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Abstract

Density Functional Theory (DFT) is a well-established method for investigating and mod-
eling the electronic properties of many-body systems. In this thesis, DFT is employed to
analyze various possible structures of Metal-Organic Frameworks (MOFs) based on nickel
ions and terephthalic acid linkers. Additionally, it is used to model the effect of strain on
the band gap of a molybdenum disulfide (MoS2) monolayer by applying a biaxial strain
in the range of –0.5 % to 0.5 %. The resulting band structures are used to determine the
effective masses of electrons at the conduction band minima, which provide insights into the
influence of strain on intrinsic carrier transport using an Ensemble Monte Carlo approach.
Furthermore, the results obtained with different pseudopotentials and exchange-correlation
functionals are compared.

Structure optimization calculations for the MOFs systematically showed that compared
to the initial structures the complex bonds of the Ni ions were predicted to be tighter
and the repulsive forces between the organic linkers to be stronger. This indicates that
different types of interactions, especially long-range interactions have not been accounted
for accurately. The overall approach proved to be impractical and therefore unsuitable for
further explorations.

In the case of MoS2, it is demonstrated that across all DFT variants, a decrease of mobility
for compressive strain is consistently predicted. This can be attributed to the fact that
strain induces changes in the conductive band of monolayer MoS2 in such a way that
narrows the gap between two conduction band minima. The smaller energy difference
between the conduction band minima induces higher scattering between these two bands,
reducing the overall charge carrier mobility. Conversely, tensile strain consistently led to
enhanced mobility.



Kurzfassung

Dichtefunktionaltheorie (DFT) ist eine etablierte Methode zur Untersuchung und Model-
lierung der elektronischen Eigenschaften von Mehrteilchensystemen. In dieser Arbeit wird
DFT verwendet, um verschiedene mögliche Strukturen von Metallorganischen Gerüstver-
bindungen (englisch Metal-Organic Frameworks, MOFs) auf der Basis von Nickelionen und
Terephthalsäure-Verbindungselementen zu analysieren. Zusätzlich wird DFT verwendet,
um den Effekt von Deformation auf die Bandlücke einer einzelnen Lage Molybdändisulfid
(MoS2) zu modellieren, indem eine Deformation im Bereich von -0,5 % bis 0,5 % angewen-
det wird. Die resultierenden Bandstrukturen werden verwendet, um die effektiven Massen
der Elektronen am Minimum des Leitungsbandes zu bestimmen, was Einblicke in den
Einfluss der Deformation auf den intrinsischen Ladungstransport unter Verwendung eines
Ensemble-Monte-Carlo-Ansatzes bietet. Darüber hinaus werden die Ergebnisse, die mit
verschiedenen Pseudopotentialen und Austausch-Korrelationsfunktionen erhalten wurden,
verglichen.

Berechnungen zur Strukturoptimierung der MOFs zeigten systematisch, dass im Vergleich
zu den Ausgangsstrukturen die koordinativen Bindungen der Ni-Ionen enger und die ab-
stoßenden Kräfte zwischen den organischen Verbindungselementen als stärker vorhergesagt
wurden. Dies deutet darauf hin, dass bestimmte Arten von Wechselwirkungen, insbe-
sondere Wechselwirkungen auf lange Reichweite, nicht genau berücksichtigt wurden. Der
gesamte Berechnungsansatz erwies sich als unpraktisch und daher ungeeignet für weitere
Untersuchungen.

Im Fall von MoS2 wird gezeigt, dass über alle DFT-Varianten hinweg konsistent eine Ab-
nahme der Beweglichkeit bei kompressiver Dehnung vorhergesagt wird. Dies kann auf
höhere Streuungsraten aufgrund kleinerer Energieunterschiede zwischen den Minima des
Leitungsbandes zurückgeführt werden. Im Gegensatz dazu führte eine einheitliche Zugdeh-
nung stets zu einer erhöhten Ladungsträgerbeweglichkeit.
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1 Introduction

In the modern world, sensors are omnipresent. Whether the goal is the detection of tem-
perature, moisture, pressure, applied strain, or the presence of a specific kind of chemical
agent, the applied sensors, like all microelectronic devices, aim to be smaller, more efficient,
and cheaper. This necessitates exploring new materials. In this thesis, two different classes
of materials are studied and discussed.

The first one is represented by a compound consisting of nickel ions and terephthalic acid
linkers, exemplifying the very versatile group of Metal-Organic Frameworks (MOFs). This
class of materials consists of highly ordered crystalline coordination polymers with high,
designable porosity and large surface areas. These characteristics result in a high density
of active sites that can, for example, be utilized in catalytic activity. Furthermore, the
application of MOFs in various sensing scenarios has been demonstrated, including the
detection of heavy metals, organic pollutants, and gases [1].

The second class uses the highly investigated two-dimensional (2D) material molybdenum
disulfide (MoS2) to showcase 2D transition metal dichalcogenides (TMDs). While 2D
materials have demonstrated great potential in various applications, including sensing,
their inherent thinness renders them susceptible to environmental factors, particularly their
substrate. To limit these influences suspended 2D materials are researched. Their thinness,
high conductivity, and strength have already been shown to be beneficial to their application
as thermal, optical, pressure, bio, and chemical sensors [2]. Suspended 2D materials also
show mechanical characteristics which make them interesting for strain measurements as
the influence of substrate-induced strain is minimized. In this thesis, the influence of strain
on a suspended MoS2 monolayer is investigated theoretically.

With growing computational resources, Density Functional Theory (DFT) has established
itself as a central means to investigate the electronic structure of many-body systems in con-
densed matter physics, material sciences, and many other fields. It enables the exploration
of hypothetical materials which have not been synthesized yet. Additionally, it serves as
a valuable complement to experiments by providing insights into underlying mechanisms.
Moreover, DFT makes the efficient screening of promising structures possible, helping to
identify candidates worthy of further exploration.
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1 Introduction

1.1 Aim of Thesis

The aim of this thesis is to apply Density Functional Theory (DFT) together with the Quan-
tum ESPRESSO (QE) open-source software and the CP2K software package to investigate
the potential of the two materials for different sensing applications, while also investigat-
ing the limitations of these atomistic methods in predicting certain material properties.
Different MOF structures are investigated for their optimized geometry and the electronic
structure of the MoS2 monolayer under strain was calculated in order to gain insights into
its impact on the carrier mobility. Furthermore, different DFT setups, or ”flavors” were
used, employing different exchange-correlation functionals and pseudopotentials in order to
investigate how the initial choices made for the calculation method influence the results of
the ab initio calculation. In summary, the principal goal was to explore the possibilities and
predictive capabilities of DFT in relation to potential sensor materials, while also assessing
computational and methodological limitations.

1.2 Outline of Thesis

This thesis is structured as follows: The Theory section begins with a comprehensive
discussion of both materials, Metal-Organic Frameworks (MOFs) and monolayer MoS2,
focusing on their potential applications as future sensoring solutions. Additionally, a short
overview of Density Functional Theory (DFT) is provided. The Theory section also includes
a description of the Ensemble Monte Carlo (EMC) codes which are employed, elaborating
on their internal band representation and detailing the calculation of the carrier mobility.
In the subsequent Implementation section, the applied computational methods will be
described, followed by a step-by-step workflow for the mobility calculation, as well as the
procedure for extracting effective masses. Finally, in the Results and Discussion section,
the findings of this research will be presented, the insights summarized, and the limitations
of the methods discussed.
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2 Theory

2.1 Materials

2.1.1 Metal-Organic Frameworks

Metal-Organic Frameworks (MOFs) are a class of highly porous materials constructed by
organic linkers and metal nodes. The large variety in the choice of linkers and nodes allows
for a high tunability of structure, pore size, and functionality. MOFs have been investi-
gated for a wide range of applications such as gas storage [3], separation [4], heterogeneous
catalysis [5], and chemical sensing [6].

Structure

MOFs are constructed by joining metal ions or clusters, also referred to as secondary build-
ing units (SBU), with organic linkers. By choosing specific organic ligands and using the
geometry of the SBUs, the pore size and functionality of the MOFs can theoretically be de-
signed for an intended application. Very small pores are possible, which only accommodate
gases like N2 or CO2, while larger ones are also possible, which can hold entire proteins
[7]. Multiple functional guests, such as metal atoms, metal complexes, dyes, polymers,
and small enzymes can be added to these pores, making even more applications possible
[8] [9]. Post-synthetic modifications of MOFs allow for additional functional groups. One
challenge faced by MOFs is the often poor stability concerning solvents, heat, or mechani-
cal stress. Water, for example, tends to replace the organic linkers, thereby degrading the
MOFs [10]. For applications at higher temperatures, heat stability is essential; this mainly
depends on the strength of the bond between node and linkers. Although the porosity and
the high surface area of the MOFs are its defining favorable features, they are also its weak
points when it comes to mechanical stability. This is a critical factor concerning a MOF’s
suitability for real-world applications, since it depends on how durable it is, especially when
subjected to a mechanical load. On another note, there are also considerations of using
this susceptibility to pressure for post-synthetic modifications and to control the MOF’s
functionality [11].

Ab Initio Studies of MOFs

Due to its composition, the simulation of MOFs can be approached from both a molecular
or a material angle. When treated as a bulk solid, applying periodic boundary conditions,
the electronic structure can be predicted. Approaching the MOF as an individual molecule
enables the utilization of a diverse range of less computationally expensive tools to explore
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2 Theory

chemical properties, such as reaction transition states. The accuracy of modeling certain
properties largely depends on the chosen functional and basis set. To validate the model’s
performance, it is essential to compare the results with experimental data or higher-level
computational calculations. While the choice of functional depends on the specific MOF,
hybrid-GGA methods are widely considered the minimum required level of theory to de-
scribe the electronic structure of systems where exchange and correlation play a significant
role. Additionally, it is possible to introduce correction terms to account for physical phe-
nomena which are insufficiently described with standard density functional theory (DFT)
methods. Most common functionals fail to correctly describe van der Waals interactions
for which correctional terms may be added [12]. It might also be reasonable to include
a Hubbard U correction to account for erroneous self-interaction of electrons. These cor-
rections should be approached with caution, as the introduced empirical factors have the
potential to cause overfitting.[13]

Application as a Sensor

As previously discussed, MOFs are highly tunable, include a wide range of materials, can
have multiple functional groups, and can be easily modified. Unsurprisingly, the potential
of applying MOFs as sensors is as versatile as the material class itself. For example, lumi-
nescent MOFs have been successfully employed to detect specific compounds, for example,
nitroaromatic explosives [14], and can also serve as temperature sensors [15]. Functional-
ized MOFs can be used for biosensing [16], as chemiresistive gas sensors [17], and to detect
pH [18]. The tunable pore size also allows for size-selective sensors by using the MOF pores
for sieving [19].

2.1.2 Molybdenum disulfide (MoS2)

Molybdenum disulfide (MoS2) belongs to a group of 2D layered materials called transition
metal dichalcogenides (TMDs). These layers are held together by weak Van-der-Waals
forces. The fact that individual monolayers are held by weak forces means that methods
like micromechanical exfoliation, where sticky tape is used to peel away layers, or liquid
phase exfoliation, can be used to generate single layers of MoS2 [20]. The MoS2 monolayers
show different properties compared to bulk. Notably, the monolayer has a direct band gap
of about 1.8 eV compared to the indirect 1 eV band gap of the bulk material [21], which is
one of the properties which make the material highly interesting for a range of electronic
applications. The graphene-like structure can be seen in the top view of the monolayer,
shown in Fig. 2.1, where the molybdenum atoms are gray and the sulfur atoms are yellow.
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2 Theory

Figure 2.1: Top and side views of monolayer MoS2 showing its Armchair (A) and Zigzag
(Z) directions, visualized with XCrySDen [22].

Application as a Sensor

MoS2 shows a high specific surface area and great potential for surface modifications which
can be used for electrochemical sensing [23]. The fabrication of sensors based on monolayer
MoS2, which changes its conductance based on analyte concentration, has previously been
reported [24]. Sensors like this have been realized for various chemical vapors and gases such
as CO, CO2, NO, and NO2 [25]. Furthermore, the doping of MoS2 monolayers with various
heteroatoms like Au, Pt, Ni [26], and Si [27] to improve adsorption, and therefore detection,
of different analyte gases has been theoretically investigated using density functional theory
(DFT) and shows promising possibilities for the fabrication of such sensors.
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2 Theory

2.2 Density Functional Theory (DFT)

One of the basic concepts of computational quantum mechanics is the solution of the
Schrödinger equation (SE) in order to describe the behavior of a system using its wave
function Ψ. In its simplest non-relativistic form, the time-independent Schrödinger equation
(TISE) is given by

ĤΨ = EΨ, (2.1)

where Ĥ is the Hamiltonian operator and E is the energy of the system. In other terms,
the set of solutions Ψ are eigenstates of the Hamiltonian with corresponding energy eigen-
values E. For systems of one or more atoms, the Hamiltonian consists of multiple terms
describing the interactions of electrons (index e) and nuclei (index n). The systems wave
function Ψ(r,R) depends on the positions of all N electrons (r1, r2, ..., rN ) and all M nuclei
(R1,R2, ...,RM ).

The many-body Hamiltonian can be written as

Ĥ = T̂e + T̂n + V̂en + V̂ee + V̂nn, (2.2)

where the kinetic energy of electrons and nuclei are described by T̂e + T̂n.

Using atomic units with the reduced Plank constant ℏ = 1, the mass of an electron me = 1,
and the electronic charge e = 1, the kinetic energy terms are given by

T̂e = −
N�
i=1

1

2
∇2

ri (2.3)

with the Laplace operator

∇2
ri =

�
∂2

∂r2ix
+

∂2

∂r2iy
+

∂2

∂r2iz

�
(2.4)

and analogously for the nuclei

T̂n = −
M�
i=1

1

2Mi
∇2

Ri (2.5)

where Mi is the mass of the nucleus i as a multiple of the electron mass.

The Coulomb interactions of the electrons with the nuclei, the electrons with each other,
and the nuclei with each other are accounted for in the terms V̂en + V̂ee + V̂nn, respectively
[28]. These terms are given by

V̂en = −
N�
i=1

M�
j=1

Zj

|ri −Rj | (2.6)

V̂ee =
1

2

N�
i,j=1

1

|ri − rj | (2.7)
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V̂nn =
1

2

M�
i,j=1

ZiZj

|Ri −Rj | (2.8)

Unfortunately, this Hamiltonian can only be solved analytically for the hydrogen atom and,
despite increasing computational resources, numerical solutions quickly become computa-
tionally intractable for all but comparatively small systems.

2.2.1 Born-Oppenheimer Approximation

One of the simplifications which helps make solving the TISE for multiple-atom systems
more efficient is the Born-Oppenheimer approximation, which states that the electrons
and nuclei can be treated separately, based on the significantly higher mass of the nuclei
compared to that of the electrons. Therefore the electrons react much faster to changes
in their environment. The nuclei are then treated as fixed in space and the SE is solved
for the electrons separately. This implies that the kinetic energy of the nuclei T̂n can be
neglected and the nuclei-nuclei repulsion can be treated as a constant. The electronic TISE
can be written as:

(T̂e + V̂en + V̂ee)Ψ = EΨ. (2.9)

Here, the nuclear coordinates Ri are treated as external parameters and the wave function
only depends on the electron coordinates ri.

2.2.2 Kohn-Sham Equations and Exchange-Correlation Functionals

Hohenberg and Kohn state that for an inhomogeneous interacting electron gas in a given
potential v(r), there exists a universal functional of the electron density F [ρ(r)] so that the
expression

E =

�
v(r)ρ(r)dr + F [ρ(r)] (2.10)

has as its minimum value the correct ground-state energy. Further if F [ρ(r)] was known
and sufficiently simple, the ground-state energy and density in a given external potential
could be determined by minimizing the functional of the density function [29].

Based on the theory of Hohenberg and Kohn, a calculation approach was developed by
Kohn and Sham [30]. The original many-body problem of interacting electrons and nuclei
is mapped to a one-electron reference system with the same density as the real system.
With the electron density ρ(r) represented as a sum of single electron densities

ρ(r) =
�
i

|ψi|2, (2.11)

where ψi are single electron wave functions, the Kohn Sham energy functional can be
written as

E = F [ρ] = Ts[ψi] + EH [ρ] +

�
vext(r)d

3r + Exc[ρ], (2.12)
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2 Theory

where Ts[ψi] is the kinetic energy and EH is the Hartree energy, accounting for the elec-
trostatic energy associated with the charge distribution. The Hartree energy, expressed in
terms of the electron density is given by

EH =
1

2

� �
ρ(r)ρ(r’)

|r− r′| d3rd3r′ (2.13)

where vext is the external potential containing all potentials acting on the electrons, except
their interactions with each other, and Exc is the exchange-correlation energy, accounting
for all many-body exchange and correlation effects. The exchange-correlation energy is
defined such that the total energy is exact. Therefore, if this exchange-correlation term
was known exactly, solving the Kohn-Sham equations would allow to calculate the exact
ground-state energy and the related density of the many-body electron system. As this is
not the case, approximations are necessary, which will be discussed below.

One remaining question is how to determine the ground-state density ρ0 which minimizes
the total energy in Eq. (2.12). The solution is based on the variational principle.

With the condition �
δρ(r)dr = 0, (2.14)

based on the stationary property of Eq. (2.12), the equation�
δρ(r)

�
φ(r) +

δTs[ρ]

δρ(r)
+ µxc(ρ(r))

�
dr = 0 (2.15)

is obtained, where the potential in which the noninteracting electrons move is given by

φ(r) = vext(r) +

�
ρ(r′)
|r− r′|dr

′ (2.16)

and
µxc(ρ) = d(ρεxc(ρ))/dρ, (2.17)

which gives the exchange-correlation contribution to the chemical potential of a uniform
electron gas with density ρ. The density can be determined by solving the one-particle
Schrödinger equation

{−1

2
∇2 + [φ(r) + µxc(r)]}ψi(r) = εiψ(r) (2.18)

These equations have to be solved self-consistently: An ansatz for an initial density is
made and used to construct φ(r) from Eq. (2.16) and µxc from Eq. (2.17) which are used
to determine a new ρ(r) from Eq. (2.18) and (2.11).

The final energy is then given by [30]

E =

N�
1

εi − 1

2

� �
ρ(r)ρ(r’)

|r− r′| d3rd3r′ +
�

ρ(r)[εxc(ρ(r))− µxc(ρ(r))]dr. (2.19)
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There are several different approaches for applying these exchange-correlation functionals
and only the ones used in this thesis are mentioned below:

Local density approximation (LDA)

Local density approximation (LDA) [30] uses the homogenous electron gas as a model to
derive the terms for exchange and correlation which only depend on ρ(r):

ELDA
xc [ρ] =

�
εxc(ρ(r))ρ(r)d

3r. (2.20)

For the exchange energy in volume V the exact analytical expression for the homogenous
electron gas can be used:

Ex = −3

4

�
3

π

� 1
3

n
4
3V (2.21)

For the correlation energy, a function was fitted to data from a quasi-exact Monte-Carlo
simulation [31].

Generalized gradient approximations (GGA)

To enhance the accuracy beyond the limitations of LDA, which tends to overbind and
struggles with rapidly changing charge densities, the generalized gradient approximation
(GGA) was introduced, which includes a dependence on the gradient of the density:

EGGA
xc [ρ] =

�
εxc(ρ(r),∇ρ(r))ρ(r)d3r (2.22)

The most famous example of this type is the Perdew, Burke, and Ernzerhof (PBE) exchange-
correlation functional [32]. Another functional used in this thesis is called PBESOL which
is specially modified for solids [33].

Hybrid

Hybrid functionals combine Hartree-Fock and density-dependent functionals. They are
more computationally expensive, when compared to LDA and GGA, but they show much
better results for calculating band gap and excitation energies. [34]

2.2.3 Pseudopotentials

Another approximation, which allows for a faster and more efficient solution of the SE
is the use of pseudopotentials. The effects of the tightly bound core electrons and the
Coulomb potential of the nucleus are replaced by an effective ionic potential and only the
valence electrons are described using pseudo-wave functions. It is possible to generate a
pseudopotential in atomic calculations as the core states barely change, depending on the
chemical environment of the atom. [34]

9



2 Theory

A short overview of the types of pseudopotentials used in this thesis is provided below:

Norm-conserving pseudopotentials

For a pseudopotential, it is essential that, even though it is constructed in one specific
environment, it can be used to accurately describe the valence properties in different en-
vironments like atoms, ions, molecules, or solids. In 1979, Hamann, Schlüter, and Chiang
proposed four desirable properties for pseudopotentials to improve their transferability and
to ensure accurate results:

• The valence eigenvalues for a chosen reference atomic configuration agree.

• Beyond a chosen cutoff radius rc the real- and pseudo-wave functions agree.

• Norm conservation: The integrals from 0 to r for r bigger than rc of the real- and
pseudo-charge densities agree. This property guarantees that the electrostatic poten-
tial outside rc is identical for real- and pseudo-charge distributions.

• The first energy derivative of the logarithmic derivatives of the all-electron and pseudo
wave functions agrees at rc, and therefore for all r ≥ rc. This ensures scattering
properties of the real ion cores are reproduced with minimum error.

In Fig. 2.2 the real- and pseudo-wave functions of Mo are compared for s, p, and d orbitals,
it can be seen that beyond rc real- and pseudo-wave functions agree. Furthermore, the
bare-ion pseudopotential can be observed, which is similar and weak for s and p, but has
a strong attractive well for d [35].

Ultra soft pseudopotentials

By increasing the cutoff radius and ensuring optimal smoothness of potential and wave
function, the basis-set size can be reduced further. The ”ultra soft” refers to these larger
cutoff radii. To enable this optimal smoothness the norm-conserving constraint is removed
[36].

Projector Augmented Wave (PAW)

The projector augmented wave (PAW) potential expresses the valence wave-functions as a
sum of smooth functions and core functions. PAW retains the complete set of all-electron
core functions along with smoothed valence functions, while maintaining the advantage of
pseudopotentials of easy force calculations [34].

2.2.4 Spin Orbit Coupling

Quantum effects which arise when particles are in motion can be better understood by
considering their spin and how it interacts with their motion through spin-orbit coupling. A
particle’s spin is quantized and can only take two discrete values: ±ℏ/2, and when particles
are in motion, their spin can influence how they behave in a quantum way. Especially for
heavy atoms, the electrons can reach high speeds making it necessary to consider relativistic
effects. As spin-orbit coupling is the connection between a particle’s spin and its momentum
(motion) it is a key factor which brings out quantum relativistic effects in materials. [37]
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2 Theory

Figure 2.2: Illustration of pseudopotentials for Mo comparison of norm-conserving pseudo-
wave functions (solid) and full-core atomic valence wave functions (dashed line).
Reprinted figure with permission from [35], Copyright (1971) by the American
Physical Society.
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The magnetic moment of a particle is connected to its total angular momentum J⃗ , which
combines the spin angular momentum S⃗ and the orbit angular momentum L⃗. When taking
relativistic effects into account, those two contributions cannot be separated, and spin-
orbit coupling needs to be taken into consideration. In Quantum ESPRESSO [38], [39],
a suite of tools for electronic-structure calculations and materials modeling codes used in
this thesis, this is implemented using the standard basis of separable atomic functions
Rl(r)Ylm(θ, ϕ)χ(σ). Here, the radial function Rl(r) is an eigenfunction of the pseudo-atom;
Ylm(θ, ϕ) stands for the spherical harmonics and χ(σ) are spin up/down projectors. When
spin-orbit coupling is present, the radial functions Rl±1/2(r) are taken from fully-relativistic
pseudopotential files and averaged to construct Rl(r).

2.3 Ensemble Monte Carlo

To describe how the mobility of the MoS2 monolayer under strain is calculated, some
theoretical concepts behind the applied Ensemble Monte Carlo (EMC) code will shortly be
elaborated on. This includes the description of the band structure, using an effective mass
approximation, the underlying semi-classical transport theory, the scatter mechanisms, and
the basics of the EMC codebase.

2.3.1 Effective Mass Approximation

While it is possible to implement a model which includes the full band structure, see Fig. 2.3,
this is linked to a significantly higher computational effort. Therefore, the band structure
is approximated in the EMC code, focusing on the valence and conduction bands. Charge
carrier scattering mechanisms which have a significant influence on the carrier mobility,
take place inside and in-between the valleys of the conduction band, meaning that its
description is essential. The description of the multiple valleys is done using an effective
mass approach, in which the carriers are treated as free particles, but their mass is adjusted
to account for the influence of the potential.

For a parabolic dispersion relation E(k), the effective mass m∗ can be calculated by its
curvature, using

m∗ = ℏ2[
d2E(k)

dk2 ]−1. (2.23)

For a free electron, this would be a perfect parabola, with a constant mass equal to the
actual electron mass. This approximation is used to describe the (local) extrema of the
bands which ideally have a parabolic shape. In the Ensemble Monte Carlo code, this is
performed for the valleys at the Q- and K- points of the MoS2 monolayer.

The MoS2 shows n-type behavior which means electrons are the majority carriers and
the conduction band is occupied by electrons. Processes in which electrons transition
between different energy bands are not taken into consideration. The electron mobility
mainly depends on the conduction band and lower bands including the valence band can
be neglected. Under conditions under which the energies of the electrons are low, therefore
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Figure 2.3: Band structure of Monolayer MoS2.

no elevated temperatures and low electric fields, the electrons are mainly occupying states
at the conduction band minima, which are, as can be seen in Fig. 2.4 situated at the Q-
and K-points. Therefore most scattering events limiting the mobility can be assumed to
occur in and in between these valleys, justifying this approximation.

Figure 2.4: Conduction band of Monolayer MoS2.
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The atomistic material simulation is performed in three dimensions, but due to the two-
dimensional (2D) nature of the material, the effective mass is only calculated for the two
dimensions spanning the monolayer plane. As can be seen in Fig. 2.5, showing the first
Brillouin zone of the MoS2 layer, the valley at the K point (red) is spherical and the valley
at the Q point elliptical (blue).

Figure 2.5: Brillouin zone of Monolayer MoS2 with K valley (red) and Q valley (blue).

Therefore, it is necessary to describe the effective mass at the Q point in terms of a transver-
sal effective mass mt, the direction of the direct path from Γ to K, and of a longitudinal
effective mass ml which is the direction perpendicular to it. For the Q point (shown in
Fig. 2.5), these directions would correspond to the Armchair direction for mt and the
Zigzag direction for ml. As the valley at the K point is spherical, these two masses should
be identical. The relation between energy and wave-vector k = (kl, kt) is given by equation
(2.24)

E(1 + αE) =
ℏ2k2l
2ml

+
ℏ2k2t
2mt

, (2.24)

with α as the non-parabolicity factor (eV−1) [40]. In the Effective Mass Approximation
(EMA), initially, a parabolic dispersion relation is assumed for charge carriers. However,
real-world electronic band structures often deviate from this ideal parabolic shape, which
can reduce the accuracy of the EMA. The non-parabolicity factor is introduced to account
for these deviations. Figure 2.6 shows how the curves can be used to approximate the
conduction band at the Q and K points.
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Figure 2.6: Conduction band of Monolayer MoS2 including the dispersion relation curves
resulting from the EMA for the K and the Q valley.

2.3.2 Semi-Classical Charge Carrier Transport

The semi-classical method for simulating charge carrier transport is suitable for devices
which have feature dimensions much longer than the mean free path between collisions.
For silicon, where the electron mean free path is on the order of about 10 nm, this approach
can be used and has been applied extensively in the past. The method is typically applied
to calculate the transport parameters such as charge carrier mobility and conductivity [41].
At its core, the semi-classical method solves the Boltzmann Transport Equation (BTE),
which can be done by Microscopic and Macroscopic approaches, shown in Fig. 2.7.

In order to determine the carrier mobility of the 2D MoS2 film, the Monte Carlo Method,
as implemented in the ViennaEMC Semiconductor Device Simulation library [42], was
used. In semi-classical transport theory, particles are described by their position r and
their momentum which is described with the wave vector k. The probability of finding a
carrier in state (r,k) is given by a distribution function f(r,k, t) and how this distribution
function changes, is described by the Boltzmann transport equation (BTE)

∂f(r,k, t)

∂t
+

�
∂f

∂t

�
diff

+

�
∂f

∂t

�
force

=

�
∂f

∂t

�
coll

, (2.25)

or
∂f(r,k, t)

∂t
+ v(k) · ∇rf +

F

ℏ
· ∇kf =

�
∂f

∂t

�
coll

. (2.26)

The first term in equation (2.25) accounts for the time dependence of the distribution
function. The diffusion term, denoted by diff describes the spatial variations of the distri-
bution function, and the force term, denoted by force captures the acceleration caused by
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Semi-classical transport approaches

Boltzmann Transport Equation (BTE)

Microscopic Macroscopic

Direct
Method

Monte Carlo
Methods

Relaxation Time
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Model

Energy-Transport
Model

Drift-Diffusion
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Figure 2.7: Semi-classical approaches for calculating charge carrier transport. The green
rectangle depicts the method used in this thesis, mainly Ensemble Monte Carlo,
a microscopic approach to solving the BTE.

the Lorentz force. Lastly, the collision term (coll) describes how the distribution function
changes due to scattering events. This term holds particular significance within the scope
of this thesis as it strongly impacts carrier mobility [43]. While the carriers are treated
classically and particle-like for the diff and force terms, the quantum-mechanical effects
come into play in the collision term. The collision term can be seen as the sum of the
differences of the in- and out-flow of particles in the state (r,k), which is given by�

∂f

∂t

�
coll

=
�
k’

(f(r,k’, t)[1− f(r,k, t)]Γ(k’,k)− f(r,k, t)[1− f(r,k’, t)]Γ(k,k’)) .

(2.27)

Equation (2.27) essentially describes the change of the distribution function by quantifying
how many particles with an initial state (r,k’) change into the state (r,k) (in-scattering
flow) minus the number of particles of an initial state (r,k) changing into another state
(r,k’) (out-scattering flow). These changes depend on the probability of the first state
being occupied, given by f(r,kfirst, t) the second state being empty [1 − f(r,ksecond, t)],
and the total scatter rate for a particle which is to scatter from state k to k’, given as
Γ(k,k’) [44]. The rate Γ(k,k’) can be described by Fermi’s golden rule, which comes from
perturbation theory. The probability of the second state being empty is essential because,
for electrons, which are fermions, the Pauli Exclusion Principle applies, and not two of
them can occupy the same quantum state at the same time.
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Solving the BTE analytically is complicated and not always possible. For this reason,
stochastic Monte Carlo solvers are often applied to approximate the solution numerically
and solve for the distribution function f(r,k, t), which is derived from the average char-
acteristic quantities of interest, such as carrier energies, densities, currents and the carrier
mobility.

2.3.3 Scattering

A scattering event can change a particle’s wave vector k and the energy band to which it is
assigned. When these bands are approximated using multiple valleys, the scattering event
can also lead to a change of valleys belonging to the same band. As already mentioned,
transition rates for a particle from a state k and a band v to a state k’ and a band w can
be described by Fermi’s Golden rule. The total scatter rate is simply the sum of all the
rates for all scatter mechanisms included in the simulation.

There is a multitude of scattering mechanisms for which the occurrence and importance
depend on the device/materials under study. An overview of the typical scattering mecha-
nisms occurring in semiconductors is given in Fig. 2.8. In general, the scattering of charge
carriers can be caused by stationary defects such as dislocations, neutral and ionized impu-
rities, and dynamic defects in the form of carriers and lattice phonons [45]. In lattice scat-
tering mechanisms, distinctions are made regarding whether an acoustic or optical phonon
is involved and whether this causes the particle to stay in the same valley (intravalley scat-
tering) or change into another valley (intervalley scattering). Only the mechanisms used in
the EMC simulation of MoS2 within the scope of this thesis will be described here in more
detail.

Using effective deformation potentials, the phonon-based scattering can be described, and
the rate of acoustic intravalley scattering can be written as

Γac(k,k’) =
2πkBTD

2
ac

ρSℏv2s
δ[E(k’)− E(k)], (2.28)

with kB the Boltzmann constant, T the temperature, Dac the acoustic deformation poten-
tial, S the normalized area, ρ the density, and vs the sound velocity. For the intervalley
scattering, which can be assisted by both optical and acoustic phonons, the rate can be
calculated as

Γv,w
ac/op(k,k’) =

π(Dv,w
ac/op)

2

ρSωac/op
[nop +

1

2
∓ 1

2
]δ[Ew(k’)− Ev(k)∓ ℏωac/op(q)], (2.29)

withDv,w
ac/op as the deformation potential for the transition from valley v to valley w, and nop

the phonon occupation number which is determined based on the Bose-Einstein distribution
[40]. The phonon energies and the deformation potentials used are obtained from [46].

2.3.4 Ensemble Monte Carlo Method

The Ensemble Monte Carlo (EMC) method is used to numerically approximate non-
equilibrium transport for the simulation of semiconductor devices and materials by solving
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Lattice
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Figure 2.8: Overview on types of scatter mechanisms in semiconductors. For this study,
we concentrate on the intervalley scattering between the Q and K valleys, the
mechanisms marked in green. Nevertheless, intravalley scatter mechanisms are
also included in the ViennaEMC code, identified in yellow.

the BTE. Random numbers are used to determine the motion of sample particles which
move simultaneously during small time steps ∆t. The trajectories of the particles in phase
space are tracked and their mean characteristics are determined between the steps. These
characteristics of the resulting random walks fulfill the BTE in the long time limit [44].

The code itself allows for the simulation of devices as well as bulk materials. In the scope of
this thesis, the focus will be on the simulation of material properties, and will not concern
itself with device simulation directly. For further details on the Ensemble Monte Carlo
Framework see the Master Thesis ”Development and Application of an Ensemble Monte
Carlo Framework” by Laura Gollner [47].

The general workflow of the EMC bulk simulation is depicted in Fig. 2.9 and can described
as follows: First, the input parameters have to be defined, which include material char-
acteristics such as the band structure and the applied background field, the particle type,
and information about the scatter mechanisms. Additionally, simulation parameters such
as the total simulation time and time step ∆t need to be set. Subsequently, the simulation
is initialized. This includes pre-calculating scatter rates and defining the individual parti-
cle energies, positions, and wave vectors. Then, the simulation itself is performed, which
includes looping over all time steps of ∆t until the total simulation time is reached. The
last step is to extract and store the final simulation results [47].
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Figure 2.9: Vienna EMC workflow for bulk simulations.

2.3.5 Mobility Calculation

The mobility µ of the charge carriers can be determined using bulk simulations of a material,
such as monolayer MoS2 in this work. In the approach used, µ is calculated based on the
diffusion coefficient at zero field via the auto-correlation function. The velocity of each
particle is recorded over several time steps and used to derive the auto-correlation. This
is then applied to calculate the diffusion coefficient D from which the mobility can be
extracted using the Einstein relation

D =
µkbT

q
, (2.30)

where kb is the Boltzmann constant and q is the elementary charge [47], [48].
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3.1 Metal-Organic Frameworks

The sample MOF, synthesized using terephthalic acid linkers and nickel ions, was to be
investigated for its possible molecular structure, in order to make predictions about its
stability, as well as its physical and chemical properties. For this, four different struc-
tures with the same basic components were investigated. One, with the molecular formula
Ni4C16H12O13, was based on the publication by Zhao et al. [49], where the material was
proposed as an electrocatalyst for the oxygen evolution reaction. The three alternative
structures come from the materials project MOF Explorer [50] which includes several MOF
databases, including the QMOF database [51], [52] from which the alternative structures
were taken.

All following illustrations of the MOF structures, presented in Fig. 3.1, were made using
the 3D visualization program VESTA [53].

The intention of this study was to investigate these four structures using DFT as imple-
mented in the CP2k code [54]. However, ensuring that the calculations converge proved
to be quite difficult after many variations were attempted: different exchange-correlation
functionals, changing the number of inner and outer self-consistent field (scf) steps, chang-
ing the minimizer used, using supercells, and k-points. Finally, the convergence was still
shown to be quite poor and the calculations required long execution times. Additionally,
using the PBE functional led to a significant underestimation of the band gap. This in-
correctly suggested that the MOFs are conductors and not, as expected, insulators. To
circumvent this, the functional was changed to the PBE0 [55] hybrid functional. To im-
prove convergence, the simulated cell was duplicated with the aim of creating, as far as
possible, supercells of equal extent in all dimensions.

3.1.1 Cutoff Convergence and Structure Optimization

The method applied within the scope of this thesis to calculate the forces in the CP2K code
is called QUICKSTEP. In QUICKSTEP, the representation of certain functions requires
the use of an integration grid. More specifically, the method uses a multi-grid approach,
allowing smooth Gaussian functions to be mapped on coarser grids and sharper Gaussian
functions on finer grids. A sufficiently fine integration grid is essential for accurate and
reliable results. This makes it necessary to perform a cutoff convergence for the CUTOFF
and REL CUTOFF parameters. The default four grid levels were used. The CUTOFF
keyword defines the plane-wave cutoff in terms of Rydberg (Ry) of the finest level. The
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(a) Proposed structure [49] (Ni4C16H12O12). (b) Alternative structure A (Ni2C16H24O16).

(c) Alternative structure B (Ni3C16H14O12). (d) Alternative structure C (Ni4C24H12O13).

Figure 3.1: Possible structures for the MOF studied here consisting of terephthalic acid
linkers and Ni ions. Ni atoms in gray, C atoms in brown, O atoms in red, and
H atoms in white.

subsequent grid levels have an energy cutoff corresponding to

Ei
cut =

E1
cut

3(i−1)
, (3.1)

meaning that the coarseness of all grid levels is defined by this parameter.

The Gaussians are subsequently mapped onto the grids. The idea of the multi-level grid
is that each Gaussian, wide or narrow, is mapped onto a grid, where it covers about the
same number of grid points. The REL CUTOFF parameter defines a reference grid and
the Gaussians are then mapped onto the coarsest grid level on which they cover an equal
or greater number of points than covered on the reference grid.
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Both parameters must be adjusted to give reasonable results. If the CUTOFF is too low
then all grid levels will be coarse. If REL CUTOFF is too low, all Gaussians will be mapped
onto the coarsest grid, not taking advantage of the finer grids [56].

To determine an appropriate cutoff value for the MOF structures, calculations with CUT-
OFFs from 500 Ry to 2000 Ry were done. To give an example of the results of this process
the calculated total energy and the number of Gaussians mapped on each grid level were
plotted for the alternative structure B and can be seen in Fig 3.2.

For the smaller cutoffs, all grids are so coarse that most Gaussians are mapped to the
finest grid level 1. In this case, with a cutoff of 1000 Ry an accuracy of 10−3 Ry is reached,
which is low compared to the recommended 10−6 [56]. Considering the size of the cell,
which contains 810 atoms, the accuracy was deemed reasonable, given the necessity to
make trade-offs with computational time. Similar plots for the REL CUTOFF parameter
can be seen in Fig. 3.3 where values from 10 Ry to 100 Ry were attempted.

As mentioned previously, for low values of REL CUTOFF most Gaussians are mapped to
the coarsest grid (level 4), while higher values lead to an increase in the number of Gaussians
mapped to the finest grid. Based on these calculations for structure B, a CUTOFF of 1000
Ry and a REL CUTOFF of 50 Ry were used for further calculations. These values were
chosen as they yield well-converged total energy results and efficiently utilize all grid levels
available.

After determining the cutoff values for each of the four structures, a cell optimization was
performed in order to obtain the relaxed structures. Additionally, the projected density of
states was analyzed to gain initial insights into the electronic structures of the MOFs.

3.2 Monolayer MoS2

This study employed Density Functional Theory calculations to investigate the response
of MoS2 monolayers to strain using the Quantum ESPRESSO (QE) package [38], [39]. As
the choice of exchange-correlation functional, the used pseudopotentials, and the inclusion
of spin-orbit coupling (SOC) are known to influence the results of ab initio calculations,
different combinations were investigated within the scope of this thesis. The LDA [30] and
PBESOL [33] exchange-correlation functionals were used in combination with ultra-soft
pseudopotentials (USPPs). The PBE [32] functional was used in four different variations;
one using a norm-conserving potential, produced using the Optimized Norm-Conserving
Vanderbilt Pseudopotential code by D.R. Hamann for molybdenum (Mo) [57] and a USPP
for sulfur (S) using different USPPs, one applying the PAW potentials and one including
SOC while also using USPPs. All pseudopotentials were taken from the QE pseudopotential
library [58].

3.2.1 Cutoff Convergence

Prior to performing the calculations necessary for determining carrier mobility, a system-
atic convergence analysis was conducted for key parameters. The convergence analysis con-
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(a) Total energy dependent on CUTOFF.

(b) Nr. Gaussians per grid level.

Figure 3.2: Convergence plots for the CUTOFF parameter in calculations of a supercell of
structure B.

cerned itself with three critical parameters: the kinetic energy cutoff for the wavefunction
in Ry (ecutwfc), the kinetic energy cutoff for charge density and potential in Ry (ecutrho),
and the k-point grid. The ecutwfc parameter was varied across a range of values, from
20 Ry to 100 Ry. Subsequently, the ecutrho parameter was assessed, with values ranging
from 300 Ry to 1000 Ry, guided by recommendations from the QE input documentation of
8 to 12 times ecutwfc for ultrasoft pseudopotentials and 4 times ecutwfc for PAW datasets.
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(a) Total energy depended on REL CUTOFF

.

(b) Nr. Gaussians per grid level.

Figure 3.3: Convergence plots for the REL CUTOFF parameter in calculations of a super-
cell of structure B.

After finding reasonable values for ecutwfc and ecutrho, a k-point convergence analysis
was performed, using grids of varying density: 8×8×1, 16×16×1, 32×32×1, 32×32×2, and
64×64×1. Note: Due to the material being two-dimensional (2D) the grids are also kept
2D.

While varying the respective parameters, energy calculations were performed for each DFT
”flavor”. The resulting energy values were visualized through curves, allowing insights into
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parameter convergence trends. An example is given in Fig. 3.4, showing the convergence
curve for ecutwfc when performing calculations using the LDA functional.

Figure 3.4: Convergence curve for ecutwfc with LDA functional.

This approach is necessary to determine parameter values which ensure that the subsequent
DFT calculations are accurate and reliable, since the results should provide a solid foun-
dation for the further investigation of MoS2 under strain. It was found that a reasonable
convergence was reached for a kinetic energy cutoff for a wave-function of 80 Ry, a kinetic
energy cutoff for charge density and potential of 410 Ry, and a 16×16×1 k-point grid.
These values were also chosen in an effort to have consistent values for all calculations.
This has caused an unnecessarily high computational requirement for certain settings, but
due to the small size of the unit cell, this can be considered negligible, as all calculations
are performed within a few minutes.

3.2.2 Mobility Calculation

Using the basic simulation parameters obtained during the calculations of cutoff conver-
gence, the steps used to determine mobility values are shown schematically in Fig. 3.5.
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Figure 3.5: Workflow for the calculation of carrier mobility in a suspended MoS2 monolayer.

The detailed workflow which was employed for each pre-established combination of exchange-
correlation functionals and pseudopotentials unfolds as follows:

• Structure Relaxation: Starting with the initial hexagonal unit cell, including three
atoms, characterized by the cell parameters a = 3.16 Å and c = 37.9204 Å, a cell
relaxation was performed. The reason for the magnitude of the c-parameter is that its
principal intent is to include sufficient vacuum to treat the material as 2D, as opposed
to bulk. Since the cell boundaries are periodic, this means that about 37 Å of vacuum
is placed between successive monolayers, which is sufficient to ensure that there are
no undesirable forces felt from neighboring layers [59]. During this step, the forces are
systemically minimized by changes in the cell parameters and atom positions. The
result is an equilibrium structure, specific to the chosen functional, capturing distinct
under-/over-estimations of chemical bond strength, often manifesting as over-/under-
binding.
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• Strain Application: Subsequently, the desired strain is ’applied’ to these structures
by multiplying the cell parameters by a strain factor and thus deforming the cell.
Biaxial strain was applied to the MoS2 plane to ensure that the symmetry is preserved.
This is vital for the subsequent scattering models implemented in the EMC code, as
this approach does not consider non-degenerate Q and K valleys in the system.

• Secondary Relaxation: In this step only the atoms were permitted to relax, while
the cell parameters remained fixed. If the cell had been allowed to relax, it would
have returned to the equilibrium structure, nullifying the previous step.

• Band Structure and Effective Mass Determination: The resulting strained
structures are then used for two further steps: First the band structure is determined,
traversing the irreducible Brillouin zone from Γ to symmetry points M, K, and back
to Γ. These band structures allow for the visualization of the impact of strain on the
electronic structure of the material. Furthermore, the strained structures were used
to determine the effective masses.

• Effective Mass Extraction: For the Armchair direction in the Irreducible Bril-
louin Zone (IBZ), following the path of the band calculations, the effective masses
could also be determined based on the previous calculations, but the ellipticity of the
Q valley makes it necessary to use a grid in the plane of the 2D material and fit both
longitudinal and transversal effective masses at the same time. This is performed for
the valleys at K and Q separately. The energy values of the conduction band are
fitted to the k values of the phase-space using equation (2.24) with a least squares
method, described in section 3.2.3.

• Mobility calculation with the EMC code: Finally, the effective masses, the
non-parabolicity factors, and the energy difference between the K and Q valley are fed
into the EMC code, and a simulation is performed to determine the carrier mobility.

3.2.3 Effective Mass Extraction

As mentioned earlier, accurately describing the elliptical shape of the Q valley, as depicted
in Fig. 3.6, and confirming the expected spherical shape of the K valley, requires more than
just the usual band calculations.

It is necessary to sample the Irreducible Brillouin Zone (IBZ) in two dimensions using
a grid. The selection of the grid’s extent and positions plays a crucial role in obtaining
accurate results. For each grid, the center is established at the positions of high symmetry
points K and Q. Experiments were conducted to determine the number of points and the
spacing of the grids which provide a suitable empirical fit, while keeping the computational
requirements at a reasonable level. Ultimately, a grid size of 19×19 was adopted, with a
spacing of 1/150 in Cartesian k-space coordinates, as can be seen in Fig. 3.7.

This grid serves as a basis for the actual fitting: For the strained structures the bottom
of the valley, that is its energy minimum, can slightly deviate from the positions of the
K and Q points. Consequently, a more focused 7×7 subgrid was introduced, see Fig. 3.8.
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Figure 3.6: Conduction band energies at the Q valley surface.

Figure 3.7: Grids centered around the K and Q point on the irreducible Brillouin zone.
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The subgrid’s purpose is to capture the local behavior of the valleys and encompasses the
points surrounding the actual energy minima.

Figure 3.8: Visualisation of a 7×7 subgrid on a 19×19 base grid with the subgrid center
marked in red.

The coordinates of these points, along with their respective energies of the conduction
band, were then utilized to calculate the effective masses using the NumPy least squares
function [60].

29



4 Results and Discussion

4.1 Metal-Organic Frameworks

As discussed in the implementation chapter (Chapter 3) calculating the MOF structures
proved to be challenging due to its complexity, the size of the supercells of up to 810
atoms, as well as the computational time requirement. Consequently, this thesis focuses on
presenting the projected density of states (PDOS) of the structures and the outcomes of the
structure optimization process. The relaxed structure of the material provides information
about the equilibrium positions of the atoms, helping to determine whether the structure is
in a stable configuration. On the other hand, the PDOS offers insights into the electronic
structure, specifically the distribution of electronic states with respect to energy levels. It
also helps to identify the material’s electronic properties, such as whether it behaves as an
insulator, semiconductor, or metal, by examining the presence or absence of a band gap.
The potential for further investigations remains, which however lie beyond the scope of this
work.

The first investigated structure was proposed in a paper by Zhao et al. [49]. The initial
structure compared to the optimized structure can be seen in Fig 4.1.

In this structural configuration, the coordination number of the Ni ion is six, with the Ni ion
bonded to four different organic linkers and two hydroxides each. Further, it is interesting
to note that the organic linkers are parallel to each other in the plane of the aromatic rings.
Their arrangement contributes to the stability of the MOF which makes it necessary to
take the interactions between the linkers into consideration. This is an important point
as the van der Waals interactions have a long- to medium-range nature which is not per
default correctly reflected in DFT as LDA and GGA neglect these non-local long-range
correlations by design [61]. The PBE0 hybrid functional used for the calculations might
not correctly account for these forces leading to incorrect predictions for the structures.

In order to compare the structures the focus was put on specific key parameters, which are
provided in Table 4.1. These include the cell parameters, which provide insights into the
MOF’s overall geometry. Additionally, the shortest distance between the linker layers is
examined, which is meant to reflect the limitation of the maximal pore size of the material as
this is a characteristic property of the MOF material class and essential for its application.
Lastly, the length of the metal ion bonds is investigated as significant changes were observed
in the process of the structure optimization.

The shift in the structure seen in Fig. 4.1 is also reflected by the cell parameters. While
the complex bonds of the Ni ions have become shorter, the expanded cell size suggests
that, in comparison to the initial structure, there has been an underestimation of the Ni-O
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(a) Initial structure.

(b) Structure after cell relaxation.

Figure 4.1: The proposed MOF structure (Ni4C16H12O12) before and after cell relaxation
calculations. Ni atoms in gray, C atoms in brown, O atoms in red, and H atoms
in white.

interactions and an overestimation of the bond strength within the organic linkers. The
angles within the framework have changed visibly, increasing the distance between the
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Table 4.1: Parameters of MOF before and after cell optimization

Property Initial structure Final structure

Unit cell dimensions (a,b,c) in Å 19.84, 19.91, 18.80 22.75, 23.25, 19.93
Unit cell angles (α, β, γ) 90.00, 96.55, 90.00 113.083, 110.98, 73.13

Cell volume Å3 7379.68 8916.86
Linker-layer distance in Å 3.32 3.88

Ni-linker bond in Å 2.15-2.20 1.86
Ni-OH bond in Å 1.98 1.85

linkers. The terephthalic acid linkers have twisted away from each other as direct stacking
is causing repulsion between the aromatic rings.

The projected density of states was determined for the geometrically optimized structure
and is plotted in Fig 4.2. Beside the energy range shown in Fig 4.2 some nickel energy
states can be found at low energies between -70 eV and -60 eV. Otherwise, nickel dominates
the states between -20 eV and -10 eV and around -6 eV and 4 eV. Oxygen shows a high
density of states near the valence band, carbon dominates around -4 eV. The band gap of
3 eV indicates possible optical activity in the vis spectrum, which is a desirable trait for
sensors. This also suggests non-conducting behavior.

The result of the geometry optimization of the first alternative structure for the MOF is
shown in Fig 4.3. In this structure, the coordination number of the Ni ion is still six, but
now it bonds with only two organic linkers and four water molecules each. Furthermore,
in this structure, water appears as an essential structural element, introducing hydrogen
bonds as a further mode of interaction which poses a challenge to the conventional density
functional. Unlike the structure discussed before, the linker layers remain parallel to each
other, even after the cell optimization, but at a much longer distance. The coordination
number in the optimized structure is reduced to four as two water molecules move further
away.
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Figure 4.2: Calculated PDOS for the proposed structure.

Table 4.2: Parameters of MOF A before and after cell optimization

Property Initial structure Final structure

Unit cell dimensions (a,b,c) in Å 16.94, 17.61, 17.61 17.56, 18.69, 18.85
Unit cell angles (α, β, γ) 99.41, 109.39, 109.39 109.67, 106.17, 105.84

Cell volume Å3 4444.45 5116.77
Linker-layer distance in Å 3.42 4.49

Ni-linker bond in Å 2.08 1.85
Ni-water bond in Å 1.99-2.15 1.88

The parameters in Table 4.2 show that the edge lengths (a,b,c) of the cell increase. Addi-
tionally, the distance between the linker layers increases, ultimately leading to larger pores.
As observed earlier, the complex bonds of the Ni ions all seem to become shorter.

The projected density of states for structure A is plotted in Fig 4.4. There is a high density
of states for nickel outside the shown interval at -70 eV and -60 eV. The states between
-20 eV and -10 eV are dominated by carbon, as well as the states near the valence and
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(a) Initial structure.

(b) Relaxed structure.

Figure 4.3: The alternative A MOF structure (Ni12C16H24O16) before and after cell relax-
ation calculations.

conduction band. An even higher band gap of about 5 eV is indicated for this material.

The result of the geometry optimization of the alternative structure B is shown in Fig 4.5.
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Figure 4.4: PDOS of structure A.

Structure B is very similar to the initial proposed structure, with one essential difference:
there are two types of Ni ions present. One is very similar to those in the first structure,
with a coordination number of six and bonded to four terephthalic acid linkers and two
hydroxides. The other one also has a coordination number of six, but it is bonded to
only two organic linkers, two hydroxides, and two water molecules which again introduce
hydrogen bonds into the structure. These two Ni types are alternating, creating a structure
in which the angles between Ni ions and terephthalic acid linkers are different compared to
the original structure.

The cell parameters for structure B are given in Table 4.3, and the bond lengths are given
for the Ni atoms which are bonded to all three types of ligands. In this structure, the cell
undergoes both a reduction in size and distortion. The terephthalic acid linkers move away
from each other, while the complex bonds become more tightly bound.

The projected density of states for structure B is plotted in Fig 4.6. This PDOS plot has
similarities with the one of structure A. However, while for A the energy states near the
valence band are dominated by carbon, for structure B it is nickel that predominates. For
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(a) Initial structure.

(b) Relaxed structure.

Figure 4.5: The alternative B MOF structure (Ni3C16H14O12) before and after cell relax-
ation.
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Table 4.3: Parameters of MOF B before and after cell optimization

Property Initial structure Final structure

Unit cell dimensions (a,b,c) in Å 18.59, 19.87, 20.41 23.23, 24.72, 22.72
Unit cell angles (α, β, γ) 82.82, 83.25, 85.59 104.33, 66.79, 126.71

Cell volume Å3 9992.53 9616.75
Linker-layer distance in Å 3.34 4.13

Ni-linker bond in Å 2.02 1.86
Ni-water bond in Å 2.21 1.89
Ni-OH bind in Å 2.05 1.83

the conduction band, carbon states come first, closely followed by nickel states.

Figure 4.6: Calculated PDOS of structure B.

The result of the geometry optimization of the alternative structure C is shown in Fig 4.7.
In stark contrast to the other three presented structures, this one includes Ni ions with a
coordination number of four. A group of four Ni atoms is centered around a single oxygen
atom which serves as a bridging ligand, while each Ni is connected to its three neighbors
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by terephthalic acid linkers. This structure is very sparse and has very large pores, while
also being very symmetrical.

(a) Initial structure.

(b) Relaxed structure.

Figure 4.7: The alternative C MOF structure (Ni4C24H12O13) before and after cell relax-
ation.

As can be seen in Fig. 4.7 and Table 4.4, the optimization process had little effect on this
structure. This can be attributed to the forces within the initial structure being already
well-balanced, due to its high symmetry and its relatively sparse nature.

The projected density of states for structure C is plotted in Fig 4.8. It is clear to see
that this structure is very different from the other proposed ones. Not only does it have
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Table 4.4: Parameters of MOF C before and after cell optimization

Property Initial structure Final structure

Unit cell dimensions (a,b,c) in Å 18.25, 18.25, 18.25 18
Unit cell angles (α, β, γ) 59.99, 59.99, 59.99 60.04, 60.03, 60.03

Cell volume Å3 4301.71 4320.71
Linker-layer distance in Å 10.73 10.81

Ni-linker bond in Å 1.89 1.87
Ni-O bond in Å 1.93 1.96

a significantly larger pore size, but the projected density of states indicates a much lower
band gap, suggesting conducting or at least semi-conducting behavior.

Figure 4.8: PDOS of structure C.

It is important to note that, even though in this thesis only structure optimizations are
presented, these were not the initial goals of the project. The aim was to establish a practi-
cal method to calculate these structures, in order to move on from bulk materials to study
surface properties and eventually, predict interactions between the MOFs and potential
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analytes. As the ingredients of the synthesis method of the MOF also allowed for other
potential structures, a further idea was to investigate alternative structure arrangements.

Unfortunately, the chosen ab initio approach turned out to be highly computationally
expensive, very time-consuming, and difficult to converge. First, Quantum ESPRESSO
calculations were performed, which incorrectly predicted metallic behavior. Consequently,
the approach was shifted to CP2K to perform calculations with hybrid functionals in order
to improve the accuracy of the electronic structure. As the calculation of the Hartree-Fock
exchange is usually computationally demanding, especially for larger systems, the Auxiliary
Density matrix method [62] was used. This method, implemented in the CP2K code, en-
ables good performance and accuracy, when including Hartree-Fock exchange calculations.
This boost in efficiency becomes even more important, when using supercells of the struc-
tures in order to improve convergence. Structure relaxations were conducted successfully
and the projected density of states was calculated for the different structures. However, it
has to be noted, that certain critical features, like the pore width, may not be accurately
predicted due to insufficient considerations of Van-der-Waals forces, as previously discussed.
Experimental data, such as X-ray absorption spectroscopy or X-ray diffraction, would pro-
vide more reliable characterization of the different structure geometries than solely relying
on ab initio calculations. However, due to the lack of such experimental validation and the
impracticality of the computational approach, no further investigations were pursued for
these materials.

In order to use ab inito methods to investigate MOFs for their potential sensing capabilities
a more efficient method is necessary. Also because they are such large structures it might
make sense to simply look at the linkers / functional groups and how they react to certain
analytes.

4.2 Molybdenum Disulfide (MoS2)

As previously mentioned, Density Functional Theory (DFT) calculations are an established
method for investigating the behavior of materials. However, the accuracy and reliability
of these calculations depend on several key factors, such as the choice of pseudopotentials,
exchange-correlation functionals, and which properties need to be predicted. When simu-
lating the impact of strain on the band structure and consequently on the carrier mobility
of MoS2 monolayers, these choices lead to considerable differences in the results.

To illustrate this, some properties which emerge when calculating the equilibrium struc-
tures and the corresponding band structures for the different DFT settings, are shown in
Table 4.5. Even though all calculations have the same starting point, depending on the
chosen functional (LDA, PBE, PBESOL) and pseudopotential, the size of the equilibrium
cell, the band gap, and the energy difference between the Q and K valleys can widely
vary. This emphasizes the critical importance of careful selection and consideration of
these parameters when conducting ab initio DFT simulations in the study of materials. It
is to be noted that for the choice of different pseudopotentials (here denominated as PBE,
PBE QE) and the calculations using the PBE functional with projector augmented wave
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only minor differences are expected. This is because the well-established pseudopotentials
used, are standardized and have been widely tested, also pseudopotentials mainly affect
the treatment of core electrons which have little impact on the electronic structure.

Table 4.5: Overview of some important parameters for the strain-free structures of each
DFT-flavor.

Type/ Origin Cell parameter a (Å) Band gap (eV) ∆EQK (eV)

LDA 3.129 1.852 0.083
PBE 3.184 1.689 0.262

PBESOL 3.142 1.806 0.151
PBE with PAW 3.185 1.678 0.267

PBE QE 3.186 1.679 0.267
PBE with SOC 3.160 1.691 0.169
Experimental 3.14 [63]- 3.169 [64] 1.8 [21] –

When comparing the computationally determined cell parameters to their experimental
counterparts it becomes evident that experiments also only allow to determine these pa-
rameters up to a certain accuracy and that different setups might yield different results.
The values displayed in the table are meant to show the range of results. Nevertheless,
both LDA and PBE show their known tendencies to over- and under-bind, with LDA un-
derestimating the cell parameter and PBE overestimating the cell parameter. Even though
LDA and PBESOL are remarkably close to the experimentally determined band gaps, the
values are to be taken with a grain of salt as DFT generally underestimates the band gap.
In this context, the band gap is only shown to illustrate the fundamental differences in
the electronic structure resulting from the different calculations. This can also be seen
in the large variation of the energy difference between the Q and K valleys ∆EQK . This
parameter plays a crucial role in determining the scatter rates in the conduction band and
therefore also the carrier mobility.

The differences in the electronic structure become even more apparent when examining the
band structures. In the context of the Ensemble Monte Carlo Simulations, a reasonable
description of the conduction band is crucial. Fig. 4.9 presents the conduction bands
resulting from various DFT calculations of the unstrained structures, where the energy on
the vertical axis is given relative to the valence band maximum.

As pseudopotentials and PAW show little difference, they can be discussed under the um-
brella of calculations with the PBE functional without additional considerations like spin-
orbit coupling. Fig. 4.9 clearly shows that the conduction band calculated with LDA and
PBESOL is similar and situated at higher energies, with LDA having the highest values,
compared to the PBE-based calculations. The energy minima of the Q and K valleys are
also much closer to each other, see Tabel 4.5. The influence of spin-orbit coupling becomes
apparent around the Q valley and between the Γ and M symmetry points.

Evidently, the choices made, when setting up the ab initio DFT calculations have a great
influence on the predicted electronic structure of monolayer MoS2 before strain is even
applied to the structures.
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Figure 4.9: Overview: Conduction band of equilibrium structures.

To visualize the effects of biaxial tensile and compressive strains on monolayer MoS2, com-
pressive and tensile strains up to 5% were applied, and then the band structure was com-
puted using the PBE functional. The results are presented in Fig. 4.10 with tensile stress
indicated in blue and compressive stress in red.

Overall, a noticeable trend emerges: Under compressive strain, energy levels above the
band gap tend to increase, while those below it tend to decrease. Conversely, under tensile
strain, energy levels decrease across the board, particularly for those above the band gap.
This trend is also reflected in the change of band gap, see Fig 4.13, when transitioning from
compressive to tensile strain.

Under compressive strain, a band near the M symmetry point rises, while in the conduction
band, the Q valley sinks below the K valley. This shift suggests a transition towards an
indirect band gap for higher compressive strains. On the other hand, when subjected to
tensile strain, the energy of the valence band at the Γ point increases, while the valence
band around the K-point shows lower energies. This indicates, that with higher tensile
strain, the highest energy state within the valence band will be at the Γ point, therefore
also suggesting a transition toward an indirect band gap.

In the study from Deng et al. [65] biaxial symmetric compressive and tensile strains on
the monolayer were investigated. Even higher amplitudes of ±10 % strain were applied
supporting the tendencies also visible in Fig 4.10. Further, the suggested transformation
from a direct to indirect band gap was also reported.
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Figure 4.10: Influence of strain in the range ± 5 % on the band structure of the monolayer
MoS2 calculated with the PBE functional.

As described in the theory section in Chapter 2, the model used for simulating carrier
transport and determining the mobility of strained MoS2 relies on a multi-valley approach
to approximate the conduction band. Therefore, how the application of strain influences
the conduction band is especially important. To additionally showcase the dependency
on the exchange-correlation functional employed for band structure calculations, Fig. 4.11
shows the conduction bands for both functionals under strains in the range ± 0.5 %.

The strains investigated in the scope of this thesis are comparatively small. The reason
for this can also be explained when looking at Fig. 4.11. For LDA, the energy levels of
the conduction band minima at the K and Q points approach each other with increasing
compressive strain. This causes problems since the simulation is based on the assumption
that the K valley is the minimum of the conduction band which is no longer true for
larger compression. On the other hand, after a certain amount of tensile stress, the energy
difference between the two valleys becomes so big that only very little scattering still
occurs, ultimately leading to mobility values which barely change after a certain level of
deformation. What is also noteworthy is that the choice of exchange-correlation functional
influences how strongly the predicted conduction band reacts to the strain.

When performing DFT calculations which include spin-orbit coupling, the energy levels
that would otherwise be degenerate can split. This can be observed in Fig 4.12, showing
the conduction band under strain when calculations with PBE and spin-orbit coupling are
performed.
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(a) LDA functional.

(b) PBE functional

Figure 4.11: The conduction band under strain for different functionals.

While SOC is barely noticeable at the K valley, the effect is especially pronounced around
the Q valley. Here, a limitation of the model is reached, the approximation of the conduction
band in the EMC code does not account for multiple non-degenerate K and Q valleys. In
this case, the choice to consider SOC in the calculation is two-sided. On one hand, it can
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Figure 4.12: The conduction band under strain for PBE including spin-orbit coupling.

be a reasonable addition, allowing for a more realistic description of the electronic structure
of the material. On the other hand, its usefulness is restricted by the simplifications made
in the model into which the DFT-calculated parameters are fed. The change of the band
gaps under strain, determined based on the DFT calculations, can be seen in Fig. 4.13.

Figure 4.13: Calculated energy band gap for different DFT ”flavors” under strain.
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The calculations employing the PBE functional generally underestimate the band gap,
while LDA predicts the highest one. All calculations show a decrease of the bandgap that
is approximately linear at around 115 meV / % strain deformation factor.

How the application of strain affects the energy difference between the minima of the K
and Q valleys can be seen in Fig. 4.14.

Figure 4.14: ∆EQK for different DFT ”flavors” under strain.

Similarly to the band gaps seen before, ∆EQK has significantly different values based on
the choice of exchange-correlation functional, but shows a similar near-linear dependence
of about 155 meV / % on the strain. For LDA this energy difference becomes negative for
strong compressive strains as the Q valley becomes lower than the K valley.

After determining the equilibrium structure, applying strain to it, and computing the band
structure, the characteristics of the resulting conduction band have to be distilled down to
a form suitable to be fed into the effective mass-based multi-valley approximation used in
the Ensemble Monte Carlo code. This is performed by following the procedure described
in Chapter 3. As an example, the results of this fitting process are shown in Fig. 4.15 for
the conduction band of a PBE calculation of the equilibrium structure.

While the parabolic functions offer a reasonable approximation of the conduction band
around the minima of the valleys, they quickly become inaccurate for states further away.
In this case, the model is based on the assumption that the conducting electrons will be
found mainly around the minima, and the curves are fitted correspondingly.

How the effective mass approximation parameters change after strain is applied is illustrated
in Fig. 4.16, Fig. 4.17 and Fig. 4.18.

Fig. 4.16 illustrates the parameters used to approximate the K valley. Due to the spherical
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(a) Conduction band of monolayer MoS2 with fit.

(b) Visualization of fit of the K-valley from (a).

Figure 4.15: Fitting for effective mass extraction for PBE without strain.

shape the effective masses are the same in both directions. Once again it can be observed,
that the choice of pseudopotential has little influence, especially compared to the choice
of functional, as once again all PBE calculations are grouped together. Even though the
absolute values differ, a close to linear dependence of the change in the effective mass
to strain can be seen. The slight deviations from linear behavior might be explained by
numerical errors which occur when fitting close to the minima and the energy values become
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(a) Effective masses (ml, mt).

(b) Non-parabolicity factor α.

Figure 4.16: Influence of strain on the effective mass parameters for the K valley for different
exchange-correlation functionals.
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very small.

In Fig. 4.17 the effective masses for the Q valley and their dependence on the applied strain
can be seen. As described for the K valley, all values resulting from PBE calculations are
very similar; both longitudinal and transversal effective masses are much higher than those
of other calculations. It is also interesting that the calculation with spin-orbit coupling
shows the lowest longitudinal effective mass, but the highest transverse effective mass,
which suggests a different shape of the Q valley compared to the other calculations. This
is further supported when studying the non-parabolicity factor for the Q valley, as plotted
in Fig. 4.18.

While the other DFT calculations show very little deviation from the parabolic form, the
non-parabolicity factor of the PBE calculation including spin-orbit coupling is compara-
tively quite high. This further underlines the assumption that modeling the system in this
manner could introduce a level of complexity which the model is simply not designed to
accurately represent.

Finally, the results for the carrier mobility calculations are provided in Fig. 4.19.

The PBE calculations show a rather linear behavior with relatively high values of around
400 cm2/(Vs). PBESOL shows a steep initial slope which changes into a more moderate
slope. For LDA and PBE with spin-orbit coupling, the curve first seems exponential, then
becomes somewhat linear between the deformation factors of 0.998 and 1.002, and then
shows a similar behavior as the PBESOL curve by changing into a more moderate slope.
These behavioral changes can be linked to certain calculated values of ∆EQK . The change
from exponential to linear takes place after surpassing an energy difference of around 0.05
eV, at the deformation factor 0.997 for PBE with SOC and 0.998 for LDA. The change
from a steep slope to a more moderate slope takes place around 0.1 eV, which is at a
deformation of 0.998 for PBESOL, 0.999 for PBE with SOC, and 1.002 for LDA. All PBE
calculations have ∆EQK values above that threshold value.

For the Ensemble Monte Carlo simulations, electrons are initialized with a certain energy
distribution. In order for these electrons to scatter from the lower K valleys into the Q
valleys they have to overcome this energy difference. Therefore, the higher the energy
separation the more the energy onset of intervalley scattering increases. While for small,
and even negative energy differences, scattering is very frequent and strongly limits the
carrier mobility, its influence lessens for higher energy separation.

After a certain energy ∆EQK becomes so large that the mobility is limited only by the intra-
and intervalley scattering of the K valleys, as this is much more likely to take place. At this
point, the slope of the curves becomes moderate. It also becomes clear that effective masses
play a significant role. The valley energy separation, as can be seen in Fig 4.14, is fairly
similar for PBE with spin-orbit coupling and LDA. Yet the resulting mobility-deformation
curves are quite different, with LDA reaching much higher values. The effective mass
parameters for both DFT calculation setups are quite different, see Fig. 4.16 and Fig. 4.17,
especially for the K-valley and the transverse effective mass of the Q-valley.

Experimentally, a mobility of at least 200 cm2/(Vs) has been reported for monolayer MoS2
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(a) Longitudinal effective mass ml.

(b) Transverse effective mass mt.

Figure 4.17: Influence of strain on the effective mass parameters for the Q valley for different
exchange-correlation functionals.
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(a) Exchange-correlation functionals not including SOC

(b) PBE with SOC

Figure 4.18: Influence of strain on the non-parabolicity factor α for the Q valley for different
exchange-correlation functionals.
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Figure 4.19: Influence of strain on the carrier mobility for all DFT-EMC calculations.

transistors [66]. This is a much lower value than the simulation results predict. It has to
be noted that the model only includes inter- and intravalley scattering effects of Q and K
valleys. In reality, many more factors influence the carrier mobility, and various scattering
effects are being ignored. For example scattering due to crystal defects, impurities, other
carriers, or interface scattering, especially surface scattering effects which play an impor-
tant role in 2-D materials are not included here since we only study a suspended monolayer.
Furthermore, there might be lattice scattering which exceeds those simulated in the EMC
code. For real structures, the application of strain will likely disturb the symmetry allow-
ing, for example, scattering between K-valleys of different energies or alterations of the
deformation potential and therefore changing scatter rates.

As previously mentioned, only relatively small strains were investigated here. This choice
was guided by two primary considerations. Firstly, for the calculations with LDA, the base
assumption that the K valley is the lowest energy level of the conduction band did no longer
hold for larger compressive strains. Secondly, in the case of PBE calculations separation
values for ∆EQK were quickly reached, after which the mobility no longer changed and
most intervalley scattering ceased. An example of how the carrier mobility changes for
larger strains of ± 5 %, the carrier mobility and ∆EQK for PBE calculations is shown in
Fig. 4.20.

For these larger deformations, PBE shows a similar range of mobilities as the LDA func-
tional did for the smaller strains. Under a very strong compressive strain, the mobility
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(a) Carrier mobility µ.

(b) Valley separation energy ∆EQK .

Figure 4.20: Simulation results for PBE calculations and ± 5 % strains.
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starts at about 70 cm2/(Vs) and then decreases until it reaches a minimum of about
40 cm2/(Vs) at a deformation factor of 0.98. When looking at the energy separation of the
valleys it becomes clear that for strong compression the Q valley is lower than the K valley,
leading to a decrease in scattering because now added energy is required for the electrons
to scatter into the higher K valley. This energy difference decreases, as K slowly becomes
the lower valley once again; this happens after a strain of about 2 % is applied, which is
also when ∆EQK is zero and no energy offset for inter valley scattering exists, leading to a
minimum in mobility. After this point is reached, the change in ∆EQK strongly influences
the scattering and therefore the mobility until the curve starts to flatten around a mobility
of 450 cm2/(Vs).

As 2D materials have been promising for quite a while now, TMDs have been thoroughly
investigated experimentally as well as theoretically. In this thesis, a strong dependence
on how the ab initio study is set up was observed in the theoretical calculations. Despite
this, it is important to note, that the same general trends can be seen for most DFT
calculations made here. Within the investigated range of strains, the band gap increases
for compressive strains and decreases for tensile strains. The opposite is true for the energy
separation ∆EQK between the minima of the Q and K valleys which decreases, and even
becomes negative, for compressive strains and increases for tensile strains. The effective
masses for the K valley become smaller with a larger deformation factor while those of the
Q valley become larger. Finally, all DFT ”flavors” showed that the mobility is reduced
under compressive strain and increased under tensile strain.

For very strong compressive strains, the Q valley becomes lower than the K valley. In
this case, ∆EQK becomes negative, the intervalley scattering is limited by this energy
difference, and the mobility is slightly increased. When moving closer to the equilibrium
structure, ∆EQK approaches zero; at this point the scattering rates are the highest and
thus the mobility is at its lowest. After this phase, the ∆EQK increases further, providing
an energy barrier for scattering from the K valley into the now again higher Q valley.
This increasing barrier gradually reduces the scatter rate, leading to higher mobilities. At
a certain point, the separation energy becomes so significant that intervalley scattering
is negligible and the mobility curve flattens. The effective masses and non-parabolicity
factors of the different calculations play a role insofar as lower effective masses correlate
with higher mobilities; this can be observed especially for tensile strain, where the mobility
is determined by intravalley scattering in the K-valley. The K effective masses are the
lowest for PBESOL, it reaches the highest mobility values. While LDA and PBE with
SOC have very similar values for ∆EQK , PBE with SOC has the highest effective masses
for the K valley and therefore also lower mobility values, even when comparing strains at
which they have a similar energy separation.

To fully judge whether the inclusion of spin-orbit coupling is beneficial and adds to the
accuracy of the simulation, the model would first need to be adjusted to include spin
effects and to allow for a more complex approximation of the band structure. This is
beyond the scope of this work, but it can be assumed that in this chain of assumptions and
models, from ab initio DFT calculations to applying the Monte Carlo method to solve the
Boltzmann Transport Equation, the result is only as accurate as the weakest approximation.
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Therefore, even if spin-orbit coupling were to yield perfect results, it would represent an
unnecessary effort within the constraints of our current model, as they cannot be effectively
integrated to improve the final outcomes.

Finally, it was shown that the carrier mobility in monolayer MoS2 changes when strain is
applied. Furthermore, there exists a strain interval for which this dependence is linear.
Where this interval lies is different for each ”flavor” of DFT calculations. Therefore, in
order to effectively use this phenomenon for the development of a stain-based sensor, it is
necessary to establish a robust calibration procedure.
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In studying the metal-organic frameworks, this thesis primarily focused on structure op-
timizations, although this was not the initial main goal. The aim was to come up with
a practical method for calculating these structures to ultimately study surface properties,
and predict MOF-analyte interactions. The selected ab initio approach proved challenging
in terms of computational cost, and convergence behavior. MOFs pose a challenge in sim-
ulations due to their large structures with a wide variety of bonds and interaction types.
These include complex bonds between linkers and ions, covalent bonds within organic link-
ers, long-range Van der Waals interactions, and hydrogen bonds. Accurately describing all
of these interactions can be exceptionally demanding for DFT calculations, often requiring
special modifications which significantly increase computational efforts. Therefore, seeking
the optimal structure through this approach may not be the most reasonable course of
action.

A better approach might involve relying on experimental methods, such as X-ray absorption
spectroscopy or X-ray diffraction, to obtain more detailed information about the MOF’s
structure. Alternatively, one could explore computationally efficient prediction methods,
such as machine learning based approaches. An empirically backed structure derived from
such methods could serve as a robust foundation for further investigations into the potential
of the MOF as an analyte sensor.

The influence of strain on the carrier mobility in monolayer MoS2 was investigated theo-
retically. For this purpose Density Functional Theory calculations with different exchange-
correlation functionals and pseudopotentials were performed; additionally, calculations in-
cluding spin-orbit coupling were executed. The ab initio methods were used to investigate
the electronic structure of the MoS2 film, and a fitting process served to determine crit-
ical parameters in order to approximate the conduction band. These factors include the
effective masses, non-parabolicity factors, and the energy difference ∆EQK between them,
which characterize the K and Q valleys. These parameters served as inputs in the Ensemble
Monte Carlo simulations, which were applied to solve the Boltzmann Transport Equation in
order to calculate the carrier mobility. The simulations accounted for intra- and inter-valley
scattering effects caused by optical and acoustic phonons. The results show that tensile
strain enhances carrier mobility, whereas compressive strain decreases it. The mobility is
notably influenced by the energy separation between these valleys, which strongly depends
on the choice of exchange-correlation functional employed in the DFT calculations.

It was not possible to conclude whether taking spin-orbit coupling into account added a
benefit to the model accuracy, neither could a favorable DFT setup be established. As
expected, the choice of pseudopotentials or the use of PAW only has a marginal influence
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on the results of the calculations. Independent of the functional used, linear regions were
found for the mobility-strain curve, which shows promise for strain engineering of MoS2
layers or its application as a stress sensor.

Computational methods and approaches must be chosen wisely and many considerations
have to be made: What property needs to be investigated? Is the user interested in the
electronic structure in the ground state, in its exited states, band gaps, vibrational modes,
transition states, geometry, or magnetic moments? What special properties of the material
might pose restrictions or have to be accounted for in the model explicitly? Can a significant
impact of van der Waals forces be expected, like in multilayer MoS2 or between the linkers
of metal-organic frameworks? Is the material conducting or semiconducting, can a specific
magnetic behavior be expected? For each additional complexity which is added to DFT
calculations, one also must be aware that there is a price to pay in computing time.

Fundamentally, it has been demonstrated that Density Functional Theory (DFT) serves as
a valuable tool for calculating relevant material properties. It was possible to investigate
the strain dependence of the carrier mobility of 2D MoS2 based on ab initio calculations.
As a method, DFT has the potential to optimize the use of resources by doing an initial
screening of multiple candidate materials. Further, DFT complements the empirical ap-
proach by assisting the theoretical analysis of experimental outcomes. Nevertheless, it is
also necessary to acknowledge the limitations of the method, as the chosen approach for
investigating the MOF structures proved to be overly resource-intensive and impractical.

Finally, the indispensable role of experimental validation must be mentioned. Combining
computational and experimental, as well as theoretical and practical, research, is the most
effective means for advancing scientific knowledge.
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