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Abstract

The rapid growth of the semiconductor industry has seen an increase in demand for
reliability tests which are essential for ensuring that the devices reach their expected
lifetimes, and the overall well functioning of the devices is achieved. Experimental tests
give plenty of insight into topics of interest, but nowadays with access to high performance
computing facilities, it is possible to perform multiphysics simulations which are more cost
efficient compared to their physical testing counterparts. However, there is a significant
effort placed into developing and then refining the simulation models, so that they mimic
reality up to a desired accuracy.

In multiphysics simulations there are typically three well-known routines involved: pre-
processing, solving, and post-processing. The aim of this work is to provide an automated
workflow which goes through the pre-processing routine which, in most engineering/-
physics applications, is the most tedious and time consuming component.

The pre-processing consists of the following tasks: Defining the geometry, meshing,
defining the material properties, and specifying the initial and the boundary conditions.
In most cases the latter two are derived from experiments or literature values, but the
first two tasks are always problem-specific and can be of considerable difficulty. There
are general good practices that one should follow, but in real engineering problems it
is up to the simulation engineer to make compromises between modelling assumptions,
meshing and the desired simulation accuracy compared to the experimental data.

In this work, the finite element method is applied to analyse the temperature response in
non-commercial microelectronic devices, which typically require many repetitive manual
tasks to be executed during pre-processing. The design of these devices is first drawn in
the graphic design system (GDS) format, which is an industry standard for microelectronic
devices. In the scope of this thesis, a Python framework is developed to automate all the
pre-processing parts of these designs and minor automation is also introduced to solving
and the post-processing. For demonstration purposes the developed methods are applied
to generate and validate models of test chips against experimental data. The model
generation is fully automated, and is up to 50 times faster than the previous manual
routine. Adjustments in the geometry pre-processing enhance the solving runtime, by
making it up to 35 times faster than the previous solving methodology. The Python
framework is scaled to work on a family of different device models and architectures
which share certain similarities.
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CHAPTER 1
Introduction and motivation

Microelectronic devices are small electronic components which are typically made using
semiconductor materials. These devices typically have structural components which are
just a few micrometers in size, and are designed to perform specific electrical functions.
Microelectronic devices are used in a wide range of applications, from consumer electronics
such as smartphones, computers, and digital cameras to medical devices, electrical vehicles,
industrial equipment, etc.

The structural design of a microelectronic device typically involves the integration of
several layers of structural thin films, each with a specific function, on a substrate material.
The substrate material is usually made of a semiconductor, such as silicon, and serves
as the base layer for the device. The layers of thin films are deposited and etched to a
desired pattern on the substrate using a variety of processing techniques. These layers can
include metal interconnects, dielectric layers for insulation, and active regions containing
semiconductors doped with impurities to create specific electrical properties.

The active regions of the microelectronic device typically contain p-n junctions, which are
formed by the intentional introduction of impurities to the semiconductor material. The
p-n junction acts as a one-way valve for electrical current, allowing it to flow from the
p-doped region to the n-doped region, with a small reverse bias on the counter direction.
This property is essential for enabling logic and switching operations in the device.
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1.1. Polyheater test devices

1.1 Polyheater test devices
Purpose

Power electronic devices are designed to handle higher power levels compared to other
microelectronic devices. During their active operation they often experience thermal
cycling, which can be categorized into active power cycling and thermal overload/short
circuit pulsing. Active power cycling refers to the scenario where the device is subjected
to repeated ON and OFF cycles, while short circuit pulsing can occcur as a consequence
of an electrical fault. Both types of thermal cycling can cause the device to heat up
and cool down repeatedly, which creates thermo-mechanical stress and may lead to
degradation and eventually, failure of the device. Stress testing engineers use thermal
cycling tests to evaluate how well a device can withstand these thermal stresses and to
predict its lifespan and durability under harsh conditions.

To study the thermo-mechanical fatigue of metallizations in power semiconductors, stress
tests are conducted on commercially available devices. This approach replicates real-world
conditions with identical chip layouts and materials while emulating environmental and
electrical conditions in the lab. Detectable failures, such as local melting or plastic
deformations, enable reliability assessment and identification of vulnerable chip areas.

The major issue of this approach is that most of commercial devices of interest are
designed to work efficiently, not to help assess the heat and stress they experience during
use. This means that it is not easy to change certain factors like how long a heating pulse
lasts because the device’s architecture does not allow it. Moreover commercial devices
are packaged into a protective enclosure to withstand the environmental threats (physical
damage, dust, and moisture). These packages are designed in a way to ensure the right
electrical contact and thermal management; however, the ambient-safe packaging restricts
the ability of real-time monitoring of stress-testing scenarios.

To bypass the difficulties mentioned above polysilicon microheaters, also known as
polyheaters, were introduced in [1]. These are simplified test chips which can be subjected
to a precise and controlled amount of heat loading in order to analyse the thermo-
mechanical fatigue of the materials which are present in commercial semiconductor
devices.

In order to understand the thermo-mechanical fatigue of the materials, we only need
to look at a bi-layer system, as shown on Figure 1.1. This system is composed of
a thin copper layer on top of a much thicker silicon substrate. Each material has a
different coefficient of thermal expansion (CTE), with CTESi being 2.56 · 10−6K−1 and
CTECu being 17 · 10−6K−1, so almost 7 times higher when compared to silicon. As
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1.1. Polyheater test devices

the temperature changes, the resulting mechanical stress occurs due to the difference
in CTEs. Specifically, during the heat-up and cool-down cycles, the copper layer is
subjected to compression and tension respectively. Repeated stress cycles can cause
damage to the metallization layer and lead to plastic deformation in the copper surface.
Motivated by this observation in a simple example, the same concepts are implemented
in the polyheater designs through a more complex layered structure.

Figure 1.1: (a) The thick silicon substrate film in gray and the thinner
copper film in orange are considerd as separate systems that
can expand individually.
(b)Both Si and Cu are considered as a bilayer with adhesion
boundary conditions. Warping with a radius of curvature can
be observed. Used with permission from [1].

Layer design

The polyheaters are devices that provide a high temperature at a specific location as a
result of Joule heating. These devices vary a lot in their design and allow for different
types of research to be done on them; however, they share some structural properties.
Each model has lateral dimensions of 3.3 mm × 1.9 mm. The bottom layer of the chip
is a 120µm-thick silicon substrate. A thin layer of oxide is put on top of the substrate
for electrical insulation. Subsequently layers of polysilicon, aluminium and Cu with
insulating nanometer-thin layers inbetween are deposited. In areas where there has to be

3



1.2. Modelling and simulation of polyheater devices.

electrical contact to the polysilicon layer there are small metal interconnecting channels
known as vias. The polysilicon layer acts as a resistive heater to the entire device and can
be subjected to sub-millisecond pulse durations of Joule heating. In the aluminium layer,
referred as M1 in the layout, various types of sensors are included, which range in design
depending on the model type and the type of test they are used to extract measurement
data for, as shown on Figure 1.2. For our investigation the relevant application of these
layers are as temperature sensors in a meander shape localized in the aluminium(M1)
layer as depicted in Figure 1.3 in cross-sectional and top view.

Setup and calibration

The electrical actuation of the chip is realized through the copper pads located on the
metallisation layer, as explained in [2]. Temperature sensing devices located on the M1
layer have Ohmic behaviour, meaning that resistance is proportional to the temperature.
This behaviour is represented by the temperature coefficient of resistance αT CR,Tref

for a
specific material at a given reference temperature Tref . Using these parameters, a linear
model in [2], [3] is defined as:

R(T ) = RTref
· (1 + αT CR,Tref

· (T − Tref )) (1.1)

In order to calculate resistance in this way both αT CR,Tref
and RTref

have to be known
for the specified temperature Tref . Most of these values can be found in literature for
standard reference temperatures and established materials. For any other Tref of interest,
both values of αT CR,Tref

and RTref
can be calculated using experiments and line fitting

models.

The calibration procedure for the temperature is as follows: First the αT CR,Tref
of interest

must be chosen, then RTref
is calculated using Eq.(1.1) where R(T ) = RTroom . Inserting

the calculated RTref
results in Eq.(1.1) :

R(T ) = RTroom · 1 + αT CR,Tref
· (T − Tref )

1 + αT CR,Tref
· (Troom − Tref ) (1.2)

1.2 Modelling and simulation of polyheater devices.

With the rapid development of miniaturization techniques, there are new microelectronic
devices being fabricated with smaller features and this means that power densities

4



1.2. Modelling and simulation of polyheater devices.

Figure 1.2: Light microscopy images of 4 different polyheater models each
having different heating configurations on the polysilicon layer.
Different configurations of temperature sensors are depicted
in the specified areas of the ’M1’ layer. Image taken with
permission from [1].

Figure 1.3: Top view and their cross-sectional counterparts of a polyheater
device. The image taken with permission from [1], is provided
just for schematic reasons and does not actually refer to any
model studied here.
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1.2. Modelling and simulation of polyheater devices.

inside a functioning device are constantly increasing. There is a plethora of research
into optimisation methods of heat dissipation in microelectronic devices, see [4], [5], [6].
The accumulation of thermal stresses in very short time intervals has several negative
consequences such as: chip bowing, delamination, thermo-mechanical fatigue of metal
layers, etc. All these phenomena impact the lifetime of the device and could potentially
lead to its ultimate failure.

In order to investigate the aforementioned phenomena on the polyheater test devices
many experimental investigations have been carried out in the past. However all the
data extracted from an experiment is limited to the extent of sensing devices which are
present on the device under test. For example, in the context of experimental thermal
analysis, it is possible to obtain the temperature values only from the region where
temperature sensors are present, as depicted in Figure 1.2. If the temperature values
of the Cu metallization layer need to be known this information cannot be measured
through experiments.

When performing a FEM simulation of the thermal response of a polyheater test chip
in the post-processing of the simulation data, the temperature profiles can be extracted
and visualized in any region of the chip, providing a better understanding about how
heat is distributed through the different material layers described in Figure 1.3.

6



CHAPTER 2
Background

2.1 Heat conduction in solids

Heat flows from the hotter parts of a medium to the colder parts in three different ways:
conduction, which it is realised through physical contact; convection-advection, where the
transport property and relative motion of the medium play a major role; and radiation, in
which heat is transferred through electromagnetic radiation. In solids, heat transfer takes
place mainly through conduction. Convection-advection is not present and heat transfer
through radiation is negligible. A quick overview of the theory in isotropic materials will
be given below and building from that some results about anisotropic heat transfer will
be provided.

Isotropic materials

Mathematical modelling of heat transfer in solids is done considering their physical
properties along different directions. Usually the simplest mathematical models are
derived from first principles taking some ideal assumptions into account. Assume a
homogeneous, isotropic solid body with constant mass density ρ. Isotropic means that
the material properties of the body do not depend on the direction they are measured.

In the model, denote the interior of the body by Ω and by u(x, y, z, t) the temperature of
the body at a point (x, y, z) at the time t. Furthermore, we assume that u(x, y, z, t) is
C2 (second derivative is continuous) with respect to the spatial variables (x, y, z) and C1

(first derivative is continuous) with respect to the time variable t.

7



2.1. Heat conduction in solids

Figure 2.1: Solid domain definition.

Define S to be a smooth surface inside Ω as seen on 2.1 and let n̂ be be a unit normal
vector on S. In a defined time interval [t1, t2], the amount of heat q which passes through
S on the side identified by direction n̂, assuming there are no external heat sources or
sinks, is given by [7]:

q = −
t2�

t1

��
S

k(x, y, z)∂u

∂n̂
dσ dt (2.1)

In Eq.(2.1), k(x, y, z) is a positive function which represents the thermal conductivity
of the body at a point (x, y, z) and, since we assumed an isotropic material, the value
of k does not depend on the direction of the normal n̂ to the surface S at the point (x, y, z).

Consider a smaller subregion ω inside the domain Ω bounded by a smooth closed surface
with a unit normal vector n̂ pointing outwards. The change in the amount of heat inside
the subregion A from time t1 to time t2 is given by:

���
ω

c(x, y, z)ρ(x, y, z)[u(x, y, z, t2) − u(x, y, z, t1)] dx dy dz (2.2)

In the equation above c(x, y, z) is the specific heat and ρ(x, y, z) is the density of the
body at the point (x, y, z). From the law of conservation of thermal energy, this change of

8



2.1. Heat conduction in solids

heat in ω must be equal to the amount of heat which enters into A through its boundary
S in the time interval [t1, t2] and which given by:

q =
t2�

t1

��
S

k(x, y, z)∂u

∂n̂
dσ dt (2.3)

By equalling Eq.(2.2) and Eq.(2.3) we obtain:

���
ω

c(x, y, z)ρ(x, y, z)[u(x, y, z, t2) − u(x, y, z, t1)] dx dy dz =
t2�

t1

��
S

k(x, y, z)∂u

∂n̂
dσ dt

(2.4)

By knowing that:

u(x, y, z, t2) − u(x, y, z, t1) =
� t2

t1

∂u

∂t
(x, y, z, t)dt (2.5)

and, ∂u/∂n = ∇u · n, the divergence theorem applied to the vector field V = k∇u gives:��
S

k
∂u

∂n̂
dσ =

���
ω

∇ · (k∇u) dx dy dz (2.6)

In this way equation Eq.(2.4) becomes:

� t2

t1

���
ω
[cρ

∂u

∂t
] dx dy dz dt =

� t2

t1

���
ω

∇ · (k∇u) dx dy dz dt (2.7)

or

� t2

t1

���
ω
[cρ

∂u

∂t
− ∇ · (k∇u)] dx dy dz dt = 0 (2.8)

By assumption of the regularity, the integrand on 2.8 is continuous and since this is valid
for all subregions ω and all intervals [t1, t2], it follows that the integrand must be zero
for all (x, y, z) in Ω and for all t. Therefore we have:

cρ
∂u

∂t
− ∇ · (k∇u) = 0 (2.9)

The partial differential equation above describes heat conduction in an isotropic body
that has no external heat sources/sinks. In the case that there are heat sources/sinks,
in the right-hand side of Eq. 2.9 there is an additional forcing term g(x, y, z, t) that

9



2.1. Heat conduction in solids

is a heat source if it has a positive sign, or a heat sink otherwise. For isotropic and
homogenous bodies ρ, k, and c are in linear dependence of temperature and are all treated
as constants.
In order for Eq.(2.9) to have an unique solution, the initial and boundary conditions
must be supplied from physical considerations. Specifying the temperature distribution
in the closure of the body domain (set of the body domain, with its limit points added)
at a given time t0 is known as an initial condition:

u(x, y, z, t0) = ϕ(x, y, z), (x, y, z) ∈ Ω (2.10)

Depending on the type of heating, boundary conditions need to be specified as well:

a) Prescribed surface temperature

The temperature over the boundary can be constant, or a function of time, or position,
or both, defined in Eq.(2.11). This type of boundary condition, also known as Dirichlet
boundary coundition, is used mostly in idealized scenarios and rarely in real engineering
problems.

u(x, y, z, t) = f(x, y, z, t), (x, y, z) ∈ ∂Ω, t > t0 (2.11)

b) Adiabatic boundary condition

The adiabatic boundary condition refers to the case when there is no heat exchange
accross the boundary of the system i.e. there is no heat flux. In practical terms, adiabatic
boundaries are often encountered in situations where the boundary is well-insulated or
thermally isolated, preventing heat from flowing in or out of the system through that
boundary. It is expressed as:

∂u

∂n̂
= 0, (x, y, z) ∈ ∂Ω, t > t0 (2.12)

where ∂
∂n̂ denotes the directional derivative in the direction of the outward normal to the

boundary surface.

c)Prescribed flux along the surface

The prescribed heat flux boundary condition in the heat equation can be defined mathe-
matically as:

q = −k
∂u

∂n̂
(2.13)

10



2.1. Heat conduction in solids

where q is the heat flux and k is the thermal conductivity of the material, . The negative
sign indicates that heat flows from high temperature to low temperature. This boundary
condition is often used when the temperature at the boundary is not known or is not
important for the problem being solved. It specifies the rate at which heat is flowing
through the boundary by defining the amount of heat per unit area per unit time.

d) Radiation boundary condition

Radiation, or linear heat transfer, at the surface is imposed if the flux across the surface
is proportional to the temperature difference between the boundary and the surrounding
environment, which is given by:

H(u − u0) (2.14)

where u0 is the temperature of the medium and H and K are both constants. The
radiation boundary condition is then defined as:

K
∂u

∂n̂
+ H(u − u0) = 0, or ∂u

∂n̂
+ h(u − u0) = 0 (2.15)

where h = H/K.

As h → 0, the boundary condition (2.15) tends to the adiabatic boundary condition and
as h → ∞ it tends to the prescribed surface temperature boundary condition.

In general, the radiation boundary condition is used when there is transfer of heat
by electromagnetic waves between two bodies which are at different temperatures and
separated by a distance. It describes the rate at which energy is radiated away from a
surface, and is based on the Stefan-Boltzmann law,[8], which states that the rate of energy
radiated per unit area is proportional to the fourth power of the absolute temperature:

q = ϵσ(u4 − u4
∞) (2.16)

Here, q is the heat flux, ϵ is the emissivity of the surface, σ is the Stefan-Boltzmann
constant, u is the temperature of the surface, and u∞ is the temperature of the surrounding
environment.

The radiation boundary condition is particularly important in applications involving
high-temperature processes, such as combustion, where radiation is a major mode of heat
transfer. It is also used in problems involving the transfer of heat in space or in vacuum,
where there is no direct contact between the two bodies.

11



2.1. Heat conduction in solids

e) Boundary condition over the surface of separation of two media with
different conductivities

Denote by u1 and u2 the temperatures of each medium and k1, k2 their respective thermal
conductivities. According to [9] the flux is continous over the surface of separation between
the media:

k1
∂u1
∂n̂

= k2
∂u2
∂n̂

(2.17)

where ∂/∂n is the directional derivative along the normal to the surface of separation.

In the case that the media are adhesive to each other, e.g., they are soldered along their
surface of separation, in addition to boundary condition (2.17) we have:

u1 = u2 (2.18)

For other cases, when the contact is not so close, the boundary condition through the
surface of separation is defined as:

−k1
∂u1
∂n̂

= H(u1 − u2) (2.19)

Anisotropic materials

Anisotropic materials are materials which exhibit different physical or mechanical proper-
ties in different axial directions. In anisotropic materials the components of the heat flux
q depend on a linear combination of temperature gradients along the spatial directions
in the following way:

−qx = k11
∂u

∂x
+ k12

∂u

∂y
+ k13

∂u

∂z
(2.20)

−qy = k21
∂u

∂x
+ k22

∂u

∂y
+ k23

∂u

∂z
(2.21)

−qz = k31
∂u

∂x
+ k32

∂u

∂y
+ k33

∂u

∂z
(2.22)

or in a more compact way:

qi = −
3�

j=1
kij

∂u

∂x
i = 1, 2, 3 (2.23)

Thus, in anisotropic materials, the heat flux vector q is not always normal to the isothermal
surfaces passing through a specific point. The thermal conductivity k of an anisotropic

12



2.2. Numerical methods

body has 9 components kij , called conductivity coeffiecients which are the entries of a
second order tensor k:

k =

k11 k12 k13
k21 k22 k23
k31 k32 k33

 (2.24)

and in the anisotropic case, Eq.(2.9) can be written for a rectangular coordinate system
as in [10]:

k11
∂2u

∂x2 + k22
∂2u

∂y2 + k33
∂2u

∂z2 + (k12 + k21) ∂2u

∂x∂y
+ (k13 + k31) ∂2u

∂y∂z
+ ...

+ (k23 + k32) ∂2u

∂y∂z
+ g(x, y, z) = ρc

∂u

∂t
(2.25)

where g(x, y, z) denotes an external force term. In a real engineering problem Eq.(2.25)
is subjected to initial and boundary conditions similarly to the Eq.(2.9). Various simplifi-
cations can be performed by considering structural symmetry especially in crystals. This
reduces the number of unknowns in the thermal conductivity tensor k and simplifies
further Eq.(2.25) as shown in [9], [10]. However, in most cases the conductivity coefficients
kij depend on the temperature itself, making the problem nonlinear and very difficult to
solve.

2.2 Numerical methods

In many engineering applications, there is a nonlinear problem defined over a highly
complex geometrical domain, where a closed form solution cannot be found. In this
regard, numerical methods are used to find approximate solutions to these problems. The
most widely used method in solid mechanics is the the finite element method, mostly
due to the fact that it is quite robust and it can handle very complicated geometries.

Semi-discretization of the heat equation

In order to solve Eq.(2.9) numerically we will use a FEM solver based on the Galerkin
method. Since we need to study the time evolution of the temperature we will perform
a semi-discretization in the spatial variables. By choosing accordingly a finite element
subspace Vh ⊆ V and writing the steady-time variant of Eq.(2.9) with Dirichlet initial
conditions in its weak form we will solve the following:
Find u : [0, T ] → Vh such that:

(u′
h(t), vh)L2(Ω) + a(uh(t), vh) = (f(t), vh)L2(Ω) ∀vh ∈ Vh, ∀t ∈ (0, T ] (2.26)
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with initial conditions:

(uh(0), vh)L2(Ω) = (u0, vh)L2(Ω) ∀vh ∈ Vh (2.27)

By choosing a basis {ϕ1, ..., ϕN } of Vh and expanding the solution with respect to this
basis:

uh(x, t) =
N�

i=1
ui(t)ϕi(x) (2.28)

In the weak formulation we use the basis functions as test functions: v = ϕj which leads
to the mass matrix M and stiffness matrix A of the form:

M = ((ϕj , ϕi)L2(Ω))i,j=1,...,N A = (a(ϕj , ϕi))i,j=1,...,N (2.29)

and the load vector depends on time:

ˆf(t) = ((f(t), ϕj)L2(Ω))i,j=1,...,N (2.30)

The problem will be reduced to a system of time-dependent ordinary differential equations:

Mu′(t) + Au(t) = ˆf(t), u(0) = u0 (2.31)

which are solvable by implicit time-stepping methods such as: Newmark-beta method,
generalized alpha method etc.

Meshing and different element types

The Galerkin method described above can be applied to a variety of strongly formulated
problems on any arbitrarily complicated geometry of interest. Before assembling the
system of time-dependent ODEs described in Eq.(2.31) a discretisation of the geometry
must be made using finite elements. The basic definition as given in [11] is:

Definition: A finite element is a triple (T, VT , ΨT ), where:

1. T is a bounded set.

2. VT is a finite dimensional function space on T of dimension NT ∈ N.

3. ΨT = (ψ1
T , ..., ψNT

T ) is a set of linearly independent functionals on VT .
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2.3. GDS layouts

When VT is a space of linear polynomials, the most common elements are shown in Figure
2.2. The set of linearly independent functionals can be point evaluation functionals over
the basis functions and these give the Lagrange elements or point evaluation functionals
over the first derivative of the basis functions; these are called Hermite elements. However,
the point evaluation can be in the nodes of the set T , but also in the middle of its edges
or on other positions, giving rise to a diverse class of finite element methods.

Figure 2.2: Types of different linear two-dimensional and three-dimensional
elements used in common FEM commercial software.

When it comes to meshing, there are various possibilities on structuring the elements
with each other. Block meshing can be used on different sections of the CAD geometry
and elements of mixed type can be used to capture geometrical details in the best way
possible, while still ensuring mesh conformality. Mesh adaptivity is another possibility
in FEM because it allows mesh refinement in a defined region of interest through a
refinement algorithm. Due to limitations in computing capabilities, this allows for a more
efficient distribution of computing power where it is needed the most.

2.3 GDS layouts

GDS II is a binary database file format which has become the standard in the electronic
design automation (EDA) industry for exchanging data related to integrated circuit(IC)
layout artwork [12]. It represents planar geometric shapes, text labels, layer numbers;
and other layout-related information in a hierarchical format. This means that repetitive
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structures can be defined once and then referenced multiple times in the layout, reducing
the file size.

However, the GDS II format supports only weakly simple polygons which are polygons
whose segments are permitted to intersect, but not cross, depicted in Figure 2.3. This
means that shapes with holes can be supported only through their weakly simple variant,
whereby the boundary of the inner hole shape must be connected to the boundary of the
outer enclosing shape.

Figure 2.3: Weakly simple polygon.

The data contained in GDS II files can be used to recreate the entire design or parts of
it, which is useful for sharing layouts, transferring the design between different tools, or
creating photomasks. Originally designed for controlling integrated circuit photo mask
plotting, GDS II quickly became the industry’s default format for transferring IC layout
data between design tools of different vendors, as they often used incompatible and
proprietary data formats [13]. GDS II was developed by Calma Company for its layout
design software. The legacy format "Graphic Data System" ("GDS") and "GDS II", are
currently owned by Cadence Design Systems, Inc. Typically, GDS II files are the final
output of the IC design cycle and are provided to silicon foundries for IC fabrication.
The default length unit in GDS II format is µm and the file extension is .gds.
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2.3. GDS layouts

Viewing GDS layouts with KLayout

KLayout is an open-source software which was initially created and still maintained by
Matthias Koefferlein for the purpose of mask layout editing in the microelectronics indus-
try [14]. It has since grown in popularity and is now widely used by engineers, designers,
and researchers for creating, viewing and editing layouts for integrated circuits, printed
circuit boards, and micro-electromechanical systems (MEMS). KLayout is designed to be
highly customizable through the use of plugins, which has contributed to its widespread
adoption in industry and academia.

Figure 2.4: KLayout main window.

It is possible to view .gds files and their hierarchical tree-structure in KLayout’ graphical
user interface GUI. In Figure 2.4, the panel on the left shows the cell hierarchy and
inside each cell there could be subcells which could also have further subelements in the
hierarchy. The cell shown by default is the one that is the highest on the hierarchy, but
custom ones can be selected to be displayed as well. Cells are important to define the
structure and to reference different models or components which might be designed, for
fabrication reasons in a single big .gds file.
The panel on the right shows the layer list and each layer contains a list of 2-Dimensional
(2D) drawn shapes. Layers are represented by the pair (layer_number, datatype), where
the layer_number is an integer between 0 and 65535 and the datatype is an integer
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between 0 and 255. These numbers have no predefined meaning and can be used by the
design engineer to organize the layout in a structured manner. By default, all layers are
displayed using different colours to display overlapping regions in a distinct way. The
panel in the center is the canvas where the current layout is displayed.

2.4 Review of current state-of-the-art

In the past (Hoffmann et al., 2022) in [15] used 2D half models of polyheaters to
perform transient thermal analysis FEM simulations. This information was then applied
to calibrate the numerical fatigue damage models. The approach was successful, but
more insights can be achieved when working with 3-Dimensional (3D) CAD models of
polyheaters. There are several alternatives when it comes to 3D rendition of 2D .gds
layouts, some of them are open source, but there are also commercial applications as
described in the following.

GDS3D

GDS3D is an open source software developed at the University of Twente [16] for
extruding 2D .gds layouts into 3D rendered objects. The user can navigate around the
3D visualization and enable or disable the extruded layers. It allows to export 3D objects
into OneLab as .geo files, but it still has problems handling vias which can be present on
the layout.

Figure 2.5: Interface of GDS3D
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GDS2POV

GDS2POV is another open source software focused mostly on 3D visualization of .gds
layouts [17], based on POV-Ray which is an open- source, cross-platform ray tracer.
However, this tool doesn not allow to export the 3D objects in any suitable CAD format
which is useful to conduct finite element analyses.

Figure 2.6: Functionality of GDS2POV.

gds3xtrude

gds3xtrude [18] is an open-source project in a very early phase developed by Thomas
Kramer to convert .gds layouts into .scad objects based on OpenSCAD [19], which is
a free software for creating solid 3D CAD objects through its scripting language. It
allows to define the layer stacking procedure and the material sequence metadata through
its own data structure, but in the end, the .scad format is not suitable to be meshed
and it has to be converted to other CAD formats, Figure 2.7. During the conversion
the material sequence metadata is not transferred and, in the end, we are left with an
unlabelled 3D object.

Gds2Mesh

Gds2Mesh is a 3D technology computer aided design (TCAD) model construction tool
developed by Cogenda [20], a company specialized in simulation software for semiconductor
devices. The 3D CAD models are constructed by using a GDSII mask layout as input,
with the ability to customize and predefine process rules. This software allows boolean
operations between 2D shapes or 3D objects and, in the end, the output is a high-quality
tetrahedral mesh as claimed on their product description. It is not known how well
does the software perform on devices with very thin structures or layers, which we will
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2.4. Review of current state-of-the-art

Figure 2.7: The .scad output of an initial test done on a polyheater .gds
layout up to an intermediate layer.

investigate later on. The license of Gds2Mesh is mostly targeted to industrial enterprises
and thus it is quite cost-intensive.

COMSOL Multiphysics® and Ansys Mechanical

COMSOL Multiphysics® and Ansys Mechanical are the most well known multiphysics
suites used in industry, but also in academia. In regard to our task, currently COMSOL
Multiphysics® supports the feature of creating 3D geometries from .gds files through
its ECAD module [21]. However if the layer stacking procedure of the geometry itself
is quite complex, this involves plenty of manual work which is not desirable. Ansys
Design Parametric Language (APDL) [22] supports a similar workflow by first converting
the .gds file into an .anf (Ansys neutral format) file and then proceeding with the layer
stacking procedure similarly as in COMSOL Multiphysics®. In both cases the bigger the
manual workload is, the higher the probability is to have human errors.

Coventor SEMulator3D

The SEMulator3D tool from Coventor is an advanced process and device emulation tool,
[23] for the development and optimization of semiconductor fabrication processes, and
for the design and analysis of semiconductor devices. It is mostly focused on providing a
virtual fabrication environment, where the user can emulate and visualize each step in
the semiconductor fabrication process, from photolithography to etching and deposition.
This allows the user to optimize their processes, reduce costs, and improve yield and
performance. After reading .gds input files, regarding CAD models for FEM analyses,
this software allows to export 3D models to FEM solvers for additional analyses. However
there is not much reference on this part due to the main focus being on process emulation.
The license is aimed for enterprise industries and distributed on a yearly basis.
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ViennaPS

ViennaPS, [24] is a header-only C++ process simulation library, developed at Institute of
Microelectronics at TU Wien, which includes surface and volume representations, a ray
tracer, and physical models for the simulation of microelectronic fabrication processes.
Regarding .gds layouts ViennaPS has a module that can import these, and perform
subsequent process simulations over these geometrical masks. It is possible to specify the
layers to be extruded by their z-coordinates and also perform boolean operations over
them in order to follow the layer stacking ruleset. For labelling, it is possible to specify
material names for each volume, and this also assigns a color to each material volume.
The 3D built-in models are exported in a .vtk [25] format which is already meshed by
definition. As it is mostly focused on process emulation, it does not handle well the
extrusion and meshing of structures with huge difference in spatial scales.

2.5 Workflow

In this work, the main goal is to generate 3D meshed CAD models, which are ready to
undergo finite element analyses from provided .gds layout files of polyheater chips in a
fully automated manner. As mentioned previously the .gds layouts were created for the
purpose of defining all the geometrical shapes and details of the layout masks needed
for the fabrication of the devices. Using .gds layouts to create 3D meshed CAD models
for FEM analyses is a new and unconventional practice which saves time during CAD
modelling as the CAD geometry is not being built from scratch, but from its different
cross sections along its z-axis.

We are provided with a .gds layout which is used for the actual fabrication of the
polyheater chips. This layout contains many small geometrical details that are crucial
for the electrical functionality of the fabricated models, but are of negligible importance
for the simulation models used in the thermal analysis. The idea is to remove or simplify
these certain geometrical features from all the models automatically and then use these
simplified models to build 3D extruded and meshed geometries, which are ready for
thermal finite element analysis (FEA). The validity of of the automatically created CAD
models will be checked using a transient thermal analysis, where FEM results will be
compared to available experimental data obtained through the setup mentioned in Section
1.1.
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CHAPTER 3
Simplification methodology

In the pre-processing phase of multiphysics simulations, significant time and effort is
placed into setting up the geometry, meshing, specifying initial and boundary conditions,
defining the physics of the problem, assigning material properties, etc. Usually, the
imported CAD models come with many small and complex geometrical features which
will need finer meshing, or a decrease in the meshing quality which will result in longer
simulation times or incorrect simulation results, respectively. Motivated by this, CAD
engineers usually, manually remove or simplify these small geometrical features which are
of negligible importance. In more complex CAD designs this is simply not manageable.
There has been significant effort placed into developing new algorithms which perform
automatic simplifications or defeaturing of application-specific geometries. Thakur et
al. [26] have written a great summary of several fully-automatic or semi-automatic
simplification techniques used in a wide variety of applications, categorized as follows:
techniques using surface entity based operators, volume entity based operators, explicit
feature based operators, and dimension reduction operators. Lee et al. [27] showed that it
is possible to use low-pass filters from signal processing to do geometrical featuring , while
Owen and Shead in [28] employed machine learning techniques for CAD defeaturing.

Our approach consists as follows: we will use gdspy [29], an open source Python module
which allows to read and write .gds files to convert all the geometrical data read through
gdspy into a compatible data format to be read and manipulated through the Shapely
Python Package [30]. Shapely is an extensive computational geometry library written
by Sean Gillies and based on the famous C/C++ library GEOS [31]. All of the 2D
simplifications over the .gds layouts will be carried out using the Shapely functions, then
the simplified layouts will be written into new files using gdspy.
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3.1 Reading with gdspy

The .gds file used in this study is developed internally and contains all the necessary details
and information for the fabrication of 93 distinct polyheater models. The models are
named according a specific ruleset which takes into account different design specifications
which make each model unique. In the layout we are working on, the polyheater designs
are placed in an array-like structure as shown in Figure 3.1. The hierarchy of the layout
consists of a parent cell that contains subcells for each model. Each model subcell
contains lower hierarchy subcells which include: model layout, border sealrings, and
text subcells which serve for labelling purposes for different components and for the
model naming. The layers are in the (layer_number, datatype) format as mentioned in
Section 2.3 and they consist of: boxes, polygons, paths, or texts. These objects are the
elementary entities which are included in the cell of a .gds drawing. Their definition in
the gdspy context is given in [29].

Figure 3.1: GDS layout used for fabrication.

In order to create 3D CAD geometries for each polyheater model in Figure 3.1, first we
should crop each model from the array-like structure and save it in a separate .gds file.
This can be performed easily through gdspy ’s reading capabilites.

First we create a folder named cropped_layouts. Then, we load the large array-like .gds
file through:
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1 big_lib = gdspy.GdsLibrary(infile=gds_file_path)
2 dict_big_lib = big_lib.cells

In the context of gdspy, the .gds file is called a library which contains multiple cells. The
list of cells of a library is a python dictionary, where the keys are the names of the cells
and the values are the cell objects.

After the large layout is read-in, a list with the names of all the 93 models is used to
create new files or new libraries using gdspy’s gdspy.GdsLibrary(), which creates a
new empty library. Subsequently, by enumerating through all the list of model names
which are the keys of big_lib.cells, the cells of interest are filtered by value and
added to new empty libraries separately. Any cell containing text or border seals
is irrelevant for the CAD models and is filtered out. In the layout there is also a
Process Control Monitoring (PCM) device that is used to control the manifacturing
process and this is completely disregarded. The separate .gds files are written using:
gdspy.GdsLibrary().write_gds(name.gds).

3.2 Filtering by layers

The large array-like layout in Figure 3.1 contains many material layers which are important
for fabrication, but are unnecessary from a thermal finite element analysis perspective.
For example, there is an imide layer which serves as mechanical protection for the
fabricated models, but for the simulation models, its impact is negligible, so it does not
need to be included. There are various layers which serve for labelling various areas of
the Cu layer, all to be discarded as well, in our modelling.

Therefore the remainder of work is on the cropped .gds layouts from the previous
cropped_layouts folder. These separate .gds files inherit all the layers as defined on the
large array-like .gds layout. Using a python function which takes 2 arguments: the path
of the cropped_layouts folder and a list of the layers to be kept in the (layer_number,
datatype) format, we enumerate through all the 93 .gds files on this folder. We create new
separate empty libraries using gdspy.GdsLibrary() and inside the library create only
1 top hierarchy cell using gdspy.GdsLibrary().new_cell(name). The intention is
that each filtered .gds file has only 1 cell which makes the structuring and accessing of the
geometric data straightforward. Then, using gdspy ’s get_polygons() method applied
to the loaded gdspy.GdsLibrary(infile=file_path).cells dictionary object,
we obtain the list of polygons which itself is a python dictionary where the keys consist
of (layer_number, datatype) pairs and the values are actual gdspy polygon coordinates.
In gdspy, polygons can be defined through an ordered set of vertices a in clockwise or a
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counter-clockwise direction. An example of how a polygon is defined in the gdspy context
is given below:

1 # Create a polygon from a list of vertices
2 points = [(0, 0), (2, 2), (2, 6), (-6, 6), (-6, -6), (-4,

-4), (-4, 4), (0, 4)]
3 poly = gdspy.Polygon(points)

Figure 3.2: Polygon drawn using gdspy.

Then the dictionary containing all the polygons and the respective layers to which they
belong, is filtered with respect to the list of layers which must be kept by:

1 filtered_polygons_dict = {k: v for k, v in
polygons_dict.items() if k in layers_to_keep}

Due to design choices in fabrication, the .gds files do not contain a layer which has the
box that defines the silicon substrate level. This is important for the simulation models
and it is added manually in layer (1, 0) in the single top cell we created.
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1 #add the silicon substrate base layer
2 points = [(0, 0), (3220, 0), (3220, 1820), (0, 1820)]
3 substrate = gdspy.Polygon(points, layer=1, datatype=0)
4 new_cell.add(substrate)

Subsequently, all the new filtered .gds files are written with the same .write_gds(name.gds)
method mentioned above in a new folder titled filtered_layouts. For ease of use instead
of referring to the layers using numbers in the (layer_number, datatype) format we are
going to refer them with strings. Now all of the filtered .gds files have the following
layers: [’substrate’, ’contact’, ’M1’, ’poly’, ’TVia’, ’Cu’]. Now af-
ter having all the layouts cropped and filtered by layers we can continue with the 2D
simplification procedure.

3.3 Simplification procedure in 2D

Due to the fact that gdspy doesn’t offer much functionality in terms of computational
geometry over 2D shapes, we will use the Shapely library in this regard. Shapely offers a
multitude of geometric objects and functionalities required for the simplification task.
The basic geometric entities in Shapely are defined as:

1 point = Point(1, 1)
2 line = LineString([(2, 0), (2, 4), (3, 4)])
3 ring = LinearRing([(0, 0), (1, 1), (1, 0)])
4 polygon = Polygon([(0, 0), (1, 1), (1, 0)])

A LinearRing has zero area and non-zero length, while a Polygon has both non-zero area
and length. We will have to deal mostly with polygons and need to set some preliminaries
first.

One of the functions from Shapely which is quite useful for our task is the shapely.buffer
function. It computes the buffer of a geometry for positive and negative buffer distance.
The positive buffer distance corresponds to dilation, while the negative buffer distance
corresponds to erosion in terms of mathematical morphology. Their definitions are as
follows [32]:

Dilation

The dilation of polygon A by the structuring element B is:

A ⊕ B =



b∈B

Ab (3.1)
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If B has is centered at the origin, as before, then the dilation of A by B can be understood
as the locus of the points covered by B when the center of B moves inside A.

Erosion

The erosion of a polygon A by the structuring element B is:

A ⊖ B = {z ∈ E|Bz ⊆ A} (3.2)

where Bz is the translation of B by the vector z, i.e., Bz = {b + z|b ∈ B}, ∀z ∈ E.

(a) Dilation of a square by a disk. (b) Erosion of a square by a disk.

Figure 3.3: Mathematical morphology operations.

The buffer operation always returns a polygonal result. The negative or zero-distance
buffer of lines and points is always empty.

The files from the filtered_layouts will be read one by one using gdspy and the gdspy.Polygon
objects will be translated into Shapely polygon format defined on the snippet above.
When working with the Shapely polygons we also need to know the layer they originate
from, so we create a myPolygon class with the following attributes:

1 class myPolygon:
2 def __init__(self, layer, polygon) -> None:
3 self.layer = layer
4 self.polygon = polygon

Here, the layer is a string as defined above in the layer naming, and polygon is a Shapely
Polygon object. For model symmetry purposes, all the layouts will be shifted to the
origin of the plane. meaning that (0, 0) is at the centroid of a polyheater model.
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3.4 Procedure on the ’M1’ layer

The ’M1’ layer consists of aluminium temperature and delamination sensors. Compared
to all the other layers, this particular layer is by far the most diverse in terms of design
accross different models. It has many intricate and small geometrical features which are
not very important for the thermal simulation and can be simplified.

Motivation

Consider the following polyheater model, where a fraction of M1 and Cu layers are
displayed:

Figure 3.4: Temperature sensors in a meandre structure are highlighted
through the green boxes.

Due to very small time scales (short heat pulses of 200µs-300µs) the heat applied to the
main copper plate (the big blue rectangle in the center) needs several milliseconds to
be propagated and reach sensor 3 in Figure 3.4. For sensors 1 and 2, since they overlap
with the Cu plate, the following can be said regarding their heat footprint in the global
scale. The thermal conductivity of copper is approximately 398 W/(m · K) while for
aluminium it is 237 W/(m · K). Due to the fact that the thickness of the M1 layer of
aluminium is much smaller compared to the thickness of the copper layer (from the design
specifications) we can say that the M1 layer is not thermally significant and various
simplifications can be applied as shown below. Obviously by filling the empty areas
between M1 polygons with aluminium, while in reality there is oxide, we are introducing
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a small error, but this is negligible in the global scale. Similar simplifications are applied
to other M1 structures (Fig. 3.6, 3.7).

Figure 3.5: Simplification of the meander structure of the temperature
sensor.

Figure 3.6: Simplification of the delamination sensor.

Figure 3.7: Simplification of the connecting lines of M1 layer far away from
the heated central area.
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Implementation

The implementation of the simplifications pictured in Figures 3.5, 3.6 and 3.7 is performed
by splitting the list of myPolygons from the M1 layer according to an area criterion
and working with them separately. The meander structure of the temperature sensor is
filtered out through a function which checks if a polygon has more than n coordinates
with the same x-coordinate. Then, dilation and erosion by the same buffer size gives
the result in Figures 3.5 and 3.6. In Figure 3.7 the cutting of the connecting lines is
performed using linestring information from the copper pads and the removal of the
extremal connecting lines is achieved through one-sided negative and positive buffering.
In all buffering operations the shapely.BufferCapStyle is chosen to be flat and the
shapely.BufferJoinStyle is chosen to be mitre in order to preserve the current
polygon geometries.

3.5 Procedure on the ’contact’ layer

The contact layer consists of very thin tungsten stripes between the poly and M1 layers.
These have a fairly easy geometry to be simplified and are the same accross all models.

Motivation and implementation

Figure 3.8: Simplification on the contact layer.

The simplification above is simply erosion and dilation by the same size and then merging.
By doing this, we are making the thermal contact between poly and M1 layers 50% better
than it is in reality; however this doesn’t affect the heating of the Cu through the poly
plate significantly, since the M1 layer is thermally negligible, as discussed in the previous
section.
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3.6 Procedure on the ’TVia’ layer

The TVia layer contains many vertical conductive channels of different scales that connect
M1 to Cu layer. They are placed on the chip in order to dissipate the heat coming from
the underlying poly plate. This layer has the largest number of polygons compared to
the other layers as it has a repeating structure of small 3µm × 3µm boxes which make
up the majority of the interconnecting channels.

Figure 3.9: Simplification on the TVia layer.

Motivation and implementation

In order to motivate this simplification we must do a simple reasoning on the heat
capacity of the entire polyheater device. The heat capacity is an extensive property (its
magnitude increases as the size of material volume increases) of materials and it defines
the amount of heat to be supplied to an object to increase its temperature by 1 Kelvin.
The heat capacity of an object is calculated by multiplying the specific heat capacity
(intensive property) to its mass. The heat capacity of our polyheater device in terms of
material specific heat capacities would be as follows:

Cpolyheater = CSi + CCu + CAl + ...

Cpolyheater = cSi
p · mSi + cCu

p · mCu + +cAl
p · mAl + ...

Cpolyheater = cSi
p · ρSi · VSi + cCu

p · ρCu · VCu + +cAl
p · ρAl · VAl + ...

(3.3)

Due to the fact that the silicon and copper volumes make up more than 90% of the entire
device volume, the amount of extra dielectric that is being removed due to the merging
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of the small Tvia holes is fairly small compared to the silicon and copper amounts which
dominate in the device. This fairly small volume removal does not affect the heat capacity
of the entire polyheater significantly, where CSi and CCu dominate the heat capacities of
all the other remaining materials. The simplification can then be performed as shown on
Figure 3.9 by applying dilation and then erosion by the same size and then merging all
the polygons of the TVia layer.

3.7 Procedure on the ’Cu’ layer
Motivation

The polygons which are used to draw the copper pads of the Cu layers contain small
chamfers in their extremal vertices. They are mostly present on the small 16 copper pads
that are used for electrical actuation and the main copper plate in the middle may also
have them, based on the polyheater model. As shown in Figure 3.10 we could fill up
the empty area described by the half area of the small red square with copper material.
This simplification would be valid as the new volume added is a very small percentage
compared to the total volume of copper.

Figure 3.10: Chamfer detection and removal.

Implementation

In all the studied models there are three different chamfer lengths which have been used.
They have been found by checking if adjacent edges form a 135° angle. These lengths are
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the specified lengths in the algorithm below. Subsequently, the algorithm is as follows:
find the chamfers and use them as a defining diagonal to build the red squares seen in
Figure 3.10. Then, use Shapely ’s union function to merge the polygon with the chamfer
to the newly built squares.

Algorithm 3.1: Algorithm to remove Cu chamfers
Data: list of myPolygons
Result: list of myPolygons

1 new_Cu ← [];
2 Cu_myPolygons ← myPolygon objects whose layer attribute is ’Cu’;
3 for element in Cu_myPolygons do
4 for i = 0 to length(element.polygon.exterior.coords)-1 do
5 p1 ← Point(element.polygon.exterior.coords[i]);
6 p2 ← Point(element.polygon.exterior.coords[i + 1]);
7 edge ← p1.distance.p2;
8 if edge == specified lengths then
9 diagonal ← edge;

10 side_length ← diagonal/
√

2;
11 center_x← (p1.x + p2.x)/2;
12 center_y← (p1.y + p2.y)/2;
13 v1← Point(center_x - side_length / 2, center_y - side_length / 2);
14 v2← Point(center_x + side_length / 2, center_y - side_length / 2);
15 v3← Point(center_x + side_length / 2, center_y + side_length / 2);
16 v4← Point(center_x - side_length / 2, center_y + side_length / 2);
17 square←Polygon([v1, v2, v3, v4]);
18 union ← element.polygon.union(square)

new_Cu.append(myPolygon(layer=element.layer, polygon=union)
19 else
20 new_Cu.append(element)
21 end
22 end
23 end
24 return new_Cu

3.8 Algorithm to remove excess collinear vertices

Due to various simplifications which we performed to the layout polygons, most of them
will contain extra collinear vertices (Figure 3.11) which serve no purpose and could distort
the mesh later on. The following algorithm was devised to remove these excess vertices:
check a⃗ × b⃗ where a⃗ and b⃗ are formed by each consecutive triple points. If the cross
product is 0, then the 3 points are collinear and the middle point is removed.
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Figure 3.11: Essential vertices are plotted with blue dots, while excess
collinear vertices are plotted with red dots.

Algorithm 3.2: Algorithm to remove excess collinear vertices
Data: shapely Polygon object
Result: shapely Polygon object

1 new_vertices ← [];
2 current_vertices ← polygon.exterior.coords;
3 for i = 0 to length(current_vertices) - 2) do
4 x1,y1 ← boundary_vertices[i];
5 x2,y2 ← boundary_vertices[i+1];
6 x3,y3 ← boundary_vertices[i+2];
7 if (x2 - x1) · (y3 - y2) - (y2 - y1) · (x3 - x2)) ̸= 0 then
8 new_vertices.append(Point(x2, y2))
9 end

10 x1, y1 ← boundary_vertices[prelast index];
11 x1, y1 ← boundary_vertices[last index];
12 x1, y1 ← boundary_vertices[first index];
13 if (x2 - x1) · (y3 - y2) - (y2 - y1) · (x3 - x2)) ̸= 0 then
14 new_vertices.append(Point(x2, y2))
15 end
16 end
17 return new_vertices
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CHAPTER 4
Extrusion and meshing

Now that we have a simplification methodology which is valid for all models, the next
steps for building a FEM model from a simplified .gds file are 3D extrusion and meshing.
It is possible to perform these tasks manually, but we are aiming for an automated
procedure for speedup. Automation should be possible here, due to the fact that all
the polyheater models have a fairly similar extrusion procedure. The procedure applies
a stacking ruleset which is based on the overlap of various layers, as shown in Figure
4.1. The material sequence from bottom to top is as follows: Silicon substrate, Oxide,
Polysilicon, Dielectric, Aluminium, Dielectric, Tungsten and Copper.

Figure 4.1: Example of the stacking procedure on a schematic model.

Before doing the extrusion, we must consider that in reality the microscopic images of
polyheaters have shown that the fabricated 3D models are not flat and exhibit some
sort of rough topography (Figure 1.3) which comes from non-idealities in the fabrication
processes. Therefore, in an attempt to keep these topography features, we opted at first
to perform the 3D modelling using a process simulation tool.
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4.1 Tetrahedral meshes in ViennaPS

Figure 4.2: .vtk export of an extruded model up to an intermediate layer
using ViennaPS.

We attempted to apply ViennaPS (Figure 4.2) for the 3D modelling with the aim of
modelling steps in the topography generation with ViennaPS’s process emulation based
on the level set method. Due to the fact that the layer thicknesses range from nanometers
(dielectric layers) up to hundreds of micrometeres (silicon substrate) it is impractical to
use a ViennaPS .vtk mesh to resolve the thinnest layers. Resolving these nanometer-
scale layers would mean extensive time and memory requirements which make the task
unfeasible. This is primarily due to using tetrahedral elements, and applies to all tools
which use such meshing techniques (a long survey on the meshing strategy will be given
below). ViennaPS is currently under heavy development, and working with very thin
structures and dynamic meshes could be an added feature in the future.

4.2 Working with Gmsh

Gmsh [33] is an open-source 3D FEM mesh generator with powerful built-in pre-processing
capabilities. It has been written by Christophe Geuzaine and Jean-François Remacle
at the University of Liège [34]. Gmsh can be controlled through its GUI, the command
line, using text files written in Gmsh’s own scripting language (.geo files), or through
the C++, C, Python, Julia, and Fortran application programming interface (API). The
goal in this work is to exploit Gmsh’s powerful parametric input through scripts written
using its Python API.
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4.2.1 Swept meshes

Tetrahedral meshes on very thin geometries can be very inefficient and of poor quality
with a lot of elements that have a very bad aspect ratio. A bad aspect ratio refers
to a finite element shape which is significantly elongated or distorted. Usually, this
means the ratio of the longest edge of the element to the shortest edge is very large. In
numerical analysis, bad aspect ratio elements are not preferred as they cause instabilities,
convergence problems, and inaccuracies in the FEM simulations. Eventually swept
meshes, another meshing strategy was investigated.

Swept meshing is a meshing technique used on 3D or 2D geometries. For 3D geometries,
its main idea consists of extruding a surface mesh throughout the domain. Not every
3D domain can be meshed through swept meshing. In general, 3D domains which have
disjoint or discontinuous boundary surfaces cannot be meshed through swept-meshing.
In a swept mesh, there can only be hexahedrons and prisms arranged in a structured or a
semi-structured manner. In the sweep direction the subvolumes are always structured.

Figure 4.3: Simple example of a swept mesh over a 2D geometry with a
hole in Gmsh.

The main advantage of swept meshing is that it uses minimal computing resources (low
number of mesh elements) compared to tetrahedral meshes. It produces high quality
meshes on thin geometries using only hexahedra or prisms and it is very efficient to
generate, as only the 2D mesh of the source surface needs to be generated and that has
to be extruded along the inner axis of the geometry until reaching the target surface as
shown in Figure 4.3.

The good quality meshes over thin geometries can be attributed to the fact that prisms
or hexahedra can be of good skewness quality (cosine of the smallest angle) even when
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the element is very flat. In other words, they can be stretched or compressed along one
direction, and their skewness quality will not be impaired, unlike with tetrahedra [35], as
illustrated below:

(a) Almost flat variants. (b) Optimal shapes.

Figure 4.4: A tetrahedron, a prism, a hexahedron in flat and optimal shapes.
Skewness parameter is large for the flat tetrahedron, but does
not change for the flat prism and hexahedron due to their angles
not changing after being flattened.

Another aspect ratio parameter of volume versus length should be taken into account
for swept elements. There should not be a very high ratio between the swept element
volume and the longest/shortest edge of the element.

We note that there is a clash inbetween mesh quality parameters like skewness and volume
to length aspect ratio. It is up to the user to find a compromise between these parameters
by understanding the problem physics. For example, high aspect ratio meshes should not
be used in FEM problems where the solution field has a strong cross gradient, meaning
that there are sudden changes in the value of the physical quantity of interest. In our
polyheater thermal analysis, we expect that the copper plate will be heated uniformly, so
moderate aspect ratios are allowed.

In our study-case, the polyheater layer stacking procedure produces watertight volumes
with continuous boundaries and no gaps inbetween. Motivated by swept meshes used for
very thin structures for FEM simulations in MEMS devices (Figure 4.5b) we will aim to
do the equivalent through our small project gds2Gmsh.

4.3 gds2Gmsh

A model in Gmsh is defined by its boundary representation which means that: a volume
is bounded by a set of surfaces, a surface is bounded by a series of curves, and a curve
is bounded by two end points. Each of these geometrical entities is defined by a pair:
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(a) Tetrahedral mesh. (b) Swept hexahedral mesh.

Figure 4.5: Meshes for geometries with thin layers at the top, performed in
Gmsh.

(dimension, tag), which specifies their dimension (0 for points, 1 for curves, 2 for
surfaces, 3 for volumes) and their tag, a strictly positive global identification number.
Entity tags are unique per dimension.

Most Gmsh models are built in a bottom-up manner (first points, then curves, surfaces
and volumes) using its GUI (manually) or its APIs (scripted) through the built-in or
OpenCASCADE [36] geometry kernels. In gds2Gmsh we use Gmsh ’s Python API to
build 3D extruded and swept-meshed models by first extracting all the polygon data from
the simplified .gds files by using gdspy and Shapely libraries. The entire implementation
is performed in a fully automated way with minimal user input.

4.3.1 Splitting GDS polygons

The first task is to read a simplified .gds layout using the gdspy library and obtain all the
GDS polygons, then to translate these polygons in their corresponding Shapely format.
These Shapely polygons need to be translated further into the Gmsh format in order to
be added to the Gmsh model, which means that they should be added by a script in the
bottom-up manner, meaning:points, lines, polygons, areas, volumes.

Recalling the extrusion procedure: It consists on a stacking ruleset which is based on
the overlap of various layers which are defined in the end of Section 3.2. Due to swept-
meshing the entire 2D area which is the projection of the 3D model at z = 0 needs to
be meshed, then the meshed areas will be extruded, along with their mesh, to various
z-levels according to the layer stacking procedure, and thus 3D material layers will be
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built.

The layers on the simplified layouts overlap several times with each other, there are even
regions where 5 different layers overlap, making the extrusion very difficult to perform
according to the layer stacking ruleset. Driven by this, the following approach was applied:
Collapse all the 6 layers of a simplified layout into a single layer of split/disjoint polygons
which means all overlapping polygons from different layers will be split in non-overlapping
polygons by using their line boundaries as splitting boundaries. This can be simply done
by using Shapely’s split() function which allows to split one geometry by another
one. In our case one polygon is split through the boundary lines of another intersecting
polygon as shown below.

Figure 4.6: Shapely’s splitting in action: All the labelled polygons are
disjoint. Polygon 4 is disjoint from 3 because it has a hole there.

Differently from the GDS format, both Shapely and Gmsh support polygons with holes.
The proper representation of holes and cavities is quite essential for the implementation,
as we have many overlapping polygons which contain one-another. This will lead to
polygons with holes and separate polygons such as 3 and 4 in Figure 4.6. In Shapely, a
simple polygon with 2 holes is defined as follows:

1 exterior = [(0, 0), (0, 5), (5, 5), (5, 0)]
2 hole1 = [(1, 1), (1, 2), (2, 2), (2, 1)]
3 hole2 = [(3, 3), (3, 4), (4, 4), (4, 3)]
4 polygon = Polygon(shell=exterior, holes=[hole1, hole2])

To add a surface with holes in Gmsh, the external shell must be defined first and then
the holes. Adding a list of surface tags where the tag of the outer surface shell is the first
element and the following ones are the tags of surface holes, is a means to tell Gmsh to
add a surface with holes.
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Applying the split() function to all the polygons of a simplified layout, collapsed in a
single layer, is shown in Figure 4.7.

Figure 4.7: Shapely’s splitting in a simplified polyheater model.

A new object is then defined:

1 class mySplit:
2 def __init__(self, split_polygon, origin_layers:

List[str]) -> None:
3 self.split_polygon = split_polygon
4 self.origin_layers = origin_layers

In the above class split_polygon is the Shapely Polygon object of each split polygon
and origin_layers is a list with the names of all layers in which this split polygon
is included in. The information in origin_layers is obtained through checking
every split polygon if it is contained in all other original polygons coming from the 6
layers: [’substrate’, ’contact’, ’M1’, ’poly’, ’TVia’, ’Cu’] by using
Shapely ’s .within() function. The a.within(b) returns True if geometry a is
completely inside geometry b (even if their boundaries overlap).

4.3.2 Meshing and extruding

Having all the mySplit objects for a simplified model, we can start adding them to our
Gmsh model through Gmsh’s Python API which needs to be initialized:

1 gmsh.initialize()
2 gmsh.model.add("model1")

We use the OpenCASCADE geometry kernel within Gmsh as it offers various extrusion
functionality. All of the mySplit objects’s 2D Polygon objects to our Gmsh model,
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Figure 4.8: Initially added split polygons in Gmsh.

taking care of the holes as discussed above, Figure 4.8. The initial mesh of the added
split polygons without performing any extrusion is given in Figure 4.9:

Figure 4.9: 2D mesh of the split polygons which will be extruded along the
z-axis.

The extrusion is performed by checking the origin_layers of each split polygon
against the layer stacking procedure. This produces the extruded volumes which are
placed on top of each other, forming a material sequence for each split polygon. The
number of subvolumes for each extrusion is chosed based on the layer thickness. The
mesh shown on Figure 4.9 corresponding to each split polygon is extruded from z = 0 up
to its zmax. The refinement in the center is obtained through Gmsh’s mesh size fields. We
can define an adapted mesh size field for all polyheater models by choosing a rectangular
mesh size field whose coordinates are 50µm longer than the coordinates of the poly plate
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in absolute values. The labelling of the materials is performed through Gmsh’s Physical
Groups. Volumes of the same material are added to a corresponding physical group
named after the material.

Figure 4.10: Cross-sectional view of an extruded model using Gmsh’s clip-
ping planes.

Figure 4.11: Mesh statistics: 225102 nodes, 192638 hexahedra, 24250
prisms.

4.3.3 Limitations of gds2Gmsh
Neglecting sidewall depositions

As shown on the Figure 4.13 when extruding the model we fail to represent the two small
tungsten sidewall volumes indicated in Figure 4.12 due to the fact that these geometrical
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Figure 4.12: Real as-fabricated model.

Figure 4.13: Model built using extrusion.

features are not present in the .gds layouts; they are a byproduct of a deposition process.
The amount of tungsten volume which is lost and substituted with copper is fairly small.
The thickness of the deposited tungsten is in the sub-micron scale, both thicknesses of
dielectric 1 and dielectric 2 are in nanometer scales, and this phenomena occurs only in
the regions where vias are etched. Therefore, we are not making a considerable error by
neglecting the tungsten sidewall depositions.

Performance issues

When adding a new volume in the Gmsh model it is important to synchronize the
geometry through the gmsh.model.occ.synchronize() API call in order to ensure
that all the geometrical entities of the model are properly updated. This process creates
the relevant Gmsh data structures, which are required for further operations. Although
synchronizations can be called at any time, it is important to note that they require
a considerable amount of calculations. Therefore Geuzaine in [37] mentions that it is
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better to minimize the number of synchronization points instead of synchronizing after
every CAD command.

In our scenario, on average, a simplified layout can have between 40 to 60 polygons, its
equivalent layout collapsed to 1 layer can have typically 130-150 split polygons. The
material sequence described in the beginning of this chapter has 8 materials, which means
10-15 volume extrusions for each split polygon are required, due to the fact that different
split polygons have different local stacks defined by the layer stacking procedure as shown
schematically in Figure 4.14:

Figure 4.14: Schematic view: The dashed lines confine the local stack of
each split polygon. Each local stack of a split polygon is
separated by the smallest height levels of the other stacks.

In the worst case we could have 150 split polygons × 15 volume extrusions = 2250
volumes added, which means 2250 API calls of gmsh.model.occ.synchronize().
The more volumes are added during the process, the more time it takes to synchronize
the entire model, which means that the fastest extrusion is the first split polygon and
the slowest is the last split polygon. Despite these constraints, in order to fully extrude a
3D swept-meshed simplified polyheater model on average takes 15-25 minutes which is
fairly acceptable taking into consideration the alternative being repetitive manual work
over 1-2 days to achieve the same result.
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CHAPTER 5
Results

To ensure the validity of the gds2Gmsh-generated 3D swept-meshed polyheater models,
their thermal performance will be studied using the finite element method. Subsequently,
in the post-processing of the simulation data, temperature values will be extracted
from the regions defined by the aluminium temperature sensors in the M1 layer. This
will be then compared to the experimental values of the temperature sensors obtained
through the physical tests. There will be quantitative evaluations of: the impact of the
simplification procedure on the results and the impact of the mesh size. Based on current
limitations, further improvements will be proposed.

5.1 Simulation setup

The FEM solver which is used for this study is Ansys Mechanical APDL [22] running
on a HPE C7000 cluster with the following specifications: 24-core, 48-thread Intel(R)
Xeon(R) CPU E5-2690 v4 @2.60GHz processor, 512GB RAM, and 900GB local SSD
storage.

Initial and boundary conditions

For the initial condition, the ambient temperature is set to 20°C. In order to define the
boundary conditions, the following assumptions can be made. Due to very small time
scales (heat pulses of 200µs-300µs), there is insufficient time for heat convection(requires
several milliseconds) between the polyheater and the surrounding air. Regarding the
heat exchange through radiation, the investigated temperatures are not high enough
for radiation to be significant. Adding this to the fact that the heated metal plates on
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top have low emissivity, we can conclude that there is almost no heat exchange through
radiation. For the conduction part, the copper pads on the top are contacted using
metal needles which are used for the electric actuation of the chip, but the needles have
very small contacting tips (few micrometers), so the heat conduction through them is
negligibly small. Therefore, we assume adiabatic boundary conditions (no heat flux
accross surface boundaries). Note that, if the heat pulses are loaded in milliseconds,
the convection and conduction start to become significant, and the adiabatic boundary
condition is no longer valid.

Material properties

The modelling of material properties has been performed locally by considering all the
different material volumes comprising the device as isotropic materials. For each material,
the related properties have been provided: Thermal conductivity in W/(m · K), the
specific heat for the material in J/(kg · K) and the material density in g/cm3. As the
fabrication materials are very pure, comparable to in-literature established materials, the
material properties are based on: [38], [39], [40], [41], [42].

Heat loading

In the experiment, Joule heating is initiated by applying a rectangular voltage pulse to
the device, Figure 5.1. The power is measured, and is used to define the heat generation
loading in the polysilicon plate. In the heat equation this is represented by the forcing
term g(x, y, z, t), mentioned in section 2.1, which in this case is a heat source.

The thermal load is such, that the temperature continually rises as voltage is applied.
Following the end of the pulse, a sharp drop in temperature is observed, which is mainly
governed by heat flow into the copper metallization and the silicon substrate. Since
the main goal of the thermal simulation is to determine the temperature rise in the
metallization, the thermal problem is typically only solved for a duration of 260µs in
time steps of 4µs.

5.2 Verification of models with different types of heating

The following validation will be performed on two models which have homogenous and
inhomogenous types of heating. This means that their polysilicon plate, or their poly
layer, are as shown in Figure 5.2a, and Figure 5.2b. These polyheater types can be used
for example to study copper degradation under high temperature load conditions [15].
For the generation of Gmsh models, in both cases, a rectangular mesh size field which is
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Figure 5.1: Rectangular voltage pulse that initiates the Joule heating in the
device.

adapted to the polysilicon plate is chosen, with element size (diagonal length of element’s
bounding box) being 5µm inside the rectangle, and 50µm outside of it.

(a) Homogenous polysilicon plate. (b) Inhomogenous polysilicon plate.

Figure 5.2: Design of polysilicon plates for different types of heating.

Due to Ansys Mechanical APDL having post-processing and data visualisation capabilities
which are not ideal for data-centric studies, the following Python modules were used:
PyVista [43], and PyAnsys [44].

Figure 5.3 and, Figure 5.4 show the intended effect of the polysilicon layer designs, which
is heating the copper plate in different ways. The underlying homogenous polysilicon
plates heat the main copper plate on top in different ways, depending on their geometry.
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Figure 5.3: Homogenous heating of the central Cu plate.

Figure 5.4: Inhomogenous heating of the central Cu plate.
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In Figure 5.4 the homogenous polysilicon plate performs homogenous heating to the
main copper plate, while in Figure 5.4 the polysilicon plate with a central cavity in
its geometry performs inhomogenous heating to the main copper plate, defined by the
position of the cavity. In Figure 5.5 this is illustrated by plotting the temperature, and
its gradient along a horizontal line that goes through the middle of the central copper
plate in its y and z coordinates. This provides an initial validation, that our gds2Gmsh
models exhibit the expected behaviour, when subjected to such a simple comparison.

Figure 5.5: Temperature and thermal gradient along a 700µm line, which
stretches through the entire width of the centrally heated copper
plate.

Concerning the numerical results, the following procedure is undertaken in all presented
simulations. The comparison is performed against experimental data, taken from the
aluminium temperature sensors with a measurement device which provides 3000 temper-
ature values along the time interval specified in Section 5.1. For visualisation, this data
has been smoothed and reduced in size using a moving median filter. The corresponding
temperature values in the simulations have been taken as the average element temperature
in the sensor region.

The numerical results corresponding to the different types of heating discussed here, are
presented in Figure 5.6 and Figure 5.7. Overall, the simulation results are in excellent
agreement with the experimental values; this is partially due to choosing a small element
size for the region overlapping with the polysilicon plate.
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Figure 5.6: Excellent agreement on the average temperature between simu-
lation and experiment for the homogenous heating case

Figure 5.7: Excellent agreement on the average temperature between simu-
lation and experiment for the inhomogenous heating case
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5.3 Mesh size study

In the following case-study, we consider half-volume gds2Gmsh models of a polyheater
model which exhibits double horizontal symmetry for computational efficiency. The
simplification routine applied on this particular model required 0.37 seconds for execution.
In Gmsh, a rectangular adaptive mesh size was applied, covering entirely the area which
is 20µm and 10µm longer in the x and y directions, respectively, than the polysilicon
plate’s lengths. Inside this mesh size field, three different element values are chosen:
For the coarse mesh, the element size is 10µm, for the medium mesh the element size
is 5µm, and for the fine mesh the element size is 2.5µm. For all three different meshes,
the element size outside of the defined rectangular mesh size field is chosen to be 50µm
due to this area not being affected by central heating. In Gmsh, for the 2D meshing, the
Frontal-Delaunay algorithm [45] is chosen, and for the 2D recombination, the Blossom
algorithm [46] is used. The different meshes are shown in Figure 5.8, Figure 5.9, and
Figure 5.10.

5.3.1 Mesh quality parameters in Gmsh

To assess the mesh quality, Gmsh offers the functionality to plot for each element:
γ, signed inverse condition number (SICN), and signed inverse gradient error (SIGE)
parameters.

The parameter γ measures a type of volume-to-edge length and area aspect ratio given
by the formula:

γ = V

|emax|(	n
i=1 Ai)

(5.1)

Here V is the volume, emax is the length of the longest edge, and each Ai corresponds
to the area of each face of the element. Due to the fact that we expect uniform heating
with no sudden changes, this parameter has no significant effect on the mesh quality.

SICN is inversely proportional to the condition number of the linear transformation
matrix S between an element of the mesh and a unit-length element, given by κ(S).
Smaller values of the SICN parameter indicate well conditioned transformation matrices
S, which produce non-heavily distorted elements and high quality meshes.

SIGE measures how well a discrete element is able to estimate the value of the gradient
of a given field. High values of this parameter indicate low errors in the field gradient
calculations.
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Figure 5.8: Fraction of the coarse mesh zoomed-in close to the mesh size
field. Statistics: 145242 nodes, 122411 hexahedra, 19456 prisms.

Figure 5.9: Fraction of the medium mesh zoomed-in close to the mesh size
field. Statistics: 396122 nodes, 360362 hexahedra, 17333 prisms.

Figure 5.10: Fraction of the fine mesh zoomed-in close to the mesh size field.
Statistics: 1317310 nodes, 1229480 hexahedra, 28232 prisms.
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Figure 5.11: Plot of γ mesh-quality parameter.

Figure 5.12: Plot of SICN mesh-quality parameter.

Figure 5.13: Plot of SIGE mesh-quality parameter.
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In Figure 5.11, Figure 5.12, and Figure 5.13 these Gmsh-provided mesh quality parameters
are visualised for the coarse mesh. From the discussion above, it can be noted that even
for a coarse mesh, the near-ideal values for SICN and SIGE indicate a good quality mesh.
This fact can be attributed to the use of Frontal-Delaunay algorithm, which produces
the higher quality meshes, compared to the other Gmsh meshing algorithms [47].

5.3.2 Numerical results

The simulation results of the thermal response in the three different meshes discussed in
Section 5.3 are plotted against the experimental values of the same single temperature
sensor below.

Figure 5.14: Heating from room temperature up to 160°C and cooling down.

The half-model considered in Section 5.3, contains only one temperature sensor, and
its experimental and simulated thermal response are plotted in Figure 5.14 and Figure
5.15. The model generation through gds2Gmsh was conducted in a personal computer
with the following specifications: 11th Gen Intel(R) Core(TM) i5-1145G7 @2.60GHz,
16GB RAM. The solving was performed through Ansys Mechanical APDL in the cluster
mentioned in Section 5.1, using 12 cores. Table 5.1 gives the time performance of these
processes with respect to mesh size:

From Figure 5.14 and Figure 5.15, it can be concluded that there is good agreement
between the simulation results and the experimental data, even for the coarse mesh. The

55



5.3. Mesh size study

Figure 5.15: Peak temperature values.

Mesh size Model generation Solving
coarse 00:16:13 00:11:03

medium 00:16:57 00:35:22
fine 00:18:03 01:44:17

Table 5.1: Runtime performance of gds2Gmsh model generation on a per-
sonal computer and solving on the cluster.

size of the mesh does not have an impact on the model generation, since the performance
depends on the number of geometry synchronizations per each added volume (as discussed
in Section 4.3.3), and there is the same number of solid volumes being extruded per each
mesh. The small difference during the model generation can be attributed to the different
element sizes in the intial 2D meshing at z = 0. Note that, in real use cases, the model
generation time is not of particular concern, because it is a one-time effort to create a
mesh for a given model.Due to the significant improvement in the solving runtime, the
coarse mesh should be usually chosen, since it reproduces the experimental results fairly
well, having just 2°C difference at their peak temperature values of 170°C, meaning an
error of just above 1%, as shown in Figure 5.15.
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5.4 Simplification study

Recalling the simplification procedure from Chapter 3, we show that the 2D simplifications
performed over the filtered .gds layouts generate insignificant errors for our thermal
simulations. We consider again a model with double horizontal symmetry, which has three
different temperature sensors, as previously shown in Figure 3.4. For the unsimplified
variant, we consider a gds2Gmsh model, extruded from an unsimplified, filtered .gds
layout, with adaptive rectangular mesh size fields, covering the polysilicon plate. Two
of the temperature sensors that overlap with the polysilicon plate are refined by the
rectangular mesh size field (Figure 5.16a). For the third temperature sensor that does
not overlap with the polysilicon plate, a second rectangular mesh size field is chosen with
the same refinement size. In the simplified variant, the simplifications allow for a coarser
mesh to be used with a reasonable element quality, as illustrated in Figure 5.16b.

(a) Unsimplified temperature sensor. (b) Simplified temperature sensor.

Figure 5.16: Mesh detail close to one of the temperature sensors, highlighted
with the thicker black lines.

Numerical results for the 3 temperature sensors

By using 24 cores in the cluster mentioned in Section 5.1, the runtime required to
solve the unsimplified mesh was 3:47:53, while the simplified version, was executed in
00:06:27. Despite choosing the same mesh adaptivity fields with the same element sizes,
the Frontal-Delaunay algorithm had to perform some self-refinement in the geometrical
details, which are present in layers other than M1, in order to produce high quality
elements.

For the studied polyheater model, the numerical results can be interpreted by recalling
the position of the temperature sensors related to the polysilicon plate, as was shown
in Figure 3.4. Temperature sensors 1 and 2 experience the most significant increase in
temperature, since they overlap with the heating polysilicon plate. For temperature sensor
1, the results of the simplified and unsimplified variants both replicate the experimental

57



5.4. Simplification study

Figure 5.17: Due to its central position, temperature sensor 1 experiences
the highest temperatures.

Figure 5.18: Since temperature sensor 2 is on the edge of the heating
polysilicon plate, it shows lower temperature values compared
to the highest value.
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5.4. Simplification study

Figure 5.19: Temperature sensor 3 is outside of the polysilicon plate, there-
fore the temperature is quite low and it does not display major
changes in temperature.

values very well. For temperature sensor 2, which is located near the edge of the heated
region, we observe a small difference between the two variants in the initial heating phase,
as well as the cooling phase. These differences may be explained by the fact that the
true topography near the copper edge is simplified in the extrusion model, which impacts
a detailed and a smeared sensor region differently. For temperature sensor 3, there is
no significant change in the temperature values, since it is not in direct contact with
the polysilicon plate. Owing to the fact that the time scales are very small, there is not
enough time for heat to propagate and reach the level of temperature sensor 3. All the
small errors present in the results of the 3 temperature sensors, are cumulatively due to
the 2D geometry simplifications made in Chapter 3, and due to the sidewall neglections
mentioned in Chapter 4.
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CHAPTER 6
Summary and outlook

In this work, the main goal was to provide a fully automated framework for the pre-
processing routine in thermal finite element analysis of polyheater devices. This was
achieved in multiple stages and the developed approach requires minimal user input.
The incentive was to ensure that users do not have to draw the model geometries from
scratch in order to perform a simulation analysis, but to use available microfabrication
design data. This design data was extensive in details which have little or no impact
on the thermal finite element analysis. A geometry defeaturing/simplification routine,
motivated by recent methodologies in TCAD, was devised in an automated manner. The
reasoning behind these simplifications was based on the device design and the physics
behind the problem. The algorithm was scaled to work on a family of models, with
unique representatives sharing some small class similarities.

The second major task was to create 3D meshed CAD models, from these simplified
layouts, which are ready to be applied to thermal finite element analysis. At first,
surface topographies of polyheater fabricated models were considered by employing an
open-source process simulator (ViennaPS) to create realistic 3D CAD models. Due to
its limitations in efficiently meshing thin regions, this tool was not suitable for the task.
Therefore, simple extrusion was considered, by using the open-source Gmsh meshing
software, with very powerful geometry pre-processing capabilities. A fully automated
procedure starting from a simplified .gds layout, and concluding with a 3D swept-meshed
CAD model with the correct material metadata, ready for thermal FEA, was achieved
through gds2Gmsh.

The 3D CAD models, generated through our automated simplification, extrusion, and
meshing were validated in thermal FEA against available experimental data. A good
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agreement was demonstrated between the two. This was shown through simulations
of models with different types of heating, a mesh size study and a simplification study.
When studying the mesh size, it was evident that, even a coarse mesh, like the one
described in Chapter 5, produced approximately the same temperature values as the ones
obtained experimentally. In the simplification study, we show the quantitative difference
between the results produced using an unsimplified layout and those from a simplified
layout. The differences were about 1%, confirming that the simplification is suitable,
and both variants agree well with the experimental data. It should be noted that the
simplified was much more computationally efficient to solve; up to 35 times faster than
the unsimplified model.

With the developed automated framework, one can generate a 3D mesh of any polyheater
model to perform further investigations in thermal stresses, thermo-mechanical fatigue of
power metallizations, delamination phenomena, chip bowing, etc. It is also important to
note that, gds2Gmsh can be used to generate a 3D model by supplying the extrusion
technology for any .gds file. This framework can produce high quality meshes for thin
geometries, and it can be used for MEMS geometries as well.

A further improvement to gds2Gmsh could be to consider the irregularities coming from
real fabrication processes. This would create even more realistic 3D models than by
applying simple extrusions. Nonetheless, this is not a trivial task. While there are several
libraries available to perform process simulation, they have their own meshing engines,
which are specialised for their purpose. Combining Gmsh’s powerful pre-processing and
meshing capabilities with process simulation libraries could lead to better CAD models
for various finite element analyses in the future.
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