q′, t′) = − i

~
〈TC{ ûακ(q, t) û†β,κ′(q

′, t′) }〉δq,q′ . (F.43)

By diagonalizing the dynamical matrix [283], one obtains the eigen-modes eακλ(q) and eigen-
frequencies ωλ,q of the lattice vibrations. These eigen-vectors can be used to expand the
Fourier components of the displacement in terms of phonon operators

ûακ(q, t) =
∑

λ

√
~

2ωλ,q
eακλ(q)

(
bλ,q(t) + b†λ,−q(t)

)
, (F.44)

where these operators have the time dependence

bλ,q(t) = bλ,qe
−iωλ,qt . (F.45)

This eigen-vector expansion allows one to factorize (F.43) for each phonon mode according to

Dακ,βκ′(q; t, t′) =
∑

λ

dακ,βκ′(q; t, t′)Dλ(q; t, t′) . (F.46)

into a weight factor

dακ,βκ′(q, λ) =
eακλ(q)eβκ′λ(q)

2ωλ,q
(F.47)

and the phonon Green’s function (Appendix D.2)

Dλ(q; t, t′) = − i

~
〈TC{ Âλ,q(t) Â†

λ,q(t′)}〉 , (F.48)

where Âλ,q(t) = bλ,q(t) + b†λ,−q(t), b, and b† are the annihilation and creation operators for
Bosons. This factorization allows one to evaluate the coupling for any combination of phonon
branch indices.
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F.2.2 The Phonon Self-Energy

In the previous sections helpful forms of the electron-phonon interaction are derived. One can
link up with the many-particle theory and introduce phonon contributions into the quantum
kinetic equations. As shown in the derivation of the general result (F.37), one has to add the
phonon induced contribution to the electronically screened interaction. Together with (F.14),
this defines the phonon self-energies which enters the quantum kinetic equations. As the phonon
induced interaction is not a functional of the single-particle Green’s function, the problem is
slightly less complicated than the electron-electron interaction. As in the purely electronic case,
one is dependent on approximation schemes. An expansion of the self-energy in powers of the
phonon-induced interaction is easily generated by means of (F.14). The contribution linear in
the phonon induced interaction, i.e. the single-phonon self-energy takes the form

Σ1(12) = i~ Wph(21) G(12) . (F.49)

By performing eigen-function expansion (see Appendix F.2.1) one obtains

Σ1(k; t1, t2) = −i~
∑

q

Wph(q; t1, t2) G(k + q; t1, t2) , (F.50)

where

Wph(q; t1, t2) =
∑

λ

M2
λ(q) Dλ(q; t1, t2) , (F.51)

M2
λ(q) =

∑

αβκκ′

Fακ(q)
dακ,βκ′(q, λ)√

MκMκ′

Fβκ′(q) , (F.52)

Fακ(q) =
∑

G

W (q,G + q; t1, t2)(Gα + qα) ρκ(G + q) eiGκ . (F.53)

The phonon Green’s functions entering (F.51) are discussed in Appendix F.2.1.
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F.3 Approximation of the Self-Energy

Depending on the problem, one can either attempt a summation of a selected class of dominant
contributions or perform an expansion with respect to the screened interaction. As shown
in Appendix F.1.1, the self-energy itself and the polarization propagator, which determines the
screened interaction, depend sensitively on the vertex corrections. Thus there is a complicated
functional dependence of single-particle properties on two-particle properties and vice versa,
and one has to consider the consistence of approximations at the single-particle and two-particle
levels. In principle, there are two different approaches to attack the coupled system of equations
derived in Appendix F.1.1 An iterative procedure and self-consistent approximations.

Starting such an iterative solution, one can first neglect vertex corrections in (F.23) and obtain
an approximation for the self-energy by means of (F.14) together with (F.21) and (F.22). Making
use of this approximation, one calculates δΣ/δG, and includes vertex corrections in the next step.
The iteration of such a procedure generates an expansion in terms of the screened interaction
and the Green’s function defined as a self-consistent solution of the Dyson equation.

For the iterative procedure, the sequence of steps can be defined by the vertex function (F.23),
which yields by means of the chain rule the recurrence relation

Γn+1(123) = −δ1,2δ1,3 − δΣn(12)

δUeff(3)
. (F.54)

One starts with the Hartree-approximation, i.e. Σ0 = 0, which delivers G0, Γ1 = −δ1,2δ1,3 and
the screened interaction W1. In the subsequent step one obtains Σ1, G1 and Γ2 and so forth.
The effect of this interaction is two-fold. In the n-th step, the Green’s functions contributing
to Σn[Gn−1] become dressed by an additional interaction line and additionally new types of
diagrams are generated.

For the Self-consistent approximations, one selects a certain class of self-energy diagrams Σ[G].
The Dyson equation becomes a non-linear functional equation of the Green’s functions, which
has to be solved self-consistently. The selection corresponds to the summation of a certain class
of diagrams up to infinite-order in the interaction, whereas others which contribute even in lower
order are neglected. The difficulty is in finding the correct way to choose a subset of diagrams
for each order. In order to deliver physically meaningful results, any approximation should
guarantee certain macroscopic conservation laws. This condition can be imposed by the postulate
that all diagrams contributing to the self-energy are obtained from the functional derivative of
a functional Φ[G] with respect to G. Solving the Dyson equation self-consistently with a Φ-
derivable self-energy yields a Green’s function which conserves particle number, energy, and
momentum [93].
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Treatment of Contacts

In order to solve the transport equations, boundary conditions have to be specified. An impor-
tant point is the treatment of contacts, which act as a source or drain for the carriers [8,97,116,
181,284,285]. Here, the method described in [285] is followed.

One can partition the layered structure into left contact with index L, device with index D, and
right contact with index R (Fig. G.1). The device corresponds to the region where one solves
the transport equations and the contacts are the highly conducting regions connected to the
device.

While the device region consists of only N layers, the matrices corresponding to the Green’s
functions (4.11) and (4.12) are infinite dimensional due to the semi-infinite contacts. It is shown
next, that the influence of the semi-infinite contacts can be folded into the device region, where
the semi-infinite contacts only affect layers 1 and N of the device region.

As shown next, the influence of the semi-infinite contacts can be folded into the device region
by adding a self-energy to the device region. This can be viewed as an additional self-energy,
due to the transitions between the device and the contacts.

Figure G.1: Partitioning of the simulation domain into device region and left and
right contacts.
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G.1 Matrix Truncation

By defining

A = [EI −H − ΣScat] , (G.1)

the equation (4.11) (AGr = I) can be written as,



ALL ALD

ADL ADD ADR

ARD ARR






Gr

LL Gr
LD Gr

LR

Gr
DL Gr

DD Gr
DR

Gr
RL Gr

RD Gr
RR


 =



I

I

I


 , (G.2)

where

ALL =




• • •
• • •

−t†L4,3
AL3

−tL3,2

−t†L3,2
AL2

−tL2,1

−t†L2,1
AL1



, (G.3)

corresponds to the left semi-infinite contact,

ARR =




AR1
−tR12

−t†R12
AR2

−tR23

−t†R23
AR3

−tR34

• • •
• • •



, (G.4)

corresponds to the right semi-infinite contact, and

ADD =




A1 −t12
−t†12 A2 −t2,3

• • •
• • •

−t†N−2,N−1 AN−1 −tN−1,N

−t†N−1,N AN




, (G.5)

corresponds to the device region.

The coupling between the left and right contacts and device are respectively given by

ALD =




0 0 • • 0 0

0 0 • • 0 0

0 0 • • 0 0

0 0 • • 0 0

−tLD 0 • • 0 0



, (G.6)
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and

ARD =




0 0 • • 0 −tRD

0 0 • • 0 0

0 0 • • 0 0

0 0 • • 0 0

0 0 • • 0 0



. (G.7)

It should be noted that ADL = A†
LD, ADR = A†

RD, and ALD and ADL (ARD, and ADR) are
sparse matrices. Their only non-zero entry represents the coupling of the left (right) contact
and device. From (G.2), one obtains

Gr
LD = −A−1

LL ALD Gr
DD , (G.8)

Gr
RD = −A−1

RR ARD Gr
DD , (G.9)

ADL Gr
LD + ADD Gr

DD + ADR Gr
RD = I . (G.10)

Substituting (G.8) and (G.9) in (G.10), one obtains a matrix equation with a dimension corre-
sponding to the total number of grid points in device layers,

[ADD − ADL A−1
LL ALD − ADR A−1

RR ARD] Gr
DD = I . (G.11)

The second and third terms of (G.11) are self-energies due to coupling of the device region to
left and right contacts, respectively.

The Green’s functions of the isolated semi-infinite contacts are defined as

ALL gr
L

= I ,

ARR gr
R

= I .
(G.12)

The surface Green’s function of the left and right contacts are the Green’s function elements
corresponding to the first edge layer of the respective contact

gr
L1,1

= A−1
LL1,1

,

gr
R1,1

= A−1
RR1,1

.
(G.13)
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G.2 Contact Self-Energies

The surface Green’s functions defined in (G.13) enable us to rewrite (G.11) in a form very
similar to (4.11),

[EI −H − Σr
Scat − Σr

C] Gr
DD = I , (G.14)

where,

Σr
C1,1

= tDL gr
L1,1

tLD = Σr
L ,

Σr
CN,N

= tDR gr
R1,1

tRD = Σr
R .

(G.15)

All other elements of Σr
C are zero. Σr

L and Σr
R are self-energies due to the left and right contacts,

respectively, and tDL = t†LD and tDR = t†RD. By following the same procedure one obtains the
equation of motion for the lesser and greater Green’s functions as [116]

G
≷
DD = Gr

DD

[
Σ

≶
Scat + Σr

C

]
Ga

DD , (G.16)

where,

Σ
≷
C1,1

= tDL g
≷
L1,1

tLD = Σ
≷
L ,

Σ
≷
CN,N

= tDR g
≷
R1,1

tRD = Σ
≷
R .

(G.17)

Since the contacts are by definition in equilibrium, one obtains (Appendix D.1)

g<
1,1

= i a
1,1

fL ,

g<
1,1

= i a
1,1

fR ,
(G.18)

where a = i(gr − ga) = −2ℑm[gr] is the spectral function and fL(R) is the Fermi factor of the
left (right) contact. By defining the broadening function as

ΓC1,1
= i (Σr

1,1
− Σa

1,1
) = tDL a

1,1
tLD = ΓL ,

ΓC1,1
= i (Σr

1,1
− Σa

1,1
) = tDR a1,1 tRD = ΓR ,

(G.19)

equation (G.17) can be rewritten as

Σ<
L = +i ΓL fL ,

Σ<
R = +i ΓR fR .

(G.20)

In a similar manner one can show that

Σ>
L = −i ΓL (1 − fL) ,

Σ>
R = −i ΓR (1 − fR) .

(G.21)
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G.3 Surface Green’s Function

The main information needed to solve (G.14) are the surface Green’s functions of gr
L

and gr
R
.

Using the recursive relation (H.10), equation (G.12) can be written as

[ALi
− tLi,i+1

gr
Li+1,i+1

t†Li+1,i
] gr

Li,i
= I ,

[ARi
− t†Ri,i−1

gr
Ri−1,i−1

tRi−1,i
] gr

Ri,i
= I .

(G.22)

If the potential does not vary in the left and right contacts and if the coupling between different
layers are equal, then ALL and ARR become semi-infinite periodic matrices with

AL1
= AL2

= AL3
= . . . = AL ,

AR1
= AR2

= AR3
= . . . = AR ,

tL1,2
= tL2,3

= tL3,4
= . . . = tL ,

tR1,2
= tR2,3

= tR3,4
= . . . = tR .

(G.23)

Under this condition one obtains

gr
L1,1

= gr
R2,2

= . . . = gr
L
,

gr
R1,1

= gr
R2,2

= . . . = gr
R
.

(G.24)

Therefore, the surface Green’s functions can be obtained by solving the quadratic matrix
equations

[AL − tL gr
L
t†L] gr

L
= I ,

[AR − t†R gr
R
tR] gr

R
= I .

(G.25)

These equations can be solved iteratively by

[AL − tL gr
L
〈m−1〉 t†L] gr

L
〈m〉 = I ,

[AR − t†R gr
R
〈m−1〉 tR] gr

R
〈m〉 = I ,

(G.26)

where m represents the iteration number. It should be noted that the solution to (G.25) is
analytic if the dimension of AR is one.
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Recursive Green’s Function Method

As discussed in Section 4.2, the matrix representation of the kinetic equations is given by

A Gr = I , (H.1)

A G< = Σ< [Gr]† , (H.2)

A = [EI −H − Σr] , (H.3)

where Σ is the total self-energy. To calculate the Green’s functions, matrix inversion is required.
However, since the matrices are block tridiagonal and also most of the observables are related to
the diagonal blocks of the Green’s functions, one can employ a recursive method to calculate
the observables efficiently [8, 116]. We follow here the method proposed in [8].

H.1 Recursive Algorithm to Calculate G
r

The Dyson equation for the retarded Green’s function and the left-connected Green’s func-
tion [116] are employed to calculate the diagonal blocks of the full Green’s function recursively.
The solution to the matrix equation

[
AZ,Z AZ,Z′

AZ′,Z AZ′,Z′

][
Gr

Z,Z Gr
Z,Z′

Gr
Z′,Z Gr

Z′,Z′

]
=

[
I 0

0 I

]
, (H.4)

is

Gr = Gr0 +Gr0 U Gr ,

= Gr0 +Gr U Gr0 ,
(H.5)

where,

Gr =

[
Gr

Z,Z Gr
Z,Z′

Gr
Z′,Z Gr

Z′,Z′

]
, (H.6)
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Gr0 =

[
Gr0

Z,Z 0

0 Gr0
Z′,Z′

]
=

[
A−1

Z,Z 0

0 A−1
Z′,Z′

]
, (H.7)

U =

[
0 −AZ,Z′

−AZ′,Z 0

]
. (H.8)

The left-connected retarded Green’s function gr
Lq

is defined by the first q blocks of (H.1) by

A
1:q,1:q

gr
Lq

= I
1:q,1:q

. (H.9)

gr
Lq+1

is defined in a manner identical to gr
Lq

except that the left-connected system is comprised

of the first q + 1 blocks of (H.1). In terms of (H.4), the equation governing gr
Lq+1

follows by

setting Z = 1 : q and Z ′ = q + 1. Using the Dyson equation [(H.5)], one obtains

gr
Lq+1,q+1

=
(
A

q+1,q+1
− A

q+1,q
gr

Lq,q
A

q,q+1

)−1
. (H.10)

It should be noted that the last block gr
LN,N

is equal to the fully connected Green’s function

Gr
LN,N

, which is the solution to (H.1). The full Green’s function can be expressed in terms of

the left-connected Green’s function by considering (H.4) such that AZ,Z = A
1:q,1:q

, AZ′,Z′ =
A

q+1:N,q+1:N
and AZ,Z′ = A

1:q,q+1:N
. By noting that the only non-zero block of A

1:q,q+1:N
is A

q,q+1

and using (H.5), one obtains

Gr
q,q

= gr
Lq,q

+ gr
Lq,q

(
A

q,q+1
Gr

q+1,q+1
A

q+1,q

)
gr

Lq,q
,

= gr
Lq,q

− gr
Lq,q

A
q,q+1

Gr
q+1,q

,

(H.11)

Both Gr
q,q

and Gr
q+1,q

are used for the calculation of the electron density, and so storing both
sets of matrices will be useful. In view of the above equations, the algorithm to compute the
diagonal blocks Gr

q,q
is given by the following steps� gr

L1,1
= A−1

1 ,� For q = 1, 2, . . . , N − 1, (H.10) is computed,� For q = N − 1, N − 2, . . . , 1, (H.11) is computed.
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H.2 Recursive Algorithm to Calculate G
<

Following Appendix H.1, the algorithm to calculate the electron density (diagonal elements of
G<) is discussed in terms of the Dyson equation for the lesser and the left-connected Green’s
functions. The solution to the matrix equation

[
AZ,Z AZ,Z′

AZ′,Z AZ′,Z′

][
G<

Z,Z G<
Z,Z′

G<
Z′,Z G<

Z′,Z′

]
=

[
Σ<

Z,Z Σ<
Z,Z′

Σ<
Z′,Z Σ<

Z′,Z′

][
Ga

Z,Z Ga
Z,Z′

Ga
Z′,Z Ga

Z′,Z′

]
, (H.12)

can be written as

G< = Gr0 U G< + Gr0 Σ< Ga , (H.13)

where Gr0 and U have been defined in (H.7) and (H.8), and G< and Ga are readily identifiable
from (H.12). Using the relation Ga = Gr† = Ga0 +Ga0U †Ga, (H.13) can be written as

G< = G<0 + G<0 U † Ga + Gr0 U G< ,

= G<0 + Gr U G<0 + G< U † Ga0 ,

(H.14)

where

G<0 = Gr0 Σ< Ga0 . (H.15)

The left-connected lesser Green’s function g<
Lq

is defined by the first q blocks of (H.2)

A
1:q,1:q

g<
Lq

= Σ<
1:q,1:q

ga
L1:q,1:q

. (H.16)

g<
Lq+1

is defined in a manner identical to g<
Lq

except that the left-connected system is comprised

of the first q + 1 blocks of (H.2). In terms of (H.12), the equation governing g<
Lq+1

follows by

setting Z = 1 : q and Z ′ = q + 1. Using the Dyson equations for Gr and G<, g<
Lq+1,q+1

can be

recursively obtained as [8]

g<
Lq+1,q+1

= gr
Lq+1,q+1

[
Σ<

q+1,q+1
+ σ<

q+1

]
ga

Lq+1,q+1
+ gr

Lq+1,q+1
Σ<

q+1,q
ga

Lq,q+1
+ gr

Lq+1,q
Σ<

q,q+1
ga

Lq+1,q+1
,

(H.17)

which can be written in a more intuitive form as

g<
Lq+1,q+1

= gr
Lq+1,q+1

[
Σ<

q+1,q+1
+ σ<

q+1
− Σ<

q+1,q
ga

Lq,q
A†

q,q+1
−A

q+1,q
gr

Lq,q
Σ<

q,q+1

]
ga

Lq+1,q+1
,

(H.18)

where σ<
q+1

= A
q+1,q

g<
Lq,q

A†
q,q+1

. Equation (H.18) has the physical meaning that g<
Lq+1,q+1

has

contributions due to four injection functions: (i) an effective self-energy due to the left-connected
structure that ends at q, which is represented by σ<

q+1
, (ii) the diagonal self-energy component at

grid point q+1 that enters (H.2), and (iii) the two off-diagonal self-energy components involving
grid points q and q + 1.
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To express the full lesser Green’s function in terms of the left-connected Green’s function, one
can consider (H.12) such that AZ = A

1:q,1:q
, A′

Z = A
q+1:N,q+1:N

and AZ,Z′ = A
1:q,q+1:N

. Noting
that the only non-zero block of A

1:q,q+1:N
is A

q,q+1
and using (H.14), one obtains

G<
q,q

= g<
Lq,q

− g<
Lq,q

A†
q,q+1

Ga
q+1,q

− g<0
q,q+1

A†
q+1,q

Ga
q,q

− gr
Lq,q

A
q,q+1

G<
q+1,q

. (H.19)

Using (H.14), G<
q+1,q

can be written in terms of G<
q+1,q+1

and other known Green’s functions as

G<
q+1,q

= g<0
q+1,q

−Gr
q+1,q

A
q,q+1

g<0
q+1,q

−Gr
q+1,q+1

A
q+1,q

g<
Lq,q

−G<
q+1,q+1

A†
q,q+1

ga
Lq,q

. (H.20)

Substituting (H.20) in (H.19) and using (H.5), one obtains

G<
q,q

= g<
Lq,q

+ gr
Lq,q

(
A

q,q+1
G<

q+1,q+1
A†

q+1,q

)
ga

Lq,q
−
[
g<

Lq,q
A†

q,q+1
Ga

q+1,q
+Gr

q,q+1
A

q+1,q
g<

Lq,q

]

−
[
g<0

q,q+1
A†

q+1,q
Ga

q,q
+Gr

q,q
A

q,q+1
g<0

q+1,q

]
,

(H.21)

where

g<0
q,q+1

= gr0
q,q

Σ<
q,q+1

ga0
q+1,q+1

g<0
q+1,q

= gr0
q+1,q+1

Σ<
q+1,q

ga0
q,q
.

(H.22)

The terms inside the square brackets of (H.21) are Hermitian conjugates of each other. In view
of the above equations, the algorithm to compute the diagonal blocks of G< is given by the
following steps:� g<

L1,1
= gr0

1,1
Σ<

L ga0
1,1

,� For q = 1, 2, . . . , N − 1, (H.18) is computed,� For q = N − 1, N − 2, . . . , 1, (H.21) and (H.22) are computed.
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