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Abstract

Due to the fast development and high demand of semiconductor materials and devices in
numerous areas related to transistor scaling along Moore’s Law and extension to More-
than-Moore integration, their characterization with the help of simulations has gained in
importance. To enable the virtual characterization of various novel semiconductor materi-
als and devices, a generic simulation tool which applies the multi-valley ensemble Monte
Carlo method, was developed. In the scope of this thesis, the developed tool is presented,
verified, and applied to different materials and devices.

First, to verify the simulation tool, the electron transport in bulk silicon was simulated
and compared to published experimental results. It was shown that the behavior of the
resulting drift velocity at various applied bias conditions could be reproduced. Addition-
ally, the anisotropy and temperature-dependence of this characteristic in silicon could be
replicated with the help of the developed simulator. Second, to demonstrate the ability of
the tool to also simulate devices, a silicon-based MOSFET was simulated and the results
were compared to the ones of CEMC, an established ensemble Monte Carlo simulation tool,
which was also developed at the Institute for Microelectronics and is specialized for this
type of device. The resulting dependence of the current and potential profile on the applied
voltages at the gate and drain contact were in good agreement for both simulators.

Subsequently, initial tests with the inclusion of real-space particle-particle interactions
in the ensemble Monte Carlo workflow were performed. For the approximation of the
Coulomb force, which acts on each particle for one time step, the force which is felt by
the carrier at the beginning of the corresponding step was calculated with the help of the
fast multipole method (FMM). Within these first tests, instabilities were observed in cases
when the chosen time step was too long, since the approximation of the force in these cases
can lead to significant errors, because of the high and rapidly changing Coulomb force for
carriers which are very close to each other. To enable longer time steps, a cut-off approach
using a cut-off radius of 1 nm was applied for the evaluation of the Coulomb force. With the
help of this approach and the comparison to the results from simulations without carrier-
carrier interactions, the final steady-state ensemble energy of a hot ensemble of electrons
and ions in bulk silicon was reproduced at varying doping concentrations. It was observed
that the required time steps to avoid numerical heating in these simulations decreased with
increasing doping concentration, while a time step of 5 fs was sufficient for doping levels of
1× 1013 cm−3; a time step below 0.05 fs, however, was crucial for the simulation of silicon
with a doping concentration of 1 × 1018 cm−3.

Finally, the simulator was applied to study electron transport in a monolayer of molyb-
denum disulfide (MoS2). The band structure, which is used as a basis for the electron



transport simulations of this material, is mostly obtained from ab-initio calculations. The
problem with this approach is that varying assumptions for these simulations from first
principles lead to changes in the resulting band structure. Within this thesis, the effect of
changes in one specific characteristic of the band structure, the valley separation energy
∆EQK between the valleys at the K- and Q-points, on the electron transport characteris-
tics, was analyzed. It was shown that the electron mobility within the film varied between
100 cm2/(Vs) and 300 cm2/(Vs) in case ∆EQK was varied within the values proposed in
the literature. Additionally, due to variations in ∆EQK , also the behavior of the drift
velocity under different applied biases changes, with the Gunn effect being observable for
higher values of ∆EQK , but not for lower ones. It was concluded that, as these changes
in ∆EQK lead to high variations in the electron transport characteristics of the simulated
film, further research is necessary to obtain a physically realistic picture for the description
of this material.



Kurzfassung

Die Charakterisierung von Halbleitermaterialien und -bauelementen gewinnt, aufgrund ih-
rer schnellen Weiterentwicklung und der großen Nachfrage nach diesen in verschiedensten
Bereichen, immer mehr an Bedeutung. Um die virtuelle Charakterisierung von verschiede-
nen, neuartigen Materialien und Bauelementen, welche auf diesen basieren, zu ermöglichen,
wurde im Zuge dieser Arbeit eine generisches, auf der Multi-Valley Ensemble Monte Carlo
Methode basierendes Simulationstool entwickelt, verifiziert und angewandt.

Zur Verifizierung des entwickelten Tools wurden zuerst die Transporteigenschaften von
Elektronen in Silizium simuliert und mit veröffentlichten, experimentellen Resultaten ver-
glichen. Dabei wurde festgestellt, dass die resultierenden experimentellen und simulierten
Driftgeschwindigkeiten der Teilchen gut übereinstimmen. Des Weiteren wurde nachgewie-
sen, dass sowohl die experimentell gemessene Anisotropie als auch die Temperaturabhängig-
keit der Driftgeschwindigkeit mithilfe der ausgeführten Simulationen reproduziert werden
konnte. Um die Fähigkeiten des Tools zur Simulation von Halbleiterbauelementen zu ve-
rifizieren, wurde anschließend ein MOSFET simuliert. Die Resultate dieser Simulationen
wurden mit denen von CEMC, einem etablierten Simulationstool, welches auch am Institut
für Mikroelektronik entwickelt wurde, verglichen. Durch diesen Vergleich wurde gezeigt,
dass die resultierende Abhängigkeit des Stroms und des Potenzialprofils von der angelegten
Spannung am Gate- und Drainkontakt beider Simulatoren sehr gut übereinstimmen.

Nachfolgend wurde die Teilchen-Teilchen Wechselwirkung in den Ensemble Monte Car-
lo Ablauf integriert. Hierzu wurde die Coulombkraft, welche während eines Zeitschrittes
auf jedes Teilchen wirkt, durch die Kraft, welche am Anfang des Schrittes herrscht und
mithilfe der Fast Multipole Methode berechnet wurde, approximiert. In den ersten Tests
dieser Integration wurden Instabilitäten festgestellt, welche in Kombination mit zu langen
Zeitschritten auftraten. Der Grund für diese Instabilitäten ist die bereits erwähnte Appro-
ximation der Coulombkraft, welche, wegen der hohen und sich schnell ändernden Kräfte
bei kleinen Distanzen zwischen verschiedenen Teilchen, kombiniert mit zu groß gewähl-
ten Zeitschritten, zu signifikanten Fehlern führen kann. Um die Verwendung von längeren
Zeitschritten zu erlauben, wurde eine Cut-Off-Methode, welche einen Cut-Off-Radius von
1 nm verwendet, präsentiert. Mithilfe dieser Methode und dem Vergleich zu Simulationen
ohne Teilchen-Teilchen Wechselwirkungen, konnte die resultierende Energie im stationären
Zustand von einem heißen Ensemble, bestehend aus Elektronen und Ionen, in Silizium re-
produziert werden. Außerdem wurde beobachtet, dass die benötigte Länge der Zeitschritte,
zur Vermeidung der bereits erwähnten Instabilitäten und der einhergehenden, numerischen
Erwärmung in den Simulationen, von der Dotierungskonzentration im simulierten Material
abhängt. Während ein Zeitschritt von 5 fs für eine Konzentration von 1×1013 cm−3 genügt,
ist es wesentlich einen kürzeren Zeitschritt als 0.05 fs bei einer Dotierungskonzentration von



1× 1018 cm−3 zu verwenden.

Abschließend wurde das Tool verwendet, um eine Schicht von Molybdändisulfid (MoS2)
zu simulieren. Die Bandstruktur für dieses Material, welche als Basis für die Simulatio-
nen der Transporteigenschaften von Elektronen benötigt wird, wird zumeist mit ab-initio
Berechnungen bestimmt. Dies führt zu Problemen, da verschiedene Annahmen bei die-
sen Kalkulationen zu Änderungen in der resultierenden Bandstruktur führen können. Im
Rahmen dieser Arbeit wurde der Einfluss einer charakteristischen Eigenschaft der Band-
struktur, dem Energieunterschied ∆EQK zwischen den Minima der Täler an den K- und
Q-Punkten der Brillouin-Zone, auf die Transporteigenschaften der Elektronen, analysiert.
Es wurde gezeigt, dass die Mobilität der simulierten Teilchen zwischen 100 cm2/(Vs) und
300 cm2/(Vs) schwankt, wenn ∆EQK innerhalb der in der Literatur vorgeschlagenen Werte
variiert wurde. Weiters wurde festgestellt, dass die Relation zwischen Driftgeschwindigkeit
und Stärke des angelegten elektrischen Feldes von ∆EQK abhängt, wobei der Gunn-Effekt
für höhere Werte von ∆EQK beobachtet wurde, jedoch nicht für niedrigere. Aus diesen
Beobachtungen wurde geschlossen, dass Veränderungen von ∆EQK zu großen Unterschie-
den der resultierenden Transporteigenschaften von Elektronen in der simulierten Schicht
führen können und weitere Erforschung dieses Materials notwendig ist, um ein physikalisch
realistisches Bild des Materials zu erlangen.
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1. Introduction

Semiconductor materials and devices based on them have become indispensable in our
modern world. Their applications range from digital logic circuits, where they are the
building blocks of von-Neumann computers, to their employment as sensors due to their
varying physical or chemical characteristics. Because of their fast development and high
demand, numerous new devices and materials are frequently investigated. Since the experi-
mental characterization is both time intensive and expensive, the analysis with simulations
has gained in interest. Advantages of this virtual characterization include the ability to
observe parameters which are not experimentally measurable and to help in pre-selecting
promising new materials or device structures, thereby also decreasing the cost and time-
to-market for new products [2, 7].

One of the principal aims of the simulation of semiconductor devices and materials is
to obtain an accurate description of the charge carrier transport characteristics. In gen-
eral these simulations consist of two main components, which are coupled strongly: The
field, which provides an external force which causes the charge to flow, and the transport
equations, which control the aforementioned flow [2]. While for material (bulk) simula-
tions the applied electric field E is assumed to be homogeneous within the material and
its strength and direction can be set, for device simulations this characteristic stems from
applied voltages at contacts and varying doping concentrations, and must be calculated
using its relation to the electrostatic potential Φ

E = −∇Φ , (1.1)

and the Poisson Equation [8]

∇ · (ϵ ∇Φ) = q · (n− p+NA −ND) . (1.2)

In this equation ϵ is the dielectric constant, n the electron concentration, p the hole concen-
tration, and ND and NA the concentrations of positively- and negatively-charged impurities
in the simulated device, respectively [9]. Moreover, trapped charges can also influence the
potential and can thereby be included in this equation as noted in [10], but they are not
covered in this thesis. The second component, the transport equations, which determine
how the particles move in the presence of an electric field, can be approximated with vari-
ous models which differ in their precision and complexity. The model which is chosen for
a specific application depends on the accuracy required to observe the desired phenomena
in the given application and the available computational resources [11]. While it would
be ideal to use the most physically accurate models for all simulations, this is frequently
not feasible, due to the complexity and computational effort these require. In general
terms, two main groups of transport models can be identified: Quantum and semi-classical

1



1. Introduction

approaches [2]. While quantum models consider the full quantum-mechanical behavior,
semi-classical ones use a mixture of classical approximations and quantum effects and are
thereby less accurate. The precision required for a specific device simulation can be deter-
mined by the relation of the device dimensions and specific particle characteristics, such as
the mean free path and the (de Broglie) wavelength [11]. In case the device is much larger
than the aforementioned characteristics, it is sufficient to use semi-classical transport mod-
els. On the other hand, if the device is much shorter than those characteristics, quantum
approaches are essential. Figure 1.1 shows a hierarchy of various transport models, with
varying precision and complexity.

Compact Models

Drift-Diffusion Equations

Hydrodynamic Equations

Boltzmann Transport Equation
(Monte Carlo Methods)

Quantum Hydrodynamics

Quantum Monte Carlo Methods

Quantum-Kinetic Equation
(Wigner-Boltzmann)

Green’s Functions Method

Direct solution of the n-body
Schrödinger Equation

Quantum
Approaches

Semi-Classical
Approaches m

ore
accu

rate
m
ore

com
p
lex

Figure 1.1.: Hierarchy of transport models.

1.1. Previous Work

This section presents a short, non-complete overview of the history of device simulations,
followed by the introduction of selected state-of-the-art device simulation tools.

Before powerful computers were available, devices were theoretically characterized with
closed form analytical techniques, which separate the device into regions and use linearised
approximations inside the regions and adapted boundary conditions at the interfaces of the
different regions [12, 13]. These techniques were suitable for large-geometry devices, but
were limited to devices with principally one-dimensional transport processes and low vari-
ations in the electric field [12]. In 1964, Gummel [13] introduced the first fully numerical

2



1. Introduction

approach, based on the iterative solution of partial differential equations, to simulate the
behavior of a one-dimensional bipolar transistor [7, 12, 14]. This approach was extended
and applied for the one-dimensional simulation of various devices, like pn-junctions [15]
and IMPATT (IMPact ionization Avalanche Transit-Time) diodes [16]. Once sufficient
computational power was obtained, two-dimensional (2D) simulations were performed, in-
cluding simulations of metal-oxide semiconductor field-effect transistors (MOSFETs) and
metal semiconductor field effective transistors (MESFETs), with the first two-dimensional
MOS-structure simulations [17, 18] being published in 1968 [19]. Several thousand papers
about device simulations for different devices were issued in the following years [14]. Addi-
tionally, the trend of the continuous down-scaling of the devices and the thereby growing
complexity lead to the need for three-dimensional (3D) simulations [7]. The first paper [20]
which applied these three-dimensional simulations was published in 1980 [14].

Nowadays multiple commercial and openly available device simulation tools can be found.
Several tools are specialized on one specific kind of device, like MINIMOS [21] from TU Wien,
which is specialized on MOSFETs, or BIPOLE [22], which was written for bipolar transistors
[23]. Other device simulators are written in a generic way such that different types of
devices can be simulated. Prominent commercial examples for generic device simulation
tools are Sentaurus Device [24] from Synopsys, Victory Device [25] from Silvaco and
the commercial version of MINIMOS-NT [26] from Global TCAD Solutions (GTS). All three
commercial tools are able to simulate various silicon and compound semiconductor devices
in two and three dimensions [25, 26, 27]. Additionally, all of these tools offer the possibility
to use different transport models, including the two semi-classical approaches which apply
hydrodynamic and drift-diffusion equations [25, 26, 27], which can both be found in Fig. 1.1.
Moreover, Sentaurus Device and Victory Device also offer Monte Carlo methods for an
even more accurate approximation of the transport characteristics [27, 28]. An example
for an openly available device simulation tool is ViennaWD [29], a C-based set of tools from
the Institute for Microelectronics of TU Wien. This set of tools contains a semi-classical
Monte Carlo simulator (CEMC), which can be used for the two-dimensional simulation of
MOSFETs and a Wigner ensemble Monte Carlo (WEMC) simulator based on the solution of
the Wigner-Boltzmann equation [30, 31], which can also be seen in Fig. 1.1 and is accurate
up to the description of a single particle [2].

1.2. Aim of Thesis

The aim of this thesis is the development of a generic simulation tool, which can be applied
for bulk and device simulations using the ensemble Monte Carlo (EMC) method. This tool
should be based on the ideas of the previously mentioned tool CEMC from the Institute for
Microelectronics at TU Wien. The original C code should be translated into object-oriented
C++ and extended to work for various devices and materials in two and three dimensions.
Additionally, the option to include real-space particle-particle interactions using the fast
multipole method (FMM), performed by the external library scalFMM [32, 33], should be
included.
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1. Introduction

The validation of the developed tool will be performed by the simulation of silicon-based
structures, including MOSFETs for the comparison to the results of CEMC. Additionally,
first tests to include real-space particle-particle interactions within the EMC workflow will
be performed. The final step of this work is the application of the developed tool for
the simulation of a monolayer of the currently heavily investigated material molybdenum
disulfide (MoS2). The aim of the second application is to demonstrate that the framework
can also be applied to materials which behave quite different than silicon.

1.3. Outline of Thesis

This thesis is organized as follows:

Chapter 2 describes the necessary background and theory of the semi-classical transport
equations.

Chapter 3 presents the ensemble Monte Carlo (EMC) method for material and device
simulations in more detail. Additionally, a method to include real-space particle-
particle interactions into the EMC workflow is presented.

Chapter 4 gives an overview of the library which is developed in the scope of this thesis
by displaying the main ideas, the structure, and some examples of the code.

Chapter 5 shows the results of the applications of the developed library. First, silicon-
based structures are simulated to verify the results of the implemented simulation
tool. Second, first tests are performed with the included real-space particle-particle
interactions, and finally, the library is used to investigate MoS2.

Chapter 6 summarizes the findings and gives an outlook on the possible next steps.
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2. Semi-Classical Transport Theory

The basis of the semi-classical transport theory is the description of a particle by its state
(r,k), which is given by the particle’s position r and the current motion, or momentum,
of the particle, which can be described with its wave vector k. The space used for this
description, which contains all possible states of particles, is called the phase space [34]. In
this space the distribution function f(r,k, t) represents the probability of finding carriers
at the state (r,k) at a given time t [35]. The equation which considers all possible changes
of the distribution function is the so-called Boltzmann transport equation (BTE), which is
given by [34]

∂f

∂t
+ v · ∇rf. .. .

( ∂f
∂t )diff

+
F

ℏ
· ∇kf. .. .

( ∂f
∂t )force

=

(
∂f

∂t

)
coll

, (2.1)

where f .= f(r,k, t) is applied [2, 36]. The terms in the BTE, Eq. (2.1), can be described
as follows:

• ∂f
∂t describes the explicit dependence of the distribution function on time [34]. This
term can be non-zero if carriers are added or subtracted over time due to scattering,
generation, recombination, trapping, or releasing [37].

•
(
∂f
∂t

)
diff

is a diffusion term and accounts for spatial variations of the distribution

function, which arise from temperature or concentration gradients [2]. Furthermore,
this term uses the group velocity, which can be calculated with [2]

v = ∇kE(k)/ℏ , (2.2)

where E(k) represents the dispersion relation of the corresponding semiconductor,
the so-called band structure, which is described in Section 2.1.

•
(
∂f
∂t

)
force

describes the acceleration caused by the Lorentz force [2]

F = q · (E + v ×B) , (2.3)

where E and B are the electric and magnetic fields, respectively. In the scope of this
thesis it is assumed that no magnetic field is present (B .= 0).

•
(
∂f
∂t

)
coll

describes rapid changes in the distribution function due to scattering events

[37] and can be represented as the difference of the in- and out-going particle flow of
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2. Semi-Classical Transport Theory

state (r,k) caused by scattering, given by [34](
∂f

∂t

)
coll

=
∑
k′

(
f(r,k′, t) [1− f(r,k, t)] Γ(k′,k). .. .

in-scattering flow

− f(r,k, t)
[
1− f(r,k′, t)

]
Γ(k,k′). .. .

out-scattering flow

)
. (2.4)

In this equation Γ(k,k′) is the total scatter rate for a particle to scatter from k to
k′ [2, 36], whose calculation is explained in Section 2.2. Additionally, the particle
flow also depends on the probability of the initial state being full and the final state
being empty, which is given in Eq. (2.4) by the terms f(r,k′, t) and [1− f(r,k, t)]
for the in-scattering flow and f(r,k, t) and [1− f(r,k′, t)] for the out-scattering flow,
respectively [34].

In case the Boltzmann transport equation can be solved and thereby f(r,k, t) can be
determined, several quantities of interest, such as carrier energies, densities and currents
can be calculated from the average characteristics of the distribution function [2, 38]. How-
ever, due to its complicated integro-differential nature, the Boltzmann transport equation
is only analytically solvable in special cases [2]. This is the reason why approximations and
numerical solutions, like the method presented in the scope of this thesis, are crucial for
the determination of f(r,k, t).

Finally, the main approximations which lead to limitations of this semi-classical descrip-
tion, are the use of classical particles, for which the uncertainty principle is not considered,
the assumption that scatter events are instantaneous and memory-less, and the absence of
multi-particle correlations [2, 35].

2.1. Band Structure

As already mentioned, the band structure represents the dispersion relation E(k) of the
simulated material. For the derivation of the band structure a crystalline structure of the
material of interest is assumed. Due to the periodicity in the arrangement of the lattice
atoms in crystalline structures, also the potential Vper(r) within the material fulfills

Vper(r) = Vper(r + n1 · a1 + n2 · a2 + n3 · a3) (2.5)

for ni ∈ Z [8, 34]. Additionally, r represents the position in this equation and ai are
the vectors describing the lattice in the material [8, 34]. The behavior of an electron in a
crystalline material is then based on the stationary Schrödinger equation, which describes
carriers by their wave functions Ψ(r) [35] and is given by(

− ℏ2

2m0
∇2 + Vper(r)

)
Ψ(r) = EΨ(r) , (2.6)

where E is the resulting energy value and m0 is the free electron mass [8]. According to
the Bloch theorem the solutions to this equation are Bloch functions of the form
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2. Semi-Classical Transport Theory

Ψn
k(r) = unk(r)e

ikr , (2.7)

where k is the wave vector of the particle, n is the index of the band, and the function
unk(r) possesses the same periodicity as the potential and the lattice [8, 35]. The resulting
energy En(k), which also depends on the wave vector of the particle and the index of the
band, is then found to be periodic in the k-space as well [8]. This implies that all the
required information to describe the relation between the energy and the wave vector of
an electron in the given material can be found in one period of that function, the so-called
first Brillouin zone [35]. As an example of a real first Brillouin zone and band structure,
the ones of the material gallium arsenide (GaAs) are shown in Fig. 2.1. Figure 2.1a also
includes some symmetry points of the Brillouin zone, which are then used in Fig. 2.1b to
describe the path for which the band structure of GaAs is shown.

ky

kz

kx

X

Γ

L

W
K

U
∆

Λ

Σ

(a) Sketch of the first Brillouin zone. (b) Band structure (reprinted with permis-
sion from [38]).

Figure 2.1.: Characteristics of GaAs in k-space.

2.1.1. Analytical Band Structure

As can be observed in Fig. 2.1b, the realistic band structure of a semiconductor can be
quite complicated; therefore, for computations it is easier to approximate the conduction
and valence bands of that structure. This can be done by an effective mass approach, which
assumes that carriers in a crystal respond to an external field the same way that a free
particle would, except for an adapted effective mass m, which embodies the effect of the
periodic crystal potential Vper on the particle [36]. This effective mass m can be calculated
by [2]

m = ℏ2
[
d2E(k)

dk2

]−1

. (2.8)
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2. Semi-Classical Transport Theory

While E(k) is a quadratic function and the effective mass is thereby a constant, when
one investigates a free electron, the case for an electron in a crystal is quite different, as
can be seen in Fig. 2.1b. Even though the parabolic behavior of E(k) cannot be observed
in the whole Brillouin zone, it can be observed near extrema of the conduction and valence
bands [2]. This observation and the fact that the higher parts of the conduction and the
lower parts of the valence band are almost unreachable for carriers [37], lead to the idea to
approximate the extrema of the bands and apply Eq. (2.8) to calculate the local effective
masses around the selected extrema of the bands. As an example for this approximation,
a sketch of the approximated conduction and valence bands of GaAs are shown in Fig. 2.2.
It can be seen that, based on the full band structure shown in Fig. 2.1b, three minima of
the conduction band are identified and approximated, one at the L-, one at the Γ- and
a last one close to the X-point of the first Brillouin zone given in Fig. 2.1a. Within this
approach, each approximated extremum is called a valley. However, it should be noted
that due to the symmetry of the first Brillouin zone some symmetry points and thereby
also their approximated valleys appear more than once. Often valleys which are situated
at the same symmetry points are grouped and handled as one group of valleys, with a
specific number of degenerate sub-valleys. In the case of GaAs for example, the Γ-valley
only appears once, while the group of valleys close to the X-point consists of 6 subvalleys
and the one at the L-point consists of 8 subvalleys.

L Γ X

EΓEL E∆

k

energy

Figure 2.2.: Analytical approximation of the band structure of GaAs.

Moreover, valleys can differ in their constant-energy surfaces, which determine the value
of the corresponding effective masses. For the conduction band these surfaces are typically
either spherical or ellipsoidal [38], as sketched in Fig. 2.3. In the spherical case, the resulting
effective mass in that valley, calculated with Eq. (2.8), is independent of the direction. The
relation of the wave vector k = (kx, ky, kz), which is measured from the center of the valleys,
and the energy of a particle E in this valley is then given by [2]

γ(k) := E(1 + αE) =
ℏ2k2

2m
. (2.9)

Here, α is the non-parabolicity factor and m is the corresponding effective mass. In case
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2. Semi-Classical Transport Theory

α = 0 this approximation is called parabolic, else a non-parabolicity is introduced, which is
required in case high electric fields are applied [8]. Finally, within this approximation, the
carrier group velocity v can be calculated by using Eq. (2.2), which leads to [38]

v =
ℏk

m(1 + 2αE)
. (2.10)

1

2

3

spherical ellipsoidal

1

2

3

Figure 2.3.: Typical constant-energy surfaces of the conduction band of semiconductors.

A more general case is the one of elliptic equi-energetic surfaces, for which the effective
mass is no longer a scalar, but rather a tensor. Under these assumptions, there still exists
a coordinate system, termed the ellipse coordinate system (ECS) [2, 36] in the following,
in which this tensor is diagonal of the form

M =

((m1 0 0
0 m2 0
0 0 m3

)) . (2.11)

For most semiconductor valleys this tensor can be simplified by using the longitudinal
effective mass ml := m1 and the transversal effective mass mt := m2 = m3 [2, 34, 37]. In
the case of elliptic constant-energy surfaces there are two special averaging functions of the
direction-dependent effective mass, which are required for different calculations. The first
one is the effective mass for density of states calculations md, which is the geometric mean
of the three effective masses [38]:

md = (m1m2m3)
1
3 . (2.12)

The second one is the conductive effective mass mc, which is, for example, used for the
mobility calculation, and can be determined with the harmonic mean of the given effective
masses [2, 38]:

mc =
3

1
m1

+ 1
m2

+ 1
m3

. (2.13)

The dispersion relation for valleys with elliptic constant-energy surfaces is given by

E(1 + αE) =
ℏ2

2

(
k21
m1

+
k22
m2

+
k23
m3

)
, (2.14)
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2. Semi-Classical Transport Theory

where kECS = (k1, k2, k3) is the wave vector of the particle in the ECS and E is the
energy of the particle [34, 39]. To ease the treatment of these kinds of valleys, the Herring-
Vogt transformation, which reduces the calculations to the ones that are used for spherical
valleys, is applied [38]. For this transformation the following transformation matrix [34, 38]

T =

(///(
√

m∗
m1

0 0

0
√

m∗
m2

0

0 0
√

m∗
m3

)///) , (2.15)

where m∗ is frequently either set to md or mc, is used. In case the coordinate system
of the simulation is not the same as the ECS, a rotation matrix R, which performs the
transformation from the simulation coordinate system (SCS) to the ECS is also required.
After the application of the Herring-Vogt transformation, the transformed wave vector
k∗
ECS = TRk fulfills the following spherical dispersion relation [38]:

E(1 + αE) =
ℏ2k∗

ECS
2

2m∗ . (2.16)

2.2. Scattering Mechanisms

In a realistic physical system perturbations lead to deviations from the ideal periodicity
which is assumed for the derivation of the band structure, as shown in Section 2.1. These
deviations in turn lead to a huge number of transitions between various particle states and
are collectively termed scattering mechanisms [36]. Within the semi-classical approxima-
tions these mechanisms are assumed to be instantaneous and memory-less events [2], which
can alter a particle’s wave vector k and the band n to which this particle is assigned. It
is noteworthy that, in case the analytical band structure is applied, as mentioned in Sec-
tion 2.1.1, various valleys represent the bands of the band structure and instead of altering
the band, the mechanisms alter the valley to which a specific particle is assigned to. Re-
gardless of the approximation of the band structure, the general description of scattering
mechanisms is based on quantum-mechanical perturbation theory, which leads to Fermi’s
Golden rule which gives a formula for the transition rate of a particle with initial wave
vector k corresponding to a specific band (valley) n to the final wave vector k′ and band
(valley) n′ [2]:

Γ
(
n,k, n′,k′) = 2π

ℏ

//// <n′,k′|V (r)|n,k> ////2δ (En′(k′)− En(k)± ℏω
)

. (2.17)

In this equation V (r) is the scattering potential of the corresponding process and ℏω
represents the energy which is either absorbed (− sign) or emitted (+ sign) by the particle
involved in that scatter event [2]. Additionally, the dispersion relation En(k) is given by
the band structure, which is presented in Section 2.1 or by its approximation presented in
Section 2.1.1. Furthermore, for the EMC workflow the transition rate which represents the
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2. Semi-Classical Transport Theory

rate at which carriers scatter out of their current state into any other possible state [35],
is important and given by

Γ(n,k) =
∑
n′,k′

Γ(n,k, n′,k′) . (2.18)

Finally, in case multiple scattering mechanisms are included, the total scatter rate is cal-
culated as the sum of the different scatter rates

Γtot

(
n,k, n′,k′) = Nmech∑

i=1

Γi

(
n,k, n′,k′) , (2.19)

where Nmech represents the number of included scattering mechanisms and Γtot (n,k, n
′,k′).= Γ (k,k′) from Eq. (2.4).

The typical types of scattering mechanisms which occur in semiconductors are provided in
Fig. 2.4. The importance and the influence of each mechanism varies in different materials,
but in general three classes of scatter mechanisms can be distinguished: The first class
is defect scattering, which can happen due to crystal defects and impurities. The second
type of scatter mechanisms is carrier-carrier scattering. Both, carrier-carrier scattering
and the scattering due to interactions of carriers with ionized impurities (a type of defect
scattering) are based on Coulomb forces and can be treated in various ways, which will
be discussed in Section 3.3. The last class of scatter events is lattice scattering, which
occurs due to vibrations in the crystalline lattice and the thereby resulting interactions of
the considered particle and phonon [8]. This class can be subdivided based on the relation
between the initial and final valley of the corresponding particle and on the involved type
of phonon. In case the corresponding particle stays in the same valley the mechanism is
called intravalley, else it is called intervalley. Additionally, if acoustic phonons, which arise
from neighbouring particles oscillating in the same direction, are involved, the mechanism is
called acoustic. In case optical phonons, which arise from neighboring particles oscillating
in different directions, contribute to the scattering, the mechanism is called optical [2].

2.2.1. Calculation of Selected Scatter Rates

The formulas for the scatter rates of mechanisms which are used for all applications
mentioned in this thesis, are presented in the following. The calculation of the rates of
application-dependent scatter mechanisms is described in Chapter 5, within the presenta-
tion of the corresponding application. Furthermore, only the resulting scatter rates for the
mechanisms are presented, as the derivation of the formulas can be found in several books
including [2, 8, 34, 35, 36, 37, 38].

Two types of lattice scattering are used in both applications: Acoustic intravalley scat-
tering and optical intervalley scattering. Both mechanisms are approximated by the appli-
cation of the deformation potential approach which utilizes deformation potentials, whose
values can be derived either from experiments [35] or from ab-initio calculations [5]. The
scattering rate for acoustic intravalley scattering is given by [2, 8]
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Scattering Mechanisms

Defect
Scattering

Crystal
Defects

ImpurityAlloy

Ionized Neutral

Carrier-Carrier
Scattering

Lattice
Scattering

Intravalley

Acoustic Optical

Deformation
Potential

Piezo-
electric

Polar Nonpolar

Intervalley

Acoustic Optical

Figure 2.4.: Types of scatter mechanisms in semiconductors.

Γac(n,k) =
2πΞ2kbT

ℏcL
N(En(k)) , (2.20)

where Ξ represents the deformation potential, T is the temperature of the lattice, cL is
the elastic constant of the material, and N(En(k)) is half of the density of states function
[2]. Moreover, acoustic intravalley scattering is assumed to be elastic, meaning that the
energy of the particle is not changed in the course of the scattering event, and isotropic,
meaning that each direction of the final wave vector has the same probability [2, 38]. The
resulting scatter rate for zero-th order optical intervalley scattering for a particle with initial
associated valley i and final valley f is given by [2, 8]

Γop0(n,k) =
πD2

ifZf

ρωif

[
n(ωif ) +

1

2
∓ 1

2

]
N(Ef ) ·Θ(Ef ) , (2.21)

with Ef = En(k)± ℏωif −∆Efi . (2.22)

Here Dif is the deformation potential between valley i and f , Zf is the total number of
final valleys for the carrier to scatter into, ρ is the density of the material, and Ef is the
final energy of the particle, which depends on the energy of the involved phonon ℏωif and
the potential energy difference ∆Efi between the bottoms of valleys i and f . Additionally,
Θ(·) represents the Heaviside function which ensures that the final particle energy Ef is
not negative and n(ωif ) is the phonon occupancy factor, given by [2]

n(ωif ) =
1

e
ℏωif
kbT − 1

. (2.23)

Moreover, zero-th order optical intervalley scattering is assumed to be isotropic and inelas-
tic, meaning that the initial and final energies of the scatter event differ, as can be seen in
Eq. (2.22) [2, 38].
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The ensemble Monte Carlo (EMC) method is a stochastic and numerical method, whose
aim is to simulate the non-equilibrium transport in semiconductor devices and materials [2].
Instead of making a priori assumptions on the distribution function f(r,k, t) to solve the
BTE, this approach tracks the trajectories of sample particles in phase space, by moving
them successively and simultaneously during small time increments ∆t and by calculating
their mean characteristics in between these movements [8, 36]. Within this method, the
motion of the sample particles is based on random numbers, leading to random walks,
whose characteristics fulfill the BTE (Eq. (2.1)) in the long time limit [2, 34].

This chapter describes the main ideas of the EMC method and is separated into the
description of bulk and device simulations. While both types of simulations are based
on the same principles, additional components are required for the simulation of devices.
Due to this, first the ideas of bulk simulations are introduced in Section 3.1 and then the
supplementary components, which are required for device simulations, are presented in
Section 3.2. Finally, Section 3.3 discusses various ways to include the Coulomb force into
the EMC workflow.

3.1. Bulk Simulation

Bulk simulations determine the response of a bulk material to an applied electric back-
ground field. This type of simulation allows for the determination of average carrier char-
acteristics, such as the average energy or drift velocity, which can be compared to experi-
mental data and can help in the characterization of materials of interest.

The full workflow of an EMC bulk simulation is shown in Fig. 3.1 and is separated into
four parts: The first part of the workflow handles the definition of the input parameters,
which have to be known a priori. In case of bulk simulations the input parameters contain
characteristics of the material of interest (such as the band structure), the applied electric
background field, the particle type (e.g. electrons) and the characteristics of the most im-
portant scatter mechanisms. Additionally, simulation settings, such as the total simulation
time ts and the time step ∆t must be set. In the second part, the previously defined input
characteristics are used for the preparation of the initial state of the simulation. First, to
decrease computational effort and allow easier treatment of the scatter mechanisms during
the simulation, the scatter rates for all defined mechanisms are precalculated on discrete
energy values and are tabulated. Subsequently, the sample particles, which are required
for the simulation, are created and initialized, by defining each particle’s position, energy,
wave vector and additional characteristics - more information on this initialization process
is given in Section 3.1.1. The third section of the workflow contains the main simulation
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3. Ensemble Monte Carlo (EMC) Method

flow. It consists of one loop which starts at time t = 0, at which all particles are in their
initialized state. In each iteration of that loop all particles move during time ∆t, using alter-
nating free-flight and scatter events, which will be described in more detail in Section 3.1.2.
After the movement of the particles in each iteration, average particle characteristics, such
as the average velocity or energy, are calculated - Section 3.1.3 describes this calculation
in more depth. This main loop proceeds until the total simulation time ts is reached, at
which point the final results are calculated and stored, as represented by the last part of
the simulation workflow.

Define Initialize Simulate Write

material

electric field

scatter
mechanisms

particle type

simulation

scatter tables

particles

start at t := 0

move particles

t += ∆t

calculate
averages

t ≤ ts
Yes

output

No

Figure 3.1.: Ensemble Monte Carlo workflow for bulk simulations.

3.1.1. Particle Initialization

At the beginning of the simulation, the state of each particle has to be defined. This means
that all particles must have an assigned position r, wave vector k, and energy E. Ad-
ditionally, each particle also requires an allocated valley (and subvalley) and a remaining
free-flight time τ , which represents the time until the next scatter event for this particle
takes place. Even though the influence of the choice of the initial state of the particles is
not significant on the resulting average characteristics if the total simulation time ts is long
enough, it has an impact when studying transient phenomena, which can be interesting for
device simulations [38].

Within the scope of this thesis, random numbers, whose distributions are adapted to the
physical background of the specific property, are used for the initialization of the carrier
characteristics. The determination of the initial energy E of a particle, for example, is
performed with

E = −f

2
kbT ln(rn) , (3.1)

where rn is a uniformly distributed random number between 0 and 1 and f is the degree of
freedom (which is 2 in 2D-materials and 3 in 3D-materials). Moreover, the determination
of the remaining free-flight time of a particle is based on the assumption that the total
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scatter rate Γ0, which is the sum of the scatter rates of all included scatter mechanisms, is
independent of the particle’s energy [1]. Under this assumption, one can use

τ = − ln(rn)

Γ0
, (3.2)

for the calculation of the remaining free-flight time, where rn is a uniformly distributed
random number between 0 and 1 [2, 34, 38].

3.1.2. Particle Dynamics

The motion of particles within the EMC method can be separated into a sequence of free
flights (or drifts) with a duration which is determined by the remaining free-flight time
τ and instantaneous scatter events (or collisions), which interrupt the free flights [2]. An
exemplary motion of one particle in real-space with alternating free-flights and scatter
events is sketched in Fig. 3.2. In this section, first the treatment of free flights and scatter
events is explained separately, followed by the description of their combination to obtain
the full particle trajectories.

x

y

z
scattering event
drift (free-flight)

Figure 3.2.: Exemplary motion of one particle in an EMC simulation with applied electric
field in the x-direction.

Free Flight

A free flight or drift describes the trajectory of a particle in the presence of an external
force F [36]. After a free flight which starts at t = 0 and lasts for the time τ , the wave
vector k of a charge carrier at position r, is updated according to

k(τ) = k(0) +

∫ τ

t=0

F (r(t))

ℏ
dt . (3.3)

The update equation for the position of the particle in case the analytical band approxima-
tion with circular constant-energy surfaces, presented in Section 2.1.1, is applied, is then
given with [1]

r(τ) = r(0) +

∫ τ

t=0
v(t) dt

(2.10)
= r(0) +

ℏ
m

∫ τ

t=0

k(t)

1 + 2αEn(k(t))
dt . (3.4)
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Analytical solutions for Eqs. (3.3) and (3.4) only exist under simple conditions, such as
constant F . For this reason, numerical methods are commonly used to update the position
and wave-vector [36]. In the scope of this thesis, the leapfrog scheme [1, 2] is applied to
update these characteristics, where F (r(0)) is used to calculate k (τ/2), which in turn is
used to update the position of the particle.

Scatter Events

As mentioned in Section 2.2, the scatter events are instantaneous and can alter the wave
vector, energy, and assigned valley of a carrier, but not its position, as sketched in Fig. 3.2.
Within the EMC workflow the execution of a scatter event is equivalent to the selection of
one specific scatter mechanism, the calculation of the changes of the state of the particle
caused by the selected mechanism, and the determination of a new remaining free flight
time τ for the corresponding particle. The calculation of τ is performed by Eq. (3.2),
meaning that in this section, only the obtainment of an energy-independent total scatter
rate, as required for Eq. (3.2), the selection of the scatter mechanism, and the calculation
of the state of the particle after the scatter event will be discussed.

To obtain an energy-independent total scatter rate Γ0 an additional, fictitious scattering
mechanism, the so-called self-scattering, is introduced, which does not alter the state of a
particle [2]. The scatter rate of this mechanism is defined by [8]

Γself (n,k) := Γ0 −
N∑
i=1

Γi(n,k) . (3.5)

In this formula N represents the total number of scatter mechanisms, which possess the
corresponding scatter rates Γi(n,k). Additionally, Γ0 is a fixed, pre-selected value which
must be higher than or equal to the sum of the scatter rates for all input parameters.

The selection of the scattering mechanism for each scatter event is performed using
uniformly distributed random numbers rn between 0 and 1. Specifically, the i-th mechanism
is selected if the condition [8, 36]

i−1∑
j=1

Γj(n,k) ≤ Γ0 · rn <

i∑
j=1

Γj(n,k) (3.6)

is fulfilled. Moreover, in case N scatter mechanisms are applied in the simulation and∑N
j=1 Γj(n,k) ≤ Γ0 · rn is fulfilled, the self-scattering mechanism is chosen and thereby no

particle characteristic is altered within this scatter event. Finally, in case a non-fictitious
scatter mechanism is chosen, the state of the corresponding carrier must be adapted: First,
if an intervalley mechanism is considered, the valley and subvalley to which the carrier is
assigned are altered accordingly. Subsequently, if the mechanism is inelastic, the energy of
the particle is adapted. Ultimately, the final wave vector is calculated, with its norm being
determined by the dispersion relation and the (updated) energy, and its direction being
determined with the help of random numbers.
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Combination of Free-Flights and Scatter Events

The workflow of the motion of a particle for one time step ∆t is given in Fig. 3.3a. This
workflow combines free flights and scatter events and shows the idea of the move particles
step from the bulk simulation workflow shown in Fig. 3.1. For the motion of a particle
two cases are distinguished: The case where the remaining time for the motion of the
particle trem, which is set to ∆t at the beginning, is longer than the remaining free-flight
time τ and the case where it is shorter. In both cases first the force acting on the carrier
must be determined; for bulk simulations, the applied electric field is homogeneous and
therefore the same value is always used for that step. In case of device simulations the
electric field can be inhomogeneous and the re-evaluation of the force that is acting on the
carrier before each free-flight is thereby essential. Next, both instances perform the drift of
the particle, whose duration depends on the relation of the remaining free flight time and
the remaining movement time. In the first case, τ > trem, the particle drifts for the entire
time step and subsequently the remaining free-flight time τ is adapted. In the second case,
the particle drifts for the remaining free-flight time and then a scatter event occurs. As
described earlier, in this scatter event a mechanism is selected, the state of the particle is
adapted, and a new free-flight time for the particle is determined using a random number
and Eq. (3.2). Lastly, trem is adapted and the distinction between the two initial cases
is repeated. When using this workflow, scatter events are randomly distributed, and the
number of scatter events in one time step can vary between 0 and any positive integer. This
random distribution of scatter events can also be seen when looking at the time evolution of
the carriers in an ensemble, which are always moved synchronously for the time ∆t, thereby
allowing for the calculation of average characteristics in-between these motions [36], as can
be seen in Fig. 3.3b.

Start trem := ∆t

τ > trem

determine force determine force

drift(trem) drift(τ)

trem−= τ

scatter

assign new τ

τ −= trem

End

Yes No

(a) Workflow of the motion during one time step
∆t.

p5

p4

p3

p2

p1

t−∆t t t+∆t

time
scattering event

calculation of
averages

(b) Sketch of the time evolution of a 5-particle
ensemble.

Figure 3.3.: Workflow and sketch of the movement of particles in the EMC method.
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3.1.3. Output Calculation

The main characteristics of interest for bulk simulations are the average energy E of par-
ticles, the average drift velocity vd, which is the average velocity of the particles in the
direction of the applied electric field [2], and the occupation probability of the different
valleys, in case multiple valleys exist in the material of interest. The calculation of these
averages is performed using ensemble averages ⟨·⟩ after every time step ∆t, which can be
determined for a quantity A after the j-th time step and corresponding time tj = j · ∆t
with [38]

⟨A(tj)⟩ = 1

N

∑
i

Ai(tj) . (3.7)

In this formula Ai(tj) is the quantity of interest of particle i at time tj and N represents
the number of particles in the corresponding ensemble. An example of the time-evolution
of the ensemble average of the drift velocity in silicon is shown in Fig. 3.4. The figure shows
that, initially, the observed quantity changes with time during what is called the transient
phase of the simulation, followed by a steady-state value, whose accuracy is determined by
the statistical noise, which is called the stationary phase [36]. In case the resulting steady-
state value of the observed quantity and not the evolution of the ensemble average is of
interest, one has to ensure that the duration of the simulation is long enough to reach a
steady-state [36]. Additionally, a criterion is required to determine the end of the transient
phase, in order to differentiate between the ensemble averages which were calculated in the
transient and the stationary phase. Once the number of initial transient steps Ntr and the
number of steps in the stationary phase Nst have been determined, one can calculate the
time average of the steady-state ensemble average

Ā =
1

Nst

Ntr+Nst∑
j=Ntr+1

⟨A(tj)⟩ , (3.8)

to reduce the statistical variance [36].

An additional quantity of interest for bulk simulations is the mobility µ of the charge
carriers, which is defined for small applied electric fields E by [2, 37]

vd = µ · |E| , (3.9)

where vd represents the steady-state value for the drift velocity in case the electric field E
is applied. The mobility can be calculated directly by simulating the response of particles
in a material of interest to different small applied electric fields E, determining the corre-
sponding drift velocities and then fitting the results to Eq. (3.9). A drawback of this direct
approach is that the statistical uncertainty of the resulting mobility can be large due to
thermal motion [38]. An alternative approach for the determination of µ is the calculation
of the diffusion coefficient at zero field via the auto-correlation function [38]. For this,
during the simulation with no applied electric field, the velocity of each particle v(ti) must
be recorded at the time steps ti = i · ∆t for a reasonably long time. Subsequently, for a
selected number M and for steps that fulfill i > M ,

v(ti) · v(ti−j) ∀j = 0, 1, . . . ,M (3.10)
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Figure 3.4.: Exemplary drift velocity ensemble average of bulk silicon.

can be calculated using ti−j = (i − j) · ∆t. Based on these terms, the auto-correlation
function can be derived by applying [38]

C(tj) = v(t) · v(t− tj)− v2d , (3.11)

where v(t) · v(t− tj) is the average over the results of Eq. (3.10) with the same used value

for j. Subsequently, the diffusion coefficient D = 1
f

∫∞
0 C(t)dt ≈ 1

f

∑M
j=0C(tj) can be

determined, assuming that M steps are sufficiently large to fulfill C(tj) ≈ 0 for j > M [38]
and that f represents the degrees of freedom [38, 40]. Finally, for the calculation of the
mobility the Einstein relation

D =
µkbT

q
, (3.12)

where q is the elementary charge, can be applied [34, 38].

3.2. Device Simulation

As the name states, the aim of device simulations is the simulation of a semiconductor
device, as opposed to a bulk material, which is discussed in the previous section. For the
description of such a device the doping profile, the extent, and the position and type of
contacts must be known. Additionally, in the device simulation, the electric field resulting
from the potential applied at the contacts and the distribution of the charge carriers in-
side the device can be calculated by solving the Poisson equation Eq. (1.2) and applying
Eq. (1.1). However, care has to be taken, as the resulting electric field depends on the
particle distributions, which means that, if the positions of the simulated particles change
during the simulation, also the resulting electric field changes. One method to incorporate
this relation into the simulation is self-consistent, where the electric field is updated in fixed
time steps using the particle distribution at that time for its calculation [8].
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The workflow of a typical self-consistent device simulation can be seen in Fig. 3.5, where
it can be observed that most steps of this workflow are also required in bulk simulations and
were therefore explained in Section 3.1. The additional steps which are required for device
simulations are marked in light gray in the figure and represent the definition of the device
geometry, the initialization of the potential distribution in the device, the calculation of
the electric field, and the handling of particles at the device boundary. In the following
sections all additional steps will be discussed, with the definition of the device and the
handling of the boundaries in Section 3.2.1. The initialization and the general calculation
of the potential are then presented in Section 3.2.2 and the update of the electric field
is described in Section 3.2.3. Finally, Section 3.2.4 presents exemplary characteristics of
interest for device simulations, such as the final current at each contact.

Define Initialize Simulate Write

material

device

scatter
mechanisms

particle type

simulation

scatter tables

potential

particles

start at t := 0

update
electric field

move particles

handle boundary

t += ∆t

calculate
averages

t ≤ ts
Yes

output

No

Figure 3.5.: Workflow for device simulations using the framework developed within the
scope of this thesis. The additional components, which are required for device
simulations, but not for bulk simulations are marked in light gray.

3.2.1. Device Representation

To represent a device within an EMC simulation, a simplified and tractable model of the
device needs to be created [38]. Approximations, which can be applied within the model,
are reduced dimensions and the treatment of Ohmic contacts as ideal, without any resis-
tance [38]. The reduced dimensions can be assumed for cases where introducing a higher
dimension provides no variation in the relevant physical quantities. The resulting tractable
model must also include information about the device’s extents, its doping profile, and the
positioning and type of contacts. Additionally, as the geometry of the simulated device is
discretized within the simulation, also the resulting mesh, which takes into consideration
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the extent of the device, must be defined. Within the scope of this thesis, uniform meshes
with spacing h = (hx, hy, hz) between the grid points are used for the discrete representa-
tion of devices of interest. Each characteristic of the device, such as the doping profile or
the potential, is then defined only on the discrete mesh points and not in the continuous
domain.

The definition of the boundaries of the device is important to enforce boundary conditions
for the solution of the Poisson equation which is required for the calculation of the electric
field within the device, and for the particle dynamics, in the cases when a moving particle
reaches the boundary [38]. Depending on the type of the boundary the conditions for both,
the Poisson equation and the particle dynamics, can vary: First, if no contact is located at
the boundary, a particle that reaches this border is reflected back into the device, according
to a predefined surface or interface scattering mechanism. For the Poisson equation, it is
assumed that no electric field in the direction which is normal to the given boundary exists,
which leads to the Neumann boundary condition [8]

En = −∂Φ

∂n
= 0 . (3.13)

Here En is the electric field in the n direction which is normal to the given boundary.
Second, as mentioned previously, Ohmic contacts are assumed to be ideal and resistance-
free, meaning that they allow particles to leave and enter the device and to contribute to
the current, which will be discussed in more detail in Section 3.2.4. For this assumption
to be reasonable, a region around the contact is considered to be in thermal equilibrium,
meaning that the total number of particles near that contact is kept constant and equal to
the number of dopant ions [2]. The handling of this condition within EMC simulations will
also be discussed in Section 3.2.4. For the Poisson equation, Dirichlet boundary conditions
which consider the applied voltage Vapp and the built-in potential Vbi [41]

Φ = Vapp + Vbi , (3.14)

are applied at Ohmic contacts, for which the built-in potential can be calculated using [42]

Vbi =
kbT

q
arcsinh

(
ND −NA

2ni

)
. (3.15)

In this equation q is the elementary charge, NA and ND are the negatively- and positively-
charged dopant concentrations, representing electron acceptors and donors, respectively,
and ni is the intrinsic carrier concentration. The last type of boundary considered within
the scope of this work is the Gate contact, which represents interfaces between the semi-
conductor material of a device and an oxide, with a contact on top of the oxide. For the
particle dynamics, once again reflective boundary conditions are applied. To obtain the
final boundary condition for the Poisson equation it is assumed that no charges are present
at the interface. This leads to a continuous displacement vector between the semiconductor
(sc) and the oxide (ox), given by [19, 41]

ϵox
∂Φ

∂n

////
ox

= ϵsc
∂Φ

∂n

////
sc

, (3.16)
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where ϵsc and ϵox represent the dielectric constant of the semiconductor and the oxide,
respectively. Moreover, it is assumed that the potential through the oxide drops linearly,
given by [19]

∂Φ

∂n

////
ox

=
VG − Φ

tox
, (3.17)

where tox is the thickness of the oxide and VG is the potential at the gate, which is obtained
by combining the applied voltage and a pre-defined barrier height. Combining Eq. (3.16)
and Eq. (3.17) leads to a mixed (Robin) boundary condition for the Poisson equation at
the gate contact

∂Φ

∂n

////
sc

=
ϵox

ϵsc · tox (VG − Φ) . (3.18)

3.2.2. Potential Calculation

The calculation of the electrostatic potential in the device, which is required to obtain
the corresponding electric field, is performed by solving the Poisson equation, a partial
differential equation shown in Eq. (1.2). For the solution of this equation the device domain
and its boundary conditions have to be defined. Additionally, the dielectric constant ϵ,
electron concentration n, hole concentration p, and NA and ND, which are the negatively-
and positively charged impurity concentrations, respectively, have to be known. While the
charged impurity concentrations, the dielectric constant, and the device domain can be
determined directly from the given device of interest, two kinds of assumptions are made
for the remaining parameters throughout the simulation. The first type of assumptions are
equilibrium ones, which are required at the beginning of the simulation for the initialization
of the potential. For the solution of the Poisson equation, with the assumption of the device
being in equilibrium, the applied voltages at the contacts are discarded, meaning Vapp = 0
is assumed. Additionally, equilibrium conditions are applied for the electron and hole
concentrations, given by

n = ni · e
Φ
VT and (3.19)

p = ni · e−
Φ
VT , (3.20)

respectively. In this equation ni represents the intrinsic carrier concentration, and VT is
the thermal voltage, given by VT = kbT

q [2]. The second type of assumptions represent the
non-equilibrium state of the device and are applied during the main simulation loop for
updating the electric field, given by the Simulate section in Fig. 3.5. In this case, the ap-
plied voltages at the contacts are not discarded. Moreover, the free carrier concentrations
of the simulated particle types are calculated with the utilization of the actual simulated
particles, by assigning their charge to the discrete mesh which represents the device - this
calculation will be explained in Section 3.2.3.

The solution of the Poisson equation with both types of assumptions can then be cal-
culated using theoretical or numerical approaches. Theoretical approaches may become
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unfeasible if the boundary conditions are too complex, which can be the case for semicon-
ductor devices [2]. Hence, numerical approaches are mostly used for the solution of the
Poisson equation for device simulations. In general, three parts are required for the numer-
ical solution of the Poisson equation: A partition of the domain, an approximation of the
continuous differential equation with algebraic equations, using only the evaluation on the
discrete points in the partitioned domain, and a means to solve this discrete approximation
of the continuous equation [19]. While the partition of the domain can be performed in
various ways, in the scope of this thesis the uniform meshes, mentioned in Section 3.2.1,
are utilized. Subsequently, the discrete approximation of the Poisson equation can be ob-
tained by the application of the finite difference method or the finite boxes method, both
of which result in a large system of algebraic equations with unknown variables at discrete
points representing the continuous behavior of the quantities of interest [19]. Finally, also
the resulting linear system of algebraic equations can be solved in various ways, including
direct approaches, for example by the application of the Gauss Elimination Method or LU
Decomposition. Alternatively, the system can be solved in an iterative manner by using,
e.g., the Gauss-Seidel or the Successive-Over-Relaxation (SOR) methods [2]. The solution
of the Poisson equation with the application of the finite difference scheme and the SOR
solver, as applied within the scope of this thesis, is presented in more detail in Appendix
A.

3.2.3. Update Electric Field

For the calculation of the electric field based on the distribution of the particles within
the device, a method to relate the continuous positions of the particles with the discrete
representation of the device is required [2, 36] and is carried out by a so-called Particle-Mesh
Scheme (PM-Scheme). The steps of a typical PM-Scheme are provided in Fig. 3.6. First,
the charge of each particle is assigned to the discrete mesh points by selecting a weight
wpc ∈ [0, 1] for each particle p with given charge ρp and coordinate c [2]. This weight
determines the portion of ρp which is assigned to the given coordinate based on the current
position of the particle. After the charge of each carrier is assigned to the corresponding
mesh points, the effective carrier concentration corresponding to each mesh point can be
determined. This enables the calculation of the potential at the coordinates by solving
the Poisson equation using non-equilibrium assumptions, as described in Section 3.2.2.
Subsequently, the electric field at discrete points can be obtained by calculating the discrete
derivative of the potential [36]. To obtain the field that is felt at a specific particle position,
the weights, which were determined in the first step, are reused to link the discrete electric
field and the continuous particle position by

Ep =
∑
c

wpcEc , (3.21)

where Ep represents the electric field at the particle and Ec is the electric field at each
coordinate c in the given discrete representation of the device [2]. The first three steps
of this procedure are performed for each update of the electric field in the EMC device
simulation workflow, shown in Fig. 3.5. The last step is performed prior to each particle
drift and is required for the determination of the force at the particle position, as can be
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seen in the workflow describing the motion of a particle shown in Fig. 3.3a.

1.
Assign charge

to mesh

2.
Solve Pois-
son equation

3.
Calculate the
electric field
on the mesh

4.
Interpolate field
to find forces
on particles

Update electric field
Determine

force

Figure 3.6.: Principle steps of a Particle-Mesh Scheme (PM-Scheme), visualized list from
[1].

Different schemes exist to calculate the particle weights wpc: The first one is the Nearest-
Grid-Point (NGP) scheme, where the full charge of the particle is assigned to the closest
grid point, which means that wpc = 1 holds, if coordinate c is the closest to the current
particle p, else wpc = 0 [1, 2, 38]. Another method is the Nearest-Element-Center (NEC)
scheme, which splits the charge of a particle equally between the components of the element
with the closest center. This means that, in two dimensions, the charge is assigned equally
with a weight of 0.25 to the 4 points of the rectangular mesh element with the closest center
and in three dimensions the same is performed with a weight of 0.125 to the 8 points of
the corresponding mesh element [2]. At last, the Cloud-In-Cell (CIC) scheme assigns the
charge to the same points as the previous method, but not each point receives the same
portion of the charge; the assignment is weighted by the distance of the particle to the
mesh point [1, 2, 38]. An example for the determination of the weights for one particle p
using the different schemes can be seen in Fig. 3.7.

1

2 3

4

phy

hx

∆x

∆y

wp1 wp2 wp3 wp4

NGP 1 0 0 0

NEC 0.25 0.25 0.25 0.25

CIC wxwy wx(1− wy) (1− wx)wy (1− wx)(1− wy)

Figure 3.7.: Visualization of the calculation of the weights wpc in 2D using different PM-

Schemes. Here wx := ∆x
hx

and wy :=
∆y

hy
is used.

3.2.4. Output Calculation

One of the main characteristics of interest for device simulations is the current I at each
Ohmic contact. This characteristic can be calculated by tracking the net number nnet of
particles which exit or enter the corresponding contact through a fixed period of time ∆t
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[2]. In general two different contributions to the net current exist: First, the number of
particles which naturally leave the device by passing through the contact Nexit has to be
considered. The second contribution stems from the number of particles which are deleted
Ndel or injected Ninj due to the condition that the amount of particles close to the contact
should be constant, as mentioned in Section 3.2.1. Within the simulation this condition is
ensured by comparing the number of particles close to the contact to the expected number of
particles and by deleting excess particles or injecting missing particles until these numbers
match. The final current at each contact is then determined by

I =
q · nnet

∆t
=

q · (Nexit +Ndel −Ninj)

∆t
, (3.22)

where q represents the charge of the corresponding particles [2].

Additional characteristics of interest in device simulations are the average potential,
the average electric field, and the average particle concentration in the device. All of
these quantities can be determined through time-averaging once the stationary state of the
simulation is reached, as discussed in Section 3.1.3.

3.3. Coulomb Force Treatment

Calculating the Coulomb force is required for the determination of the interaction between
different carriers, termed carrier-carrier (c-c) interaction, and the interaction between the
carriers and the ionized impurities (dopants) in doped regions of a material, termed carrier-
impurity (c-i) interaction. Both interactions are also mentioned in Fig. 2.4 as types of
scattering mechanisms, with c-i being referred to as ionized impurity scattering.

While in typical EMC bulk simulations, as described in Section 3.1, the long-range part
of the Coulomb force is not considered, in device simulations, as described in Section 3.2,
it is incorporated through the solution of the Poisson equation. Furthermore, in these
traditional simulations, the short-range part of the Coulomb force is either discarded or
approximated in k-space [2]. For this approximation the carrier-impurity (c-i) interactions
are mostly treated as a two-body problem, with the application of a screened Coulomb
potential [38]. One approach for the description of the screened potential was suggested by
Brooks and Herring and assumes a scattering potential of [2]

V (r) =
Zq2

4πϵr
e−qDr , (3.23)

where r is the distance between the carrier and the impurity, q is the elementary charge, ϵ
the dielectric constant of the material, Z is the number of charge units of the impurity, and

LD = 1
qD

=
√

ϵVT
q(n+p) is the Debye length which depends on the thermal voltage VT and

the electron and hole concentrations n and p, respectively [2, 8, 38]. The resulting scatter
rate for the interaction of a single carrier with a single impurity, which is calculated using
Eq. (2.17), is then given by [2]
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Γ(n,k) =

√
2NiZ

2q4

ϵ2
√

mdEβ

√
E(1 + αE)

1 + 2αE

1 + 4E(1+αE)
Eβ

, (3.24)

where E = En(k) is calculated with the given dispersion relation. Additionally, Ni repre-

sents the doping concentration and Eβ =
ℏ2q2D
2md

, where qD is defined via the Debye length
as previously mentioned [2]. Moreover, also the short-range carrier-carrier interaction is
mostly approximated with binary collisions and a screened Coulomb potential. Limitations
of these approximations are the discarding of multi-ion contributions for c-i scattering and
the neglection of the fact that both, the local distribution function and the screening length,
can change for c-c interactions [43, 44].

While the presented approximations of the Coulomb force are sufficient in some cases, a
more accurate treatment of c-i interactions is essential, for example for the simulation of
ultra-small devices, in which threshold voltage fluctuations can appear due to the discrete
nature of the impurity atoms [2, 43] and a more careful approximation of c-c interactions is
crucial for the analysis of hot-carrier degradation [45]. For these cases, a treatment which
is more precise within a classical framework for both c-c and c-i interactions, has been
presented using different techniques: The particle-particle particle-mesh (P3M) method
[43], the Corrected Coulomb approach [46, 47], and the fast multipole method (FMM)
[48, 49, 50]. The first approach, the P3M method, separates the Coulomb force into a long-
range part, which is calculated by the Poisson equation, and a short-range one, which is
calculated by direct summation [50]. In this method care has to be taken to avoid so-called
double-counting, which means that it should be circumvented to consider the contribution
of one particle in both the long- and short-range potentials [2]. The second method, the
Corrected Coulomb approach, is a numerical method which utilizes separate look-up tables
for c-c and c-i interactions, which contain the pre-calculated change of the force due to
short-range interaction between a carrier and another carrier or an impurity at a given
distance, respectively [50]. The last method, the combination of the FMM and EMC,
which is applied in this thesis, will be explained in the following sections, with a short
description of the FMM algorithm in Section 3.3.1 and the main idea for the inclusion of
this algorithm into the EMC workflow presented in Section 3.3.2.

3.3.1. Fast Multipole Method (FMM)

The fast multipole method (FMM) is a numerical algorithm for the fast and approximated
evaluation of sums of the form [51, 52]

u(r) =

N∑
i=1

wi ·K(r, ri) , (3.25)

where u(r) is the characteristic of interest at position r which can be calculated by sum-
ming the contributions of N target points with weights wi and locations ri. Additionally,
the application of the kernel K(·, ·) which describes the influence of a source on a target
based on its position, is required. Sums in the form of Eq. (3.25) appear when considering
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various N -body problems, such as gravitational, electrical, or acoustical ones [52].

The main ideas of the FMM are a hierarchical partitioning of the input space and the
approximation of the given kernel K(r1, r2) using analytical expansions if r1 and r2 are
far away from each other [52]. These two main ideas then allow for the evaluation of the
characteristic of interest in an ensemble of N points at each point with a complexity of
O(N) instead of O(N2) as is required for the direct summation of Eq. (3.25) for each point
of interest [52].

3.3.2. Inclusion of FMM in an EMC Workflow

The main idea for the inclusion of the FMM into the EMC workflow is the calculation of
the force F which is acting on each particle, as superposition of two forces

F = Fb + Fc , (3.26)

where Fc is the Coulomb force and Fb the background force, both of which will be explained
in the following. First, the Coulomb force acting on a particle j, which is at position rj
and carries a charge qj , can be calculated by adding up the force created by the interaction
of the particle with all other carriers c and impurities i in the simulation space and is given
by [46]

F j
c (rj) = qj

(/( Ni∑
i=1

qi
4πϵ

r̂ji
∥ri − rj∥2 +

Nc∑
c=1
c̸=j

qc
4πϵ

r̂jc
∥rc − rj∥2

)/) . (3.27)

In the above equation, qi/c represents the charge, Ni/c the total number, and ri/c the posi-
tion of the corresponding impurity or carrier, respectively. Lastly, r̂ji/c represents the unit
vector along the force which stems from the interaction of the current particle and an impu-
rity or carrier. Within this thesis, it is noted that Eq. (3.27) is of the form of Eq. (3.25) and
can thereby be evaluated with the help of the FMM. Second, the background force results
from the applied electric field Eapp in bulk simulations and from the applied potential at
the contacts and additional conditions at the boundaries for device simulations. While it
is straightforward to evaluate F j

b = qj · Eapp in bulk simulations, the calculation of the
force within device simulations has to be performed by the solution of an adapted Poisson
(Laplace) equation, which is not presented here.

Furthermore, the inclusion of the real-space particle-particle interactions into EMC bulk
simulations, as presented in this section, does not require a drastic adaptation of the work-
flow shown in Fig. 3.1: First, at the beginning of each time step, Fc is updated by re-
evaluating Eq. (3.27) with the help of the FMM. Second, for the determination of the force
experienced by each particle, which is required for the motion of the particles and shown
in the workflow in Fig. 3.3a, the superposition of Fc and Fb, as shown in Eq. (3.26), is
considered. Problems can arise due to the required re-evaluation of the force after each
scatter event. As these events occur at random times within one time step for each particle
and as the positions of all particles concurrently are only known between the time steps,
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an update of the Coulomb force after every scatter event is not possible. For that reason,
in the scope of this thesis, Fc is only updated at the beginning of each time step and is not
modified within a step.

Finally, in case the FMM is used for the c-c and c-i-interactions, a non-physical numerical
heating of a simulated ensemble can appear [48]. The reason for this is the previously
mentioned assumption that the Coulomb force which acts on a particle within one time
step is approximated with the force acting on the particle at the beginning of the step.
First, this discrete update of the Coulomb force allows for repulsive particles to get closer
to each other than is physically possible when the force is updated in a continuous manner.
Second, in case two particles are very close to each other at the time the Coulomb force is
updated, their motion is effectively based on the resulting high forces throughout the entire
time step instead of only during the short time the particles are close to each other. If the
duration of the time step ∆t is then chosen to be too long this can lead to non-physical high
energies and velocities, which in turn lead to this numerical heating. To allow the choice
of higher ∆t within the scope of this thesis, a cut-off approach, which cuts off the force
at a distance of rc = 1nm, is applied during the calculation of Fc [48]. Mathematically,
this means that, if the distance r between two particles fulfills ∥r∥ ≥ rc the Coulomb force
is calculated with Eq. (3.27), as described earlier. On the other hand, if the distance is
smaller than rc, Fc is calculated with an adapted distance radapted = r · rc

∥r∥ , which fulfills

∥radapted∥ = rc and is parallel to the initial vector distance (radapted ∥ r). This leads to
a constant norm of the Coulomb force for all distances smaller than rc, as can be seen in
Fig. 3.8, and additionally, the direction of the force between two particles is not modified
by this approach. Even though the discard of the rapidly changing high forces of particles
with distances smaller than rc enables the use of longer time steps, care has to be taken to
avoid choosing a time step which is too long, as this still can lead to numerical heating.

Figure 3.8.: Sketch of the approximation of the Coulomb force with the cut-off approach.
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Within the scope of this thesis, a C++ header-only library [53] was developed and imple-
mented, whose main goal is to enable the simulation of various generic devices using the
EMC method. Additional goals of the library are to enable the bulk simulation of various
materials using a subgroup of the components of the library, and the inclusion of real-space
particle-particle interactions which was implemented with the help of the FMM, as de-
scribed in Section 3.3.2, and the external library scalFMM [32]. This chapter first provides
an outline of the main ideas and components of the developed library for device simulations,
followed by a more precise description of the different components. Finally, the applied
components and adaptations for bulk simulations are presented.

4.1. Outline

An overview of the main components of the developed library and a simplified version of
their relations is provided in Fig. 4.1. In the following paragraphs the main idea of each
component is described.

The aim of the Device Type component is the description of the simulated electronic de-
vice. As discussed in Section 3.2.1, the characterization of a device requires the knowledge
of material characteristics, the doping profile, and the positioning and types of the contacts
at the surface of the device. A more precise description of this component, including its
sub-components and a sample application, can be found in Section 4.2.

The Poisson Solver handles the calculation of the potential in the given Device Type by
solving the Poisson equation given in Eq. (1.2). Implementation details of this component
are discussed in Section 4.3.

The Particle Handler is responsible for the storage and handling of all simulated parti-
cles. Furthermore, each simulated particle belongs to a specific class of particles, a so-called
Particle Type. This Particle Type determines the particle behavior during the simulation,
such as how and if the particle moves and the corresponding particle characteristics, such as
the charge and mass. Additionally, this component includes a PM-Scheme which provides
the linking between the discrete grid and the continuous particle positions, as discussed in
Section 3.2.3. A more precise description of this component and all its sub-components
will be given in Section 4.4.

The Simulation component handles the execution of the EMC simulation as mentioned
in the workflow in Fig. 3.5. It combines and applies all previously mentioned components.

29



4. Implementation

Additionally, it is also concerned with the storage of the specific settings and results of the
ongoing simulation.

Simulation

Particle Handler

Particle Type PM-Scheme

Scatter Handler Valley Type

Poisson SolverDevice Type

SurfaceMaterialDoping

Figure 4.1.: Main components of the implementation and their (simplified) relations.

4.2. Device Type

The Device Type component describes the model of the simulated electronic device. Since
one of the goals of this library is the ability to simulate various types of devices, the char-
acterization of the device is kept as generic as possible. The only underlying assumptions
for the model of the device within the library are a cuboid geometry with one corner being
situated at the origin of the simulation space and the use of a uniform mesh for the dis-
crete representation of the device. With the application of these assumptions a model for
a device within this library is uniquely described by the following properties:

1. Dimension: Within the library one can either simulate devices in 2D or 3D. While a
three-dimensional model of the device is more realistic, it requires more computational
effort to simulate. Therefore, if the characteristics of the device allow discarding one
dimension, a 2D model and simulation of the device is utilized. Although the two-
dimensional model then simulates the same number of particles projected onto the
2D simulation space, the potential and electric field are only calculated in 2D, which
decreases runtime.

2. Geometry: As previously stated, it is assumed that the geometry of the model of
the device is a cuboid with one corner at the origin of the simulation space. To
uniquely define the cuboid geometry under these assumptions, the only supplementary
parameter which must be set is the position of the corner of the cuboid which is
furthest away from the origin. Additionally, the spacing of the uniform mesh in each
dimension has to be determined. Finally, if the simulation is performed in 2D, the
virtual extent of the device in the discarded third dimension also needs to be set.

3. Material: The underlying semiconductor material is defined by the determination of
material constants such as the permittivity and the density. Furthermore, also the
temperature of the material has to be set. If no other temperature is provided, room
temperature is assumed.
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4. Doping: The doping profile is uniquely defined in case the net amount of doping at
each discrete mesh point is determined. The value of the net doping can be set by the
user in the cuboid regions of the device which span from a given minimum corner (clos-
est to the origin) to a maximum one, using the function addConstantDopingRegion(

minPos, maxPos, netDoping). Here minPos and maxPos are the positions of the
previously mentioned minimum and maximum corner, respectively, and netDoping

is the value for the net doping within this region.

5. Surface: On the surface of the simulated device, different types of contacts can be
placed. For the characterization of a contact, its exact position, applied voltage,
type, and all additional characteristics of interest have to be set. The implemented
library offers functions which can add either Ohmic or Gate contacts. The addition
of an Ohmic contact is performed with addOhmicContact(boundPos, appliedVolt,

minPos, maxPos), where boundPos defines the boundary at which the contact is
added, minPos and maxPos define the extent of the contact on the given boundary, and
appliedVolt defines the applied voltage at the contact. A gate contact is added in a
similar way, with the determination of additional characteristics such as the thickness
of the oxide thickOx, the dielectric constant of the oxide dielOx and the barrier height
of the contact barrierHeight, leading to the function addGateContact(boundPos,

appliedVolt, minPos, maxPos, dielOx, thickOx, barrierHeight).

Two sketches of 2D models for specific devices are shown in Fig. 4.2, with one of them
representing a PN-Junction and the other one a MOSFET. Furthermore, the code for
the creation of the device shown in Fig. 4.2b within the developed library is given in
Listing 4.1. In the presented code, first the dimension, the geometry, and the material
of the created device are set. Subsequently, the doping regions are added one by one, by
setting their minimal and maximal position and the net doping concentration (with n-doped
regions being defined as positive net doping). Finally, the positions, applied voltages, and
additional characteristics of the contacts are set.
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(a) PN-Junction.
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(b) MOSFET.

Figure 4.2.: Sketches of exemplary generic devices with defined shape, discrete represen-
tations, doping profiles, and contacts.

1 const SizeType Dim = 2; // (1.) dimension

2

3 // (2.) geometry + (3.) material

4 std::array <double , Dim > maxCorner = {125e-9, 100e-9};

5 std::array <double , Dim > spacing = {1e-9, 1e-9};

6 emcMaterial <double > silicon = Silicon :: getMaterial <double >();

7 emcDevice <double , Dim > mosfet{silicon , maxCorner , spacing };

8 mosfet.setDeviceWidth (1e-6); // set extent in 3rd dimension

9

10 // (4.) doping (input: minPos , maxPos , netDoping)

11 mosfet.addConstantDopingRegion ({0, 30e-9}, {125e-9, 100e-9}, -5e23);

12 mosfet.addConstantDopingRegion ({0, 0}, {51e-9, 30e-9}, 5e25);

13 mosfet.addConstantDopingRegion ({51e-9, 0}, {75e-9, 30e-9}, -5e24);

14 mosfet.addConstantDopingRegion ({75e-9, 0}, {125e-9, 30e-9}, 5e25);

15

16 // (5.) surface (order: bulk , source , gate , drain)

17 // (input: boundaryPosition , voltage , minPos , maxPos , add. param .)

18 mosfet.addOhmicContact(emcBoundaryPos ::YMAX , 0, {0}, {125e-9});

19 mosfet.addOhmicContact(emcBoundaryPos ::YMIN , 0, {0}, {51e-9});

20 mosfet.addGateContact(emcBoundaryPos ::YMIN , 1, {51e-9}, {75e-9}, 3.9, 1.2e

-9, silicon.getBandGap () / 2.);

21 mosfet.addOhmicContact(emcBoundaryPos ::YMIN , 1, {75e-9}, {125e-9});

Listing 4.1: Example code to model the MOSFET-structure shown in Fig. 4.2b.

4.3. Poisson Solver

As already mentioned, the Poisson Solver is used to obtain the potential within the de-
vice by solving the Poisson equation, Eq. (1.2). Three different types of solutions of the
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before-mentioned equation are distinguished based on their underlying assumptions about
the carrier concentrations and the boundary conditions: The first two types of solutions
are based on the equilibrium and non-equilibrium assumptions, which are discussed in Sec-
tion 3.2.2. While the last kind of solution of the Poisson solver is not used in the scope of
this thesis, it represents the background potential Φb, which is required for the inclusion of
the FMM and whose determination allows for the calculation of Fb in devices, as mentioned
in Section 3.3.2.

Within the library this component is implemented as a purely abstract class which has
three abstract member functions, each responsible for the calculation of one of the pre-
viously described solution types. This structure allows for the implementation of various
customized solvers of the Poisson equation, which should be implemented as derived classes
from the abstract base class. In the scope of this thesis only one solver was implemented, the
iterative Successive-Over-Relaxation (SOR)-solver, whose derivation is shown in Appendix
A.

4.4. Particle Handler

In general the Particle Handler is responsible for the storage and handling of all simulated
particles. In this chapter, first the implementation of a particle in the developed library
will be discussed in Section 4.4.1, followed by a more detailed description of the tasks and
implementation of the Particle Handler in Section 4.4.2.

4.4.1. Particle Implementation

Each particle in the library has a corresponding position and is assigned to a so-called
Particle Type, which represents a group of particles which share specific attributes and
behaviors. In the library, the following behavior and attributes are determined by the
corresponding Particle Type:

1. Characteristics : Each particle of a specific type possesses the same mass and charge,
therefore these characteristics are stored by the associated Particle Type and not by
each single particle. Additionally, two different kinds of Particle Types can be dis-
tinguished: The ones containing moving particles and those containing non-moving
particles, which are referred to as moving and non-moving Particle Types, respec-
tively. While non-moving particles, which are immobile during the simulation, are of
interest in case the FMM is included for the representation of dopants (impurities),
moving particles are required in all simulations as they represent the charge carriers,
such as holes or electrons. In case a moving Particle Type is considered, additional
characteristics describing the current motion of each particle of that type have to
be stored, such as the particle’s wave vector, its current energy, its remaining free
flight time τ , and the index of the corresponding valley, subvalley, and doping region.
Within the library, these characteristics are stored for each moving particle in an
object of the class emcParticle, which is shown in Fig. 4.3a.
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2. Initialization: The Particle Type provides functionality to determine the number of
particles to be initialized at the beginning of a simulation and an additional function
which handles the initialization of a particle of this type. While in case of a non-
moving Particle Type only the position of each particle has to be initialized, for
moving Particle Types also the supplementary characteristics which are stored in an
emcParticle object and describe the motion of the particle have to be initialized and
stored.

3. Dispersion relation : Each moving Particle Type stores the dispersion relation for the
corresponding particles. Within the framework, analytical bands are applied, mean-
ing that the dispersion relation is represented by - and stored as - multiple valleys,
as discussed in Section 2.1.1. While different types of pre-defined valleys are already
implemented in the library, the user can also implement custom types of valleys.
Generally, in the provided library, a valley can be derived from the abstract Valley
Type base class, whose structure is shown in Fig. 4.3c. Essentially, the functionality
given in this class allows for the determination of all important characteristics of a
given valley: The effective masses and their averages, as described in Eqs. (2.12)
and (2.13), the non-parabolicity factor α, the number of subvalleys (degeneracy) of
the corresponding valley, and the value of the energy of the valley extrema. Addition-
ally, functions which allow for the calculation of the norm of the wave-vector from
the energy and vice versa have to be implemented. For the implementation of these
functions for valleys with circular constant energy surfaces, for example, Eq. (2.9)
is applied. Finally, in case of valleys with elliptic constant energy surfaces, function
templates are provided for the coordinate transformation between the coordinate sys-
tem used in the simulation and the ellipse coordinate system. A function template
is also provided for the determination of the diagonal of the transformation matrix
which is required for the Herring Vogt transformation, given in Eq. (2.15).

4. Scattering Mechanisms : Each Particle Type also provides a functionality for the ad-
dition and handling of scattering mechanisms. Within the library a scattering mech-
anism is implemented as a derived class from the abstract Scatter Mechanism class.
This base class contains three virtual functions, as shown in Fig. 4.3b, which deter-
mine the name, the scatter rate, and the adaptations of the final state of a carrier
after a scatter event with that mechanism. For the creation of a custom scattering
mechanism these functions must be overwritten. Additionally, several pre-defined
mechanisms are already implemented in the library such as acoustic intravalley scat-
tering and optical intervalley scattering, described in Section 2.2.1. Furthermore,
each Particle Type has an additional class which is responsible for the management
of all mechanisms. This class is called Scatter Handler in the library and its respon-
sibilities include the initial calculation of the tabulated scatter rates, the inclusion of
self-scattering as described in Eq. (3.5), and the selection of the mechanism in the
case of a scatter event as described by Eq. (3.6).

5. Conditions at Ohmic contacts : In case of moving particles, Ohmic contacts must
be considered separately due to the condition that the number of particles close to
these contacts is assumed to remain constant, as described in Section 3.2.1. For that
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reason each Particle Type containing moving particles has to possess a functionality
to calculate the expected number of particles near a contact and, in case the number
is too low, also a function for the initialization (injection) of new particles in that
region has to be provided.

Finally, the simplified structure of the abstract implementation of the Particle Type is
given in Fig. 4.3d. As with the other abstract classes, the main idea is to keep this class as
generic as possible, to allow the usage of various custom Particle Types. Within the scope
of this thesis moving electrons with different initial conditions and non-moving dopants
(impurities) are used as Particle Types.

(a) Characteristics of single moving particle. (b) Scatter Mechanism base class.

(c) Valley Type base class. (d) Simplified Particle Type base class.

Figure 4.3.: Structure of selected classes which are connected to the implementation of
particles within the library.

4.4.2. Tasks of Particle Handler

As previously mentioned, the Particle Handler is responsible for the storage and handling of
all particles of every simulated Particle Type. In detail, this means that this class manages
the following tasks:

1. Initialization: The Particle Handler performs the initialization of the particles by
applying the functionality given by each Particle Type, which determines the number
of initial particles and their initialization.

2. Motion: The motion of all moving particles during each time step ∆t is performed by
this class and follows the workflow given in Fig. 3.3a. As stated in Section 3.1.2 this
motion consists of alternating drifts and scatter events, for which each Particle Type
holds the information on the available valleys and scatter mechanisms. Additionally,
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particles which reach a device boundary during their motion are also handled by this
class. Furthermore, prior to each drift event the force at the position of the particle
needs to be determined; this is also performed by this class. It should be noted, that
the implementation of the precise motion of the charge carriers, the handling of the
boundary conditions and the determination of the force can vary depending on the
implemented Particle Handler.

3. Assignment: As described in Section 3.2.3 the link between the continuous particle
position and the discrete representation of the device is crucial for EMC-simulations
and is performed with a PM-Scheme. Within the code, the base class of this scheme
contains virtual functions which enable the assignment of the particles to the discrete
coordinates and facilitate the calculation of the force at a continuous particle position,
based on an electric field which is calculated at discrete points. All three PM-Scheme
mentioned in Section 3.2.3 are implemented within the library.

4. Ohmic Contacts: The Particle Handler ensures that the number of particles close to
Ohmic contacts is kept constant. With the use of the functions which are provided by
each Particle Type, the expected number of particles are calculated and if not enough
particles are in the corresponding region, additional particles of the specific type are
injected. In case excess particles are found close to the contacts, these particles are
removed.

In summary, the abstract Particle Handler class allows for the implementation of various
customized derived classes. Additionally, within the developed library different types of
this class are already implemented. The implementations which are used within the scope
of this thesis, differ in the way the force, which is acting on the particles, is calculated.
The first implemented handler is used for classical device simulations and is called Basic
Particle Handler. For this implementation the force acting on the particles is determined
by the solution of the Poisson equation as described in Section 3.2.2, particle-particle
interactions are not considered, and the boundary conditions are treated as described for
all device boundary types in Section 3.2.1. Moreover, a Particle Handler which includes
the carrier-carrier interactions with the help of the FMM and the external library scalFMM

is implemented, but not used in the scope of the thesis.

4.5. Adaptations for Bulk Simulations

As described in Chapter 3, only a subgroup of the components applied for device simulations
is essential for bulk simulations. This observation is also utilized in the developed library
by reusing parts of the developed components for device simulations to perform bulk sim-
ulations. While, for example, the Poisson Solver, PMScheme, and Simulation components
are not necessary for bulk simulations, the Particle Type, a customized Particle Handler,
and parts of the Device Type component can be reused for these types of simulations. In
this setting, the Device Type component describes the simulation space, the material, and
the doping concentration in the material, which is assumed to be constant. Furthermore,
the customized Particle Handlers resemble the ones used in device simulations, but they
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discard some of the functionality not needed in bulk simulations as the PM-Scheme. Ad-
ditionally, instead of applying the device boundary conditions discussed in Section 3.2.1,
periodic boundary conditions are used on the surface of the defined simulation space so
that this space represents an infinite bulk of the given material. Finally, as described in
Section 3.1, the force acting on the particles stems from a homogeneous applied electric
field. In the simulations, the user can set the direction and strength of this field.

Within this thesis, two types of customized Bulk Particle Handlers are used: The first
one, termed Basic Bulk Particle Handler, is applied for classical bulk simulations as de-
scribed in Section 3.1. The second customized Bulk Particle Handler, the FMM Bulk
Particle Handler, differs from the one previously described by including the full classical
real-space particle-particle interactions with the help of the external library scalFMM, as
described in Section 3.3.2. It is noteworthy, that the periodic boundary conditions assumed
for bulk simulations also must be considered for the calculation of the Coulomb force. The
library scalFMM implicitly implements these boundary conditions, by considering not only
the particles in the simulation space but also a specific number of copies of the simulation
space and all particles in it, for the calculation of Fc. In the implementation, the number of
considered copies of the simulation space depends on the parameter nbLevelsAboveRoot

which can take values between −1 and infinity. Figure 4.4 sketches the arrangement of
the simulation space (gray) and all its copies in two dimensions for the lowest values of
nbLevelsAboveRoot. In scalFMM, three dimensions must be used, leading to a total of 27
simulation boxes if nbLevelsAboveRoot= −1, 216 if nbLevelsAboveRoot= 0, and 1 728
ones if nbLevelsAboveRoot= 1.

nbLevelsAboveRoot = -1
nbLevelsAboveRoot = 0
nbLevelsAboveRoot = 1

Figure 4.4.: Sketch of the periodicity in scalFMM in 2D with the gray box representing the
simulation space and nbLevelsAboveRoot being a parameter that determines
the number of copies of the simulation box.
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This chapter provides applications of the library which is developed within the scope of
this thesis. It should be noted that, as this library is kept quite generic, these shown ap-
plications are only examples with neither the devices nor the simulated materials being
restricted to the shown examples.

The first applications, presented in Section 5.1, are silicon-based structures. As the
characteristics of silicon are well investigated, these simulations are used to verify the
results of the developed simulator by comparing them with results from experiments and
other established simulators. Furthermore, tests with the inclusion of the FMM into the
EMC workflow, as described in Section 3.3.2, are performed. Subsequently, in Section 5.2,
simulations of a monolayer of the 2D semiconductor molybdenum disulfide (MoS2) are
demonstrated. As this two-dimensional material is currently heavily investigated, these
simulations show the relevance of the developed simulation tool to an active scientific field
of research.

5.1. Silicon (Si)

Silicon is the most applied material for the fabrication of semiconductor devices. The band
structure of bulk silicon is given in Fig. 5.1a while its first Brillouin zone, which is identical
to that of GaAs, can be seen in Fig. 2.1a. In the band structure, one can see silicon’s valence
band maximum at the Γ-point and its conduction band minimum in the path between the
Γ- and X-points. Additionally, local minima of the conduction band can be seen (at L-
and Γ-points), but as these have energies which are significantly higher than the one of the
global minima, they do not contribute to the electron transport, even at high fields [38].
These observations indicate that, for the simulation of electron transport in this material, it
is sufficient to approximate the valleys around the global minima with the analytical band
approximation, as described in Section 2.1.1. Due to the symmetry of the Brillouin zone,
six equivalent subvalleys around the global minima appear. All of the subvalleys, including
their elliptic constant-energy surfaces are shown in Fig. 5.1b. Moreover, the characteristics
of the approximated valleys are given in Table 5.1.

ml [m0] mt [m0] α [eV −1]

0.916 0.196 0.5

Table 5.1.: Parameters of the approximated silicon valleys.

38



5. Applications

(a) Band structure (reprinted with permis-
sion from [38]).

ky

kz

kx

X

Γ

(b) Constant-energy surfaces around con-
duction band minima.

Figure 5.1.: Characteristics of Silicon in k-space.

The dominant scatter mechanisms in silicon are intravalley acoustic scattering and zero-
th and first order intervalley optical scattering. The characteristics and calculations of
scatter rates for the first two mechanisms have already been discussed in Section 2.2, with
the only missing parameter being half of the density of states, which is given for three-
dimensional materials with the applied non-parabolic band approximation, described in
Section 2.1.1, by [2]

N3D(E) =
(2md)

3/2

4π2ℏ3
√
E(1 + αE)(1 + 2αE) . (5.1)

The final scatter mechanism, first order intervalley optical scattering, is an inelastic and
isotropic mechanism, whose scatter rate is given by [2]

ΓSi
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√
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[
n(ωif ) +

1

2
∓ 1

2

]
·{√

Ef (1 + αEf )E(1 + αE) + Ef (1 + αEf )(1 + 2αEf )

}
Θ(Ef ) , (5.2)

All parameters used for the calculation of this scatter rate have already been used in
Eq. (2.21), and are therefore already described there. Additionally, as in Eq. (2.21) the
upper sign is used for the absorption and the lower one for the emission of a phonon. It
should also be noted that for silicon all included valleys have their minima at the same
energy, which leads to ∆Efi = 0 for any considered final and initial valley [2]. Moreover,
for silicon, two types of intervalley scattering mechanisms are distinguished: Either the
particle scatters to the only valley which lies on the same axis as the initial valley, which
is called g-type, or it scatters to a valley on another axis, which is called f-type [2]. Both
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types of intervalley scattering are visualized in Fig. 5.2a. Finally, the parameters for all
described scatter mechanisms for silicon are presented in Table B.1 and the scatter rates for
each type of the three dominant scatter mechanisms and their comparison to the resulting
rates of Vasileska et al. [2] are plotted in Fig. 5.2.

ky

kz

kx

f

g

(a) Types of intervalley scattering. (b) Acoustic scatter rate.

(c) Zero-th order intervalley optical scatter
rates.

(d) First order intervalley optical scatter rates.

Figure 5.2.: Scattering mechanisms in silicon and comparison to the resulting scatter rates
of Vasileska et al. [2].

5.1.1. Bulk Simulation

As a first test of the developed library and the applied silicon model, bulk silicon is simulated
with the use of the Basic Bulk Particle Handler and 10 000 electrons. The initialization of
these particles is performed by applying random numbers, as mentioned in Section 3.1.1.
First, the initial energy of the particles is assigned using Eq. (3.1). Subsequently, the cor-
responding subvalley and the initial wave-vector direction are also selected at random with
each possible direction and subvalley having the same probability. Once all particles are
initialized, a homogeneous electric field is applied and the response from the particles is
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tracked.

At first the transient behavior of this ensemble of electrons is investigated by calculating
the time-dependent ensemble average of the drift velocity and the energy. The results for
electric fields with a strength of 2 kV/cm, 5 kV/cm, 10 kV/cm, and 20 kV/cm are provided
in Fig. 5.3. They show that after the transient state a steady-state is reached for the
ensemble velocity and energy, as is discussed in Section 3.1.3. Additionally, a velocity
overshoot can be observed for high applied electric fields in Fig. 5.3a. The reason for these
overshoots is that the scattering rates for particles with smaller energies are quite low, which
allows the particles to gain energies higher than the steady-state velocities. This behavior
proceeds until the particles reach high enough energies and the increasing scattering rates
ultimately lead to the final steady-state drift velocity.

(a) Drift Velocity. (b) Energy.

Figure 5.3.: Ensemble averages of characteristics of interest for silicon simulations with
various applied electric fields in direction ⟨1 0 0⟩ at 300K.

Subsequently, the steady state behavior of the drift velocity is compared to the exper-
imental results from Canali et al. [3]. For this, electric fields with varying strengths are
applied in ⟨1 0 0⟩ and ⟨1 1 1⟩ directions at different temperatures. The results of that com-
parison are shown in Fig. 5.4 and it is evident that the resulting drift velocities of the newly
developed tool are in good agreement with the experimental results. Furthermore, the plot
shows that the results of this work reproduce the temperature dependence of vd, as well
as the anisotropic behavior of the electron transport in silicon. In the simulations, the
temperature dependence of vd is introduced by the temperature dependence of the scatter
rates, as can be seen in Eqs. (2.20), (2.21) and (5.2). Moreover, the dependence of the
investigated parameter on the direction of the applied field in the simulations arises from
the elliptic constant-energy surfaces of the subvalleys and their varying orientation with
regards to the applied field [3].
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(a) T = 77K (b) T = 300K

Figure 5.4.: Electron drift velocity in silicon with varying applied electric fields parallel
to the ⟨1 1 1⟩ or ⟨1 0 0⟩ directions. Furthermore, the results are compared to
the experimental results from Canali et al. [3].

5.1.2. Bulk Simulation Including FMM

The real-space Coulomb interactions are included in the bulk simulations with the help
of the FMM, as described in Section 3.3.2 and as implemented in the FMM Bulk Particle
Handler. The force acting on the particles in these simulations is generated by the applied
electric field and by the Coulomb force which considers the classical interaction between all
particles, as shown in Eq. (3.27). Additionally, for all simulations, in which the real-space
Coulomb interactions are included, two Particle Types are utilized, moving electrons and
non-moving active n-type dopants (impurities). Within the simulation, both particle types
are distributed randomly in the simulation space with the number of the particles being
calculated with the selected doping concentration. Finally, as mentioned in Section 4.4.2,
the periodic boundary conditions, which are required for bulk simulations, are incorporated
in the calculation of Fc by considering the interaction between the simulated particles and
a specific number of copies of all simulated particles outside of the simulation space. In
this simulation a value of 1 is used for nbLevelsAboveRoots which leads to a total of 1 728
copies of the simulation box.

In this section, the cooling of hot ensembles of electrons at 3 000K in n-doped bulk silicon
samples, with varying doping concentration and without any applied electric background
field is simulated. First, the behavior of the ensemble in silicon with a n-type doping
concentration of 1 × 1018 cm−3 with and without the application of the cut-off approach,
which is described in Section 3.3.2, is compared. In Fig. 5.5a the results without the
application of the cutoff approach are shown and it can be seen that for all applied time
steps, which are varied between 0.05 fs and 0.5 fs a numerical increase in the ensemble
energy can be observed, instead of the expected decrease in this characteristic. The reason
for the increase is the approximation of the force within one time step being the force
acting on each particle at the beginning of the step and the chosen ∆t being way too long,

42



5. Applications

thereby leading to numerical heating, as discussed in Section 3.3.2. Moreover, this increase
happens in a very sharp manner (from one step to the next one) which is expected as it is
caused by particles getting unrealistically close to each other and then experiencing very
high forces for one whole time step, which is based on the discrete approximation of the
Coulomb force as discussed in Section 3.3.2. In case the cut-off approach, which discards
the rapidly changing high forces for distances below the cutoff radius of 1 nm, is applied,
the ensemble average of the energy decreases with time, as expected. Additionally, it can
be observed that the resulting development of the ensemble energy of the hot ensemble
can still depend on the selected time step, which will be analyzed in more details in the
following.

(a) Without cut-off approach. (b) With cut-off approach.

Figure 5.5.: Effect of the cut-off approach for the cooling of a hot ensemble of electrons
in silicon with a n-doping of 1 × 1018 cm−3.

To analyze the ability of the EMC method, with the implemented particle-particle inter-
actions and the applied cut-off approach, to reproduce the expected steady-state ensemble
energy of the hot ensemble, the results are compared to the ones of the EMC simula-
tions without the inclusion of the particle-particle interactions, as described in Section 3.1,
where the inelastic phonon scatter mechanisms are responsible for the cooling and which is
termed without FMM in the following. The results of this comparison with varying doping
levels of the simulated material and different applied time steps can be seen in Fig. 5.6. In
Figs. 5.6a and 5.6b one can see that for lower doped samples the evolution of the ensemble
energy in time for all applied ∆t is similar to the one without the application of real-space
particle-particle interactions. For higher doped samples, as shown in Figs. 5.6c and 5.6d,
a numerical heating can be seen for higher values of ∆t. This numerical heating is only
observed at higher doping levels, as with increasing amount of doping, the mean distance
between the particles decreases. As the average distance between carriers is reduced, the
effect of small movements of other particles on the force which is felt by one carrier is larger
and the error which is created due to the approximation of the force throughout one step
being constant is increased, as described in Section 3.3.2. Hence, the upper limit for the
selected ∆t in case real-space particle-particle interactions with the cut-off approach are
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applied, depends on the doping concentration which is considered. In these simulations, it
can be observed that for a doping of 1× 1013 cm−3 and 1× 1015 cm−3 a time step of 5 fs is
sufficient to avoid numerical heating. However, for a doping concentration of 1×1017 cm−3

a time step below 1 fs and for a doping level of 1 × 1018 cm−3 a time step ∆t below 0.05 fs
is essential, to obtain the expected steady-state ensemble energy.

(a) 1× 1013 cm−3. (b) 1× 1015 cm−3.

(c) 1× 1017 cm−3. (d) 1× 1018 cm−3.

Figure 5.6.: Cooling of a hot electron ensemble at different doping concentrations, using
200 electrons and ions for the averaging and 1 728 copies of every particle for
the calculation of Fc.

5.1.3. MOSFET

The developed library is subsequently applied for the simulation of the n-channel MOSFET-
structure which is sketched in Fig. 5.7 and whose implementation within the code is shown
in Listing 4.1. This device is chosen for the comparison of the results to CEMC, the C-based
code on which the developed library is based. As in CEMC, the NEC scheme is used for
the simulations and the included scatter mechanisms are acoustic intravalley, zero-th order
optical intervalley, and ionized impurity scattering. While the first two mechanisms have
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already been discussed for silicon, ionized impurity scattering approximates the interaction
between carriers and impurities, as mentioned in Section 3.3, and is included as an elastic
mechanism, whose rate is calculated using Eq. (3.24). Moreover, as in CEMC, only electrons
are used within these simulations. Additionally, all simulations in this chapter are per-
formed for a total simulation time of ts = 10ps using a time step of ∆t = 0.15 fs and a
selected transient time of 5 ps. Finally, for all simulations, the voltages at the source and
bulk contact, Vs and Vb, are set to 0V and the applied voltages at the gate and drain, Vg

and Vd, are varied between 0V and 1V.

x

y

50 nm 25 nm 50 nm

70 nm

30 nm

12 nm SiO2

n-doped
5 × 1019 cm−3

n-doped
5 × 1019 cm−3

p-doped
5 × 1017 cm−3

p-doped

5 × 1018 cm−3

Bulk

Source Drain

Gate

Figure 5.7.: Sketch of the geometry of the simulated MOSFET-structure.

At the beginning of the simulation the device is assumed to be in equilibrium, mean-
ing that all applied voltages are neglected and the carrier concentrations are assumed to
follow Eqs. (3.19) and (3.20) as discussed in Section 3.2.2. The resulting equilibrium po-
tential for the simulated MOSFET structure is shown in Fig. 5.8a, in which a potential
barrier between the source and the drain region can be seen, which hinders the carriers
from traveling from one region to the other. Based on the calculated equilibrium potential,
the particles are initialized using Eq. (3.19) for the determination of the initial number of
particles close to each discrete grid point. The resulting equilibrium particle concentration
which is calculated with the NEC scheme, is then shown in Fig. 5.8b. It can be seen that
initially all electrons are placed within the n-doped drain and source regions which span
from (0 nm, 0 nm) to (50 nm, 30 nm), and from (75 nm, 0 nm) to (125 nm, 30 nm), respec-
tively.

Once the particles are initialized, the device simulation workflow, as described in Fig. 3.5
can proceed, until all time steps, in which the particle location, the potential, and the elec-
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tric field are updated, are complete. For the calculation of the final electron concentration
and potential a time-average over all occurring concentrations and potentials within the
steady-state phase is applied, as described in Section 3.1.3. An exemplary result for the
final potential and electron concentration in case Vd = Vg = 1V can be seen in Fig. 5.9.
In Fig. 5.9a it can be seen that due to the applied voltages, the potential barrier between
the source and the drain region vanishes. Additionally, Fig. 5.9b shows that the electron
concentration between the source and the drain, between x = 50nm and x = 75nm, is
not zero anymore, indicating a particle flow between these regions, which is enabled and
controlled by the applied Vg and Vd. The effect of these applied voltages on the resulting
potential within the device and the current Id which is measured at the drain contact will
be analyzed in the following.

(a) Potential Distribution (b) Electron Concentration Distribution

Figure 5.8.: Equilibrium characteristics of the simulated silicon MOSFET.

(a) Potential Distribution (b) Electron Concentration Distribution

Figure 5.9.: Characteristics of the simulated silicon MOSFET with Vd = Vg = 1V .

To present the effect of an applied positive drain or gate voltage on the potential, the
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cross-section of the potential at y = 0nm, with various applied gate and drain voltages, is
provided in Fig. 5.10. Additionally, the cross-section of the potential is compared to the re-
sults of CEMC, which show a good agreement with the outcome of the newly developed tool.
Furthermore, Fig. 5.10a shows that a positive applied gate voltage Vg lowers the potential
barrier between the drain and the source contacts. Hence, Vg can be utilized to enable
and control the carrier flow. In case the potential barrier is lowered enough, a particle flow
between the source and drain is enabled; on the other hand, if the barrier is too high this
flow cannot occur. Moreover, in Fig. 5.10b one can see the effect of an increasing Vd on
the potential at y = 0, which also leads to a drain-induced barrier lowering. Varying this
parameter can then control the amount of described particle flow in case the barrier is low
enough so that flow is enabled.

(a) Effect of Vg. (b) Effect of Vd.

Figure 5.10.: Effect of applied potential at the gate and the drain on the potential cross-
section at y = 0nm; if not stated otherwise, Vg = Vd = 0V. Additionally,
results of the CEMC code are provided for comparison.

The final resulting current at the drain contact Id, which is calculated using Eq. (3.22),
for various applied voltages at the drain and gate contact between 0V and 1V, can be
seen in Fig. 5.11. Moreover, for the comparison of the developed tool and CEMC, also the
resulting drain current from simulations with CEMC is included and it can be seen that these
results are in good agreement with the ones simulated using the framework developed in
this thesis.
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(a) Id-Vd curves (b) Id-Vg curves

Figure 5.11.: Resulting I-V characteristics of the simulated MOSFET (lines and circles)
and comparison to the results of CEMC (crosses).

5.2. Monolayer Molybdenum Disulfide (ML-MoS2)

The second application of the developed library, which is used to demonstrate its capabil-
ity, is the simulation of monolayer molybdenum disulfide (ML-MoS2), a highly investigated
2D-material, which offers a theoretical direct band gap of 1.8 eV [54], a high on-off current
ratio of approximately 108, and can withstand high elastic deformations. Due to these, and
other beneficial properties of this material, it has gained traction in many fields including
sensing, opto-electronics, and biochemistry [55]. The two-dimensional structure of this ma-
terial in real- and k-space can be observed in Fig. 5.12. Additionally, Fig. 5.12b includes
selected symmetry points in the first Brillouin zone.

(a) Atomic structure (Created with Jmol
[56]).

Z

A
Γ

M

KQ

(b) First Brillouin zone with selected symmetry
points.

Figure 5.12.: Characteristics of ML-MoS2 in real- and k-space, including the armchair
(A) and zigzag (Z) directions.

Due to advances in ab-initio calculations, especially using density functional theory
(DFT), and gaps in experimental research on new materials, the band structure of ML-
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MoS2 is mostly calculated with simulations from first principles [57]. This calculated band
structure can then be approximated and used as a basis for the transport simulations of
ML-MoS2, as sketched in Fig. 5.13. However, problems may arise due to variations in the
resulting band structure and the thereby varying resulting transport characteristics of the
material, in case different approximations (’flavors’) are applied for the ab-initio (DFT)
calculations [57]. Within this thesis one characteristic of the band structure of ML-MoS2,
which highly depends on the selected ’flavor’ of the ab-initio calculation, is selected and the
effect of its variation on the resulting transport characteristics is evaluated. More precisely,
this selected parameter is the energy difference ∆EQK between the two conduction band
minima at the K- and Q-points of the Brillouin zone, which is also sketched in Fig. 5.13.
In the available literature, values between 60meV and 300meV can be found for this par-
ticular value [4].

Figure 5.13.: Workflow for multi-valley Ensemble Monte Carlo simulation of electrons in
ML-MoS2.

While the value of ∆EQK is varied within the values found in the literature, for the
other parameters, which are required for the approximation of the band structure, fixed
and established values, taken from Pilotto et al. [4], are applied. In general, only the
minima around the K- and Q-points of the first Brillouin zone contribute to the electron
transport and are approximated with the analytical band approach within this thesis. The
constant-energy surfaces, positions, and orientations of the approximated valleys around
these minima can be seen in Fig. 5.14. Moreover, the parameters used for the analytical
band structure of ML-MoS2 are shown in Table 5.2.

Valley ml [m0] mt [m0] α [eV −1]

K 0.47 0.47 0.94
Q 1.14 0.54 1.16

Table 5.2.: Parameters of approximated ML-MoS2 valleys, taken from [4].

The scatter mechanisms, which are required for the simulation of ML-MoS2, are inter-
and intravalley scattering with acoustic and optical phonons. While acoustic intravalley
scattering is calculated with the formula given in Eq. (2.20), the rates for the other mecha-
nisms are given by Eq. (2.21). Furthermore, for the calculation of the scattering rates, half
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Z

A

K

Q

Figure 5.14.: K- and Q-valleys and their constant energy surfaces.

of the density of states for this two-dimensional material is required, which is given by [2]

N2D(E) =
md

2πℏ2
· (1 + 2αE) (5.3)

in case the non-parabolic approximation of the band structure described in Section 2.1.1 is
applied. Finally, the parameters for the scattering mechanisms given in Li et al. [5], which
are described in more detail in Section B.2, are used. The total scatter rates, which are the
sums of the rates of all included mechanisms, for the K- and Q-valleys in ML-MoS2 with
varying values of ∆EQK , can be seen in Fig. 5.15. Figure 5.15a shows that the total scatter
rate in the K-valleys decreases with increasing ∆EQK . The reason for this decrease is that
for intervalley scattering mechanisms between the K- and Q-valleys, the final energy Ef

of particles after the scatter event, given in Eq. (2.22), depends on the valley energy sepa-
ration. Due to the condition that Ef has to be non-zero, which is ensured by the Heaviside
function in Eq. (2.21), the onset energy of scattering from K- to Q-valleys shifts to higher
values for increasing ∆EQK , thereby decreasing the resulting total scatter rates. For the
total scatter rate of the Q-valleys, shown in Fig. 5.15b, an increase in the scattering rates
with increasing ∆EQK can be observed. Again, the reason for this is the dependence of the
final energy of the particles which scatter from the Q- to the K-valleys, which increases
with increasing ∆EQK .

5.2.1. Bulk Simulation

In this section, the effect of variations in ∆EQK on the resulting bulk transport character-
istics in ML-MoS2 is analyzed with the application of the Basic Bulk Particle Handler. For
this, multiple simulations of this 2D material are performed with varying ∆EQK between
60meV and 300meV. In all simulations approximately 20 000 electrons are initialized
within the K-valleys. Additionally, their initial energy is determined using Eq. (3.1) and
their wave-vector is initialized in a random direction within this 2D film, whereby the third
dimension is discarded. Once all particles are initialized, their response to applied electric
fields of varying strengths between 0 kV/cm and 400 kV/cm in the armchair (A) direction
of the film, which is shown in Fig. 5.12, is tested.
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(a) K-valleys (b) Q-valleys

Figure 5.15.: Total scatter rates in ML-MoS2 with varying energy separation ∆EQK .

First, the mean K-valley population with different applied electric fields and varying
∆EQK is shown in Fig. 5.16. It can be seen that for all values of ∆EQK the K-valley
population decreases with increasing applied field strength. Due to the increasing field
strength, more carriers are able to reach high enough energies to scatter into the higher
energy Q-valleys. Additionally, the results show that with increasing energy separation of
the valleys, the population of the K-valley also increases. This is expected as with growing
∆EQK the energy onset of intervalley scattering from the K- to the Q-valleys increases, as
shown in Fig. 5.15a. This effectively means that the electrons need to be accelerated more
to be able to scatter into higher valleys. In addition to the findings of this work, Fig. 5.16
provides the results from Pilotto et al. [4], which assume a ∆EQK of 160meV and are in
excellent agreement with our results.

Figure 5.16.: K-valley occupation of ML-MoS2 vs. applied electric field for varying
∆EQK and comparison to the findings of Pilotto et al. [4] (dotted line).
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Subsequently, the mobility due to varying ∆EQK is provided in Fig. 5.17, where it can
be observed that the resulting values vary between 100 cm2/(Vs) and 300 cm2/(Vs). At low
valley separation energies, the mobility grows with increasing ∆EQK . The reason for this
increase is that with increasing valley separation energy, the onset energy for the scattering
into the higher valleys also grows. Hence, a reduction of the importance and consequently
of the limitation on the mobility of those scatter mechanisms at low fields is obtained.
However, once ∆EQK is sufficiently large, electrons at low-fields are not able to reach the
onset energy for scattering into the Q-valleys. This leads to a mobility which is independent
of the investigated property ∆EQK as the mobility is then only limited by the intra- and
inter-valley scattering in the K-valleys. This behavior can be observed in Fig. 5.17, for
cases when ∆EQK is larger than 160meV.

Figure 5.17.: Impact of varying ∆EQK on the mobility of ML-MoS2.

For stronger applied electric fields, Fig. 5.18 shows that the high-field drift-velocity
slightly decreases with increasing ∆EQK . Moreover, for higher values of the valley sep-
aration energy the Gunn Effect [58], including the typical negative differential mobility,
can be observed. This effect occurs in multi-valley semiconductors with lower and higher
energy valleys, where the later ones also have higher effective masses [59], as is the case for
ML-MoS2. This effect is not observable for simulations with lower values of ∆EQK since,
in those cases, a significant percentage of the electrons already populate the Q-valleys at
zero-field, as can be seen in Fig. 5.16. In addition to the findings of this work, Fig. 5.18
also includes the results of Pilotto et al. [4] and Li et al. [5], which assume ∆EQK to be
70meV and 160meV, respectively, showing excellent agreement with our results.
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Figure 5.18.: Drift velocity vs. electric field with different ∆EQK and comparison to
findings of Pilotto et al. [4] and Li et al. [5] (dotted lines).
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In the scope of this thesis an EMC simulation framework for various materials and devices
was developed. The background and the general structure of this tool was explained and
some sample applications of the developed library were presented.

The first presented application of this tool was the simulation of bulk silicon. For that,
the response of electrons in silicon to electric fields of various strengths and directions at
different temperatures was tested and compared to experimental results. It was shown that
both the temperature-dependency and the anisotropy of the ensemble electron drift veloc-
ity within the material can be replicated with the developed simulation tool. For future
applications, it should be noted that bulk simulations for various materials can be per-
formed within this library. To apply the developed tool for the analysis of a new material,
only the required material constants, the corresponding valleys, and the essential scatter-
ing mechanisms have to be introduced, which are typically obtained using DFT simulations.

Subsequently, real-space particle-particle interactions, calculated with the help of the
FMM, as presented in Section 3.3.2, were included to the simulation of bulk silicon. Only
initial tests which analyze the stability and reliability of this algorithm were performed, in
which the cooling of an ensemble of electrons and ions at 3 000K was observed by mon-
itoring the evolution of the ensemble average of the electron energy. First, the resulting
cooling behavior with and without the cut-off approach was compared. In case the cut-off
approach was not used instead of the expected decrease of the ensemble energy with time,
an increase in the ensemble energy for all tested discretized time steps ∆t was observed.
These observations suggest that using very long time steps may lead to instabilities and
numerical heating. On the other hand, in case the cut-off approach was used, numerical
instabilities and numerical heating were still observed, but a decrease in the discretized
time step led to a decrease of these instabilities. This allowed for the evaluation of the
upper limits of ∆t which lead to the same resulting steady-state ensemble energy as the
simulation which does not include the real-space particle-particle interactions. While, for
the tests with bulks of silicon with a doping level of 1 × 1013 cm−3 and 1× 1015 cm−3, the
expected steady-state energy could be reached already with ∆t = 5 fs, the limit for ∆t
decreases with increasing doping concentration. It was observed that for a doping concen-
tration of 1 × 1017 cm−3 a time step below 1 fs and for a concentration of 1 × 1018 cm−3 a
step below 0.05 fs is crucial to avoid this numerical artifact. The next steps for the inclusion
of the real-space particle-particle interactions into the EMC workflow could be to perform
further tests of this approach in bulk simulations with various applied electric fields in order
to observe the effect of the inclusion of c-c and c-i interactions on the resulting ensemble
drift velocity and energy and the extension of this approach towards device simulations.
As already mentioned, to obtain the background force for device simulations, an adapted
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Poisson equation has to be solved, in which the effect of the particles needs to be discarded.
For this extension, the tests within the scope of this thesis indicate that the choice of ∆t
within device simulations will likely be limited by the doping concentration in the highest
doped region of the device.

After simulations with bulk silicon, simulations of a MOSFET device were performed,
while the results were compared to the ones of the established tool CEMC, on which the de-
veloped library is based. Within this comparison, it was shown that the effect of different
applied voltages at the drain and gate contact on the potential and drain current which
is observed within CEMC, can be reproduced with the developed tool. Furthermore, while
CEMC is written for the exclusive simulation of MOSFETs, the benefit of the newly devel-
oped tool is the generic definition of devices, whose idea is to enable the simulation of a
broad range of materials and devices. Hence, the next steps for classical device simulations
with the help of the developed tool could be simulations of other types of devices of in-
terest, such as resistors or diodes, or the simulation of MOSFETs built from other materials.

Finally, the developed library was used to investigate monolayer molybdenum disulfide
(ML-MoS2). The band structure of this material is mostly obtained from ab-initio calcula-
tion. Problems often arise due to changes in the resulting band structure in case different
approximations are used for the simulations from first principles and the thereby changing
transport characteristics of this film. In the scope of this thesis the effect of changes in
the energy difference ∆EQK between K- and Q-valleys, which can vary between 60meV
and 300meV when different ab-initio approximations are used, on the resulting carrier
transport characteristics was analyzed. It has been shown that the theoretical electron
mobility within the material varies between 100 cm2/(Vs) and 300 cm2/(Vs), when varying
∆EQK within the values found in the literature while using established values for the other
parameters. Additionally, it was shown that the relationship between the drift velocity and
the electric field can vary highly, with the Gunn Effect only being observable for higher
valley separation energies. The aim of this application was two-fold: First, it should show
that the developed library can be applied to materials which differ from silicon and which
are currently heavily investigated. Second, this study also shows that the impact of the
Q-valleys in ML-MoS2 should be studied in more detail and, even though this material
is investigated heavily, further investigations are necessary to obtain a physically realistic
picture for the description of this material.
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P3M particle-particle particle-mesh. 26

2D two-dimensional. 3, 14, 24, 30, 31, 37, 38, 48, 50

3D three-dimensional. 3, 14, 30, 39

BTE Boltzmann transport equation. 5, 6, 13

c-c carrier-carrier. 25, 26, 28, 54

c-i carrier-impurity. 25, 26, 28, 54

CIC Cloud-In-Cell. 24

DFT density functional theory. 48, 49, 54

ECS ellipse coordinate system. 9, 10

EMC ensemble Monte Carlo. 3, 4, 10, 13–29, 36, 38, 43, 49, 54

FMM fast multipole method. 3, 26–29, 33, 36, 38, 42, 54

GaAs gallium arsenide. 7, 8, 38

ML-MoS2 monolayer molybdenum disulfide. 48–52, 55, 66–68

MoS2 molybdenum disulfide. 4, 38

MOSFET metal-oxide-semiconductor field-effect transistor. 3, 4, 31, 32, 44–46, 48, 55

NEC Nearest-Element-Center. 24, 44, 45

NGP Nearest-Grid-Point. 24

PM-Scheme Particle-Mesh Scheme. 23, 24, 29, 30, 36

SCS simulation coordinate system. 10

Si silicon. 38, 66

SOR Successive-Over-Relaxation. 23, 33, 65
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orous systems: Confined fluids in equilibrium and diffusion in zeolites,” in Handbook
of Surfaces and Interfaces of Materials. Academic Press, 2001, pp. 357–443. ISBN
978-0-12-513910-6

[41] R. Kircher and W. Bergner, Three-Dimensional Simulation of Semiconductor Devices.
Springer-Verlag, 2013. ISBN 978-3-034-87731-2

[42] A. Schenk, Advanced Physical Models for Silicon Device Simulation. Springer Science
Business Media, 1998. ISBN 978-3-211-83052-9

[43] C. Wordelman and U. Ravaioli, “Integration of a particle-particle-particle-mesh al-
gorithm with the ensemble Monte Carlo method for the simulation of ultra-small
semiconductor devices,” IEEE Transactions on Electron Devices, vol. 47, no. 2, pp.
410–416, 2000, doi: https://doi.org/10.1109/16.822288.

[44] W. Gross, D. Vasileska, and D. Ferry, “A novel approach for introducing
the electron-electron and electron-impurity interactions in particle-based simula-
tions,” IEEE Electron Device Letters, vol. 20, no. 9, pp. 463–465, 1999, doi:
https://doi.org/10.1109/55.784453.

[45] S. Tyaginov, M. Bina, J. Franco, Y. Wimmer, B. Kaczer, and T. Grasser,
“On the importance of electron–electron scattering for hot-carrier degrada-
tion,” Japanese Journal of Applied Physics, vol. 54, p. 04DC18, 2015, doi:
https://doi.org/10.7567/JJAP.54.04DC18.

[46] W. J. Gross, D. Vasileska, and D. Ferry, “3D Simulations of Ultra-small MOSFETs
with Real-space Treatment of the Electron–Electron and Electron-ion Interactions,”
VLSI Design, vol. 10, 2000, doi: https://doi.org/10.1155/2000/48474.

[47] D. Vasileska, W. J. Gross, and D. K. Ferry, “Monte Carlo particle-based simulations
of deep-submicron n-MOSFETs with real-space treatment of electron-impurity inter-
actions,” Superlattices and Microstructures, vol. 27, no. 2, pp. 147–157, 2000, doi:
https://doi.org/10.1006/spmi.1999.0806.

[48] C. Heitzinger, C. Ringhofer, S. Ahmed, and D. Vasileska, “Efficient sim-
ulation of the full Coulomb interaction in three dimensions,” 2004, doi:
https://doi.org/10.1109/IWCE.2004.1407300. pp. 24 – 25.

60

http://dx.doi.org/https://doi.org/10.1109/16.822288
http://dx.doi.org/https://doi.org/10.1109/55.784453
http://dx.doi.org/https://doi.org/10.7567/JJAP.54.04DC18
http://dx.doi.org/https://doi.org/10.1155/2000/48474
http://dx.doi.org/https://doi.org/10.1006/spmi.1999.0806
http://dx.doi.org/https://doi.org/10.1109/IWCE.2004.1407300


BIBLIOGRAPHY

[49] H. Khan, D. Vasileska, S. Ahmed, C. Ringhofer, and C. Heitzinger, “Modeling of
FinFET: 3D MC Simulation Using FMM and Unintentional Doping Effects on Device
Operation,” Journal of Computational Electronics, vol. 3, pp. 337–340, 2004, doi:
https://doi.org/10.1007/s10825-004-7072-7.

[50] C. Heitzinger, C. Ringhofer, S. Ahmed, and D. Vasileska, “Accurate Three-
Dimensional Simulation of Electron Mobility Including Electron-Electron and
Electron-Dopant Interactions,” 2005.

[51] R. K. Beatson and L. Greengard, “A short course on fast multipole methods,” 1997.

[52] P. Blanchard, “Fast hierarchical algorithms for the low-rank approximation of ma-
trices, with applications to materials physics, geostatistics and data analysis,” Ph.D.
dissertation, Université de Bordeaux, 2017.
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A. Solution of the Poisson Equation

This section presents the solution of the Poisson equation which is utilized within the scope
of this thesis.

A.1. Domain Partitioning

As mentioned in Section 3.2.1, the partitioning of the simulation space is performed with a
uniform mesh which uses spacing h = (hx, hy, hz) between the grid points. In this mesh, a
grid point is identified with its coordinates c = (i, j, k). Additionally, due to this partition
all characteristics of the device are known only on the discrete grid points and not in the
continuous space.

A.2. Discrete Approximation

The continuous Poisson equation is given in Eq. (1.2) and repeated, with the additional
assumption of a constant dielectric constant ϵ, in the following:

∆Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
=

q · (n− p+NA −ND)

ϵ
. (A.1)

As already mentioned for Eq. (1.2), n represents the electron concentration, p the hole con-
centration, and ND and NA are the concentrations of positively- and negatively-charged
impurities in the simulated device, respectively [9]. Due to the knowledge of all charac-
teristics of the device only at the discrete grid points, the Laplace operator, required for
the Poisson equation, must be approximated. For this reason, the second order central
difference can be applied for the approximation of each second order derivative. In the
following, this approximation is shown for the derivative in the x-direction at coordinate
(i, j, k) [38]

∂2Φijk

∂x2
≈ Φi+1jk +Φi−1jk − 2Φijk

h2x
, (A.2)

where hx is the spacing of the mesh in the corresponding direction. Applying Eq. (A.2) for
all second order derivatives, then leads to

∆Φijk :=
Φi+1jk +Φi−1jk − 2Φijk

h2x
+

Φij+1k +Φij−1k − 2Φijk

h2y
+

Φijk+1 +Φijk−1 − 2Φijk

h2z
. (A.3)
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A. Solution of the Poisson Equation

The resulting discrete approximation of the Poisson equation at coordinate c = (i, j, k) is
then given by

∆Φijk ≈ q(nijk − pijk +NA
ijk −ND

ijk)

ϵijk
, (A.4)

where each characteristic only has to be evaluated at the discrete points of the given uniform
mesh.

A.2.1. Normalization

To avoid numerical under- and overflow and to increase the efficiency of the algorithm, the
variables in the Poisson equation are scaled [2]. For the potential, the thermal voltage VT =
kbT
q , for length the intrinsic Debye length LD =

√
ϵVT
qni

, and for the carrier concentration

the intrinsic carrier concentration ni are used as scaling factors [2]. In the following all
normalized characteristics will be marked with a tilde, which then leads to the following
normalized and approximated equation

∆Φ̃ijk :=
Φ̃i+1jk + Φ̃i−1jk − 2Φ̃ijk

h̃2x
+

Φ̃ij+1k + Φ̃ij−1k − 2Φ̃ijk

h̃2y
+

Φ̃ijk+1 + Φ̃ijk−1 − 2Φ̃ijk

h̃2z

≈ ñijk − p̃ijk + ÑA
ijk − ÑD

ijk . (A.5)

A.3. Solution of the Discrete Approximation

In this thesis an iterative solver is used to solve the approximation of the Poisson equation.
The idea of this approach is to start with an initial guess for the potential Φ̃0 and update
this solution step by step with a given update equation until a specific tolerance is met
[38].

A.3.1. Linearization

Due to the dependence of the electron and hole concentrations, n and p, respectively, on the
potential, the Poisson equation is not linear. To make this equation linear, it is assumed
that for small changes δ in the potential the concentrations can be approximated with [2]

n(Φ + δ) ≈ n(Φ)

(
1 +

δ

VT

)
and (A.6)

p(Φ + δ) ≈ p(Φ)

(
1− δ

VT

)
, (A.7)

where VT is the thermal voltage. This approximation is based on the equilibrium behavior
of the concentrations, shown in Eqs. (3.19) and (3.20).

64



A. Solution of the Poisson Equation

A.3.2. Update of the Potential

The basis of the update equation which enables the calculation of the potential of the next
step, for which Φ̃t+1

ijk = Φ̃t
ijk + δ̃ijk is assumed, can be derived from the combination of

Eqs. (A.5) to (A.7), given by

∆Φ̃∗
ijk ≈ ÑA

ijk − ÑD
ijk + ñijk(1 + (Φ̃t+1

ijk − Φ̃t
ijk))− p̃ijk(1− (Φ̃t+1

ijk − Φ̃t
ijk)) . (A.8)

The final update formula for the calculation of Φ̃t+1
ijk can then be obtained by rearranging all

occurring terms. Additionally, in this formula ∆Φ̃∗
ijk represents the discrete approximation

of the Laplace operator which requires the evaluation of the potential on the neighboring
discrete mesh points for its calculation. The approach for the evaluation of the potential on
the neighboring points depends on the applied method [38]: First, for the Jacobi method,
the neighboring values are all taken from the last fully completed step t. Second, for the
Gauss-Seidl method, each updated value is used immediately. This means that, in case a
neighbor of the current point has already been updated in step t + 1, the newest value of
the potential at that point is already used for the update of the current point. Finally, the
Successive-Over-Relaxation (SOR) method uses the resulting potential Φ̃GS

ijk from one step
of the Gauss-Seidl method for the calculation of the potential of the next step using

Φ̃t+1
ijk = ωΦ̃GS

ijk + (1− ω)Φ̃t
ijk , (A.9)

where ω is a selected value between 1 and 2 [2]. Within the scope of this thesis, the SOR
method is applied.
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B. Simulation Parameters

This section presents the parameters which were used for the simulation of silicon and
ML-MoS2.

B.1. Silicon (Si)

The applied simulation parameter for silicon include its dielectric constant ϵ = 11.8 ϵ0, its
density ρ = 2329 kg/m3, and its velocity of sound vs = 9040m/s. Additionally, the param-
eters for the approximation of the used valley, with the six equivalent subvalleys, is given
in Table 5.1.

Acoustic intravalley scattering, optical zero-th and first order intervalley scattering are
the included scatter mechanisms for this material. For acoustic intravalley scattering a
deformation potential of Ξ = 9 eV is used. For intervalley scattering two types, f - and
g-type, are distinguished, as described in Section 5.1. Moreover, all subvalleys have the
same energy at the minimum, meaning that ∆Efi = 0 and the number of final valleys to
scatter into Zf for g-type scattering is 1 and for f -type is 4. The supplementary applied
values for silicon intervalley optical scattering are shown in Table B.1 and are taken from
Vasileska et al. [2].

Parameter Value

D0
f 5.23× 1010 eV/m

D0
g 5.23× 1010 eV/m

ℏω0
f 60meV

ℏω0
g 60meV

D1
f 2.5 eV

D1
g 4 eV

ℏω1
f 23meV

ℏω1
g 18meV

Table B.1.: Parameters for intervalley optical scattering in silicon, taken from Vasileska
et al. [2].
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B.2. Monolayer Molybdenum Disulfide (ML-MoS2)

In this section the material parameters applied for the simulation of ML-MoS2 are pro-
vided. First, a density ρ = 3.1× 10−7 g/cm2 and a sound velocity of vs = 6.6× 103m/s are
applied [5]. Additionally, the parameters for the valleys are presented in Table 5.2 and are
established values taken from Pilotto et al. [4].

Acoustic intravalley scattering and optical and acoustic intervalley scattering are included
in the simulations. While a sketch of the possible intervalley scattering events out of a K-
and Q-valley and the involved phonon are sketched in Fig. B.1, the parameters used for
the calculation of the corresponding scatter rates can be found in Table B.3. Additionally,
the energies of the phonons, which are involved in the scattering, are shown in Table B.2.

K’

K’

K’Q

Q

Q

Q’

Q’Q’

(a) (b)

Q1

Q4 K

Q2

Q6

K’

Q3

Q5

Q

M

K

Figure B.1.: Intervalley scatter mechanisms out of (a) K- and (b) Q-valleys and sketch
of the corresponding phonon momenta (color).

Phonon mode Γ K M Q

acoustic [meV] 0 26.1 24.2 20.7
optical [meV] 49.5 46.8 47.5 48.1

Table B.2.: Phonon energies at symmetry points in ML-MoS2, taken from [5, 6].
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B. Simulation Parameters

Phonon momentum Electron transition Deformation Potential

Γ K → K Ξ = 4.5 eV
Dop = 5.8× 108 eV/cm

K K → K′ Dac = 1.4× 108 eV/cm
Dop = 2.0× 108 eV/cm

Q K → Q Dac = 9.3× 107 eV/cm
Dop = 1.9× 108 eV/cm

M K → Q′ Dac = 4.4× 108 eV/cm
Dop = 5.6× 108 eV/cm

Γ Q1 → Q1 Ξ = 2.8 eV
Dop = 7.1× 108 eV/cm

Q Q1 → Q2 or Q6 Dac = 2.1× 108 eV/cm
Dop = 4.8× 108 eV/cm

M Q1 → Q3 or Q5 Dac = 2.0× 108 eV/cm
Dop = 4.0× 108 eV/cm

K Q1 → Q4 Dac = 4.8× 108 eV/cm
Dop = 6.5× 108 eV/cm

Q Q1 → K Dac = 1.5× 108 eV/cm
Dop = 2.4× 108 eV/cm

M Q1 → K′ Dac = 4.4× 108 eV/cm
Dop = 6.6× 108 eV/cm

Table B.3.: Parameters used for scatter mechanisms of ML-MoS2, taken from [5, 6]. Ad-
ditionally, intervalley scattering is visualized in Fig. B.1 and the phonon mo-
menta are given in Table B.2.
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