
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Diplomarbeit

Analysis and Optimization of
Nested Meshes for Adaptive Mesh Refinement

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Masterstudium Technische Mathematik

eingereicht von

Florian Pöppl, BSc
Matrikelnummer 01425416

ausgeführt am Institut für Mikroelektronik
eingereicht an der Fakultät für Mathematik und Geoinformation der Technischen Universität Wien

Betreuung
Hauptbetreuer: Privatdoz. Dipl.-Ing. Dr.techn. Josef Weinbub, BSc
Mitbetreuer: Univ.Ass. Dipl.-Ing. Michael Quell, BSc

Wien, 04.05.2020

(Unterschrift Verfasser) (Unterschrift Betreuer)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents
1 Introduction 3

1.1 Motivation and Objectives 3
1.2 Outline 5

2 Adaptive Mesh Refinement 6
2.1 Patch-Based AMR 9
2.2 The AMR Algorithm 14

2.2.1 Timestepping 14
2.2.2 Flagging 16
2.2.3 Regridding 17
2.2.4 Initialization 17
2.2.5 Synchronization 18
2.2.6 Averaging 20

3 Mesh Cell Clustering 21
3.1 Single-Level Clustering 22

3.1.1 Signature-Inflection Clustering 24
3.1.2 Tile Clustering 31

3.2 Multi-Level Clustering 33
3.2.1 Top-Down Clustering 34
3.2.2 Bottom-Up Clustering 37

4 Implementation 39
4.1 Requirements 39
4.2 Interface 40
4.3 Parallelization 42

5 Numerical Experiments 45
5.1 Clustering Examples 45

5.1.1 Top-Down Signature Clustering 45
5.1.2 Bottom-Up Tile Clustering 56
5.1.3 Comparison of Signature Clustering and Tile Clustering 58

5.2 Vortex Flow Simulation 60

6 Conclusion 63

A Code Samples 64
A.1 Mesh and Grid Interfaces 64
A.2 Vortex Flow Simulation 65

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

Adaptive mesh refinement is a numerical method which locally increases the mesh resolution
within existing meshes in order to reduce the computational effort of numerical simulations. The
mesh resolution is only increased where required, for example, in areas with a high estimated
error. This enables accurate simulation of problems with highly varying spatial scales, which
would be unfeasible with fixed mesh resolutions.

Focusing on adaptive refinement of Cartesian meshes, the nested meshes have to be properly
embedded in a mesh hierarchy according to specific nesting criteria. The creation of such a
nested mesh hierarchy requires a priori defined points of interest to be suitably clustered. In line
with the goal of reducing computational effort of subsequent numerical simulations, the number
of meshes as well as the number of individual mesh cells have to be optimally minimized. The
challenge in creating an efficient mesh hierarchy is finding a trade-off between these quantities
and the computational cost for the adaptation of the hierarchical data structure, including
interpolation of the data associated with the mesh cells.

In this thesis, two approaches to mesh clustering and nested mesh generation are evaluated and
a novel algorithm for transforming a given Cartesian nested mesh configuration according to
given points of interest is discussed. The algorithm produces efficient nested mesh hierarchies
that are guaranteed to conform to extended nesting criteria, e.g., each mesh also has a unique
parent mesh. An implementation of the adaptive mesh refinement procedure, including the mesh
generation algorithms, is presented together with numerical examples. For these examples, the
novel algorithm reduces the total number of cells for a single refinement level by up to 10%,
depending on the problem geometry.

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1 Introduction

1.1 Motivation and Objectives

Even though numerical methods for partial differential equations (PDEs) are always advancing in
speed and accuracy, certain problems require resolutions that cannot be feasibly simulated in full
or feature strongly differing spatial scales. The accuracy of the numerical solution of PDEs, here
considered to ultimately represent a numerical simulation, is directly related to the resolution
of the approximating discrete computational mesh. If the mesh resolution is too coarse, regions
with a highly varying solution are approximated inaccurately leading to incorrect simulations.
However, a finer resolution in turn strongly increases the computational effort of considered
numerical simulations. One approach to overcome this problem is to focus the computational
effort on areas where accuracy is most important, while paying less attention to less interesting
areas – such as parts of the domain where the solution is constant. This yields the desired
accuracy while keeping the cost of computation low. These areas of interest are usually not
known a priori, but have to be determined during a simulation and the discretization has to be
adapted accordingly.

The numerical solution of PDEs necessitates a discretization of the problem domain, referred to
as the, previously indicated, computational mesh. For such a mesh, function values are stored
at specified points in space, called nodes or cells. Meshes are categorized as either structured or
unstructured meshes, where structured meshes are characterized by pre-defined connectivity and
regular positioning (e.g., a Cartesian mesh), whereas unstructured meshes can have arbitrarily
placed nodes (e.g., triangular or tetrahedral meshes). While adaptive methods exist for both
types of meshes, this work focuses on structured meshes as they are particularly attractive for
certain numerical problems involving finite difference (and related) schemes due to reducing the
complexity and memory requirements of the numerical algorithms, as connectivity information
is given inherently.

Specifically, adaptive mesh refinement (AMR) as presented in [1] is a technique for solving
compressible flow problems, as well as more general hyperbolic differential equations, which
dynamically refines a structured Cartesian (i.e., uniform quadrilateral or hexahedral cells) mesh
in areas where it is required, based on certain error measurements or solution properties [8].
This creates a hierarchy of nested meshes with increasingly fine mesh spacing (cf. Figure 1.1),
where a higher accuracy is achieved by propagating the solutions from the finer meshes to the
coarser meshes.

For time-dependent PDEs, such as hyperbolic differential equations, the solution is known
at an initial starting time and needs to be advanced forward in time. This is usually done in
discrete intervals, called timesteps. The timestepping of a nested mesh hierarchy is then not
much different from timestepping any single Cartesian mesh. Existing numerical methods for
Cartesian meshes, usually finite volume or finite difference methods [16], can straightforwardly
be integrated into the AMR procedure. The challenge is to identify the areas which should be
refined as well as where to place the refined meshes. For the latter, there are certain constraints
as to how meshes may be nested.

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

(a) Cells marked for refinement. (b) Refined meshes, marked cells. (c) Final nested mesh hierarchy.

Figure 1.1: Adaptive mesh refinement identifies and selectively refines areas of interest in the
problem domain. Starting from a coarsely-resolved root mesh covering the whole domain, cells are
marked for refinement and a new set of meshes with finer resolution is created, covering all marked
cells. These new meshes may be marked and refined again. This process can continue recursively up
to a maximum depth (in this case three levels), resulting in a hierarchy of nested meshes.

There exist a number of software packages implementing AMR algorithms. The Clawpack soft-
ware suite [32] is an open source library of finite volume methods for linear and nonlinear hyper-
bolic systems of conservation laws. Clawpack includes a Fortran-based AMR implementation
called AMRClaw [11] which supports patch-based AMR with multiple strategies for identify-
ing areas of interest. AMRClaw was used in [24] to model the propagation of a transoceanic
tsunami, where the behaviour is governed by nonlinear hyperbolic equations. Adaptive mesh
refinement allowed for modelling of both the large-scale properties of the oceanic regions as well
as the comparatively small-scale behaviour in coastal areas.

Chombo [36] is a C++/Fortran library providing finite difference and finite volume codes
and related tools for solving PDEs on block-structured meshes using AMR and has a focus on
supporting large-scale parallelization. Chombo was used in [29] to evaluate AMR performance
for modeling antarctic ice dynamics. AMR algorithms were employed to dynamically generate
new meshes as the modeled ice sheet evolves and reduces the mesh cell count as well as total
computational effort by an order of magnitude compared to a single, uniform mesh with the
same accuracy requirements.

The SAMRAI C++ library [30] contains tools for developing software with AMR func-
tionality. SAMRAI focuses especially on integrability with existing codebases and usage in
high-performance massively parallel computing. In [14], the SAMRAI library provided AMR
capability for simulation of laser plasma interaction. The use of AMR reduced cell count to
approximately one-third compared to a uniform mesh, resulting in significantly faster run-times
and lower memory cost.

A more specific use-case are level-set methods, numerical methods for calculating the time
evolution of geometric interfaces, which are represented as the 0-level-set of a suitable level-set
function. As high accuracy is usually only required near the interface, AMR provides an intuitive
way to reduce computational effort while achieving the desired accuracy [34]. A level-set based
numerical method together with AMR was presented in [33], allowing for simulation of two-
phase flows on the scales of individual bubbles by selectively refining only the areas around the
interface between liquid and gas.

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

This thesis focuses mainly on the creation of the nested mesh hierarchy, presuming the areas to-
be-refined are already known. The goal is to develop an optimized, parallelizable mesh hierarchy
generation algorithm and to provide a C++ AMR implementation for use with existing, well-
tested and optimized numerical code. While mesh hierarchies for AMR in general have to fulfil
certain nesting criteria, these numerical solvers pose additional constraints on the mesh hierar-
chies. Particularly the new requirement for unique parent meshes allows for further performance
optimizations which would otherwise not be possible. Current mesh generation methods [6, 25],
as well as their concrete implementations [30, 32, 36], are insufficient as they do not generally
adhere to the extended nesting criteria.

Based on the widely used Berger-Rigoutsos signature clustering algorithm [6], a new algo-
rithm for creating and transforming nested mesh hierarchies is developed and optimized for
mesh quality. This algorithm is evaluated and compared to a tile-based algorithm, adapted
from [25]. Unlike the original algorithms, both novel algorithms are guaranteed to fulfill the
extended nesting criteria.

The AMR refinement procedure, including mesh management, initialization, synchroniza-
tion and averaging, as well as the optimized mesh generation algorithms are implemented as a
C++11 library, with OpenMP used for shared-memory parallelization. Also, Python 3.7 is used
for post-processing the data for evaluation and visualization. The 3D plots are created using
ParaView 5.4.1.

1.2 Outline

In Section 2, the different types of AMR are discussed and related terminologies and fundamental
concepts are introduced.

In Section 3, the algorithms used for clustering the flagged mesh cells on a single level and on
multiple levels are presented.

In Section 4, a brief overview of the AMR implementation including the mesh hierarchy gener-
ation algorithms is given.

In Section 5, the results from the clustering algorithms as well as a complete simulation example
are examined.

In Section 6, the work is summarized and directions for possible future investigations are dis-
cussed.

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2 Adaptive Mesh Refinement

Adaptive mesh refinement is a numerical technique for optimizing the solution process of PDEs
which allows efficiently obtaining higher accuracy by refining the spatial resolution only where
needed. Starting from a coarsely resolved root mesh, areas in need of further refinement are
identified using error estimation techniques, properties of the solution or intrinsic characteristics
of the underlying physical problem. Additional mesh nodes are then placed accordingly. By
identifying and selectively refining areas of interest, AMR allows accurate simulation even of
features much smaller than the domain size, where a single uniform mesh would require an
unfeasible computational effort. AMR can be applied to various geometries and mesh types,
depending on the requirements of the numerical methods used as well as desired performance
characteristics, especially with respect to parallelization [19].

The term AMR is used for mesh refinement in conjunction with both structured and unstruc-
tured meshes; this work focuses on the first, where a distinction is made between three types of
AMR for structured meshes: Cell-based AMR (cf. Figure 2.1), patch-based AMR (cf. Figure 2.2)
and tree-based AMR (cf. Figure 2.3). The terminology is not completely unambiguous in the
literature, as the term block-based AMR is sometimes also used to describe tree-based AMR
algorithms [27].

Initially, structured AMR was devised to solve hyperbolic differential equations with finite
difference methods [5, 8] but was later extended to work with parabolic [17] and elliptic [33]
differential equations and also used in the context of adaptive multigrid methods [13, Ch. 9]. The
hyperbolic case is more straightforward, since the explicit methods used only require local mesh
data for time integration. To enable the solution of elliptic differential equations, an iterative
domain-decomposition approach is used [2, 33].

The basic structured-AMR procedure is:

First, the given differential equation is solved on a single root mesh with specified boundary
conditions. Then, areas requiring refinement are determined and marked (by error approxima-
tion or other methods, see Section 2.2.2) and new meshes are created that cover the marked
areas. This process may continue iteratively until a refinement criterion is satisfied and no new
meshes are required.

New mesh data is either interpolated from a less refined (coarser) mesh or copied from previously
existing meshes of the same refinement level. The meshes are advanced in time separately, with
stepsizes dependent on their refinement level. After each step meshes are synchronized, their
boundary values are exchanged with neighboring meshes or interpolated from coarser meshes.

The cost of creating and adapting the nested mesh hierarchy, including initialization and syn-
chronization overheads, is usually small compared to the savings resulting from the greatly
reduced amount of mesh cells (cf. Definition 2.1) achieved by refining the spatial resolution only
locally.

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Cell-based AMR
In cell-based AMR, all cells are refined individu-
ally [7, 9]. This is usually realized as a tree-structure
of, e.g., quad-trees or oct-trees. This has the benefit
of perfect refinement efficiency (since only the cells
needed are refined) but has high memory require-
ments for the hierarchical structure and synchroniza-
tion of the refined cells is complicated – the main
benefit of structured meshes is not having to keep
track of the (relative) positions of individual cells,
yet cell-based AMR requires some way of describing
cell connectivity which poses a significant computa-
tional overhead.

Figure 2.1: Cell-based refinement.

Figure 2.2: Patch-based refinement.

Patch-based AMR
As an alternative to refining cells on an individual
level, patch-based AMR (or block-based AMR) [1]
groups cells of the same refinement level together.
These rectangular patches are then refined and may
in turn contain multiple patches. This means that
while some cells are refined unnecessarily, the overall
structure is simpler since less separate meshes are
generated and only connectivity between patches and
not between individual cells has to be considered. If
rectangular, axis aligned patches are used, the same
numerical integrators can be used on every patch,
improving performance significantly.

Tree-based AMR
Tree based AMR is very similar to cell-based AMR
in that a quad-/oct-tree structure is used for refine-
ment. However, refinement is not done on single cells
but on cell-blocks of predefined sizes [26, 28]. This re-
tains the benefits of structured meshes for each block
and results in very simple data structures. How-
ever, mesh efficiency may be low, since blocks are
refined together even if only small parts actually re-
quire higher resolutions, resulting in significant over-
refinement. Tree-based AMR can be understood as
a special case of patch-based AMR with only equally
sized patches, but implementations usually differ in
how the patches and their connectivities are repre-
sented internally. Figure 2.3: Tree-based refinement.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Between the cell-based, patch-based and tree-based methods, a trade-off has to be made with
regards to number of nodes (mesh efficiency) and number of mesh patches (for cell-based AMR,
each refined cell is treated as a single mesh patch). Patch-based AMR represents a suitable
compromise, especially since mesh characteristics are controllable by the clustering algorithm.

However, patch-based AMR has certain drawbacks [23], such as an increased difficulty in
parallelization: In block-based methods, all meshes of a refinement level have the same size,
whereas the patch-sizes may differ greatly. Also, patch-based AMR does not preserve physical
symmetry without additional effort, which may be required for physically-accurate simulation
of certain problems.

In this thesis, a hierarchy of increasingly finer resolved, axis-aligned but not necessarily identically-
sized Cartesian meshes (called patches) is investigated, where each refinement level is represented
by a union of non-intersecting patches of the same spatial resolution. This patch-based approach
is analyzed and an optimized AMR algorithm is devised.

The use of rectangular, axis-aligned meshes has the additional benefit of allowing the use of
the same integration algorithm for all meshes, regardless of refinement level, resolution or size.
Owing to the simple mesh structures, this enables the use of optimized and highly parallelizable
algorithms with provable convergence properties.

From an implementation perspective, this also makes it possible to cleanly decouple the AMR
algorithm from the numerical solver, allowing for the use of existing, well-tuned integrators and
reuse of the same AMR code in different problem domains. The process of creating this mesh
hierarchy is conceptually simple, yet poses several challenges when it comes to an optimal and
efficient implementation.

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1 Patch-Based AMR

Patch-based mesh refinement uses rectangular Cartesian meshes where refinement is done on
rectangular boxes (called patches, as in Definition 2.1) that may contain further refined meshes
themselves.

Definition 2.1 (Cartesian Grid, Mesh and Patch).
A domain Ω = [ax, bx] × [ay, by] × [az, bz] is discretized by a Cartesian grid with a global
indexing scheme I := {(i, j, k) ∈ N

<nx

0 × N
<ny

0 × N
<nz

0 } for a given grid size n ∈ N
3.

The uniform Cartesian grid G(a,b,n) is defined as

G(a,b,n) :=




xijk := a+




i+1/2
nx

(bx − ax)
j+1/2
ny

(by − ay)
k+1/2
nz

(bz − az)




∣∣∣∣∣∣∣∣
0 ≤ i < nx, 0 ≤ j < ny, 0 ≤ k < nz





.

While the full discretization of the domain is called grid, the parts of a grid actually con-
taining data values will be referred to as mesh to avoid ambiguity.
For a grid GΩ = G(a,b,n), a patch is a rectangular sub-region P ⊆ Ω defined by its first
index f ∈ N

3
0 and size s ∈ N

3

P (f , s) :=

[
ax +

fx
nx

(bx − ax), bx +
fx + sx

nx
(bx − ax)

]

×

[
ay +

fy
ny

(by − ay), by +
fy + sx

ny
(by − ay)

]

×

[
az +

fz
nz

(bz − az), bz +
fz + sx

nz
(bz − az)

]
.

All index tuples belonging to P are then defined as

Ix(P) := {fx, fx + 1, . . . , fx + sx − 2, fx + sx − 1},

Iy(P) := {fy, fy + 1, . . . , fy + sy − 2, fy + sy − 1},

Iz(P) := {fz, fz + 1, . . . , fz + sz − 2, fz + sz − 1},

I(P) := Ix(P)× Iy(P)× Iz(P).

The mesh M corresponding to the patch P (f , s) is given by

M(f , s) := P (f , s) ∩ GΩ.

The elements of the mesh, the mesh nodes xijk ∈ M , are the centers of the respective
mesh cells mijk := P ((i, j, k), (1, 1, 1)), which together make up the patch

P (f , s) =
⋃

(i,j,k)∈ I(P)

mijk.

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A mesh is comprised of individual mesh cells for
which data values are stored at the respective
mesh nodes (cf. Figure 2.4). Areas of interest
are marked for refinement by flagging the corre-
sponding mesh cells. Note that mesh nodes are
defined as the center of their cells and not as
the edge points. While AMR can also be used
with standard meshes, the cell-based approach
is better suited for use with numerical methods
for hyperbolic problems, such as finite volume
methods.

With respect to the implementation, each mesh
not only contains its inner cells, as defined
above, but is enlarged to include a number of
ghost cells describing its boundary conditions
(cf. Section 2.2.5).

Mesh Nodes
Grid Nodes
Mesh Cell
Grid Cell
Mesh
Grid

Figure 2.4: Grid nodes are defined as the
centers of the corresponding grid cells, cov-
ering the whole discrete domain. Mesh cells
only cover the parts of the grid for which data
is stored.

With this in mind, the patch-based hierarchical structure is formally defined.

Definition 2.2 (Patch-based Nested Mesh Hierarchy).
A patch-based nested mesh hierarchy of the physical domain Ω := [ax, bx]× [ay, by]× [az, bz]

with refinement ratio r ∈ N≥2 is a set of levels

L(l) =
(
G(l),M(l),P(l),R(l)

)
, l ∈ {0, . . . , q},

where q is the maximum depth. Each level L(l) consists of a grid G(l), a set of meshesM(l),
a set of patches P(l) and a refinement function R(l).

The root grid G(0) := G(a,b,n(0)) defines each level’s grid size n
(l) := n

(0)r(l) as well as its
grid spacing

h
(l) :=

(
bx − ax

n
(l)
x

,
by − ay

n
(l)
y

,
bz − az

n
(l)
z

)
.

Starting from the coarsest (or highest) level, the root level L(0), descending the hierarchy
gradually decreases the level’s grid spacing until the finest (or lowest) level L(q) is reached.

For ease of notation, a global indexing scheme based on the grid hierarchy

{G(l) = G(a,b,n(l)) : 0 ≤ l ≤ q}

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

is used. The index (i, j, k)(l) refers to the cell with center

x
(l)
ijk := a+




i+1/2

n
(l)
x

(bx − ax)

j+1/2

n
(l)
y

(by − ay)

k+1/2

n
(l)
z

(bz − az)




on level L(l).
The root level contains only the base domain mesh M(0) := G(0) = G(a,b,n(0)), which
covers the full computational domain. Every other level L(l), 1 ≤ l ≤ q contains p(l) ∈ N

(0)

patches and the corresponding meshes

P(l) := {P (f (l)m , s(l)m), 1 ≤ m ≤ p(l)}, M(l) := {M(f (l)m , s(l)m), 1 ≤ m ≤ p(l)}.

All levels L(l) include a refinement function defined on the respective grid cell centers

R(l) : G(l) → {0, 1} with R(l)
ijk := R(x

(l)
ijk),

that marks which cells need to be refined, i.e., ∀x ∈ G(l), R(x) = 1 =⇒ x ∈ P(l+1).

An AMR algorithm starts of with a rectangular, uniform Cartesian grid and, based on a predic-
tive error estimation or other indicators, certain cells are marked for refinement (flagged). These
cells are suitably clustered into patches using a clustering algorithm. The refined meshes can in
turn be marked and refined, creating a hierarchical structure according to Definition 2.2.

The method was first used to solve shock hydrodynamics problems in [5] where additional
constraints are imposed on the subgrids, greatly simplifying the numerical calculations and al-
lowing the use of specialized, more efficient data structures [3]. Recent research further improves
on patch-based AMR in regards to performance and scalability [30].

An important aspect, especially considering modern computer architectures, is paralleliza-
tion. Various parallel adaptations of the base AMR algorithm exist, both for shared-memory
and distributed-memory architectures [18, 27].

An optimized AMR algorithm should produce a mesh hierarchy with a minimal number of
meshes and cells while still covering all cells marked for refinement. This necessitates a trade-off
between mesh efficiency (ratio of refined cells to marked cells) and number of meshes. What
constitutes an optimal mesh hierarchy is problem-dependent and also depends on factors beyond
the AMR algorithm, such as the performance characteristics of the numerical solver used on the
mesh or whether parallelization is desired on a distributed computing architecture.

Classic block-structured patch-based AMR, as discussed in [5], uses rectangular axis-aligned
patches which are required to be aligned to the next coarser level and may not differ in refinement
more than 1 level from neighboring patches. In this work, additional conditions are imposed on
the mesh hierarchy, stemming from compatibility requirements with existing code as well as to

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

allow for more efficient numerical treatment: A valid nested mesh hierarchy has to adhere to
the nesting criteria given in Definition 2.3.

While it may be possible to relax these conditions, it would require development of new,
more complex and computationally intensive solvers. Investigations in this direction are not in
the scope of this thesis, the nesting criteria are taken as given.

Definition 2.3 (Nesting Criteria).
A nested mesh (L(l))ql=0 satisfies the nesting criteria if its patches (P(l))ql=0 satisfy

∀k < l : P(l) ∩ ∂P(k) = ∅, (N1)

∀P, P̃ ∈ P(l) : P ◦ ∩ P̃◦ = ∅, (N2)

∀P ∈ P(l) : Pf mod r = 0 ∧ Ps mod r = 0, (N3)

∀P ∈ P(l) : ∃! P̃ ∈ P(l−1) : P ⊂ P̃ , (N4)

∀P ∈ P(l) : Px ≥ m0 ∧ Py ≥ m0 ∧ Pz ≥ m0 (N5)

for all levels l ∈ {1, . . . , q}.
This means that neighboring patches differ by 0 or 1 levels (N1), patches do not overlap
on the same hierarchy level (N2), patches are aligned to the parent grid (N3) and every
patch is covered by exactly one parent patch of the next coarser level (N4). Additionally, all
patches’ sides are required to be equal to or larger than a given minimum width m0 (N5).

Early AMR implementations (e.g., [5]) only require criteria (N2) and (N4). In later clustering
approaches [6], (N2) was also added. Still, existing algorithms do not generate mesh hierarchies
where each mesh is guaranteed to have one unique parent. The minimum width requirement (N5)
is usually not a strict criterion, but rather a termination condition for the clustering algorithm
(smaller patches are allowed if necessary to ensure (N1)-(N4)); here, all patches are required to
be larger than the minimum size. The algorithms presented in this thesis are modified in a way
that guarantees (N1)-(N5) while still producing efficient mesh clusterings. Figure 2.5 shows an
example grid with multiple patches, some conforming to and some violating the nesting criteria
from Definition 2.3.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

N1

N2N3

N4

N5

Invalid Patch
Valid Patch

Figure 2.5: The nesting criteria forbid patches that border an under-refined area (N1), overlapping
patches (N2), non-aligned patches (N3), patches that are not contained in a single parent patch (N4)
and patches that are smaller than the minimum width (N5) (in this case m0 = 4).

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2 The AMR Algorithm

In this section the core AMR algorithm, as introduced in [8], is described. The AMR algorithm
is used to solve general hyperbolic equations of the form

ut +∇ · f(u) = 0 on Ω× R
+,

u(· , 0) = u0 on Ω,
(1)

with suitable boundary conditions on a domain Ω = [ax, bx]× [ay, by]× [az, bz] ⊂ R
3.

The AMR algorithm is split into 6 main parts:

• Timestepping: Advance meshes forward in time.

• Flagging: Mark cells to be refined.

• Regridding: Cluster marked cells into patches.

• Initialization: Initialize new meshes, interpolate or copy mesh data.

• Synchronization: Exchange mesh boundary data with neighboring meshes.

• Averaging: Propagate the solution from fine to coarse by averaging the mesh values.

2.2.1 Timestepping

The AMR algorithm does not itself contain an integrator and can be used with different kinds
of numerical methods depending on the specific application. Here, the usage of an explicit,
cell-centered numerical scheme (see e.g. [10])

un+1 = un +Φ(un, f, k, h), (2)

with temporal stepsize k and spatial stepsize h, is assumed. Discussion of the numerical methods
will be kept short in order to focus on the creation, management and analysis of the mesh
hierarchy. A rigorous treatment of numerical methods for solving hyperbolic equations and the
intricacies of using these within the AMR algorithm is given in [5, 8, 16].

AMR is also used in conjunction with level-set methods ([12, 15, 34]), which require the solution
of the transport equation

ut + v · ∇u = 0,

ut(· , 0) = u0,
(3)

where u : R3 × R
+ → R is the level-set function describing an interface which is located at

the 0-level-set Γt = {x ∈ Ω : u(x, t) = 0}. Its time evolution is given by a velocity field
v : R3 × R

+ → R
3. Usually, the initial level-set function u0 is taken as the signed distance to

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

the initial interface Γ0

u0(x) = d±(x,Γ0), x ∈ Ω.

The numerical solution method is independent of the AMR algorithm and not the focus of
this thesis. For timestepping the numerical examples of type (3), a dimensionally-split three-
dimensional (3D) upwind scheme is used [16, Ch. 9]

u
n+1/3
ijk = unijk −

k

h

(
max (vx, 0)

(
unijk − un(i−1)jk

)
+min (vx, 0)

(
un(i+1)jk − unijk

))
,

u
n+2/3
ijk = u

n+1/3
ijk −

k

h

(
max (vy, 0)

(
u
n+1/3
ijk − u

n+1/3
i(j−1)k

)
+min (vy, 0)

(
u
n+1/3
i(j+1)k − u

n+1/3
ijk

))
,

un+1
ijk = u

n+2/3
ijk −

k

h

(
max (vz, 0)

(
u
n+2/3
ijk − u

n+2/3
ij(k−1)

)
+min (vz, 0)

(
u
n+2/3
(ij(k+1) − u

n+2/3
ijk

))
.

(4)

The AMR algorithm advances the whole hierarchy in time. In order to retain the desired
accuracy as well as for stability reasons, the temporal stepsize for each level is dependent on the
spatial stepsize, usually in the form of a Courant–Friedrichs–Lewy (CFL) condition dependent
on the numerical method used, in our case

k(l) ≤
h(l)

sup
x∈Ω

(∥v(x)∥∞)
, 0 ≤ l ≤ q.

This implies that finer grids need to be advanced r-times more often than coarser grids (cf. Fig-
ure 2.6). For each level L(l), timestepping is straightforward: Advance all meshes forward by
k(l). The boundary conditions for each non-root mesh are taken from either neighboring meshes
or interpolated from the parent mesh (cf. Section 2.2.5).

0 1 2 3 4 5 6 7 8
Time

Level 0

Level 1

Level 2

Figure 2.6: Timestep schedule for a hierarchy of 3 levels and refinement factor r = 2. First,
the coarser level is advanced, followed by r steps of the next finer level. This process is repeated
recursively for all levels, followed by an update of the coarser grids with the more accurate values
from below.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2.2 Flagging

The AMR algorithm achieves better accuracy with lower computational effort compared to
uniform grids by selectively refining areas of interest. This necessitates accurate identification
of what areas contribute most to the global error.

Often this is done by exploiting inherent properties of the numerical integration algorithm
in order to obtain estimates of the local truncation errors using Richardson-extrapolation on
the already existing meshes [8]. Areas exhibiting errors larger than the given error tolerance are
then flagged for refinement. Depending on the magnitude of the error, it is possible to require
refinement by multiple levels at once.

Other options for marking cells for refinement are based on the flow gradient, characteristics
of the solution, e.g., curvature [17] or divergence or, in the case of level-set methods, a given
distance from the interface, the 0-level-set.

Here, a simple flagging scheme based on the absolute cell values is used. A cell at level L(l) is
flagged if its absolute value exceeds a predefined, level-dependent threshold c(l)

R(l)(x
(l)
ijk) :=




1, if |u(l)ijk| > c(l),

0, else.
(5)

In the level-set case, this means that all cells x
(l)
ijk less than c(l) from the interface are marked

for refinement (cf. Figure 2.7).

Figure 2.7: Area of interest around a circular interface with center (0.5, 0.5) and radius 0.3. All
cells with a distance less than 0.1 from the interface are marked.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2.3 Regridding

Given an existing mesh hierarchy and a set of refinement flags, an adapted mesh hierarchy
needs to be created that covers all the newly marked cells and fulfills the nesting criteria, while
if possible only changing the lower (i.e., finer) levels of the hierarchy. Methods to achieve this
are discussed in detail in Section 3.

It is not obvious when or how often to perform the regridding process. If the error estimation
and regridding procedure is not done often enough, the area of interest may move outside of the
refined area, resulting in a loss of accuracy.

Here, regridding is performed every s-th timestep, where s is a user-definable parameter. In
general, the optimal regridding period is dependent on the speed with which the area of interest
moves. As an alternative to regridding more often, it is possible to apply an additional buffer
around existing flags in order to preemptively refine the cells around the area of interest.

2.2.4 Initialization

During the regridding process, new meshes are created and need to be initialized with the correct
data values. Depending on their location, data for the new meshes

(
M(l)

)q
l=1

will need to be
either copied over from previous meshes

(
M̃(l)

)q
l=1

or interpolated from the respective parent
meshes (cf. Figure 2.8).

Remark 2.4 (Interpolate Mesh Data).
If a mesh (or parts of a mesh) of level l, 0 < l ≤ q was not previously part of a refined
region, i.e., M(l) \ M̃(l) ̸= ∅, all cell data u

(l)
ijk not covered are trilinearly interpolated from

the parent mesh

∀(i, j, k) : x
(l)
ijk ∈M

(l) \ M̃(l) :

ĩ :=

⌊
i

r

⌋
, j̃ :=

⌊
j

r

⌋
, k̃ :=

⌊
k

r

⌋
,

ī :=
i

r
− ĩ, j̄ :=

j

r
− j̃, k̄ :=

k

r
− k̃,

u
(l)
ijk = Iijk(u

(l−1)) := (1− ī) (1− j̄) (1− k̄) u
(l−1)

ĩj̃k̃
+ ī (1− j̄) (1− k̄) u

(l−1)

(̃i+1)j̃k̃

+ (1− ī) j̄ (1− k̄) u
(l−1)

ĩ(j̃+1)k̃
+ (1− ī) (1− j̄) k̄ u

(l−1)

ĩj̃(k̃+1)

+ ī j̄ (1− k̄) u
(l−1)

(̃i+1)(j̃+1)k̃
+ ī (1− j̄) k̄ u

(l−1)

(̃i+1)j̃(k̃+1)

+ (1− ī) j̄ k̄ u
(l−1)

ĩ(j̃+1)(k̃+1)
+ ī j̄ k̄ u

(l−1)

(̃i+1)(j̃+1)(k̃+1)
.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Remark 2.5 (Copy Mesh Data).
If a mesh (or parts of a mesh) of level l, 0 < l ≤ q were previously part of a refined region,
i.e., M(l) ∩ M̃(l) ̸= ∅, all cell data u

(l)
ijk that was previously covered is copied

∀(i, j, k) : x
(l)
ijk ∈M

(l) ∩ M̃l : u
(l)
ijk := ũ

(l)
ijk.

Old mesh New mesh Copy Interpolate

Figure 2.8: Initialization of a new mesh: The existing data is copied from the old mesh, values for
the locations outside the previously refined area are interpolated from the parent mesh.

2.2.5 Synchronization

Considering, for example, the numerical solution of the differential equation

ut +∇ · f(u) = 0 on P (f , s)× R
+,

u = u∂ on ∂P (f , s)× R
+,

on a patch P (f , s) corresponding to the mesh M(f , s), suitable boundary conditions u∂ are
required. For the root mesh, these are externally given. For all refined meshes M ∈ M(l), 0 <

l ≤ q, an additional boundary layer of cells, called ghost cells, is stored

∂M := {x ∈ G(l) : x /∈M, d(x,M)∞ ≤ g}.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

The size g of the boundary level depends on the number of neighboring cells the numerical
integration method requires; in the case of the upwind method (4), the ghost cell layer measures
one cell in each spatial direction, g = 1. After timestepping all meshes of a level, the boundary
conditions need to be regenerated from neighboring meshes or, if located at the border between
coarse and fine meshes, interpolated from the parent (cf. Figure 2.9).

Note that using a dimensionally-split scheme such as (4) requires integration of ghost cells
for the intermediate steps. This greatly increases the performance overhead of small patches
with relatively large ratio of ghost cells to inner cells.

Remark 2.6 (Synchronization).
Boundary value data is either copied from adjacent meshes or interpolated trilinearly from
the parent. The refined grid may still be at an earlier time than the coarser grid, t(l−1)

n−1 ≤

t
(l)
n ≤ t

(l−1)
n . In such a case, the ghost cell values are also interpolated linearly in time

∀(i, j, k) : x
(l)
ijk ∈ ∂M ∩M(l) : u

(l)
ijk = u

(l)
ijk,

∀(i, j, k) : x
(l)
ijk ∈ ∂M \M(l) : u

(l)
ijk =

t
(l−1)
n − t

(l)
n

t
(l−1)
n − t

(l−1)
n−1

Iijk(u
(l−1)
n−1) +

t
(l)
n − t

(l−1)
n−1

t
(l−1)
n − t

(l−1)
n−1

Iijk(u
(l−1)
n).

Nesting criterion (N1) guarantees that interpolation from the parent mesh is always possible.

Ghost Cells: Interpolate
Ghost Cells: Copy

Figure 2.9: Synchronization of mesh boundary data: The ghost cell values are either copied from
neighboring meshes’ inner cells or interpolated from the parent mesh.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2.6 Averaging

For each level l, 0 ≤ l < q, meshes that lie above a finer mesh (i.e., are located at the next coarser
level) have to be updated with the solution from the finer levels. This is done bottom-up by
averaging the data of all finer cells contained within a coarse cell. By doing this, the numerical
scheme is modified and discrete conservation is no longer guaranteed. It is possible to retain the
conservation property of the numerical solver by performing a conservation fixup to correct the
values of cells located at the border between coarse and fine meshes [1, 8].

Remark 2.7 (Average Mesh).
The solution from the finer levels is propagated upwards by replacing coarse cell values with
an average of the cells contained within

u
(l)
ijk =

1

r3

r−1∑

α=0

r−1∑

β=0

r−1∑

γ=0

u
(l+1)
(ir+α)(jr+β)(kr+γ).

Note that at this point, the levels l and l + 1 will always be at the same time, t(l) = t(l+1),
therefore, no interpolation in time is necessary.

The complete AMR algorithm is now given in Algorithm 2.1.

Algorithm 2.1 Adaptive Mesh Refinement
function Advance(l, k)

if l > 0 ∧ time to regrid then
R(l−1) ← Flag(M(l−1)), ▷ Mark cells for refinement.
M(l) ← Regrid(M(l),R(l−1)). ▷ Adapt hierarchy.
u(l) ← Initialize(u(l), u(l−1)) ▷ Initialize new mesh data.

end if
u(l) ← Synchronize(u(l)) ▷ Regenerate ghost layer values.
u(l) ← Integrate(u(l), k) ▷ Timestep current level.
if l < q then

for i ∈ 1, . . . , r do ▷ Advance finer grids r-times per coarse timestep.
Advance(l + 1, kr) ▷ Advance finer levels recursively.

end for
u(l) ← Average(u(l+1)) ▷ Update solution with data from finer level.

end if
end function

t← t0

while t < tend do
k ← min(k(0), tend − t)

Advance(0, k)
t← t+ k

end while

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3 Mesh Cell Clustering

A core part of patch-based AMR is how flagged cells are organized into refined patches. Starting
from either a pre-existing mesh hierarchy or just from a set of refinement flags, the goal of clus-
tering is to efficiently set up a patch-based nested mesh hierarchy (according to Definition 2.2)
that adheres to the nesting conditions (N1)-(N5).

This task is divided into two parts:

1. In single-level clustering the flagged cells of one level are grouped into rectangular
patches with the goal of including a minimal amount of un-flagged cells. For this step,
other levels are not taken into account.

2. In multi-level clustering, all levels are incorporated into a nesting-criteria conforming
mesh hierarchy by repeatedly applying single-level clustering. Depending on the choice
of algorithm for multi-level clustering, it imposes additional constraints on the individual
levels in order to satisfy the nesting conditions.

Remark 3.1.
For classical AMR (as in [1, 5, 6]), the creation of a multi-level hierarchy is rather straight-
forward, given a suitable algorithm for the single-level problem. In our case, the added
constraint of a unique parent mesh for each child mesh (N4) as well as strict minimum mesh
sizes (N5) makes this more complicated and requires special attention.

Example 1 (Demonstration Flag Hierarchy).
To illustrate the clustering algorithms, a simple
4-level hierarchy (cf. Figure 3.1) is used. The
base level has a resolution of 32 × 32 and is re-
fined by a factor r = 2 at every level, yielding a
grid size of 256 × 256 for the finest level. This
representative example is adapted from [6] since
it showcases the need for an additional nesting
strategy; flags are located only on the third level,
where 21% of the 16384 grid cells are marked and
have to be propagated properly to the root level.
The sharp edges in the flag structure make it
visually obvious where splitting should occur.

Figure 3.1: Example flags for
demonstration of clustering algo-
rithms, adapted from [6].

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1 Single-Level Clustering

The goal of single-level clustering is to cover the flagged cells with conforming rectangular,
axis-aligned, and non-intersecting patches as efficiently as possible. Depending on the use-case
(e.g., inherent properties of the physical problem or the numerical method used), the definition
of efficient may vary. As in [6], clustering quality is judged by the ratio of refined cells to marked
cells, the mesh efficiency.

Definition 3.2 (Mesh Efficiency).
For a mesh M of the patch P (f , s) and refinement function R : M → {0, 1}, the mesh
efficiency is defined as the ratio of marked cells to inner mesh cells

ϵ(M) :=

∑
x∈M R(x)

λ(M)
, (6)

where λ(M) := sxsysz is the number of cells in the mesh.
For a set of meshes M the pure mesh efficiency is aggregated over the individual meshes

ϵ(M) :=

∑
M∈M

∑
x∈M R(x)∑

M∈M λ(M)
. (7)

Since this measure only counts the inner cells and does not take into account the added effort
from interpolating, synchronizing and, if necessary, timestepping the ghost cells, the adjusted
mesh efficiency is introduced.

Definition 3.3 (Adjusted Mesh Efficiency).
For a given mesh M of the patch P (f , s) and refinement function R : M → {0, 1}, the mesh
efficiency is defined as the ratio of marked cells to both mesh and ghost cells

ϵ̃(M) :=

∑
x∈M R(x)

λ(M) + µ(∂M)
, (8)

where λ(M) := sxsysz is the number of inner mesh cells, g is the size of the ghost layer in
each Cartesian direction and

µ(∂M) := (sx + 2g)(sy + 2g)(sz + 2g)− sxsysz

is the total number of ghost cells.
For a set of meshesM the adjusted mesh efficiency is aggregated over the individual meshes

ϵ̃(M) :=

∑
M∈M

∑
x∈M R(x)∑

M∈M λ(M) + µ(∂M)
. (9)

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Still, the adjusted efficiency may not accurately reflect the desired mesh quality, for example, if
the computational effort required for numerical treatment of inner cells and of ghost cells differs
strongly or if the computational overhead per additional mesh is large.

Therefore, a more general cost function ω is chosen in order to frame this as an optimization
problem whose minimizers are mesh hierarchies with the desired efficiency properties. The task
of finding an optimal clustering which covers all flagged cells is called a rectangular covering
problem.

Definition 3.4 (Rectangular Covering Problem).
The rectangular covering problem describes the task of computing an optimal rectangular
covering of a finite set of points M on the grid G, defined by a refinement function R as

M := {xijk ∈ G : R(xijk) = 1}.

A rectangular covering is a set P = (Pi)
n
i=1 of n non-overlapping patches so that

M ⊂
n⋃

i=1

Pi,

P ◦
i ∩ P ◦

j = ∅ ∀ i, j : 1 ≤ i < j ≤ n.

An optimal covering is a rectangular covering P which minimizes the cost function

ω(P) :=





λ(P) + Cgµ(∂P) + Cm if
∑

ijk∈ I(P)

Rijk > 0,

0 otherwise.

ω(P) :=
n∑

i=1

ω(Pi),

(10)

with Cg ≥ 0 and Cm ≥ 0. Any patches not containing any flags are discarded during
clustering and as such do not contribute any cost.

The work required for timestepping a single cell is used as unit of measurement. Then, a
single ghost cell requires Cg times that effort while an additional patch is as computationally
expensive as Cm additional inner cells.

There has been research into an optimal solution to this and similar problems. Rectangle cov-
ering problems and the related rectangle packing problems as well as the more general polygon
covering have been the subject of investigation in computational geometry, but so far no optimal
polynomial time algorithms exist [4, 35].

In [22], an algorithm to solve the rectangular covering problem in two dimensions was pro-
posed. It uses a dynamic programming approach to enumerate and evaluate all relevant solutions

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

and as such has exponential run-time relative to the number of flags. Since our use case requires
fast clustering, this makes it unsuitable for our purpose.

A different approach is given in [21] in the context of a best representation problem, where,
given a signal, a set of representations and a cost function the goal is to select a number of
representations that together model the signal while minimizing the cost function. This is used,
e.g., in image compression and signal analysis. The general idea is similar to that of [6]; the
solution space is restricted to clusterings that can be generated by repeated splitting. A tree-like
structure of all admissible tilings is generated by recursive splitting of the root domain, which is
then searched for the optimal solution (relative to the restricted problem). This is much faster
than a fully optimal approach but still not practicable, as it is designed for dense 2D data and
its run-time would be at least O(n2) (and O(n3) in 3D) relative to the number of flags n in our
application.

Clustering should be at most of linear complexity relative to the number of flags, as it is
performed many times within a simulation. Note that as all flags need to be checked at least
once, regardless of clustering algorithm, linear complexity is the lower limit. Since an optimal,
linear run-time solution is unfeasible, approximate algorithms that try to minimize the cost
function ω with suitable heuristics are used instead.

Initially, AMR methods used techniques adapted from artificial intelligence and computer vision
meant for feature detection or pattern recognition for the generation of patch covering [1].
Nearest-neighbor clustering was used to group flagged points together, then covering rectangles
are aligned with the points as best as possible. These methods allow overlapping and rotated
patches, which cause a large computational overhead. They were later replaced by the Berger-
Rigoutsos clustering algorithm [6].

In [23], a patch generation method based on K-Means clustering was presented. Here, a fixed
number of initial centroids are used to determine a set of non-overlapping axis aligned patches.
The drawback is that the number of patches must be specified ahead of time, which can be
impractical.

The algorithms presented next are variations of the Berger-Rigoutsos algorithm, initially pre-
sented in [6], and Luitjens tile-based clustering as described in [25].

3.1.1 Signature-Inflection Clustering

The Berger-Rigoutsos signature-inflection algorithm (and variations thereof) is a commonly used
clustering algorithm in the context of patch-based AMR as implemented in the Chombo li-
brary [36] and used in, e.g., [8, 18, 33]. It is fast, well parallelizable [25, 30] and in general
produces quite efficient clusterings. Here, the Berger-Rigoutsos algorithm is modified in or-
der to produce mesh clusterings that are more efficient (in the sense of minimizing, at least
approximately, the cost function (10)).

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Base Algorithm

The base algorithm is given as pseudo-code in Algorithm 3.1. It is based on flag histograms,
called signature arrays, defined for a patch P as

Sx(m) :=
∑

j∈Iy(P)

∑

k∈Iy(P)

Rmjk,

Sy(m) :=
∑

i∈Ix(P)

∑

k∈Iz(P)

Rimk,

Sz(m) :=
∑

i∈Ix(P)

∑

j∈Iy(P)

Rijm.

Starting from a base patch, the patch is split up at index m along an axis a into two patches
(cf. Algorithm 3.2). If there is a hole in a signature array, e.g., Sa(m) = 0, a ∈ {x, y, z}, m ∈

Ia(P), the patch is split at that point. A hole in the signature array implies two disconnected
areas of marked cells; since there are no marked cells at that index, at least one of the resulting
patches can be shrunk along the axis a, significantly reducing mesh cell count.

In case there is no hole, the index ms and axis as are determined as the maximum magnitude
zero crossing (inflection point) of the second (discrete) derivative ∆Sa(m) of the signature arrays

∆Sa(m) := Sa(m+ 1)− 2Sa(m) + Sa(m− 1)

F (m, a) :=




∆Sa(m)−∆Sa(m− 1) if sgn(∆Sa(m)) ̸= sgn(∆Sa(m− 1)),

0 otherwise.

(ms, as) := argmax
(m,a)

{|F (m, a)|}.

The choice of the index is inspired by edge-detection: the resulting splitting index identifies
an edge when viewing the flags as a binary image. It divides the patch where the largest change
from flagged cells to non-flagged cells occurs.

Figure 3.2 shows a flagged grid with signature arrays, Laplacian and magnitudes, resulting
in a split along the X-axis. This does not necessarily directly decrease cell count, but if ap-
plied iteratively will partition the grid into rectangular patches containing only the flagged cells
(cf. Figure 3.5). If there is no hole and no inflection point, then the patch is bisected (split in
half along the longest axis). As it is unnecessary to remove all unflagged cells, the splitting
is stopped if the target efficiency ϵ0 is reached or if no split is possible without violating the
minimum size requirement (N5).

Afterwards, patches are merged together. This is not meant to be an optimal global merging
strategy: Neighboring patches are simple merged together where possible. Thereby superfluous
splits that did not result in a reduction of refined cells are removed.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Remark 3.5.
The algorithm splits an existing patch into two parts. This means that the resulting patches
never intersect, satisfying (N2). The determination of the split index is done with respect to
coordinates of the coarser grid, so that the resulting splits are always aligned to the parent
grid (N3).

Algorithm 3.1 Signature Clustering
function SignatureCluster(P0, ϵ0,m0)

Q← {P0} ▷ Start with root patch.
for P ∈ Q do ▷ Iteratively process all patches.

P ← BoundingBox(P) ▷ Bounding box around flags, at least size m0.
if ϵ(P) < ϵ0 ∧ ∃a ∈ {x, y, z} : Psa ≥ 2m0 then ▷ ϵ0 not reached, P large enough.

(P1, P2)← Split(P,m0) ▷ Split patch into 2 parts.
Q← Q \ {P} ▷ Remove from queue.
Q← Q ∪ {P1, P2} ▷ Add new patches to queue.

end if
end for
Q̃← Merge(Q) ▷ Merge patches where possible.
return Q̃ ▷ Return final set of patches.

end function

Algorithm 3.2 Signature Split
function Split(P , m0)

Sx(m) :=
∑

j∈Iy(P)

∑
k∈Iz(P) Rmjk, 0 ≤ m ≤ nx} ▷ Build signature for X-axis.

Sy(m) :=
∑

i∈Ix(P)

∑
k∈Iz(P) Rimk, 0 ≤ m ≤ ny} ▷ Build signature for Y-axis.

Sz(m) :=
∑

i∈Ix(P)

∑
j∈Iy(P) Rijm, 0 ≤ m ≤ nz} ▷ Build signature for Z-axis.

I ← {m0, . . . , na −m0} × {x, y, z}

if ∃(i, a) ∈ I : Sa(i) = 0 then
(i∗, a∗)← (i, a) ▷ Split at hole.

else if max(i,a)∈I {|F (i, a)|} > 0 then
(i∗, a∗)← argmax

(i,a)∈I
{|F (i, a)|}. ▷ Split at inflection point.

else
(i∗, a∗)← (i, a) | m0 ≤ i ≤ na −m0 ▷ Split at midpoint.

end if
(P1, P2)← split P at (i∗, a∗)

return (P1, P2)

end function

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

-15
-10

-5
0
5

10
15

Laplacian of Signature S
Magnitude of Zero-Crossing F

0
2
4
6
8

10
12

Signature Array S

0 2 4 6 8 10 12 -15 -10 -5 0 5 10 15

Figure 3.2: Example grid with 102 flags and the corresponding signature arrays and inflection
magnitudes. As there are no holes, the patch is split at index 8 along the X-axis at the maximum
of the zero-crossing magnitudes of both axes, F (8, x) = 14.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Aspect Ratio Correction

The Berger-Rigoutsos algorithm as described above seems to favor longer, more asymmetrical
patches, as is shown in Figure 3.3, which results in a higher number of ghost cells. Sometimes
this leads to inclusion of unnecessary cells and as such less efficient clusterings. To mitigate this,
the way the split index is chosen is adjusted by penalizing splits that result in large amounts of
additional ghost cells; in essence, this prefers splits resulting in more regular (i.e., similar-sized
in all dimensions) patches. To do this, the split magnitude F of a patch is adapted to take into
account the mean aspect ratio of the resulting split patches, that is, the ratio of the shortest
patch side to the respective longest patch side.

For a patch P (f , s) and a split at index m along the x-axis, the correction factor σ is given by

σ(m) :=

(
σ− + σ+

2

)α

, α ∈ R
+
0 ,

where σ+ and σ− are the aspect ratios of the two patches resulting from a split at index m

σ+(m) :=
min{m,Rmax+

y −Rmin+
y + 1, Rmax+

z −Rmin+
z + 1}

max{m,Rmax+
y −Rmin+

y + 1, Rmax+
z −Rmin+

z + 1}
,

σ−(m) :=
min{sx −m,Rmax−

y −Rmin−
y − 1, Rmax−

z −Rmin−
z − 1}

max{sx −m,Rmax−
y −Rmin−

y − 1, Rmax−
z −Rmin−

z − 1}
.

For the X-axis, the patch lengths are simply m and sx − m. The remaining side lengths are
calculated from the minimum and maximum flag indices Rmin±

a and Rmax±
a with respect to the

other axes, a ∈ {y, z}. For this, the set of flag indices for each patch is defined as

R− := {(i, j, k) ∈ I(P) : Rijk > 0, i < fx +m},

R+ := {(i, j, k) ∈ I(P) : Rijk > 0, i ≥ fx +m}.

The minimum and maximum indices for each patch and direction are then determined by

Rmax−

y (m) := max{j : (i, j, k) ∈ R−}, Rmax+

y (m) := max{j : (i, j, k) ∈ R+},

Rmax−

z (m) := max{k : (i, j, k) ∈ R−}, Rmax+

z (m) := max{k : (i, j, k) ∈ R+},

Rmin−

y (m) := min{j : (i, j, k) ∈ R−}, Rmin+

y (m) := min{j : (i, j, k) ∈ R+},

Rmin−

z (m) := min{k : (i, j, k) ∈ R−}, Rmin+

z (m) := min{k : (i, j, k) ∈ R+}.

Together, this yields an adjusted split magnitude of

F̃ (m,x) :=




σ(m) (∆Sx(m+ 1)−∆Sx(m)) if sgn(∆Sx(m+ 1)) ̸= sgn(∆Sx(m)),

0 otherwise.

The split magnitudes for the other axes, F̃ (m, y) and F̃ (m, z), are defined analogously.
The strength of this adjustment is controlled with the additional parameter α, where α = 0

results in the same split as the Berger-Rigoutsos algorithm.

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0
2
4
6
8

10
12
14
16
18
20 Inner Cells Ghost Cells

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0
2
4
6
8

10
12
14
16
18
20 Inner Cells Ghost Cells

Figure 3.3: Example grid with default (left) and modified (right) splits. Either way results in 3
patches, but the number of ghost cells is reduced by the modified split.

Backtracking

For certain inputs, the Berger-Rigoutsos algorithm
will continue splitting patches even if the resulting
clustering is worse. This can be seen in the patho-
logical example of a chessboard-like flag structure,
as in Figure 3.4. Target efficiency ϵ0 may be used
to control the algorithm. However, which target
efficiency corresponds to the most effective clus-
tering is heavily input-dependent. For the chess-
board problem, any target efficiency ϵ0 > 0.5 will
cause the algorithm to split until the minimum size
is reached, generating a large number of patches
covering the same area as the original patch.

0 10 20 30
0

5

10

15

20

25

30

Figure 3.4: Chessboard grid with minimum
width m0 = 4 and refinement factor r = 2
where cells are flagged alternatingly. Patches
are split unnecessarily if ϵ0 > 0.5.

To avoid over-splitting during clustering, a backtracking component is added to the algorithm:
Every patch P is linked with its resulting splits P1(P) and P2(P), allowing us to compute each
splits score (value of the cost function ω) and propagate it upwards, then selecting the last split
that results in an improved clustering.

This procedure can be interpreted as generating a binary tree followed by a depth-first search
for the best cut-off point in each branch. It is necessary to fully traverse the tree until all splits
have been visited before backtracking. An extension of this algorithm could work similarly
to [21] and not only explore one split at each branching point but multiple, or even all. This
was not pursued here as the additional effort scales exponentially in the number of evaluated
splits which would make the algorithm too costly for use within a typical AMR simulation.

Figure 3.5 shows the evolution of the resulting patches if splitting the grid from Figure 3.2
according to the above algorithm. First, patches are split along holes, then trimmed to a tight
fit. Then they are split again with split index and axis (m, a) determined as described.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Algorithm 3.3 Backtracking
function Backtrack(Q)

for P ∈ Q do
P̂ ← parent(P)
if ω(P̂) ≤ ω(P1(P̂)) + ω(P2(P̂)) then ▷ Check if splitting improves score.

Q← (Q \ {P1(P), P2(P)}) ∪ {P} ▷ Continue with ‘un-split’ patch.
end if

end for
return Q

end function

0 10 20 30
0

5

10

15

20

25

30

0 10 20 30
0

5

10

15

20

25

30

0 10 20 30
0

5

10

15

20

25

30

0 10 20 30
0

5

10

15

20

25

30

0 10 20 30
0

5

10

15

20

25

30

0 10 20 30
0

5

10

15

20

25

30

Figure 3.5: Evolution of the clustering from Figure 3.2. The grid is repeatedly split according
to Algorithm 3.1 with minimum width m0 = 2 and aspect ratio correction α = 2, resulting in an
efficient covering that doesn’t include any unmarked cells.

Remark 3.6 (Signature Clustering Algorithm Complexity).
The algorithm processes each flag multiple times, depending on how the patches are split.
Computing signature arrays and magnitudes globally has complexity O(|R|). This is then
repeated recursively on each split, creating a binary tree where in the best case, each node
except the lowest level, has two children. The depth of this tree is between O(|P|) for an
unbalanced tree and O(log |P|) for a balanced tree. For most inputs, the complexity is
similar to the best case, yielding a total complexity of O(|R| log |P|) (cf. [25]).

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1.2 Tile Clustering

Presented in [25] as a highly scalable alternative to the signature clustering algorithm, Luitjens
tile clustering is also a much simpler approach. The flags are sorted into tiles (fixed-size patches)
and all empty tiles are removed (Algorithm 3.4). In cases where the grid size is not divisible by
the tile size, the first and last tiles in each spatial direction may have smaller side lengths.

This results in a very fast and simple clustering algorithm, but it’s mesh efficiency depends
highly on the choice of tile size d ∈ N

3.

Formally, the tile clustering is simply the subset P ⊂ T of all tiles that contain at least one flag

T := {P (f , s) : f mod d = 0, s = d}

P := {P ∈ T : ∃(i, j, k) ∈ I(P) : Rijk = 1}.

The resulting tiles are shrunk to the bounding box of contained flags in order to reduce the cell
count. Depending on the application it may be beneficial to also merge the resulting tiles to
reduce mesh count.

Algorithm 3.4 Tile Clustering
function Cluster(P,d)

Q← {}

for (i, j, k) ∈ I : Rijk = 1 do
Q← Q ∪ {P ((i− i mod dx, j − j mod dy, k − k mod dz), d)}

end for
for P ∈ Q do

P ← BoundingBox(P)
end for
return Q

end function

Tile sizes need not be identical in all directions, as long as the above condition is fulfilled along
each axis. However, the choice of square or cubic tiles d := dx = dy = dz is usually optimal as
it minimizes the number of ghost layer cells in relation to inner cells.

Figure 3.6 shows the tile clustering of a circularly flagged example grid with size 64×64 and tile
sizes d = 4 and d = 8. As can be seen the choice of tile size represents a trade-off between cell
count and mesh count, where smaller tiles include less superfluous cells but result in a higher
mesh count.
Larger tile sizes d will result in less tiles with less efficiency. Small tile sizes result in more tiles
with higher efficiency, but the overhead of having more patches might negate this, depending on
the implementation of the remaining AMR algorithm and the numerical integration algorithm
used for timestepping as well as the characteristics of the computing architecture with respect
to parallelization.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 3.6: Tile clustering of circular area of interest with tile sizes d = 4 and d = 8. Smaller tile
size results in a smaller number of unmarked cells being included but an increase in ghost cell count
owing to the increased number of patches.

Tile clustering was also discussed and improved upon in [30], where an additional merge step
is used to reduce the number of tiles. This is not done here, since the regularity of standard
tile clustering turns out to be very useful when combining multiple levels into a nested grid
hierarchy.
Other ways of forcing more regularly shaped patches were explored in [33], e.g., by bounding
the minimum and maximum edge size or maximum cell count. Goals in these cases are usually
not only regularity in terms of aspect ratio, but also uniformity of mesh size (resulting in easier
parallelization), which is not necessarily needed here since parallelization is considered only on
shared-memory architectures where scheduling and distribution is easier.

Remark 3.7.
Tile clustering evidently creates a set of unique, non-intersecting patches, satisfying (N2).
Tile size is given with respect to the coarser grid coordinates, ensuring that tiles are always
aligned correctly (N3).

Remark 3.8 (Tile Clustering Algorithm Complexity).
Tile clustering only needs to consider each flag once to create the initial patch set. The
number of resulting patches is always smaller than or equal to the number of flags. As such,
its complexity is simply O(|R|). The effective run-time and memory usage can be further
reduced by using a data structure adapted to the tile-structure - storing only one flag per
tile.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2 Multi-Level Clustering

Since AMR works on more than one level, the above algorithms need to be integrated into a
hierarchical framework to generate a multi-level clustering of all levels. The challenge is creating
an efficient mesh hierarchy while conforming to the nesting criteria from Definition 2.3.

Traditionally, an AMR mesh hierarchy does not need to conform to (N4) (i.e., meshes need
not always have unique parents). Because of this additional constraint, algorithms like those
used in [1, 3, 18] are insufficient for our use-case. Two approaches for multi-level clustering are
investigated: a signature-based top-down approach, which starts clustering the top level using
signature clustering and then recursively descends the hierarchy downwards and, alternatively,
a tiling-based bottom-up approach that starts at the bottom and works its way upwards.

Both methods are followed by a post-processing step traversing the hierarchy in the corre-
sponding opposite direction to ensure nesting and further improve efficiency. The benefits and
difficulties of the two methods differ as the nesting criteria have to be enforced in different ways.

As in single-level clustering, the quality of the resulting mesh hierarchy is evaluated based on
its efficiency and score, which are aggregated from the individual levels.

Definition 3.9 (Mesh Hierarchy Efficiency and Score.).
For a given mesh hierarchy L =

(
L(l)
)q
l=0

, the mesh cell counts for each hierarchy level

L(m) =
(
G(l),M(l),P(l),R(l)

)
, 0 < l ≤ q,

are combined into a pure hierarchy efficiency of

ϵ(L) :=

∑
1≤ l≤q

∑
M∈M(l)

∑
x∈M

R(l−1)(x)

∑
1≤ l≤q

∑
M∈M(l)

λ(M)
, (11)

and an adjusted hierarchy efficiency of

ϵ̃(L) :=

∑
1≤ l≤q

∑
M∈M(l)

∑
x∈M

R(l−1)(x)

∑
1≤ l≤q

∑
M∈M(l)

λ(M) + µ(∂M)
. (12)

The root mesh is not taken into account here, as its size is fixed.

As in Definition 3.4, The quality of mesh hierarchies is ranked based on their value of the
cost function ω, which is the sum of the cost of the individual level’s clusterings

ω(L) :=
∑

0≤ l≤q

ω(P(l)). (13)

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2.1 Top-Down Clustering

Starting with the coarsest level, an initial patch set is created by clustering it using a single-
level signature-inflection clusterer. This results in a set of non-overlapping ((N2) and (N3)
conforming) patches covering all flagged points at the coarsest level. Those patches are then
recursively clustered again, implicitly fulfilling (N4). The challenge is then the last criterion:
neighboring mesh cells must only differ by at most one level (N1).

To ensure (N1), the flags first need to be propagated from the lowest level upwards to
determine which cells need to be refined. Starting from the second-finest level, all cells that are
within one cell of a flag at the next lower level will also be flagged (Algorithm 3.5). The addition
of further nesting-induced buffer cells may be required.

Algorithm 3.5 Propagate Flags
function propagate((R(l))ql=0, k)

for l ∈ {q − 2, . . . , 0} do
R(l) ←R(l) ∪ {x ∈ N

3
0 : d(x,R

(l+1))∞ ≤ k} ▷ Add k ≥ 1 cells around lower level flags.
end for

end function

First, let the minimum patch size be m0 = r. Then Algorithm 3.6 is used to ensure proper
nesting (N1) of the new child patches:

1. Start with a patch to be refined. Shrink patch to the bounding box of all contained flags.

2. Check if that patch has any flags at the direct borders that have uncovered neighbors. If
not, proceed normally.

3. If there is a border and a cell which has an uncovered neighbor, split the patch at m0/r = 1

distance from the corresponding edge.

4. Repeat for both patches, checking all outer borders.

For m0 > 1, it is not always possible to split the edge-patches as required without violating
the minimum-size constraint; an additional buffer of size k = max

(
m0
r2

, 1
)

has to be set around

Algorithm 3.6 Split Edges
function SplitEdges(P0,PN ,m0)

Q← {BoundingBox(P0)}
for P ∈ Q do

if ∃ x ∈ P, P̃ ∈ PN : d(x, ∂P0)∞ < 1 ∧ d(x, P̃)∞ > 1 then
{P1, P2} ← split P at m0/r distance from corresponding edge.
Q← (Q \ {P}) ∪ {P1, P2}

end if
end for
return Q

end function

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Algorithm 3.7 Top-Down Clustering
function TopDownCluster((P(l))ql=0, (R

(l))ql=0, ϵ0,m0)
Propagate((R(l))ql=0,

m0
r2

) ▷ Propagate flags with nesting-induced buffer.
P(1) ← SignatureCluster(P (0), ϵ0,m0) ▷ Cluster the root patch.
for l ∈ {1, . . . , q − 1} do

SortFlags(R(l),P(l)) ▷ Sort flags into existing patches.
PN ← Neighbors(P,P(l)) ▷ Get patch neighbors.
for P ∈ P(l) do

Q← SplitEdges(P,PN ,m0) ▷ Split edge patches as described above.
P(l+1) ←

⋃
P̃∈Q

SignatureCluster(P̃ , ϵ0,m0) ∪ P(l+1) ▷ Cluster each patch.

end for
end for
for l ∈ {q − 1, . . . , 1} do ▷ Shrink patches if possible.
P(l) ← Shrink(P(l))

end for
for l ∈ {1, . . . , q} do ▷ Merge suitable patches together.
P(l) ← Merge(P(l))

end for
end function

flags at the lower level. Then, as previously, patches are split at m0/r distance from boundaries
if required. Because of the additional buffering, this is indeed always possible.

This process is then repeated at the next lower level using the created patches as input
(cf. Algorithm 3.7). Then the resulting patches patches are trimmed: From the bottom up, all
patches are shrunk as much as possible while still covering all required flags. Since the flags
on finer levels are already propagated to the coarser levels, covering all flags ensures the child
patches are covered as well. For this step, nesting-induced flags are ignored and most of the
‘unnecessarily’ included cells are trimmed off. A final top-down pass checks for possible patches
that can be merged together to reduce the number of meshes and ghost cells.

Figure 3.7 shows the 3 steps of the top-down clustering algorithm: First, for each externally
given flag (e.g., from error estimation), a propagate flag is added at all neighboring cells of the
next coarser level. Additionally, m0/r2 = 1 nesting flag is added in each direction. Then, the
3 existing level 1 patches are shrunk and split according to Algorithm 3.6 to guarantee proper
nesting (marked red in Figure 3.7a). The resulting patches are clustered, the process is repeated
for the finer levels (cf. Figure 3.7b) and lastly, all patches are shrunk as much as possible,
cutting away superfluous cells only needed for nesting (cf. Figure 3.7c). Without Algorithm 3.6
to ensure proper nesting, the resulting clustering does not fulfill the nesting criterion (N1), as a
number of patches have a direct border with an under-refined area (marked red in Figure 3.7d).

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

(a) Nesting induced splits only - invalid hierarchy. (b) After clustering - valid hierarchy.

(c) After shrinking - final, valid hierarchy. (d) Without edge-splits - invalid hierarchy!

Figure 3.7: Nested mesh hierarchy for Example 3.1 with and without proper nesting. Flags
are colored and labeled by level L(l) and flag type: Given flags are externally imposed refinement
markers, while propagate and nesting flags are added by the algorithm itself.

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Remark 3.10 (Partial Regrid).
During timestepping of the AMR algorithm, a regrid is not done for the full hierarchy at
every timestep, but rather from a level l downwards. This requires that all flags (including
those added by the nesting algorithm) are contained within the patches of level L(l). If that
is not the case, level l also needs to change. This occurs if the area of interest moves too
fast and suggests that the buffer region is not large enough. The AMR algorithm deals with
this by regridding as many levels as required but this does imply a too small buffer size
or suboptimal choice of refinement flags and causes a significant increase in computational
effort.

3.2.2 Bottom-Up Clustering

An alternative approach is to start at the lowest level and work upwards. This means (N1)
is fulfilled implicitly, because patches can be added where required. The disjunct patch and
alignment criteria (N2) and (N3) are given as long as the clustering algorithm yields correct
patches, which is the case for the algorithms presented above. The algorithm used in the
literature [8, 18, 30, 33] uses this approach together with signature clustering to create the
patch hierarchy. This is not possible in our case, since the resulting patches do not have unique
parents, violating (N4).

Instead, a tiling clusterer is used as detailed in Algorithm 3.4. Choosing the tile size as multiple
of the refinement factor ensures that tiles always align with the parent grid, as long as tile sizes
decrease appropriately with increased refinement. Of course, tiles must always be larger then
the minimum width. Thus, for each level L(l) tile size must fulfill

d(l) = k(l)r ≥ m0, k ∈ N, d(l+1) ≤ d(l)r.

At every level, all tiles containing flags are then identified and added to the patch hierarchy.
The choice of tile size guarantees that every patch is fully covered by a parent tile, with each
parent containing up to (rd(l)/d(l+1))3 child tiles. Then, additional tiles are added next to child
tiles wherever a tile borders an area that is not refined enough to satisfy (N1).

Up to this point each level of the patch hierarchy contains fully uniform patches. The total
cell count is further reduced by shrinking tiles where possible. This is also done bottom-up to
ensure the shrunk patches still adequately cover all flags as well as child patches. Then, the
number of meshes may be decreased by merging suitable patches together. This is a fast process,
since only neighboring tiles need to be checked. However, the patches resulting from this naive
merging procedure are no longer uniform and in the resulting clustering is in most cases still
less efficient than signature clustering.

Figure 3.8 shows the resulting nested mesh hierarchy when clustering Example 1 with and
without subsequent shrinking and merging. As expected, all patches are properly nested as
additional tiles are added where needed, even if no flags are present within.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 3.8: Example 1 with patch hierarchy generated by bottom-up clustering. The left graph shows
the resulting patch hierarchy without shrinking or merging. Tiles not containing any flags are added
where necessary to ensure no patch borders an un-refined area. The middle graph shows the patch
hierarchy after shrinking patches where possible. This not only shrinks but completely removes many
tiles if they are no longer required for proper nesting. Successive merging (on the right) reduces the
number of meshes, but as the merging process is not optimal it results in mostly irregular, elongated
patches.

Algorithm 3.8 Bottom-Up Clustering
function BottomUpCluster((P(l))ql=0, (R

(l))ql=0,d)
for l ∈ {q − 1, . . . , 0} do
P(l+1) ← TileCluster(R(l),d) ▷ Add tiles that contain flags.
if l + 1 < q then
P(l+1) ← Nest(P(l+2)) ▷ Add tiles that border child tiles.

end if
end for
for l ∈ {q, . . . , 1} do ▷ Optional shrink step.
P(l) ← Shrink(P(l))

end for
for l ∈ {1, . . . , q} do ▷ Optional merge step.
P(l) ← Merge(P(l))

end for
end function

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4 Implementation

4.1 Requirements

The AMR algorithm, including timestepping, synchronization, interpolation and averaging as
described in Section 2, as well as the mesh generation algorithms presented in Section 3 were
implemented as a stand-alone C++11 library called Nest. The goals for this implementation
were the development of a clustering algorithm that generates nested mesh hierarchies conform-
ing to our nesting criteria (N1)-(N5) that is efficient, parallelizable and can be integrated with
existing code with minimal additional effort.

The AMR implementation presented here consists of the following parts:

• AMR Shell

– Mesh timestepping: Coordinate time advances of the mesh hierarchy.
– Mesh synchronization: Exchange ghost layer data at each timestep.
– Mesh interpolation: Interpolate newly created meshes from parent mesh.
– Mesh averaging: Propagate more accurate data from finer meshes upwards.

• Regridding: Create new mesh hierarchy from existing meshes and given flags.

– Flag propagation: Ensure flags are covered at coarser levels to guarantee nesting.
– Creation of patch hierarchy from flags: Cluster flags to create new patch hierarchy,

keep track of patch parents and children, compute patch neighbors.
– Adaption of existing mesh hierarchy with new flags: Create new meshes from the new

patch hierarchy and initialize from existing meshes or interpolate.

• Upwind Integrator: First order scheme, for demonstration purposes.

Simulation Start

Initialization

Advance Compute Flags

Create New
Patch Hierarchy

Propagate Flags

Compute
Patch Relations

Create
New Meshes

Synchronize
Ghost Layers

Update
Coarser Levels

Interpolate
Mesh Data

Copy
Mesh Data

Simulation End

t < t_end

t == t_end

t = t_0

t += k

time to regrid? regrid

Figure 4.1: Flowchart illustrating the main tasks of the AMR procedure: timestepping, flagging,
regridding, initialization and synchronization.

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 4.1 shows an overview of the AMR process as implemented. The box labeled regrid
contains the steps of the regridding process, which is encapsulated to allow independent use of
only the mesh generation code without a full AMR simulation.

The implementation provides improved mesh hierarchy generation with the aim to ease
integration with already available AMR software and numerical solvers. This required a strong
de-coupling of the nested mesh generation from the remainder of the AMR algorithm. Both
parts were developed specifically for this thesis and do not depend on third-party AMR code. In
particular, the mesh generation takes as input only a level and all existing patches at that level
(which are to be left unchanged) as well as all flags at that level and all levels below, without
direct access to mesh data.

The output should then be a new, maximally efficient, (N1)-(N5) conforming patch hierarchy.
The patches at and above the passed level should be left in place but are allowed to change if
required to ensure proper nesting.

4.2 Interface

The main components of the AMR library are Nest::Hierarchy, Nest::Grid, Nest::Mesh and
Nest::Patch. These classes are modeled after the definitions for Cartesian grid / mesh and
patch hierarchy (Definition 2.1 and Definition 2.2).

• template<class GridType = Grid> class Nest;
Main class for managing the whole AMR hierarchy, including all levels, patch levels and
flags (cf. Figure 4.2).

• class PatchGrid;
PatchGrid class for managing the patches of a level. Each patchgrid contains a number
of patches including patch relations such as child-parent and neighbors. Does not contain
any cell data.

• class Grid;
Grid class for managing the meshes of a level. Each grid contains a number of meshes,
including mesh relations such as child-parent and neighbors. Meshes are (re-)created from
a patchgrid by calling the regrid function.

• class Mesh;
Mesh class for managing mesh data, which is stored internally in column-major format.
Must allocate space for mesh data twice, since integration and flagging functions work
in-place on meshes.

Usage of C++ templates allows for strong code modularization; even the grid and mesh classes
can be easily replaced if the relevant methods are implemented (cf. Appendix A.1). This mod-
ularity allows for extension and usage of different numerical integration algorithms as well as
swapping internal data structures if desired.

The Nest code can be used either for full AMR based simulation workflows or only as a
mesh hierarchy generator. In the first case, a numerical solver as well as a flagging strategy

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Hierarchy

Meshgrids FlagsPatchgrids

L
e
v
e
l

0

L
e
v
e
l

1

L
e
v
e
l

2

L
e
v
e
l

q

Root Mesh Root Patch Flags

at L0

Flags

at L1

Flags

at L2

Mesh 0 Mesh 1 Patch 0 Patch 1

Mesh 0 Mesh 1 Mesh 2 Mesh 3 Patch 0 Patch 1 Patch 2 Patch 3

Figure 4.2: The AMR hierarchy implementation is modeled after Definition 2.2: It consists of
multiple levels, each in turn containing meshes, patches and flags.

have to be supplied as callables with signatures as given in Code Sample 4.1. Modern C++
gives the user complete freedom on the exact implementation, as the callables can be provided
as standard functions, lambdas or custom classes. To allow efficient in-place timestepping of
mesh data as well as time interpolation during synchronization (Section 2.2.5), meshes need to
provide duplicate data storage containing the current and last mesh data values as well as a
mechanism to swap previous and current values.

Code Sample 4.1: Timestepping and Flagging.

auto timestep = [](Mesh& mesh_, // input mesh
Double3D start, // start coordinate
Double3D delta, // spatial resolution
double t_, // current time
double k_ // temporal stepsize

) -> void {...}

auto flag = [](Mesh& mesh, // input mesh
Double3D delta // spatial resolution

) -> std::vector<Flag> {...}

Internally, the flags are stored per-level in a hash-map to facilitate fast access to individual
flags and allow for the addition of buffer flags as well as flag propagation. Flags are added and
removed directly by calling the Flags::set and Flags::unset methods. It is possible to flag a
cell for refinement by more than one level, in which case the corresponding cells are marked at
the lower levels. Note that flag positions are indexed by their global grid coordinates consistent
with the respective level.

For a full simulation, the hierarchy class handles the complete flagging and regrid process

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

via the generate(…) function (cf. Code Sample 4.2). However, if the nested mesh generation is
used separately, it needs to be passed a Nest::PatchGrid as well as Nest::Flags.

Code Sample 4.2: Patch Hierarchy (Re-)Generation.

void generate(Flags* flags_ptr , // new flags
PatchGrid* grid_ptr , // existing patches
NestingMode mode // either TopDown or BottomUp

);

The level pointed to by grid_ptr is not modified, while the levels below are cleared and a new
patch hierarchy covering all new flags is created. To ensure that the creation of a valid patch
hierarchy is possible, the flags need to be propagated upwards, including additional nesting-
induced buffer cells if using the top-down clusterer (cf. Remark 3.10). This is done by calling
propagate_flags (cf. Code Sample 4.3) before generate. The patch hierarchy created by either
top-down or bottom-up clustering is then guaranteed to be nested correctly. When using the
bottom-up clusterer and regridding the full hierarchy, or if a buffer zone large enough to always
cover enough cells around the lower levels is added, no flag propagation is necessary.

Code Sample 4.3: Flag Propagation.

bool propagate_flags(
Grid*& grid_ptr, // grid at current level
PatchGrid*& patchgrid_ptr , // patchgrid at current level
Flags*& flags_ptr , // flags at current level
NestingMode nesting_mode // either TopDown or BottomUp

);

A code sample of a full AMR simulation workflow as described in Section 5.2 is given in Ap-
pendix A.2.

4.3 Parallelization

AMR readily lends itself to parallelization due to the fact that the meshes are timestepped
individually. Since the mesh boundaries need to be kept synchronized, difficulties can arise when
scaling to a large parallelization degree, depending on how the meshes and their connectivities
are managed. A number of methods have been developed for highly scalable AMR on large scale
distributed-memory computer systems [18, 25, 30, 31].

The goals here are different, targeting shared-memory parallelization for workstation-class com-
puters instead of distributed memory systems. Another difference lies in the algorithmic con-
straints: The clustering algorithm described in this work receives as input an existing sparse
data structure containing all flag positions. The algorithms used in, e.g., [20, 25] parallelize
based on the existing meshes, never storing the complete list of flags at once. This leads to a
very efficient algorithm especially for tile-based clustering, as the tile generation is done locally
by each worker (i.e., thread).

Since our requirements dictate global metadata, i.e., centralized storage for flags, patches and
patch connectivity, the local tile generation approach from [20] is not applicable here. Instead,

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

the focus lies on global parallelization of the signature-based top-down clustering algorithm
within the given algorithmic constraints.

Parallelization of the top-down algorithm can be accomplished by domain decomposition,
which is inherently given by the clustering on each level but the first. Since the top level contains
only a small fraction of the total cells (and total flags) and in turn makes up only a negligible
fraction of the total computation time, the top level is not decomposed. Instead, the patch
generation for this level is parallelized as follows: The processing of each new patch, generated
by repeated splitting, is done in parallel when possible: The root patch is processed serially,
then the two resulting patches in parallel, and so on. For every finer level, parallelization is
achieved by first parallelly sorting the flags into the existing patches, then clustering all patches
individually in parallel.

To optimize performance, patches are first sorted in descending order by amount of flags
contained within and then scheduled dynamically. A balanced distribution of the workload is
only guaranteed if the flags are either evenly distributed or the number of meshes is significantly
higher than the available processor cores, as is the case here. The time spent on merging and
shrinking the resulting patches is insignificant in comparison to sorting and clustering, these
steps are done serially.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Cores

2

4

6

8

10

12

14

16

18

20

Pa
ra

lle
l S

pe
ed

up

1 × cores
sort_flags
cluster
total

Figure 4.3: Parallel speedup of the clustering algorithm for the circular interface from Example 3
with root grid size 64× 64, five levels and a refinement factor of r = 4. For each level L(l) cells less
than 0.05 + 4

∥∥n(l)
∥∥−1 away from the interface are flagged, for a total of ≈ 3.4× 106 flags.

The parallel efficiency is evaluated via Example 3 (will be discussed in detail in the next section)
at 5 levels with a total of ≈ 3.4× 106 flags using a dual socket Intel Xeon Gold 6248 (Cascade
Lake) benchmarking platform (2 × 20 cores). Thread pinning was used to pin all threads to a
single processor and only the generation of the patch hierarchy is included in the timings, no flag
propagation or mesh initialization. The clustering algorithm scales quite well with additional
cores (cf. Figure 4.3) with a maximum speedup of ≈ 14 for 20 cores. The flag-sorting scales
worse, with a maximum speedup of ≈ 7.5. In total, the complete patch generation algorithm
receives a maximum speedup of ≈ 8.5 for 20 cores.

The clustering algorithm within each patch is completely independent from a computational
perspective and will parallelize well as long as the number of meshes is significantly larger than

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

the number of cores to allow for efficient load balancing. The sorting procedure is limited by
memory bandwidth and the need for concurrent access of the global flag data structure.

Table 4.1 shows that the most time intensive steps are sorting and clustering, while com-
putation of patch connectivities (marking parent / child and neighbor relations), merging and
shrinking is negligible.

num_threads sort_flags cluster connectivity shrink merge total

1 0.5369 0.3765 0.0052 0.0026 0.0008 0.9251
2 0.3118 0.2050 0.0054 0.0026 0.0009 0.5269
3 0.2322 0.1396 0.0054 0.0027 0.0009 0.3818
4 0.1802 0.1069 0.0055 0.0026 0.0009 0.2968
5 0.1515 0.0893 0.0057 0.0027 0.0009 0.2513
6 0.1278 0.0753 0.0058 0.0027 0.0009 0.2132
7 0.1123 0.0653 0.0057 0.0027 0.0009 0.1874
8 0.1098 0.0576 0.0058 0.0027 0.0009 0.1773
9 0.1023 0.0525 0.0059 0.0027 0.0009 0.1650
10 0.0966 0.0480 0.0059 0.0027 0.0008 0.1545
11 0.0920 0.0442 0.0059 0.0027 0.0008 0.1461
12 0.0911 0.0405 0.0059 0.0027 0.0009 0.1417
13 0.0830 0.0375 0.0060 0.0027 0.0010 0.1308
14 0.0831 0.0356 0.0060 0.0027 0.0009 0.1289
15 0.0760 0.0333 0.0059 0.0027 0.0009 0.1194
16 0.0721 0.0315 0.0059 0.0027 0.0010 0.1139
17 0.0710 0.0303 0.0060 0.0027 0.0010 0.1117
18 0.0705 0.0281 0.0061 0.0027 0.0010 0.1090
19 0.0712 0.0271 0.0060 0.0027 0.0010 0.1087
20 0.0732 0.0264 0.0060 0.0027 0.0010 0.1101

Table 4.1: Timings (in seconds) for parallelized clustering of the benchmark problem presented in Fig-
ure 4.3. Times are averaged over 10 independent runs.

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5 Numerical Experiments

Based on the implementation discussed in the previous section, this section presents detailed
results of numerical experiments to investigate the feasibility of the algorithms developed in Sec-
tion 3. The two mesh generation algorithms are evaluated with several representative examples
and compared to each other. Finally, a vortex flow simulation gives insights into the algorithms
performance as part of the full AMR workflow.

5.1 Clustering Examples

In the following, single-level and multi-level clustering examples are presented for top-down and
bottom-up clustering algorithms. The results justify our adaptations to the signature clustering
algorithm and provide a basis for choosing between top-down and bottom-up approaches.

The quality of a clustering is judged in terms of cells refined relative to cells flagged (cf. Defini-
tion 3.2), also taking into account the number of ghost cells (cf. Definition 3.3). In order to also
account for varying computational effort between inner cells and ghost cells as well as additional
overhead for the number of meshes, a mesh clustering is identified to be most efficient if it
minimizes the cost function ω from Definition 3.4 for given weights for ghost cell effort Cg and
mesh overhead Cm. This only corresponds to minimizing the pure efficiency ϵ if Cm = Cg = 0

or to minimizing the adjusted efficiency ϵ̃ if Cg > 0 and Cm = 0.
In practice, the weights Cg and Cm should be chosen in accordance with the performance

characteristics of the numerical integration algorithm used as well as simulation parameters such
as regridding period and refinement factor.

For the examples discussed in this section, no computational overhead for additional meshes
(i.e., Cm = 0) and half the effort required for ghost cells compared to inner mesh cells (i.e.,
Cg = 1/2) is assumed, if not otherwise specified.

5.1.1 Top-Down Signature Clustering

Example 2 (Elliptical and Circular Areas of Interest).
On a single level grid of the domain Ω = [0, 1]2 with resolution 64×64 and refinement factor
r = 2, flags are placed in the center of the grid in shapes of either a rotated ellipse or a
circle. All cells (x, y) ∈ GΩ satisfying

((x− cx) cos(ϕ) + (y − cy) sin(ϕ))
2

a2
+

((x− cx) sin(ϕ)− (y − cy) cos(ϕ))
2

b2
≤ 1,

are marked for refinement, where c = (0.5, 0.5), a = b = 0.4, ϕ = 0 for the circle and
a = 0.3, b = 0.5, ϕ = π/3 for the ellipse. These example geometries (cf. Figure 5.1 and
Figure 5.2) showcase clustering qualities, particularly the benefits of aspect ratio correction.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

(a) ϵ0 = 0.8, α = 0. (b) ϵ0 = 0.9, α = 0. (c) ϵ0 = 1, α = 0.

(d) ϵ0 = 1, α = 0, backtracking. (e) ϵ0 = 1, α = 2 (f) ϵ0 = 1, α = 2, backtracking

Figure 5.1: Signature clustering results for an elliptical area of interest for different parameters
with minimum width m0 = 4. Increasing the target efficiency reduces inner cell count but increases
total cell count and creates irregular, elongated patches. A combination of aspect ratio correction
α = 2 and backtracking minimizes the number of total cells.

(a) ϵ0 = 0.8, α = 0. (b) ϵ0 = 1, α = 0.

(c) ϵ0 = 1, α = 2. (d) ϵ0 = 1, α = 2, backtracking

Figure 5.2: Signature clustering results for a circular area of interest for different parameters with
m0 = 4. The standard Berger-Rigoutsos algorithm creates very long and thin patches, whereas
aspect ratio correction combined with backtracking results in a significantly lower mesh cell count.

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Single-Level Clustering

Figure 5.1 shows different clusterings of the elliptical area of interest from Example 2 at a single
level. With a low target efficiency the classical Berger-Rigoutsos clustering algorithm stops too
soon and generates only a small number of meshes nm. The resulting clustering highly varies
in patch size and still contains a high number of unnecessary cells. The reason for this is the
locality of the termination condition: splitting continues until the target efficiency is reached for
each individual patch, meaning a large patch may still contain a large portion of unflagged cells
compared to the rest of the clustering, while smaller patches are split even if the savings in cell
count are relatively small compared to the total cell count. This is shown in Figure 5.1a, where
a single patch contains more than half of the unflagged but refined cells.

Without the aspect ratio correction (α = 0) and backtracking, a higher target efficiency
causes generation of a large number of very long patches; this does reduce inner cell count ni

but is still suboptimal, because these patches have a large number of ghost cells ng relative to
inner cells, resulting in a higher total cell count nc than with lower target efficiency.

This behaviour is even more apparent on a completely circular flagged area (cf. Figure 5.2).
Without aspect ratio correction, maximum split magnitudes along X-axis and Y-axis are the
same, causing splits to be taken almost exclusively along the X-axis.

Since the last splits make the final clustering worse than not splitting, clustering with back-
tracking b results in the same output as with a lower target efficiency, without having to guess
the optimal target efficiency for the given input. An even better clustering in terms of total
cell count is achieved with the aspect ratio correction α = 2, resulting in more regular, square
patches.

In Table 5.1 and Table 5.2, the best result (i.e., the lowest objective function ω) is shown
to be achieved by a combination of aspect ratio correction and backtracking in both examples.
This is not guaranteed to be a global minimum when considering all possible clusterings but in
general an acceptable approximation. Note that the best clustering in terms of minimizing ω

does not necessarily coincide with the lowest pure efficiency ϵ, as pure efficiency does not take the
ghost cells into account. The circular example in Figure 5.2 shows that the clustering algorithm
is not symmetry preserving - it does not necessarily generate a symmetric patch covering, even
if the input flags are perfectly symmetric.

ϵ0 α b nf nm nc ni ng ϵ ϵ̃ ω

Figure 5.1a 0.8 0 No 7216 13 9880 8128 1752 0.8878 0.7304 9004
Figure 5.1b 0.9 0 No 7216 23 9748 7512 2236 0.9606 0.7403 8630
Figure 5.1c 1.0 0 No 7216 31 10124 7388 2736 0.9767 0.7128 8756
Figure 5.1d 1.0 0 Yes 7216 24 9752 7504 2248 0.9616 0.7400 8628
Figure 5.1e 1.0 2 No 7216 42 9232 7364 1868 0.9799 0.7816 8298
Figure 5.1f 1.0 2 Yes 7216 33 9016 7440 1576 0.9699 0.8004 8228

Table 5.1: Clustering statistics for the signature clusterings of the elliptical example from Figure 5.1.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

ϵ0 α b nf nm nc ni ng ϵ ϵ̃ ω

Figure 5.2a 0.8 0 No 7744 3 10052 9464 588 0.8183 0.7704 9758
Figure 5.2b 1.0 0 No 7744 22 10952 7936 3016 0.9758 0.7071 9444
Figure 5.2c 1.0 2 No 7744 27 9644 7952 1692 0.9738 0.8030 8798
Figure 5.2d 1.0 2 Yes 7744 25 9380 7984 1396 0.9699 0.8256 8682

Table 5.2: Clustering statistics for the signature clusterings of the circular example from Figure 5.2.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Figure 5.3: Clusterings with and without mesh count penalty for ϵ0 = 1, α = 2 and backtracking.
On the left, clustering was done with no mesh overhead Cm = 0. The right figure shows the
clustering with Cm = 10, resulting in a clustering with less patches but more mesh cells.

To simulate a small overhead per mesh created, an additional penalty for mesh number (i.e.,
Cm = 10) is added to the cost function ω. This causes the backtracking algorithm to prefer a
slightly different clustering which reduces the number of meshes from nm = 33 to nm = 11 at
the cost of increasing the inner cell count by ≈ 5% (cf. Figure 5.3). Note that the choice of Cm

and Cg does not influence where each split is taken, only how the procedure determines at what
point to stop splitting up patches (cf. Algorithm 3.3).

Generating patches with sides of similar lengths is even more important if the ghost layer size
g is increased. A larger ghost layer increases the amount of mesh cells required as boundary
conditions on each individual patch by a factor g. Figure 5.4 shows clusterings created with
g ∈ {1, 2, 3}. With larger ghost layers, less patches are created since the additional ghost cells
created by splitting outweigh the savings from reducing inner cell count. As with the cost
function weights Cm and Cg, this does not influence the choice of split index: the clusterings
from Figure 5.4a and Figure 5.4b can be obtained from Figure 5.4c by further splitting the
corresponding patches.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

(a) g = 1. (b) g = 2. (c) g = 3.

Figure 5.4: Clusterings of the elliptical example for different ghost layer sizes. For g = 1, a large
number of patches are generated, cutting away most of the unmarked cells. For g = 2, the number
of ghost cells per patch doubles, making it more efficient to create only a small number of patches.
Further increasing ghost layer size to g = 3 again reduces patch count.

In the context of level-set methods, the areas of interest are usually not large contiguous areas
(or volumes) but rather small, elongated shapes around the 0-level-set Γ.

Example 3 (Circular Interface).
Consider a single- or multi-level grid hierarchy discretizing the physical domain Ω := [0, 1]2,
with a resolution of 128× 128 on the root level. The circular interface Γ is defined by

Γ := {x ∈ Ω : (x0 − 0.5)2 + (x1 − 0.5)2 = 0.32}.

Grid cells around the interface are flagged for refinement based on their distance to the
interface and their level L(l), l ∈ 0, . . . , q (cf. Figure 2.7)

R
(l)
ijk :=





1, if d(xijk, Γ) <
10

∥n(l)∥
∞

,

0, else.

The same problem is chosen in [25] for benchmarking single-level clustering algorithms as
it resembles an expanding blast-wave which is representative of problems commonly solved
with AMR simulation.

Figure 5.5 shows clusterings of the initial circular interface from Example 3. While the difference
in total cell count is not as big as in previous examples, aspect ratio correction does yield a
clustering with much more regular patches. With α = 2 and backtracking (cf. Figure 5.5f), the
total cell count is reduced by ≈ 7% compared to the clustering without backtracking and aspect
ratio correction (cf. Figure 5.5d). In addition to reducing the cell count, the relative uniformity
and regularity of the aspect ratio corrected clustering can be beneficial for load balancing during
parallelization [20, 30].

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

(a) ϵ0 = 0.8, α = 0. (b) ϵ0 = 0.9, α = 0. (c) ϵ0 = 1, α = 0.

(d) ϵ0 = 1, α = 0, backtracking. (e) ϵ0 = 1, α = 2 (f) ϵ0 = 1, α = 2, backtracking

Figure 5.5: Signature clustering of the circular interface (Example 3) with different parameters.
The standard Berger-Rigoutsos algorithm (i.e., α = 0) favors long but thin patches. Combining
aspect ratio correction with backtracking results in the most efficient clustering in terms of total
cell count.

The presented algorithms can be generalized for arbitrary dimensions, but the focus of this
work is on 2D and 3D problems. Figure 5.6 shows the results from clustering a spherical area
of interest. With a lower target efficiency, the generated patches are highly irregular; a large
number of long, flat patches is created. Increasing the target efficiency lowers the inner cell count
at the cost of increased mesh number and ghost cell count. Adding aspect ratio correction again
results in more regular, cube-like patches as in the 2D case. The best clustering is produced
with target efficiency ϵ0 = 1, aspect ratio correction α = 2 and backtracking (cf. Table 5.3).
This clustering, shown in Figure 5.6d, decreases the total cell count by 24424 to nc = 598080

compared to Figure 5.6a as the split locations are improved and suboptimal patch splits are
discarded.

The signature clustering algorithm behaves very similarly in two and three dimensions; for three
dimensions, the algorithm performs the same actions as in two dimensions, but also considers
splits along the additional axis. Therefore, the focus is mostly on 2D comparisons, which are
easier to generate, visualize and analyze; the results are expected to be, in general, transferable
to the 3D case.

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

(a) Target efficiency 0.8. (b) Target efficiency 1.

(c) Target efficiency 1 and aspect ratio correction. (d) Aspect ratio correction and backtracking.

Figure 5.6: Signature clustering of spherical area of interest with different parameters. Patches are
colored by ratio of shortest to longest side, with blue being a high ratio and red a low ratio. As in the
2D case, a combination of aspect ratio correction and backtracking yields the best results in terms of
total cell count.

ϵ0 α b nf nm nc ng ϵ ϵ̃ ω

0.8 0 No 254272 102 622504 217816 0.8169 0.6052 731412
1.0 0 No 254272 163 588320 266840 0.8644 0.5947 721740
1.0 2 No 254272 181 594768 248256 0.8550 0.6032 718896
1.0 2 Yes 254272 161 598080 231440 0.8503 0.6131 713800

Table 5.3: Clustering statistics of a spherical area of interest (cf. Figure 5.6); comparing results for
different parameter combinations.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Multi-Level Clustering

In a multi-level-setting, the top-down clustering method may require flagging additional cells
around the lower level flags to ensure the finer meshes are properly embedded. The number of
nesting flags added, k = max

(
m0
r2

, 1
)
, depends only on the refinement factor r and the minimum

width m0 (cf. Section 3.2.1).

Figure 5.7: Top-Down clustering of Example 3.1. The left figure shows the patch hierarchy with
a minimum width of m0 = 4. This results in a required nesting-induced buffer zone of k = 1 added
around lower level flags. For a higher minimum width m0 = 8 (on the right), the required nesting
flags increase to k = 2. Most cells only required for nesting are removed by shrinking.

Figure 5.7 shows a complete patch hierarchy for Example 1. Here, only the lowest level is flagged
and flags need to be propagated upwards, as otherwise no patches would be placed on top levels.
For m0 = 4 a single additional nesting-induced flag is placed around the flags of finer levels;
for m0 = 8, this layer is twice as large. While many of the cells only required for nesting are
afterwards cut off to reduce cell count, they do influence the choice of split location, leading to
the creation of larger patches for larger minimum widths which may impact clustering efficiency
negatively.

During an AMR simulation, this is does not occur often as the error (or other properties on
which the flag selection is based) is expected to be continuous and as such flags on finer levels
will in most cases be covered sufficiently.

The effect of generating slim patches is drastically amplified by the nesting method (Algo-
rithm 3.6) when using the signature clustering algorithm for creating a multi-level hierarchy.
Since patches are split at the edges, a long and narrow parent patch could result in the generation
of up to three long and even narrower child patches.

Figure 5.8 shows the 4-level hierarchical clustering of the same circular interface as above
without aspect ratio correction. No additional nesting flags are required here, as the area flagged
on each level is already larger than required. As in Figure 5.5, the top level is split up into very

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

long, thin patches. To ensure nesting, especially (N1), these patches’ children are split again
along the shorter axis, resulting in even thinner patches. With α = 2 (cf. Figure 5.9), the patch
aspect ratios are kept mostly balanced, which results in a reduction in total mesh cell count nc

at all levels.
The clustering statistics are specified individually for each level in Table 5.4 and Table 5.5.

The efficiency of the root level is ϵ = ϵ̃ = 0 as no refinement flags exist for this level. Similarly,
there are no flags at the lowest level, nf = 0. Aspect ratio correction with α = 2 causes an
increase in adjusted efficiency ϵ̃ as well as a decrease in total score ω when using aspect ratio
correction. The adjusted splitting choices result in much more regular and uniform patches,
reducing the combined cell count of the patch hierarchy by ≈ 4% to 195364 but increasing the
combined number of meshes nm by ≈ 15%.

L nm nf nc ni ng ϵ ϵ̃ ω

0 1 4680 16900 16384 516 0.0000 0.0000 16642
1 56 9504 25204 20624 4580 0.9077 0.7427 22914
2 95 19120 53540 42772 10768 0.8888 0.7100 48156
3 194 0 106888 86068 20820 0.8886 0.7155 96478

Table 5.4: Clustering statistics for signature clusterings of the circular interface from Figure 5.8
(without aspect ratio correction, α = 0).

L nm nf nc ni ng ϵ ϵ̃ ω

0 1 4680 16900 16384 516 0.0000 0.0000 16642
1 53 9504 24992 20852 4140 0.8978 0.7490 22922
2 101 19120 50780 42824 7956 0.8877 0.7486 46802
3 241 0 102692 85020 17672 0.8996 0.7448 93856

Table 5.5: Clustering statistics for signature clusterings of the circular interface from Figure 5.9
(with aspect ratio correction, α = 2).

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 5.8: Top-Down hierarchy for the circular interface (Example 3) with 4 levels. Without aspect
ratio correction, α = 0, long and thin patches are created on the top level and in turn on the lower levels.

Figure 5.9: Top-Down hierarchy for the circular interface (Example 3) with 4 levels. With aspect
ratio correction, α = 2, the resulting patches are mostly square-like except where additional splits were
required for proper nesting.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Another aspect is the choice of refinement ratio r. Commonly either r = 2 or r = 4 is used with
the trade-off again being between mesh count and cell count. A higher refinement ratio needs
fewer levels (and in turn fewer meshes) to reach the desired spatial resolution.

On the other hand, it increases cell counts if the area to be refined is the same between the
two choices (i.e., the flagged cells depend only on their physical location and not the refinement
ratio). Figure 5.10 compares top-down clustering of a hierarchy of 5 levels and refinement factor
r = 2 to a hierarchy with 3 levels and refinement factor r = 4. Both root grids have a size of
128 × 128, yielding the same resolution on the lowest grid. Cells at level L(l) are in both cases
marked if their distance from the interface Ω is smaller than 10

∥∥n(l)
∥∥−1

∞
.

The clustering statistics (cf. Table 5.6) are aggregated over the whole hierarchy as per Defi-
nition 3.9; the 5-level hierarchy with r = 2 has a lower total cell count as well as a lower ω-value
at the cost of a significantly higher mesh count nm than the 3-level hierarchy. Although it
contains fewer total mesh cells, it exhibits a lower pure and adjusted mesh efficiency as more
ghost cells are included.

This behaviour is expected in general: consider a square-shaped patch of size k. When
refining the patch, it will have k2r2 inner cells and 4(k + 1)r ghost cells. This equals a ratio
of 4(k+1)

rk2
of ghost cells to inner cells, meaning a clustering with a higher refinement factor will

usually require less ghost cells compared to inner cells.

Figure 5.10: Signature clustering of the circular interface (Example 3) with refinement factors
r = 2 (left) and r = 4 (right). A lower refinement factor of requires more levels (in this case 5
compared to 3) and in turn a higher number meshes to reach the same grid resolution. Still, the
efficiency of the clustering is better with r = 2, as the impact of refining an unmarked cell is lower.

r nf nm nc ni ng ϵ ϵ̃ ω

2 287136 1507 393628 316220 77408 0.9080 0.7295 354924

4 380800 955 456564 399712 56852 0.9527 0.8341 428138

Table 5.6: Clustering statistics for Figure 5.10 comparing refinement factors r = 2 and r = 4.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1.2 Bottom-Up Tile Clustering

The main benefit of tile clustering is the generation of equally sized patches, which is desirable
especially for distributed-memory parallelization [25] as it greatly simplifies load balancing. The
trade-off to make in this case is the choice of tile size d. Using large tiles implies fewer tiles but
an increased number of cells, while more, smaller tiles are more efficient in terms of mesh count
but require additional effort for keeping mesh boundaries in sync.

Figure 5.11 shows patch hierarchies for Example 3 with 4 levels generated by bottom-up clus-
tering with tile sizes d = 16, d = 32 and d = 64. Patches are not merged but shrunk to decrease
cell count where possible. The most efficient clustering with respect to both pure and adjusted
efficiency, as well as ω-score for Cg = 1/2, Cm = 0, is achieved with d = 24 (cf. Table 5.7). This
clustering contains a total of nm = 395 meshes and nc = 207756 mesh cells, of which ≈ 16% are
ghost cells.

While a smaller tile size of d = 8 does result in less inner mesh cells, the clustering contains
six times as many patches and in turn almost three times as many ghost cells. With larger tile
sizes, e.g., d = 64, the amount of patches and ghost cells is reduced, but the number of inner
cells increases drastically again as many unneeded cells are included; the clustering is inefficient
especially when assuming no mesh overhead, as is done here.

Therefore, the tile size should be chosen small if mesh overhead and ghost cell effort is relatively
small. If mesh overhead is high compared to the effort required for each mesh cell, Cm ≫ 0,
bigger tile sizes will be more efficient. In general, the choice of an optimal tile size is also highly
dependent on the particular problem geometry: If the flagged area features a lot of small-scale
features, equally small tiles are needed for generating an efficient clustering.

The bottom-up tile clustering algorithm is independent of dimension in the sense that a 3D
clustering with tile size (dx, dy, dz) is the same as separately clustering 2D slices of size dz with
tile size (dx, dy). As such, it is possible to evaluate clustering performance on 2D examples as
the results are also applicable to the 3D case.

d nf nm nc ni ng ϵ ϵ̃ ω

8 133216 2501 266900 176384 90516 0.7553 0.4991 221642
16 133216 773 218148 171408 46740 0.7772 0.6107 194778
24 133216 395 207756 174840 32916 0.7619 0.6412 191298
32 133216 257 210052 183008 27044 0.7279 0.6342 196530
48 133216 143 219460 198736 20724 0.6703 0.6070 209098
64 133216 97 244772 226624 18148 0.5878 0.5442 235698

Table 5.7: Clustering statistics for bottom-up clustering of circular interface (Example 3) compar-
ing the results for different tile sizes.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

(a) Tile size d = 16.

(b) Tile size d = 32.

(c) Tile size d = 64.

Figure 5.11: Patch hierarchy for the circular interface from Example 3 with 4 levels, generated
by bottom-up tile clustering with different tile sizes. Patches are shrunk after clustering, but not
merged.

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1.3 Comparison of Signature Clustering and Tile Clustering

Since the goal of this work is mainly to reduce overall cell and mesh count, the bottom-up
tile clustering algorithm generally yields worse results than the top-down signature clustering
algorithm. Even if the mesh count is reduced by merging patches, tile clustering results in
significantly more cells than signature clustering.

Figure 5.12 shows top-down and bottom-up clusterings for the hierarchy from Example 1.
Although the top-down algorithm requires additional nesting cells which may negatively influ-
ence clustering efficiency on the individual levels, the resulting patch hierarchy is better in terms
of both mesh count as well as cell count (cf. Table 5.8).

A similar result is shown in Figure 5.13, which compares top-down and bottom-up clusterings
for the circular interface from Example 3 with 3 levels. Top-down clustering again performs
better, with ≈ 5% less mesh cells and ≈ 25% less meshes (cf. Table 5.9).

As the merging strategy simply considers all neighbors in no particular order, the merging
process is of course not optimal (though it always decreases mesh count and ghost cell count). An
optimal merging strategy in this context is not realistic, as it is essentially the same problem as
the original clustering problem: If a suitable merging strategy existed, it could be used directly
on the individual cells. On the other hand, not merging at all would result in a lower quality
clustering according to the metrics used here, because merging will always increase pure and
adjusted efficiency and will reduce cost as superfluous ghost cells are removed and the mesh
count is decreased.

Signature clustering as presented here has the additional advantage of not having to choose a
problem-dependent control parameter, such as target efficiency or tile size, making the algorithm
more resilient to differing problem geometries without the need for manual adjustments. For
our use-case of an AMR simulation on a shared-memory computation architecture, top-down
clustering produces more suitable nested mesh hierarchies. Bottom-up clustering should be
used mainly if patch uniformity or symmetry is important, or if the use-case requires the patch
generation to be much faster than the signature clustering algorithm.

nf nm nc ni ng ϵ ϵ̃ ω

Top-Down 19804 61 26508 21944 4564 0.7471 0.6374 24226
Bottom-Up 19804 64 27924 23144 4780 0.7092 0.6056 25534

Table 5.8: Clustering statistics for patch hierarchies of Example 1 from Figure 5.12.

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 5.12: Patch hierarchies for Example 1 from top-down clustering (left) and bottom-up
clustering (right). Bottom-up clustering with tile size d = 8 results in an equal number of patches
after merging, but a higher total cell count compared to the top-down clustering.

nf nm nc ni ng ϵ ϵ̃ ω

Top-Down 56736 276 90920 75848 15072 0.7480 0.6240 83384
Bottom-Up 56736 354 95920 76560 19360 0.7411 0.5915 86240

Table 5.9: Clustering statistics for patch hierarchies of circular interface (Example 3) from Figure 5.13.

Figure 5.13: Patch hierarchies for circular interface (Example 3) with 3 levels, comparing the
results of top-down clustering (left) with those from bottom-up clustering (right). Bottom-up clus-
tering with tile size d = 8 generates a higher number of patches after merging and a higher total
cell count compared to the top-down approach.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2 Vortex Flow Simulation

A full AMR simulation is performed based on an example given in [10], the deformation of a
circular interface

Γ0 := {x ∈ [0, 1]2 : (x0 − C0)
2 + (x1 − C1)

2 = R2}

with radius R = 0.1 and center C = (0.5, 0.75) by a vortex flow

ut(x, t) +

(
sin(πx0)

2 sin(2πx1)

− sin(πx1)
2 sin(2πx0)

)
∇u(x, t) = 0 on [0, 1]2 × R

+,

u(x, 0) = d±(x,Γ0) on [0, 1]2.

(14)

The above equation is advanced in time from t0 = 0 to tend = 2 starting from the initial
condition u(x, 0). Top-down clustering is used to create a nested mesh hierarchy of 5 levels with
a refinement factor of r = 2, doubling the resolution per level.

At every 4th timestep on each level L(l), l < 4, all cells where |u(x, t)| < 4
∥∥n(l)

∥∥−1

∞
are

flagged for refinement and clustered into a new patch hierarchy; then, the new meshes are
initialized and the process repeats. To ensure that the area of interest on a finer grid does not
move out of the area covered by coarse patches and causes a premature regrid, a buffer zone of
size 4 is added around the flagged cells on all but the lowest level.

Individual meshes are integrated using the upwind scheme (4). The root mesh has a reso-
lution of 128 × 128 and the finest level has a resolution of 2048 × 2048. Figure 5.14 shows the
time evolution of the level-set function u(x, t), the interface Γt = {x ∈ Ω : u(x, t) = 0} and the
patch hierarchy at t ∈ {0, 1, 2}. No re-distancing or other level-set methods are used here.

Table 5.10 shows the mesh hierarchy statistics for the vortex flow simulation. Even though
the flagged area is much larger in the coarser levels, the number of mesh cells increases as the
resolution increases. On average, ≈ 30% of all cells and ≈ 60% of all meshes are located at the
finest level. The efficiency is lowest for the finest level, as the flagged region at this level is often
smaller than the minimum patch size m0 = 8 since no buffer zone is included at this level.

A simulation using a single mesh with the same size as the root mesh does not provide a usable
solution, since the 0-level-set vanishes completely at about t = 1.5. Using a single grid with the
same resolution as the finest level of the hierarchy would equal a total of (128 · 24)2 = 4194304

cells. Our grid hierarchy only contains ≈ 178000 cells on average, which corresponds to a
reduction in cells by ≈ 95%. This depends of course on how the area of interest is determined
as well as on the size of the buffer zone but will in general significantly reduce the time of
computation as long as the majority of the domain does not need to be refined.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 5.14: Evolution of the interface Γt, the level-set function u and the corresponding nested
mesh hierarchy from t = 0 to t = 3. Every 4 timesteps, new mesh hierarchies are adapted from the
existing meshes based on the refinement flags.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

L nf nm nc ni ng ϵ ϵ̃ ω

0 2316.96 1.00 16900.00 16384.00 516.00 0.00 0.00 16642.00

1 5064.51 25.20 12075.90 10114.70 1961.21 0.92 0.77 11095.30

2 11409.70 55.41 26656.70 22288.70 4368.05 0.91 0.76 24472.70

3 8896.32 129.94 60734.80 50452.60 10282.20 0.90 0.75 55593.70

4 0.00 305.64 61288.90 45259.40 16029.60 0.79 0.58 53274.10

Table 5.10: Mean mesh hierarchy statistics for vortex flow simulation. The number of flags nf ,
cells nc, ni, ng, and meshes nm as well as the clustering quality measures ϵ, ϵ̃, ω are averaged over
the number of timesteps at each level.

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6 Conclusion

In this thesis, two methods for generating nested mesh hierarchies for adaptive mesh refinement
are presented, analyzed and implemented. Specifically, known algorithms for mesh hierarchy
creation are adapted to perform within stricter constraints and are optimized to reduce the
number of meshes as well as mesh cells.

The AMR method imposes certain restrictions on the mesh hierarchies, which are further ex-
tended in this thesis by external requirements stemming from performance considerations and
a representative application programming interface of an exemplary level-set framework. The
latter is to allow investigation into the practical usage of the developed algorithms as drop-in
replacements for optimizing the nested mesh generation and adaptation process. For this reason,
a novel top-down mesh generation algorithm, based on Berger-Rigoutsos signature clustering [6],
is developed to create efficient clusterings both on a single level as well as complete, nesting cri-
teria conforming multi-level hierarchies. The algorithm is compared to a bottom-up tile-based
mesh generation algorithm, adapted from Luitjens tile clustering [25], to fit the extended nesting
criteria.

These new mesh generation algorithms as well as the core AMR algorithm are implemented
as a C++ library with a clearly defined application programming interface, allowing integra-
tion into existing simulation frameworks. The novel top-down mesh generation implementation
supports shared-memory parallelization, achieving considerable speedups. Implementation ex-
amples, benchmarks and code samples are presented and discussed.

The performance of the novel top-down mesh generation algorithm is, same as that of the
underlying algorithms, highly dependent on the problem geometry. Still, the performance is
promising based on the analyzed examples and in some cases provides a significant improvement
over previous methods. In most cases, the novel top-down algorithm yields superior results. On
a single level, the total number of cells is reduced by up to 10% compared to the original Berger-
Rigoutsos algorithm. The bottom-up tile-based algorithm performs better if uniformity and
regularity of the mesh hierarchy is important.
In general, it is hard to judge the quality of a nested mesh hierarchy since real-world performance
of an AMR procedure strongly depends on the chosen integration algorithm and other factors.
Further investigations are desirable into what constitutes a high-quality nested mesh hierarchy
with respect to optimizing AMR simulation time.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A Code Samples

A.1 Mesh and Grid Interfaces

Code Sample A.1: Nest interface definitions for custom Grid and Mesh classes.

class MeshClass {
public:

using GridType = GridClass; // class name of respective grid class

MeshClass* parent();
Patch domain() const;
double& data(index_type i, index_type j, index_type k);
double data(index_type i, index_type j, index_type k) const;
double& data_old(index_type i, index_type j, index_type k);
double data_old(index_type i, index_type j, index_type k) const;
list<MeshClass*>& neighbors();
list<MeshClass*>& children();
void swap_data();

};

class GridClass {
public:

using MeshType = MeshClass; // corresponding mesh class
using MeshBaseType = MeshClass; // base mesh class
using MeshContainer = list<unique_ptr <MeshClass >>; // container type

GridClass(const GridParameters& grid_parameters);
GridClass(GridClass& coarser_grid);
GridClass* coarser_grid() const;
GridClass* finer_grid() const;
Patch domain() const;
Double3D delta() const;
double& time();
double& time_old();
MeshContainer::const_iterator begin() const;
MeshContainer::const_iterator end() const;

// create new mesh, add to container , return pointer
MeshClass* new_mesh(Index3D start,

Index3D size,
MeshClass* parent = nullptr,
MeshClass* old = nullptr);

// erase meshes from it0 to it1
void erase(MeshContainer::const_iterator it0,

MeshContainer::const_iterator it1);
};

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.2 Vortex Flow Simulation

Code Sample A.2: Vortex Flow - Setup and Simulation.

Config::refinement::num_levels = 5; // number of levels
Config::refinement::ghost_layer_size = {1, 1, 0}; // one cell ghost layer
Config::refinement::refinement_factor = {2, 2, 1}; // z-axis is not refined
Config::refinement::min_width = {8, 8, 1}; // minimum patch size
Config::refinement::regrid_period = 2; // w.r.t. coarse level

// create hierarchy with top-down clustering
TopDownHierarchy <Grid> hierarchy;

// define initial interface: circle with radius 0.125 around (0.5, 0.75)
auto f = [](double& out, Double3D xy) {

out = 0.125 - std::sqrt((square(xy.x - 0.5) + square(xy.y - 0.75)));
};

constexpr double T = 2;

// define timestepping function
auto timestep = [](Mesh& mesh_, // input mesh

Double3D start, // start coordinate
Double3D delta, // spatial resolution
double t_, // current time
double k_ // temporal stepsize

) -> void
{

Solvers::timestep_upwind(
mesh_,
start,
delta,
t_,
k_,
+[](double x, double y, double t) {

return 1 * square(std::sin(M_PI * x)) *
std::sin(2 * M_PI * y);

},
+[](double x, double y, double t) {

return -1 * square(std::sin(M_PI * y)) *
std::sin(2 * M_PI * x);

});
};

// set timestepsize
double k = 1.0 / static_cast <double >(N) * 0.9;

// advance to T
hierarchy.advance(0.0, T, k, f, timestep ,

Solvers::flag_if_small <Mesh>);

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

References

[1] M. Berger and J. Oliger. ‘Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations’. In: Journal of Computational Physics 53.3 (1984), pp. 484–512. doi: 10.1016/
0021-9991(84)90073-1.

[2] W. Hackbusch. ‘Local Defect Correction Method and Domain Decomposition Techniques’.
In: Defect Correction Methods. Vol. 5. Vienna: Springer Vienna, 1984, pp. 89–113. isbn:
978-3-7091-7023-6. doi: 10.1007/978-3-7091-7023-6_6.

[3] M. Berger. ‘Data Structures for Adaptive Grid Generation’. In: SIAM Journal on Scientific
and Statistical Computing 7.3 (1986), pp. 904–916. doi: 10.1137/0907061.

[4] C. Levcopoulos. ‘Fast Heuristics for Minimum Length Rectangular Partitions of Polygons’.
In: Proceedings of the Second Annual Symposium on Computational Geometry. ACM Press,
1986, pp. 100–108. isbn: 978-0-89791-194-8. doi: 10.1145/10515.10526.

[5] M. Berger and P. Colella. ‘Local Adaptive Mesh Refinement for Shock Hydrodynamics’. In:
Journal of Computational Physics 82.1 (1989), pp. 64–84. doi: 10.1016/0021-9991(89)
90035-1.

[6] M. Berger and I. Rigoutsos. ‘An Algorithm for Point Clustering and Grid Generation’. In:
IEEE Transactions on Systems, Man, and Cybernetics 21.5 (1991), pp. 1278–1286. doi:
10.1109/21.120081.

[7] K. G. Powell, P. L. Roe and J. Quirk. ‘Adaptive-Mesh Algorithms for Computational Fluid
Dynamics’. In: Algorithmic Trends in Computational Fluid Dynamics. Springer New York,
1993, pp. 303–337. isbn: 978-1-4612-7638-8. doi: 10.1007/978-1-4612-2708-3_18.

[8] J. Bell et al. ‘Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation
Laws’. In: SIAM Journal on Scientific Computing 15.1 (1994), pp. 127–138. doi: 10.1137/
0915008.

[9] W. J. Coirier and K. G. Powell. ‘Solution-Adaptive Cartesian Cell Approach for Viscous
and Inviscid Flows’. In: AIAA Journal 34.5 (1996), pp. 938–945. doi: 10.2514/3.13171.

[10] R. J. LeVeque. ‘High-Resolution Conservative Algorithms for Advection in Incompressible
Flow’. In: SIAM Journal on Numerical Analysis 33.2 (1996), pp. 627–665. doi: 10.1137/
0733033.

[11] M. J. Berger and R. J. LeVeque. ‘Adaptive Mesh Refinement Using Wave-Propagation
Algorithms for Hyperbolic Systems’. In: SIAM Journal on Numerical Analysis 35.6 (1998),
pp. 2298–2316. doi: 10.1137/S0036142997315974.

[12] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. 2nd
ed. Cambridge Monographs on Applied and Computational Mathematics 3. Cambridge
University Press, 1999. 378 pp. isbn: 978-0-521-64204-0.

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[13] U. Trottenberg, C. W. Oosterlee and A. Schüller. Multigrid. Academic Press, 2001. 631 pp.
isbn: 978-0-12-701070-0.

[14] M. R. Dorr, F. Garaizar and J. A. Hittinger. ‘Simulation of Laser Plasma Filamentation
Using Adaptive Mesh Refinement’. In: Journal of Computational Physics 177.2 (2002),
pp. 233–263. doi: 10.1006/jcph.2001.6985.

[15] D. Enright et al. ‘A Hybrid Particle Level Set Method for Improved Interface Capturing’.
In: Journal of Computational Physics 183.1 (2002), pp. 83–116. doi: 10.1006/jcph.2002.
7166.

[16] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge
University Press, 2002. isbn: 978-0-511-79125-3. doi: 10.1017/CBO9780511791253.

[17] S. Li and L. R. Petzold. ‘Solution Adapted Mesh Refinement and Sensitivity Analysis for
Parabolic Partial Differential Equation Systems’. In: Large-Scale PDE-Constrained Opti-
mization. Vol. 30. Springer Berlin Heidelberg, 2003, pp. 117–132. isbn: 978-3-540-05045-2.
doi: 10.1007/978-3-642-55508-4_7.

[18] R. Deiterding. ‘Construction and Application of an AMR Algorithm for Distributed Me-
mory Computers’. In: Adaptive Mesh Refinement - Theory and Applications. Vol. 41.
Springer-Verlag, 2005, pp. 361–372. isbn: 978-3-540-21147-1. doi: 10.1007/3-540-27039-
6_26.

[19] L. F. Diachin et al. ‘Parallel Adaptive Mesh Refinement’. In: Parallel Processing for Scien-
tific Computing. Society for Industrial and Applied Mathematics, 2006, pp. 143–162. isbn:
978-0-89871-619-1. doi: 10.1137/1.9780898718133.ch8.

[20] B. T. Gunney, A. M. Wissink and D. A. Hysom. ‘Parallel Clustering Algorithms for Struc-
tured AMR’. In: Journal of Parallel and Distributed Computing 66.11 (2006), pp. 1419–
1430. doi: 10.1016/j.jpdc.2006.03.011.

[21] Y. Huang et al. ‘Fast Search for Best Representations in Multitree Dictionaries’. In: IEEE
Transactions on Image Processing 15.7 (2006), pp. 1779–1793. doi: 10.1109/TIP.2006.
873465.

[22] S. Porschen. ‘On Rectangular Covering Problems’. In: International Journal of Computa-
tional Geometry & Applications 19.4 (2009), pp. 325–340. doi: 10/cgw4rn.

[23] W. W. Dai. ‘Issues in Adaptive Mesh Refinement’. In: IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum. Atlanta, GA, USA: IEEE,
2010, pp. 1–8. isbn: 978-1-4244-6533-0. doi: 10.1109/IPDPSW.2010.5470758.

[24] R. J. LeVeque, D. L. George and M. J. Berger. ‘Tsunami Modelling with Adaptively
Refined Finite Volume Methods’. In: Acta Numerica 20 (2011), pp. 211–289. doi: 10.
1017/S0962492911000043.

[25] J. Luitjens and M. Berzins. ‘Scalable Parallel Regridding Algorithms for Block-Structured
Adaptive Mesh Refinement’. In: Concurrency and Computation: Practice and Experience
23.13 (2011), pp. 1522–1537. doi: 10.1002/cpe.1719.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[26] K. Museth. ‘VDB: High-Resolution Sparse Volumes with Dynamic Topology’. In: ACM
Transactions on Graphics 32.3 (2013), pp. 1–22. doi: 10.1145/2487228.2487235.

[27] S. A. Northrup. ‘A Parallel Implicit Adaptive Mesh Refinement Algorithm for Predicting
Unsteady Fully-Compressible Reactive Flows’. PhD thesis. University of Toronto, 2014.
191 pp.

[28] F. Golay et al. ‘Block-Based Adaptive Mesh Refinement Scheme Using Numerical Density
of Entropy Production for Three-Dimensional Two-Fluid Flows’. In: International Journal
of Computational Fluid Dynamics 29.1 (2015), pp. 67–81. doi: 10.1080/10618562.2015.
1012161.

[29] S. L. Cornford et al. ‘Adaptive Mesh Refinement Versus Subgrid Friction Interpolation in
Simulations of Antarctic Ice Dynamics’. In: Annals of Glaciology 57.73 (2016), pp. 1–9.
doi: 10.1017/aog.2016.13.

[30] B. T. Gunney and R. W. Anderson. ‘Advances in Patch-Based Adaptive Mesh Refinement
Scalability’. In: Journal of Parallel and Distributed Computing 89 (2016), pp. 65–84. doi:
10.1016/j.jpdc.2015.11.005.

[31] F. Löffler et al. ‘A New Parallelization Scheme for Adaptive Mesh Refinement’. In: Journal
of Computational Science 16 (2016), pp. 79–88. doi: 10.1016/j.jocs.2016.05.003.

[32] K. T. Mandli et al. ‘Clawpack: Building an Open Source Ecosystem for Solving Hyperbolic
PDEs’. In: PeerJ Computer Science 2 (2016), e68. doi: 10.7717/peerj-cs.68.

[33] A. Talpaert. ‘Direct Numerical Simulation of Bubbles with Adaptive Mesh Refinement
with Distributed Algorithms’. PhD thesis. Université Paris-Saclay, 2017. 209 pp.

[34] F. Gibou, R. Fedkiw and S. Osher. ‘A Review of Level-Set Methods and Some Recent
Applications’. In: Journal of Computational Physics 353 (2018), pp. 82–109. doi: 10.
1016/j.jcp.2017.10.006.

[35] J. E. Goodman, J. O’Rourke and C. D. Toth. Handbook of Discrete and Computational
Geometry. 3rd ed. CRC, 2018. isbn: 978-1-351-64591-1.

[36] M. Adams et al. Chombo Software Package for AMR Applications Design Document.
Technical Report. Lawrence Berkeley National Laboratory, 2019, p. 206.

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Introduction
	Motivation and Objectives
	Outline

	Adaptive Mesh Refinement
	Patch-Based AMR
	The AMR Algorithm
	Timestepping
	Flagging
	Regridding
	Initialization
	Synchronization
	Averaging

	Mesh Cell Clustering
	Single-Level Clustering
	Signature-Inflection Clustering
	Tile Clustering

	Multi-Level Clustering
	Top-Down Clustering
	Bottom-Up Clustering

	Implementation
	Requirements
	Interface
	Parallelization

	Numerical Experiments
	Clustering Examples
	Top-Down Signature Clustering
	Bottom-Up Tile Clustering
	Comparison of Signature Clustering and Tile Clustering

	Vortex Flow Simulation

	Conclusion
	Code Samples
	Mesh and Grid Interfaces
	Vortex Flow Simulation

