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Abstract

The continuous down-scaling of semiconductor devices over the past decades
has led to higher integration density but also higher standby power consump-
tion due to increased leakage currents. Novolatile memory is a promising
solution to this problem. Magnetoresistive random access memory (MRAM)
poses to be a suitable non-volatile alternative due to its straightforward ar-
chitecture and compatibility with CMOS technology. It offers the benefits
of high speed and excellent endurance, making it an attractive choice for a
variety of applications including IoT and automotive applications, as well as
embedded DRAM and last-level cache memory. Effective simulation tools
provide crucial insights for designing MRAM devices. The process of under-
standing how the magnetization changes over time in these devices, involves
solving the Landau-Lifshitz-Gilbert (LLG) equation. This equation can be
enhanced with additional terms that account for the torque acting on the
magnetization, which is essential for MRAM functionality. This work is dedi-
cated to the computational study and machine-learning assisted optimization
of MRAM devices.

The first part of this work focuses on the study of the finite element
method (FEM) based computation of the demagnetizing field, a crucial con-
tribution to the effective field originating from the long-range interaction of
the magnetic moments. Computational solutions to remedy the challenges
of the open-boundary problem are implemented, and their performance is
evaluated.

The second part of this thesis introduces novel computational approaches
that combine reinforcement learning with micromagnetic simulations for
MRAM device optimization. Traditionally, the application of current pulses
to switch magnetoresistive memory cells relies on heuristics. However, this
work demonstrates the effectiveness of reinforcement learning in MRAM de-
vice control. By autonomously interacting with the simulation, a reinforce-
ment learning agent discovers optimal switching pulse sequences and opti-
mizes various objectives, eliminating the need for manual experimentation.
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This approach offers a promising solution for enhancing the efficiency and
effectiveness of MRAM switching. The approach demonstrates that an agent
trained on a fixed set of parameters can effectively transfer its knowledge of
magnetization dynamics in the free layer to scenarios with varying environ-
mental conditions. It is shown that over a wide range of material parameters,
the agent is capable of achieving reversal of the free layer magnetization. Ad-
ditionally, the approach is extended to SOT-assisted STT-MRAM, and it is
shown that by modifying the rewarding strategy the focus of the learned
pulse scheme can successfully be shifted towards different objectives. Specif-
ically, optimization for both fast magnetization reversal and energy-efficient
switching is performed. By condensing the dynamically applied pulses of
the reinforcement learning agent, static pulse sequences are obtained that
perform well across a wide parameter range.



Kurzfassung

Die über Jahrzente hinweg anhaltende Verkleinerung von Halbleiterbauele-
menten hat neben einer erhöhten Integrationsdichte auch zu einer Zu-
nahme des Stromverbrauchs im Standby-Modus aufgrund höherer Leck-
ströme geführt. Bei der Lösung dieses Problems sind nichtflüchtige Spe-
icher eine aussichtsreiche Technologie. Der magnetoresistive Direktzugriff-
sspeicher (MRAM) stellt aufgrund seiner einfachen Architektur und Kom-
patibilität mit der CMOS-Technologie eine vielversprechende nichtflüchtige
Alternative zu ladungsbasierten Speichern dar. Er bietet den Vorteil hoher
Geschwindigkeit und einer hervorragenden Lebensdauer, was ihn zu einer
attraktiven Wahl für eine Vielzahl von Anwendungen macht, darunter IoT-
und Automobil Anwendungen sowie eingebettete DRAM- und Last-Level-
Cache-Speicher. Effiziente Simulationswerkzeuge liefern wichtige Erkennt-
nisse für die Entwicklung von MRAM-Bauteilen. Hierbei ist es wichtig, die
Dynamik der Magnetisierung in diesen Bauelementen über die Zeit zu ver-
stehen, wofür die Landau-Lifshitz-Gilbert-Gleichung (LLG) gelöst werden
muss. Durch zusätzliche Terme erweitert, welche das auf die Magnetisierung
wirkende Drehmoment beschreiben, kann diese Gleichung für die Simulation
von MRAM-Bauelementen verwendet werden. Diese Arbeit widmet sich der
rechnerischen Untersuchung und der durch maschinelles Lernen unterstützten
Optimierung von MRAM Bauelementen.

Der erste Teil der Arbeit konzentriert sich auf die Untersuchung
der auf der Finite-Elemente-Methode (FEM) basierenden Berechnung des
Demagnetisierungs-Feldes, einem entscheidenden Bestandteil des effektiven
magnetischen Feldes, welches durch die langreichweitige Wechselwirkung der
magnetischen Momente zustande kommt. Computergestützte Lösungen zur
Überwindung des in diesem Feld auftretenden Problems der nur asymptotisch
bekannten Randwerte werden implementiert und die Qualität der Resultate
wird bewertet.
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Der zweite Teil dieser Arbeit stellt neuartige Ansätze vor, welche Algo-
rithmen des bestärkenden Lernens mit mikromagnetischen Simulationen zur
Optimierung von MRAM-Bauelementen kombinieren. Traditionell basiert
das Anlegen von Strom- oder Spannungsimpulsen zum Schalten magnetore-
sistiver Speicherzellen auf Heuristiken. Diese Arbeit demonstriert jedoch
die Effektivität des bestärkenden Lernens bei der Steuerung von MRAM-
Bauelementen. Durch autonome Interaktion mit einer Simulation lernt
ein Agent Schaltpulssequenzen bezüglich verschiedener Ziele zu optimieren,
wodurch das manuelle Durchführen von Experimenten überflüssig wird.
Dieser Ansatz bietet eine vielversprechende Lösung zur Verbesserung der
Effizienz und Effektivität von MRAM-Schaltungen. Zudem wird gezeigt,
dass ein Agent, der mit einem festen Satz von Parametern trainiert wurde,
sein Wissen über die Magnetisierungsdynamik der Speicherzelle effektiv auf
Szenarien mit variierenden Bedingungen übertragen kann. Es wird gezeigt,
dass der Agent über einen weiten Bereich von Materialparametern in der
Lage ist, die Umkehrung der Magnetisierung der freien Schicht zu erreichen.
Darüber hinaus wird der Ansatz auf SOT-unterstützten STT-MRAM aus-
geweitet, und es wird gezeigt, dass durch Modifizierung der Belohnungsstrate-
gie der Fokus der erlernten Impulsfolgen auf andere Ziele verlagert werden
kann. Insbesondere wird eine Optimierung sowohl für eine schnelle Umkehr
der Magnetisierung als auch für energieeffizientes Schalten durchgeführt.
Durch die Analyse des dynamischen Agentenverhaltens werden statische Im-
pulsfolgen extrahiert, die über einen großen Parameterbereich zu erfolgre-
ichem Schalten der Speicherzelle führen.
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Chapter 1

Introduction

In modern day computers, nonvolatile memories are an essential part al-
ready since the middle of the 20th century. Hard-disk drives provide users
with large capacities at low cost. A problem, however, is their relatively
slow access times, which lies in the range of 10 ms [1]. Compared to the
access times of dynamic random access memory (DRAM) (< 100 ns), one
can see that there is a huge mismatch, leading to delays and increased en-
ergy consumption due to the time the processing units have to wait for the
information fetched from the HDD. The development of the higher speed
nonvolatile flash memory tried to solve this performance mismatch [1]. How-
ever, flash memory possesses relatively poor endurance and its down-scaling
becomes progressively more complex [2].

Thus, in the last decades the field of spintronics, which uses the elec-
tron’s spin instead of its charge to store information, gained a lot of interest
from research as well as industry. Magnetoresistive random access memory
(MRAM) displays promising features like the elimination of standby power
consumption, while exhibiting excellent endurance and high read and write
speed, while being nonvolatile and allowing scalability to high densities [3].
Compared to HDDs, MRAM is addressable purely electrically and does not
require a magnetic read head. This puts MRAM devices into a great spot
to serve as the next universal memory technology. Stand-alone as well as
embedded applications can be covered by MRAM devices [4–20].

The centerpiece of MRAM devices is the magnetic tunnel junction (MTJ),
a sandwich of two ferromagnetic layers, separated by a nonmagnetic tunnel
barrier. It allows storing one bit of information, encoded in the relative
orientation of the two ferromagnetic layers, which, if oriented in parallel,
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leads to a small electrical resistance of the MTJ, and if oriented antiparallel,
leads to a large electrical resistance.

While the MTJ remains the cornerstone of basically every major type
of MRAM device, different ways to alter the state of the memory cell were
developed over the years. The initial wave of MRAM types focussed on the
use of magnetic fields to change the information stored in the MTJ. Stoner-
Wohlfarth MRAM (SW-MRAM) used two orthogonal wires through which
currents have to be passed in order to select a single memory cell, with the
combined effect of the magnetic fields from these current wires leading to
magnetization reversal. However, it suffered from write selectivity problems
and lacked good scalability [21]. First commercially available MRAM devices
were so-called Toggle-MRAM devices. They were field-based as well, but the
write margin was improved compared to SW-MRAM, such that half-selected
bits had to overcome a significantly higher energy barrier to be switched than
the fully selected ones [22]. Still, though, the additional current lines for the
generation of the magnetic fields resulted in limited downsize scalability and
different methods needed to be developed.

Spin-transfer torque MRAM (STT-MRAM) and spin-orbit torque MRAM
(SOT-MRAM) were and still are the two most promising candidates to lead
the field of spintronics into the replacement of current volatile CMOS-based
memories. They largely eliminated write selectivity issues and external mag-
netic fields, simplifying their production and increasing their scalability.

The pace at which the field of spintronics developed was strongly sup-
ported by the continuous efforts being put into the advancement of the mod-
eling and simulation of these devices. Being able to accurately simulate the
magnetization dynamics offers an advantage over relying purely on experi-
ments and helps to deepen the understanding of the devices’ behavior.

The Landau-Lifshitz-Gilbert (LLG) equation [23,24] describes the evolu-
tion of the magnetization over time under the influence of an effective mag-
netic field. Extended with terms describing torques of different origin, which
act on the magnetization, it can be used to simulate the behavior of STT-
and SOT-MRAM devices. Simulation tools with such capabilities are of high
importance, as they allow to rapidly test new cell architectures and antici-
pate behavior under various boundary conditions. For this purpose, the most
widely used computational methods to discretize the LLG equation are the
finite difference method (FDM) and the finite element method (FEM) [25].
Each of these methods has its place in the computational toolbox for the sim-
ulation of MRAM devices, as the FDM offers higher performance and easier
parallelizability, while the FEM can handle even very complex geometries, as
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encountered in many of today’s ultra-scaled MRAM devices. Similar to the
increasing interest in spintronic devices, the soaring of computational capa-
bilities has led to widespread use of machine learning algorithms, which since
have proven to be a useful tool in basically every scientific discipline [26].

All the above-mentioned computational means are being used in this the-
sis, showcasing their capabilities and using them to further advance the re-
search on STT- and SOT-MRAM.

1.1 Thesis Outline

This thesis deals with various computational methods and how they can be
used to investigate and improve the behavior of modern MRAM devices.

Chapter 2 gives a short introduction into the field of magnetoresistive
random access memories and describes its most prominent types.

Chapter 3 then introduces the micromagnetic model, which is the most
widespread approach used to describe magnetization dynamics in spintronic
devices. The Landau-Lifshitz-Gilbert is presented and the most important
contributions to the effective magnetic field are described.

Chapter 4 describes two different methods to spatially discretize the com-
putational domain in simulations, namely, the finite difference method and
the finite element method. First, the computational methods are introduced,
and then it is shown how the effective magnetic field contributions are dis-
cretized in the respective method. After discussing time integration methods,
the machine learning sub-branch reinforcement learning is discussed.

Chapter 5 shows computationally efficient approaches for the calculation
of the demagnetizing field.

Chapter 6 presents the use of reinforcement learning to facilitate the
discovery of novel switching schemes to optimize performance of MRAM
devices.

Finally, Chapter 7 gives a summary of the main results of this work.
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1.2 Research Setting

The research described in this work was carried out as part of the Chris-
tian Doppler Laboratory for Nonvolatile Magnetoresistive Memory and Logic
(NOVOMEMLOG). The Christian Doppler Association fosters collaboration
between research institutions and companies engaged in application-oriented
basic research. In the case of this laboratory, a partnership was formed be-
tween the Institute for Microelectronics at the TU Wien and Silvaco Inc., a
company developing and providing electronic device automation and software
tools for Technology Computer-Aided Design (TCAD).
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Magnetoresistive Memory

2.1 MRAM Basics

2.1.1 Magnetoresistive Effects

For any type of memory device, it is important to understand how informa-
tion is being stored, how it can be read, and how it can be changed. In the
following, giant magnetoresistance (GMR) effect, as well as tunnel magne-
toresistance (TMR) effect will be explained, two effects whose discovery has
enabled the development of magnetoresistive devices. In general, however,
one can say that spintronics deals with the question of how the electron spin
can be used to influence the behavior of microelectronic devices.

Giant Magnetoresistance

The GMR effect was discovered independently by two separate research
groups in 1988, one led by Albert Fert [27], and the other by Peter Grün-
berg [28]. Both groups investigated the influence of magnetization on the
electrical resistance in stacks of magnetic and nonmagnetic conducting lay-
ers. For their discovery, Fert and Grünberg received the Nobel Prize in
physics in 2007.

5
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The GMR ratio for a given material stack can be calculated as follows [29]:

GMR =
RAP −RP

RP

=
ρAP−ρP

ρP
=

σP

σAP

− 1 (2.1)

where RAP and RP denote the resistance in the antiparallel and parallel
state, and ρAP and ρP the resistivities and σAP and σP the conductivities in
the corresponding magnetization states.

The origin of the GMR is found in electron scattering, a visual depiction
can be seen in Fig. 2.1. If the magnetization in the magnetic layers is in a
parallel configuration, the majority electrons are subject to less scattering
than the minority electrons. Conversely, when the layers are magnetized in
an antiparallel configuration, majority and minority electrons undergo equal
scattering. Thus, depending on if the alignment of the magnetization in the
ferromagnetic layers is antiparallel or parallel, the electrical resistance of the
material stack is high or low, respectively.

The discovery of the GMR effect has sparked new interest in magnetore-
sistive device research and has led to the GMR effect being used in various
devices, like hard disks, sensors, and also MRAM cells [21].

Tunnel Magnetoresistance

The TMR effect is another important magnetoresistance effect, with distinct
differences to the GMR with respect to the structures it appears in and
to its physical origin. This effect was discovered by Michel Julliere in 1975
when Fe/Ge/Co stacks for which a maximum relative change in conductance
of 14% at a temperature of T ≤ 4.2K was observed between parallel and
antiparallel states [30].

Similarly to the GMR, the TMR can be quantified by the following equa-
tion [31, 32]:

TMR =
RAP −RP

RP

=
GP −GAP

GAP

(2.2)

with RAP and RP being the values of the electrical resistance and RAP and
RP being the electrical conductance in the antiparallel and parallel state,
respectively. GP and GAP are the conductances in the respective magneti-
zation configurations. The magnetization in the two layers, however, is
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(a) (b)

Figure 2.1: Visual depiction of the scattering effects responsible for the GMR
effect. The direction of the electron flow is indicated by the dashed arrows.
In the parallel configuration (a) of the reference layer (RL) and the free layer
(FL), the electrons are subject to less scattering than in the anti-parallel
state (b), resulting in lower electrical resistance of the parallel state.

not always in perfect (anti-)parallel alignment, and the conductance of the
layered structure can be described by the following equation proportional to
the cosine of the angle between the magnetization orientations, θ [32–34]:

G(θ) =
GP +GAP

2
+

GP −GAP

2
cos θ

=
GP +GAP

2

�
1 +

TMR

2 + TMR
cos θ

�
(2.3)

An explanation of the TMR effect is visualized in Fig. 2.2. The origin
of the effect lies in the spin-dependent ability for electrons to tunnel through
the non-conducting tunnel barrier. It depends on the majority and minority
band matching of the two ferromagnetic layers. Thus, if the ferromagnetic
layers are magnetized in parallel, band matching is good and the electrons
have a higher probability of tunneling to the second ferromagnetic layer.

While discovered in 1975, it took until 1995, when Miyazaki et al. [35]
and Moodera et al. [36] independently presented experimentally observed
TMR ratios of around 20% at room temperature. This was achieved by the
use of an amorphous Al2O3 barrier, which makes the TMR depend mainly
on the electronic structure of the ferromagnetic layers. Using Al2O3 as well
for the tunnel barrier, TMR ratios of 70% were achieved by Wang et al. later
in the 1990s [37].
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(a) (b)

Figure 2.2: Visual description of the TMR effect. The parallel magnetiza-
tion state (a) exhibits better band matching as opposed to the antiparallel
magnetization state (b), resulting in a lower resistance in the parallel state.
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Structures consisting of two ferromagnetic layers separated by a tunnel
barrier are also called MTJs and find use in several applications. Among
other areas, they are used in HDD read heads [38], but also lie at the
core of every magnetoresistive memory device. In these memory devices, the
two states to store binary information, are represented by the magnetization
states of the MTJ. The parallel state with low resistance representing the
logical ’0’, and the antiparallel state with high resistance representing logical
’1’. MTJs are fabricated in a way such that the magnetization in one of
the layers, the free layer (FL), is free to move, while the orientation of the
magnetization in the other layer, called reference layer (RL), is fixed.

Free layer

Tunnel barrier

Reference layer

(a) (b)

Figure 2.3: Magnetic tunnel junction with (a) in-plane and (b) perpendicular
magnetization.

The orientation of the magnetization in the FL and RL can either be
in-plane, or perpendicular to the plane, as depicted in Fig. 2.3. The first
successfully fabricated MTJs in 1995 used amorphous Al2O3 barriers and only
exhibited TMRs in the double digits. Soon after, the possibility to achieve
higher TMRs by using crystalline MgO barriers was predicted [39, 40] and
could be experimentally demonstrated in the years 2004 [41] and 2005 [42,43].
After, the TMR of MgO barriers was gradually improved, reaching 600% at
room temperature under laboratory conditions [44]. Typical values for TMR
in MTJs of modern perpendicularly magnetized devices are in the range of
100–200% [45].

Reading the stored information from a MTJ is performed by applying a
small bias voltage, usually 0.1 − 0.2 V , and measuring the resistance. The
reason for the small bias voltage is two-fold: firstly, keeping the bias voltage
and thus also the current through the structure small reduces the probability
of erroneously changing the state of the stored information; secondly, the
TMR depends on the bias voltage and exhibits a maximum at very small
voltages (< 0.1 V ) and reduces with increasing read voltage. For a voltage
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range of 0.1 − 0.2 V , the reduction in TMR is limited to at most 10% [21].
An important property of magnetoresistive random-access memory (MRAM)
cells is their thermal stability factor. It is defined as the relation of the
energy barrier which separates parallel and antiparallel state to the thermal
energy [46]:

∆ =
EB

kBT
, (2.4)

with kB being the Boltzmann constant and the temperature T . The
energy barrier EB is proportional to the magnetic anisotropy and can be
calculated as follows:

EB =
µ0MSHKV

2
(2.5)

µ0 is the vacuum permeability, MS is the saturation magnetization, HK is
the anisotropy field and V is the volume of the FL. For a retention duration
of >10 years, depending on the capacity of the memory device, the energy
barrier should be 40–60 times larger than the thermal energy [47,48].

What distinguishes various MRAM devices is the way the information in
the MTJ is changed. Here, the focus shall lie on spin-transfer torque MRAM,
spin-orbit torque MRAM and SOT-assisted STT-MRAM. These devices and
their mode of operation will be explained in the following.

2.2 Spin-Transfer Torque MRAM

The mechanism for reversing the magnetization in a MTJ purely electrically
by means of a spin-polarized current was predicted independently by Slon-
czewski [49] and Berger [50] in 1996. The general structure of an STT-MRAM
cell can be seen in Fig. 2.4. The information-storing element is the previ-
ously introduced MTJ, which is sandwiched with a contact from both sides,
both contacts being nonmagnetic. Altering the information in the MTJ is
achieved by passing a current through the structure, either in the direction
from FL to RL or from RL to FL, depending on the present state of the
MTJ. The torque acting on the FL magnetization, the spin-transfer torque,
is also what gives this type of MRAM cell its name.
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Figure 2.4: Typical structure of a spin-transfer torque MRAM cell. The path
for the writing current jSTT is through the structure.

To change the configuration of the MTJ from an anti-parallel configura-
tion to a parallel configuration, an electrical current is sent through the MTJ
in the direction from the FL to the RL. With the electrons moving from the
RL to the FL, the majority electrons are able to cross the RL, resulting in a
spin-polarized current entering the FL. Due to exchange interaction with the
magnetization in the FL, the spins of the electrons entering the FL become
aligned with the magnetization of the FL within a short distance after enter-
ing. As the spin angular momentum is conserved, the transverse spin com-
ponent of the electrons is transferred to the magnetization in the FL, which
thus is tilted towards the RL magnetization’s orientation. This transfer of
the transverse component of the spin is the spin-transfer torque. When the
current continues to be sent through the MTJ, the FL magnetization eventu-
ally fully aligns with the RL magnetization. If the two ferromagnetic layers
are magnetized in a parallel configuration and a current is passed through
the structure in the reverse direction, i.e. the electrons are entering on the FL
side, the minority electrons are reflected back at the TB/RL interface into
the FL. The transverse spin component of these reflected electrons is trans-
ferred onto the magnetization and the resulting torque can lead to switching
of the magnetization if it is sufficiently large. As STT is proportional to the
transverse spin component, there is no torque if the magnetization in the FL
and RL are collinear. This results in the presence of an incubation delay
when a write current pulse is applied. During this time period, no torque
is acting, until a large enough thermal fluctuation deviates the FL magne-
tization from the equilibrium position. If the incubation delay exceeds the
duration of the current pulse, a write error occurs [51, 52].
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Initially, research on STT-MRAM cells was focussed on in-plane mag-
netic anisotropy (IMA) structures. These cells relied on shape anisotropy
to fix the magnetization orientation and had to have elliptical or rectangu-
lar shape [53]. To provide the necessary thermal stability, IMA cells are
limited to dimensions larger than 60 nm [31]. In IMA MTJ devices, the
path of the magnetization during reversal does not coincide with the path
of temperature-mediated switching of the FL magnetization. The reversal
trajectory requires the magnetization to go out of plane [54].

The critical current density for IMA MTJ devices, i.e. the minimum cur-
rent density required for the reversal of the free layer magnetization’s orien-
tation, is as follows [55–57]:

Jc0_IMA = α
2e

ℏη
(µ0MS)(|Hext|+ |HK|+ |Hd|

2
)tFL (2.6)

α is the damping constant, e is the electron charge, ℏ is Planck’s constant,
η is the spin-transfer efficiency, tFL is the effective thickness of the FL, µ0

is the vacuum permeability, MS is the saturation magnetization, Hext is an
external magnetic field, HK is the anisotropy field and Hd is the demagne-
tizing field, a magnetic field that is caused by the long-range dipole-dipole
interaction of the magnetic moments.

However, in order to be competitive with CMOS devices, structures
needed to be scaled down which caused problems with in-plane magnetized
structures, as the shape anisotropy was not sufficient anymore to ensure a
high enough thermal energy barrier [57]. A second factor which encour-
aged a transition to perpendicular magnetic anisotropy (PMA) MTJs is
that for switching in-plane magnetized memory devices, additionally to the
anisotropy field HK, also the demagnetizing field Hd has to be overcome, a
field which is a lot larger than the anisotropy field [56]. Without the need to
surmount the demagnetizing field, the formula for the critical current density
of PMA MTJs reduces to [46]:

Jc0_PMA = α
eγ

µBη
MS|HK|tFL (2.7)

As the main contributors to PMA are interfacial anisotropy effects rather
than shape anisotropy, memory cell structures can be manufactured with
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cylindrical shapes. Thus, PMA devices allow for better scaling and higher
thermal stability, as well as lower switching currents and have become the
most widely used type of magnetization configuration [58].

Looking at STT-MRAM from a more system-level perspective, a transis-
tor is needed to access the memory cell, resulting in two-terminal MTJ, or
often also called 1T-1MTJ. This single transistor then controls the current
flow through the device which is needed for reading and writing the infor-
mation in the cell. The fact that only a single transistor is required means
that little cell area is consumed and allows for higher memory density. The
two-terminal layout, however, results in limitations on the read and write
current. If the read current is too high, unintentional magnetization rever-
sal can occur [1], if the write current is too high, the tunnel barrier can be
damaged [59, 60]. The next section will describe the working principles of
spin-orbit torque (SOT) MRAM, a type of MRAM cell which eliminates the
stress from high charge currents on the tunnel barrier during writing and
allows for higher speed operation.

2.3 Spin-Orbit Torque MRAM

Spin-orbit torque MRAM is the second important representative of the
MRAM family, and it distinguishes itself from STT-MRAM in the way the
bit information in the MTJ is changed. Whereas for writing information in
an STT-MRAM cell, a current is passed through the MTJ, in SOT-MRAM
the current is passed through a heavy metal (HM) layer below the MTJ and
thus does not flow through the MTJ, relieving the tunnel barrier (TB) from
the stress caused by the STT write currents. In Fig. 2.5 a schematic depic-
tion of an SOT-MRAM cell and the transverse spin current generated by the
spin Hall effect (SHE) is shown. First publications presenting SOT-MRAM
appeared in the years 2011 and 2012 [61,62].
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Figure 2.5: Typical structure of a three-terminal spin-orbit torque MRAM
cell. The path for the writing current jSOT is through the heavy metal contact
attached to the FL.

There are two effects originating from spin-orbit interaction which lead
to a SOT being exerted on the magnetization in the FL. The first effect
which gives rise to SOT is the SHE, shown in Fig. 2.6b. The SHE trans-
forms a charge current into a transverse spin current which, similarly to the
spin-transfer torque (STT), exerts a torque on the magnetization due to the
transfer of the spin angular momentum when penetrating the adjacent fer-
romagnetic FL. Typical heavy metals which exhibit a large spin Hall effect
are Pt, Ta, and W [63]. The second effect, which is of interfacial origin, is
the Rashba-Edelstein effect, shown in Fig. 2.6a [64, 65]. Typically, the elec-
tric field which induces the charge current, is applied perpendicular to the
heavy metal/ferromagnet interface. Due to interfacial spin-orbit coupling,
spin-dependent scattering of charge carriers occurs, resulting in a spin accu-
mulation at the interface [64, 66–69]

The fact, that the torque-generating write current is not flowing through
the MTJ in SOT-MRAM, but below it, greatly improves the endurance of
the memory cell as the tunnel barrier is not degraded. However, two big chal-
lenges still have to be conquered. Due to the spin Hall angle not being large
enough, the writing currents need to be rather large in order to get a suffi-
ciently large SOT. By avoiding the direct path through the MTJ, however,
higher current densities can be used, which also leads to faster magnetization
reversal and switching times below one nanosecond can be achieved [1]. The
second, bigger problem, however, with SOT-MRAM devices with perpendic-
ular anisotropy is the vanishing torque once the magnetization is oriented in
the plane. This is due to the fact that the SOT is proportional to m×(n×E),
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(a) (b)

Figure 2.6: Schematic depiction of (a) Rashba-Edelstein effect and (b) spin
Hall effect.

with n being the unit normal vector of the HM/FM interface and E the direc-
tion of the electric field. Thus, the torque goes to zero once the magnetization
is collinear with n× E, which results in 50% probability of switching. Solv-
ing this problem requires to break the mirror symmetry with respect to the
plane perpendicular to n × E [1]. Different approaches have been devised
that circumvent the problem by applying an external magnetic field [70],
structurally changing the symmetry [71, 72], introducing exchange bias by
adding an antiferromagnetic layer [73, 74] or other structural changes to the
memory cell [75]. However, these solutions often increase the complexity of
the memory cell fabrication.

The critical current for switching a perpendicularly magnetized SOT-
MRAM cell can be calculated using the following formula derived in [76]:

Jc0_SHE =
2e

ℏ
MStF
θSH

(
HK −NdMS

2
− Hx√

2
) (2.8)

tF is the FL thickness, θSH is the spin Hall angle which measuers how
efficient charge currents are converted to spin currents, Nd is the demagne-
tizing factor, which depends on the shape of the FL. This expression is valid
for a perpendicular SOT-MRAM cell with an in-plane applied external field
Hx to ensure deterministic magnetization reversal.

An SOT-MRAM cell is a three-terminal device and requires two access
transistors. This is referred to as 2T-1MTJ. Compared to the 1T-1MTJ
structure of STT-MRAM devices, more chip area is consumed, resulting in a
lower memory density. However, the 2T-1MTJ circuitry is similar in struc-
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ture to 6T-SRAM typically employed in SRAM, and as the flip-flop circuitry
can be exchanged with an MTJ, would work well as replacement of this type
of cache memory [1]. In the following chapter, a promising solution to the ex-
isting challenges of SOT-MRAM combining STT and SOT will be described
in detail.

2.4 SOT-Assisted STT-MRAM

As mentioned in the previous chapters, STT-MRAM exhibits some incuba-
tion time, limiting the maximum achievable switching time, and also requires
the write current to be sent through the TB, which can potentially lead to
oxide defects. In addition, read currents have to be chosen low enough, such
that no erroneous writing of the FL occurs. Perpendicular SOT-MRAM
on the other hand suffers from non-deterministic switching if no additional
symmetry breaking measures are employed.

Only fairly recently, research has started to investigate memory cells in
which the writing process uses a combination of STT and SOT [77,78]. The
general idea of SOT-assisted STT-MRAM is to exploit both of these torque
types in order to evade the shortcomings of pure STT- and SOT-MRAM
cells, e.g. Fig. 2.7.

Figure 2.7: Structure of a three-terminal SOT-assisted STT-MRAM cell.
The paths for the writing currents jSTT and jSOT are through the MTJ and
through the heavy metal contact attached to the FL, respectively.

The three-terminal architecture as described in Section 2.3 and depicted
in Fig. 2.8a, due to its large footprint and the need for more than one tran-
sistor for the selection of the cell, renders this cell architecture less attractive
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for memory applications, a field where the density of the bits is of utmost
importance. Especially, as currently employed technologies like DRAM and
flash use a two-terminal architecture [79, 80].

Figure 2.8: Depiction of a (a) three-terminal and a (b) two-terminal SOT-
MRAM cell.

A two-terminal cell architecture as shown in Fig. 2.8b was first presented
in 2013 [81]. This approach, however, loses the separation of the read and
write path, as the write current always flows through the MTJ as well as
the SOT channel. Eliminating the need for an additional transistor and
combining STT and SOT promises lower critical currents, while reducing
the switching times. While the initial investigations of SOT-assisted STT-
MRAM were based on simulations, several publications presenting experi-
mental results demonstrating the effect of combining STT and SOT were
published in the last years [82–84].





Chapter 3

Micromagnetism

The origins of the theory of micromagnetism date back to the beginning of
the second half of the 20th century when William Fuller Brown Jr. coined the
term micromagnetism [85]. Micromagnetism is often described as a semiclas-
sical theory, as it combines classic field theory with approximate descriptions
of quantum mechanical effects, like exchange interaction. Especially for the
simulation of spintronic devices, the micromagnetic model renders itself to
be useful, as purely macroscopic methods are not able to properly resolve the
microscopic behavior, whereas the computational load of ab-initio methods
is too high to simulate systems at the scale of spintronic devices.

There is a set of assumptions that underlie the micromagnetic model. The
distribution of magnetic moments Si is being approximated by a continuous
vector density M(x). Neighboring magnetic moments Si below the exchange
length λ are coupled by exchange interaction, which leads to the moments
favoring an aligned orientation. Approximating the moments’ distribution
as m(x) is thus valid when considering a region Ω larger than λ3. This can
be expressed with the following approximately true equation:

�
i

Si ≈
�
Ω

M(x)dx (3.1)

19



20

Another assumption in the micromagnetic model requires the magnetiza-
tion m(x) to have constant norm:

M(x) = MSm(x) with |m(x)| = 1, (3.2)

with m(x) thus being a unit vector field and MS the saturation magnetiza-
tion.

In the following, the governing equation in the field of micromagnetism is
introduced with all its components used to describe the dynamic behavior of
the magnetization in ferromagnetic systems.

3.1 Landau-Lifshitz-Gilbert Equation

The main equation describing the dynamics of the magnetization in micro-
magnetism was introduced in the first half of the 20th century by Landau
and Lifshitz [86]. This equation, however, suffered from being only applica-
ble to low-damping scenarios, and was later ameliorated by Gilbert [23, 24].
Gilbert’s form of the equation is commonly known as the Landau-Lifshitz-
Gilbert (LLG) equation and looks as follows:

∂tm = −γ0 (m×Heff ) + α (m× ∂tm) (3.3)

Here, γ0 is the rescaled gyromagnetic ratio, i.e. γ0 = −γµ0, with µ0 being
the vacuum permeability. α is the dimensionless Gilbert damping parameter.
It has to be noted, though, that (3.3) is implicit, as the time derivative of
the magnetization appears on both sides. However, by replacing the time
derivative on the right-hand side with the equation itself, it can be rewritten
in explicit form:

∂tm = − γ0
1 + α2

(m×Heff )� �� �
precession

− γ0α

1 + α2
(m× (m×Heff ))� �� �
damping

(3.4)
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The first term on the right-hand side (3.4) is responsible for the descrip-
tion of the precessional motion of the magnetization and can be derived from
classical mechanics [24]. The second term, which models the damping the
magnetization undergoes, is purely phenomenological. Figure 3.1 shows tra-
jectories of the magnetization under the influence of an effective magnetic
field Heff for precessional motion (a), damped motion (b) and damped pre-
cessional motion (c).

Figure 3.1: Magnetization trajectories for (a) precessional, (b) damped and
(c) damped precessional configuration of the LLG.

3.2 Effective Magnetic Field

The total energy of a ferromagnet plays an important role in the dynamic
behavior of the magnetization as the relation between the effective magnetic
field used in the LLG equation and the total energy of the ferromagnetic
system is defined as follows:

Heff = − 1

µ0MS

δE

δm
(3.5)

It is the negative variational derivative of the Gibbs’ free energy E with
respect to the magnetization m.

All the contributions to the effective magnetic field that were briefly in-
troduced in the introductory part of this chapter shall be discussed in more
detail in the following.
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3.2.1 Exchange Field

Spontaneous magnetization which can be observed in ferromagnetic ma-
terials cannot be explained by classical electrodynamics, as it would pre-
dict a vanishing magnetization for a ferromagnetic system without external
field [87].

However, due to the quantum mechanical effect of exchange interaction, two
localized spins in ferromagnetic materials favor parallel alignment. The ex-
change energy is defined as

Eex =

�
Ωm

A
�
i,j

�
∂mi

∂xj

�2

dx (3.6)

=

�
Ωm

A(∇m)2dx (3.7)

Here, A is the exchange constant and
�

i,j

�
∂mi

∂xj

�2

is a Frobenius inner
product. The description of the exchange field, is given as

Hex =
2A

µ0MS

∇2m (3.8)

3.2.2 Anisotropy Field

Materials which exhibit anisotropic behavior possess one or more easy axes,
preferred magnetization directions which minimize the magnetic free energy.
Thus, for anisotropic materials the necessary work to change the orientation
of the magnetization depends on the spatial distribution of the anisotropy
characteristics. Ferromagnets exhibit anisotropic behavior from various ori-
gins. Anisotropic crystal structure (magnetocrystalline anisotropy), prop-
erties of the material interfaces (interface anisotropy), as well as the shape
of the ferromagnetic system (shape anisotropy) can be the source for the
direction-dependent behavior of the magnetization [88].
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Uniaxial anisotropy

In the case of uniaxial anisotropy, the anisotropy energy can be written as

Eani,uni = −
�
Ωm

K1(m · e)2dx (3.9)

Here, K1 is the material anisotropy constant and e is the unit vector pointing
into the direction of the easy axis.

The uniaxial anisotropy field is given as

Hani,uni =
2K1

µ0MS

(m · e) e (3.10)

Cubic anisotropy

For materials exhibiting more than one easy axes, like iron which has cubic
lattice symmetry, the anisotropy energy is

Eani,cubic =

�
Ωm

K1

�
m2

1m
2
2 +m2

2m
2
3 +m2

3m
2
1

�
+K2

�
m2

1m
2
2m

2
3

�
dx (3.11)

with mi being the projections of the magnetization m onto the easy axes
ei and K1 and K2 being the material anisotropy constants for the cubic case.

Hani,cubic = − 2D

µ0MS

m (3.12)

with D being a matrix with the following structure [89]:

D =

K1 (m
2
2 +m2

3) +K2m
2
2m

2
3 0 0

0 K1 (m
2
1 +m2

3) +K2m
2
1m

2
3 0

0 0 K1 (m
2
1 +m2

2) +K2m
2
1m

2
2
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3.2.3 Demagnetizing Field

An important contribution to the effective magnetic field stems from the
demagnetizing field, which originates from the long-range dipole-dipole in-
teraction of the magnetic moments. As its name suggests, it energetically
prefers a state with a reduced total magnetic moment. The demagnetizing
energy is given as

Ed = −µ0MS

2

�
Ω

m ·Hddx (3.13)

with the factor 1
2

preventing to count the self-interaction twice. In a
current-free system, a description for the demagnetizing field can be derived
from Maxwell’s equations as follows:

∇ ·B = 0 (3.14)
∇×Hd = 0 (3.15)

According to (3.15), the demagnetizing field Hd is conservative and can
be expressed as

Hd = −∇u (3.16)

By replacing the magnetic flux B with

B = µ0 (Hd +MSm) (3.17)

we arrive at the following expression for the scalar magnetic potential u

∇ · (−∇u+MSm) = 0 (3.18a)
∆u = ∇ ·MSm (3.18b)

The boundary condition for this equation is given asymptotically:

u(x) = O(
1

|x|) for |x| → ∞ (3.19)
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(3.19) states that the scalar magnetic potential decays to zero only at
infinity. Such types of boundary conditions are called open boundary condi-
tions.
Similar to the electric field, magnetic volume charges (ρm) and magnetic
surface charges (σm) can be defined:

ρm = −∇ ·MSm (3.20)
σm = MSm · n (3.21)

The component of Hd parallel to the surface as well as the component B
perpendicular to the surface are required to be continuous, which is described
by the following equations:

uin = uout (3.22)
(∇uin −∇uout) · n = σm (3.23)

These auxiliary quantities can be used to write the magnetic potential as

u(x) =
1

4πµ0

��
Ω

ρm(x
′)

|x− x′|dx
′ +

�
∂Ω

σm(x
′)

|x− x′|ds
′
�

(3.24)

3.2.4 Ampere Field

The so-called Ampere field contribution to the effective magnetic field is gen-
erated when a current is flowing through the magnetic regions of an MRAM
device.

The Ampere field Hcurr can be calculated by Bio-Savart’s law from the
current density JC :

Hcurr =
1

4π

�
Ω

JC × (x− x′)
|x− x′|3 dx′ (3.25)
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3.2.5 Thermal Field

The influence of thermal effects on the magnetization dynamics can be de-
scribed by a randomly varying contribution to the effective magnetic field.
However, these thermal field contributions have to exhibit the following prop-
erties [90, 91]:

⟨H i
th(t)⟩ = 0 (3.26a)

⟨H i
th(t), H

j
th(t

′)⟩ = D δij δ(t− t′) (3.26b)

i and j are Cartesian indices, ⟨·⟩ describes the average over several simu-
lated realizations, δij and δ(t− t′) are the Kronecker delta function and the
Dirac delta function, respectively. D is a constant measuring the strength
of the thermal fluctuations and is a result from the Fokker-Planck equation
[92]. Thus, Eq. (3.26) describes a field which is uncorrelated in time and
space.

3.3 Modeling Spin Torque

A model commonly used to describe the torque in STT-MRAM devices is
the macrospin model by Slonczewski [93]. Here, the dynamics of the free
layer (FL) magnetization are described as behaving like a single spin which
is influenced by the polarization occurring in a polarizing layer. The Landau-
Lifshitz-Gilbert (LLG) extended by such a torque term takes the following
form

∂m

∂t
= −γ0m×Heff + αm× ∂m

∂t
+

1

Ms

TS (3.27)

with TS being the spin torque originating from the angular momentum
which is transferred from the electrons which are spin-polarized in the polar-
izing layer.
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The spin torque TS can be written in terms of a damping-like component,
which moves the FL magnetization towards the axis of the RL’s magnetiza-
tion, and a field-like component, which makes the FL magnetization precess
around the direction of the RL magnetization [94,95]:

TS = am× (m× p)� �� �
damping−like

+ b(m× p)� �� �
field−like

. (3.28)

The parameters a and b are dependent on the current density and p is
the orientation of the magnetization in the reference layer (RL). Based on
the torque expression in Eq. (3.28), the LLG in Eq. (3.27) can be rewritten
as

∂tm =
1

1 + α2

�
− γ0 (m×Heff)− γ0α (m× (m×Heff))

− γℏJC
eMSdFL

η(θ) [m× (m× p)− β(m× p)]



(3.29)

JC is the modulus of the current density, dFL is the thickness of the
FL, the coefficient β describes the strength of the field-like torque, η(θ) de-
scribes the torque efficiency, which can be expressed differently, depending on
whether a spin-valve or a MTJ is being described [49, 96]. The Slonczewski
model is is often used when simulating STT-MRAM devices. As the ref-
erence layer is fixed, it is sufficient to simulate the dynamics of the FL
magnetization. However, the fact that the FL dynamics are modeled as a
single spin restricts the model’s applicability. Only small systems can be
simulated accurately, where the exchange interaction is most dominant and
the magnetization acts nearly uniformly. To improve on this, extensions can
be made to the model, such that m as well as p are functions of the lateral
dimension of the FL. However, the Slonczewski model given in Eq. (3.29)
disregards spin polarization diffusion to a certain degree, which is only valid
for specific material systems and magnetization configurations [97]. Consid-
ering a torque expression based on the spin accumulation S results in a more
general approach. The spin accumulation is a vector field which describes
the difference of the conducting electrons’ polarization in comparison to the
equilibrium. A torque term employing S can be written as [98–101]:

TS = −De
m× S

λ2
J

−De
m× (m× S)

λ2
φ

(3.30)



28

Here, De is the electron diffusion coefficient, λJ is the exchange length
and λφ is the spin dephasing length. The first term in Eq. (3.30) characterizes
the precession of the spins entering the FL in the exchange magnetic field of
the FL magnetization, while the second term models the dephasing of the
spins of the electrons flowing through the device. The steady-state (∂S

∂t
= 0)

spin accumulation can be obtained by solving the following equation [102]:

∂S

∂t
= 0 = −∇ · JS −De

�
S

λ2
sf

+
S×m

λ2
J

+
m× (S×m)

λ2
φ

�
(3.31)

λsf is the spin-flip length, and JS is the spin current. In the FEM
simulator developed and implemented in this work, the spin and charge drift-
diffusion formalism is used for the computation of the spin accumulation S
in the non-magnetic and ferromagnetic layers [103]. An extensive discussion
of the spin and charge drift-diffusion formalism for the simulation of STT-
MRAM devices was carried out by Fiorentini [104]. Equation (3.30), however,
not only allows the simulation of STT, but can also be used to take spin-
orbit coupling effects into account and thus simulate torques in SOT-MRAM
devices, as was shown by e.g. Lepadatu [98] and Jørstad et al. [105].
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Computational Methods

For micromagnetic simulations, the most popular discretization methods are
the finite difference method (FDM) and the finite element method (FEM).
Commercial and open source codes can be found, which can be used to sim-
ulate the magnetization dynamics. Recently, also machine learning (ML)
approaches were introduced to tackle problems in micromagnetic simula-
tions. In the following, these methods will be introduced, beginning with
time integration methods, which are of utmost importance when performing
simulations of the magnetization dynamics in MRAM devices.

4.1 Time Integration

For the simulation of dynamic micromagnetics, like switching of MRAM de-
vices or the simulation of hysteresis in a ferromagnetic system, the LLG equa-
tion needs to be solved over multiple time steps. While both the FDM and
the FEM are commonly used in micromagnetics for the spatial discretization
of the computational domain, separate time integration algorithms are em-
ployed for the discretization in time. The LLG equation belongs to the class
of stiff differential equations. For stiff equations, when solved numerically,
the time step is dictated by stability rather than the required accuracy [106].
Thus, due to the stiffness of the LLG equation, which mainly arises due
the exchange coupling, a good choice of the used algorithm can save oneself
from having to use unnecessarily small time steps and thus suffering from
long simulation running times [106–109]. Besides its stiffness, there is also
the constraint that the modulus of the magnetization needs to be preserved
over time for every magnetization vector in the computational domain. Some
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numerical schemes do not inherently fulfill this requirement, others project
the magnetization back onto the unit sphere, and some schemes are designed
such that the modulus is preserved automatically [97, 110].

In the following, an overview of some of the most often used time inte-
gration schemes will be presented. For the description of the schemes, we
will make use of the following notation for the values of the magnetization
over time:

mi ≈ m(ti) with ti = t0 + i∆t (4.1)

4.1.1 Explicit Runge-Kutta Methods

One of the most widely used iterative solvers for time discretization is the
family of Runge-Kutta algorithms.

dm

dt
= f(t,m) (4.2)

mn+1 = mn + h
s�

j=1

bjkj (4.3)

Here, s defines the number of stages of the specific Runge-Kutta algo-
rithm, bj are coefficients defining a specific Runge-Kutta method, and the
kj are evaluations of f(t,m) at intermediate points between the current and
the next time step.

k1 = f (tn,m)

k2 = f (tn + c2h,m+ (a21k1)h) ,

k3 = f (tn + c3h,m+ (a31k1 + a32k2)h) ,

...
ks = f (tn + csh,m+ (as1k1 + as2k2 + · · ·+ as,s−1ks−1)h)

Here, aij and cj, like bj, are coefficients whose choice characterizes a par-
ticular Runge-Kutta variant. One can see that the subsequent evaluations
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of kj always only depend on a previously calculated kj, which makes the
method explicit.
In general, however, it is known that explicit methods are not the best choice
for stiff problems. In order to achieve a desirable accuracy, one potentially
has to resort to a very small time step, rendering these methods not prac-
tical [110]. In conjunction with finite-difference methods, the Runge-Kutta
scheme nevertheless is commonly used, as it was shown in [111], when us-
ing a regular grid, the size of the time step is not restricted by the space
discretization size anymore.

4.1.2 Implicit Midpoint Scheme

The implicit midpoint scheme makes use of the implicit midpoint rule, and
it was shown in [112] that it preserves the unit sphere constraint. In this
scheme, the next magnetization value is calculated as

mn+1 = mn +∆t∂tm

�
tn +

∆t

2
,
mn+1 +mn

2

�
(4.4)

which, by using the right-hand side of (3.3) and replacing ∂tm = (mn+1 −mn)/∆t,
leads to

mn+1 =mn +∆t
mn+1 +mn

2

×
�
−γHeff

�
tn +

∆t

2
,
mn+1 +mn

2

�
+ α

mn+1 −mn

∆t

�
(4.5)

According to [112], this scheme is flexible in the spatial discretization
scheme used and can be applied to FDM as well as FEM. Due to the im-
plicitness of this scheme, it is unconditionally stable. Thus, the choice of
time-step is not dictated by stability and the largest time-step which still
meets the accuracy demands can be chosen.
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4.1.3 Tangent-Plane Integration

The tangent-plane integration scheme - first introduced in [113] and later
generalized in [114] - is the time integration scheme used for the dynamic mi-
cromagnetic FEM simulations performed in this work. Thus, its description
will be more detailed.

This scheme is based on a form of the LLG equation, which results from
cross-multiplying (3.3) with m:

α
∂m

∂t
+m× ∂m

∂t
= γ0Heff − γ0(m ·Heff)m (4.6)

The time derivative of m, which is the quantity that we solve for, is
replaced by

v = ∂tm (4.7)

The property that gives this method its name is the fact that the space
of solutions is defined as

VT = {v : v ·m = 0} (4.8)

and is thus restricted to the tangent space of m. Using (4.7), the weak
formulation for (4.6) can be written as

�
Ω

(αv +m× v) ·w dx = γ0

�
Ω

Heff(m) ·w dx, ∀ w ϵ VT (4.9)

This scheme can subsequently be transformed into an implicit θ-scheme
by inserting mn + θ∆tv for m. To obtain a stable numerical scheme, it is
sufficient to treat the exchange field implicitly [114]. Thus, the exchange field
is the only effective field contribution which is treated implicitly in this work:�

Ω

(αv +mnk × v) ·w dx+ θ
2Aexγ

MS

∆t

�
Ω

∇v : ∇w dx (4.10)

= γµ0

�
Ω

H′
eff ·w dx− 2Aexγ

MS

�
Ω

∇mn : ∇w dx
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Here, H′
eff contains all the effective field terms apart from the exchange

field and ∇a : ∇b =
�

ij(∂ai/∂xj)(∂bi/∂xj) is the Frobenius inner product
of the two matrices a and b. By choosing 0 ≤ θ ≤ 1, the degree to which the
scheme is explicit or implicit can be adjusted: a completely explicit scheme
result from setting θ = 0 and a completely implicit scheme from setting it to
θ = 1. For stability reasons, the value of θ is set to 1 [115]. mn in (4.10) is
the magnetization at t = n∆t, where n = 0, 1, 2, . . . is the time step and ∆t
is the time step size. The magnetization at the next time step n+ 1 is given
by

mn+1 =
mn +∆tv

|mn +∆tv| . (4.11)

where this calculation is performed for each node of the mesh.

In a FEM setting, the tangent constraint on the test function space given
in (4.8) can be realized by using the following Lagrange multiplier ansatz to
solve the resulting saddle-point problem [116,117]

�
A BT

B 0

��
v
λ

�
=

�
f
0

�
(4.12)

where A ∈ R3N×3N is the discretized left-hand side of (4.10), B ∈ R3N×3N

comes from the constraint, f ∈ R3N is the discretized right-hand side of (4.10)
and the Lagrange multiplier λ ∈ R3N is a scalar field. Bv = 0 enforces the
constraint (4.8). A more detailed description of the Lagrange multiplier
ansatz can be found in Abert et al. [116].
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4.2 Finite Difference Method

The Finite Difference Method (FDM) is a cornerstone in the realm of numer-
ical techniques, and provides a robust framework for approximating solutions
to a diverse array of differential equations. Due to its simplicity, both with
respect to the underlying mathematics, but also its implementation in code,
FDM has become an indispensable tool across scientific disciplines. As it
is so wide-spread, many introductory textbooks have been written about it,
e.g. [118,119].

At its core, the FDM operates on the principle of converting continuous dif-
ferential equations into manageable discrete algebraic equations which allow
for efficient computer-based computations that yield approximations closely
resembling the behavior of the original continuous system.

The method achieves this by dividing the spatial and temporal dimensions
of a problem into a grid of discrete points. A two-dimensional domain Ω is
discretized into a set of grid points {xi,j} as

xi,j = (ih, jh), with i, j = 0, 1, . . . , N (4.13)

Which describes an equidistant grid with a spatial discretization width
h := 1/N with N ∈ N and N being the number of discretization points along
the grid axes, as depicted in Section 4.2.

Figure 4.1: Equidistant grid with space discretization length h.

An example of a regular cuboid grid discretization of a unit sphere is
shown in Fig. 4.2. It is apparent that this type of discretization is most
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suitable for rectangular geometries. For achieving good approximations of
complex geometries, the grid needs to be refined, which can lead to a high
computational cost [118].

Figure 4.2: Regular cuboid grid discretization of a unit
sphere.

The representation of the solution function on this grid is called grid
function and the derivatives within the differential equation are approximated
by replacing them with a finite difference quotient of grid function values at
specific grid points.

The Poisson equation, which appears in many science and engineering
applications, shall serve as an example of how differential equations are solved
using the FDM. It is defined as:

−∇2u(x) = f(x), x ϵ Ω (4.14a)
u(x) = uD(x), x ϵ ∂Ω (4.14b)

As already stated, in the FDM differential operators are approximated
by finite difference quotients. The Laplace operator on the left-hand side
of (4.14) can be discretized using the commonly employed quotient

∂2

∂x2
u(xi) ≈ ui+1 − 2ui + ui−1

h2
(4.15)
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To evaluate this difference quotient for the nodes u0 and uN , however,
it is necessary to apply a mathematical trick, as nodal values u−1 and uN+1

would be required. Adding additional nodes to the computational grid for
these border cases allows the evaluation of the difference quotient. These
additional nodes are called ghost points, as they are not part of the actual
computational domain. The values of the ghost points are set to be [119]:

u−1 = u1 and uN+1 = uN−1 (4.16)

This ensures that the difference quotient can be evaluated correctly for the
whole computational grid. By using the discretized version of the Laplace
operator from (4.15) and replacing the right-hand side of (4.14) with the
discrete version fi, one gets the Poisson difference equation:

−ui+1 − 2ui + ui−1

h2
= fi (4.17)

Equation (4.17) can subsequently be reformulated in matrix form:

Au = r (4.18)

The Dirichlet boundary condition given in (4.14b) can be incorporated
into the discrete system of equations by setting the value of the respective
boundary nodes to the Dirichlet values. This ensures that the solution sat-
isfies the boundary conditions. Rearranging (4.18), one arrives at:

u = A−1r (4.19)

Consequently, the complex mathematical challenge of solving differential
equations is distilled into solving a system of linear equations - a task many
libraries exist for and can do efficiently.
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4.2.1 Discretization of the LLG Equation

For the FDM-based simulations in this work, a code initially introduced
in [120] was used. Figure 4.3 presents the program flow of this simulation
tool. The general overall structure of the program follows a fairly common
scheme. After an initialization phase, in which the simulation is started
and parametrized through either a command line interface or a configuration
file, the magnetostatic coupling between reference layer and free layer (Hms)
and the field created from currents flowing through the device (Hcurr) are
computed. This is followed by the time integration loop.

simulation start

get parameters

compute Hms and Hcurr

t ≥ tfinal?

calculate Hth

start LLG time integration
i = 1

cacluate Hexch,Haniso,Hd

calculate ki

i = i+ 1

i > 4?

calculate new m

t = t+∆t

end of simulation

no

yes

yes

no

Figure 4.3: Flow chart of the general sequence of operations performed in
the micromagnetic FDM simulator.
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The innermost loop implements a fourth order Runge-Kutta time inte-
gration, each iteration computing one of the four coefficients ki, according
to:

k1 = LLG(mn, tn)∆t (4.20a)

k2 = LLG(mn +
k1
2
, tn +

∆t

2
)∆t (4.20b)

k3 = LLG(mn +
k2
2
, tn +

∆t

2
)∆t (4.20c)

k4 = LLG(mn + k3, tn +∆t)∆t (4.20d)

Using these coefficients, the overall update to the magnetization is calcu-
lated as

mn+1 = mn + (k1 + 2k2 + 2k3 + k4)
∆t

6
. (4.21)

4.2.2 Effective Field Discretization

In the following, the finite difference discretization of the effective field con-
tributions used within this code will be presented.

External Field

The external magnetic field is simply a configurable input function, which is
defined at very computational node:

Hext(i, j, k) = Hext,input (4.22)

Exchange Field

In order to calculate the exchange field, the nearest neighbors of each cell
need to be known. In a regular FDM grid, these are in general the six cells
with which the currently considered cell shares its cell faces.

Hexch(i, j, k) =
2A

µ0MS

�
i′, j′, k′

m(i′, j′, k′)−m(i, j, k)

d(m′,m)2
(4.23)



Chapter 4. Computational Methods 39

The nearest neighbors of the currently considered cell with the coordinate
triplet (i, j, k) are located at the position i′, j′, k′. The 6 neighboring cells
have the coordinates (i ± 1, j, k), (i, j ± 1, k) and (i, j, k ± 1). d(m′,m)
calculates the distances between the vector components of m′ and m, i.e.
(∆x,∆y,∆z)T . At the boundary of the computational domain, there are
obviously no six neighbors anymore, and a so-called “ghost” magnetic vector
is used if no nearest neighbor is available. This vector’s value corresponds
to the closest magnetic vector at the boundary. The term “ghost” is used,
as these ghost cells are not part of the computational domain, but are a
mathematical construct that allows the evaluation of the exchange field at
the boundary [119].

Anisotropy Field

To calculate the anisotropy field acting in a cell with coordinates (i, j, k), only
this specific cell is considered. Thus, it is straightforward to translate (3.10)
into its numerical equivalent:

HK(i, j, k) =
2K1

µ0MS

(m(i, j, k) · e)e (4.24)

The same hold for the cubic anisotropy introduced in (3.12):

HK(i, j, k) = −2D(i, j, k)

µ0MS

m(i, j, k) (4.25)

with D(i, j, k) being the matrix introduced in Section 3.2.2.

Demagnetizing Field

The demagnetizing field is the computationally most demanding effective
field contribution, as it originates from the long-range interaction of the
dipoles. Compared to the exchange field, for an accurate calculation of this
field contribution it is thus not enough to only consider nearest neighbor
cells. Instead, all the cells of the magnetic domains have to be considered.

Hd(i, j, j) =
MS

4

Nx�
i′=1

Ny�
j′=1

Nz�
k′=1

(G̃(i, j, k, i′, j′, k′) ·m(i′, j′, k′)) (4.26)
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The space-dependent matrix G̃ is formed from coefficients which describe
the dipole-dipole interaction. As this interaction is long-ranged, all other
magnetic moments have to be taken into account for determining the in-
fluence of the demagnetizing field in a specific cell. Thus, the computation
of G̃ is computationally expensive. However, it can be precomputed once
at the beginning of the simulation, as it only depends on the geometry of
the magnetic domain and not on time. Nx, Ny and Nz are the number of
computational nodes in the x, y and z direction, respectively.

Ampere Field

The discretized version of equation (3.25) to evaluate Hcurr for a specific cell
located at position (i, j, k) reads as

Hcurr =
1

4π

Nx�
i′

Ny�
j′

Nz�
k′

(JC(i
′, j′, k′)×G′(i, j, k, i′, j′, k′)) (4.27)

The three nested summations go through all the cells apart from the
cell for which the field is calculated (i′ ̸= i, j′ ̸= j, k′ ̸= k). G′ is a
space-dependent vector which contains coefficients describing the interaction
between the cells. Its derivation can be found in [121] along with the fast
computation of the integrals it is based on.

Thermal Field

Following the requirement for the thermal field given in (3.26), the thermal
field needs to be uncorrelated in space as well as time and can be calculated
as

Hth,(x,y,z) = σ(i, j, k)

�
α

1 + α2

2kBT

γ0∆t∆VMS

(4.28)

The function σ returns a value from a Gaussian distribution which follows
the requirements given in (3.26) and has a standard deviation of 1. ∆V is
the volume of a single computational cell, ∆t is the time step and T is the
temperature.
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4.3 Finite Element Method

Like the FDM, the FEM is a computational method to solve partial differ-
ential equations (PDE). However, the FEM is far more flexible with respect
to the computational domain. In the following, the FEM will be introduced
by going through the steps necessary to solve a PDE.

4.3.1 Discretization

Compared to the FDM, the FEM allows for the simulation of more complex
structures, as in the three-dimensional case the computational domain is -
most commonly - discretized into a mesh consisting of tetrahedral elements
of finite extent, hence its name. These elements consist of nodes connecting
which are shared by neighboring elements. The computational domain Ω
thus consists of the union of the element domains Ωe:

Ω = ∪eΩe (4.29)

Figure 4.4 shows an example of a unit sphere discretized into tetrahedral
elements. Compared to the FDM discretization presented in Fig. 4.2, a
smoother surface can be achieved while requiring ∼ 1/3 of the number of
surface nodes.

Figure 4.4: Tetrahedral discretization of a unit sphere.
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In order to arrive at a computational method to solve a given PDE on a
specific domain Ω, the FEM relies on two pillars. First, the representation of
the solution of the PDE as a polynomial expression and, secondly, expressing
the PDE as a variational formulation which allows to transform it into a
computational stencil and eventually into a sparse linear system which can
then be solved.

Again, the Poisson equation, given as

−∇2u(x) = f(x), x ϵ Ω (4.30a)
u(x) = uD(x), x ϵ ∂Ω (4.30b)

shall serve as exemplary problem to introduce the approach to transfer
a problem into its weak formulation. Here, u is the solution of an unknown
function, f(x) is a source function. The problem at hand is a boundary
value problem as (4.30b) predetermines the value of the solution u on the
boundary ∂Ω to be uD. Expressing the solution u in terms of finite element
basis functions is done as follows:

u(xi) = ciφi(xi) (4.31)

Here, φi represents a piecewise polynomial and due to its following prop-
erties:

φi(xj) = δij, δij =

�
1, i = j,

0, i ̸= j
(4.32)

(4.31) can be simplified to

u(xi) = ci (4.33)

ci are the coefficients we are ultimately interested int, often called degrees
of freedom. An example of expressing a function u as a weighted sum of
piecewise linear basis functions is shown in Fig. 4.5.
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Figure 4.5: Approximation uh of the function u as a weighted
sum of piecewise linear basis functions φi.

The FEM uses the so-called weak formulation of the original problem
to solve it. The attribute weak stems from the weaker requirements on the
solution of the problem, as compared to its original formulation. In a first
step, both sides of the original problem are multiplied by test functions v,
chosen from a suitable function space Vh. By subsequently integrating this
equation over the domain Ω, we get:

−
�
Ω

(∇2u)v dx =

�
Ω

fv dx (4.34)

To lower the requirements on the basis functions with respect to dif-
ferentiability, partial differential equations containing second derivatives are
transformed into a representation containing only first derivatives. This can
be achieved by integrating the left-hand side of Eq. (4.34) by parts:

−
�
Ω

(∇2u)v dx =

�
Ω

∇u · ∇v dx−
�
∂Ω

∂u

∂n
v ds (4.35)

with ∂u
∂n

= ∇u · n being the outward normal component of the gradient
of u. The test function v needs to vanish at the parts of the boundary where
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the solution is known. This ensures that the basis functions do not create
any contribution to the boundary value and allows to directly impose the
known values, i.e. the Dirichlet condition. Thus, (4.35) reduces to:

−
�
Ω

(∇2u)v dx =

�
Ω

∇u · ∇v dx (4.36)

and inserting this into (4.34) leads to

�
Ω

∇u · ∇v dx =

�
Ω

fv dx (4.37)

which is the weak formulation of the original problem. Often, this is
expressed in the following more abstract variational form:

a(u, v) = L(v) ∀vϵV (4.38)

with a(u, v) being called bilinear form and L(v) the linear form, which
are defined as

a(u, v) =

�
Ω

∇u · ∇v dx (4.39)

L(v) =

�
Ω

fv dx (4.40)

As stated previously, in the process of bringing the original equation into
its weak form, the test functions v have to be chosen from a suitable discrete
function space Vh. The general requirements on such a discrete function
space can be expressed as:

Vh = { v ϵ L2(Ω) | dv
dx

ϵ L2(Ω), and v(x) = 0 ∀x ϵ ∂Ω } (4.41)

with the Hilbert space L2(Ω) consisting of all the functions which are
square-integrable on Ω:
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L2(Ω) =

�
Ω

v2dx < ∞ (4.42)

The function space Vh defined in (4.41) consists of all functions whose
zeroth- and first-order derivatives are square integrable on Ω. Further, for Vh

it is also required that v is zero at the boundary. Function spaces as defined
in (4.41) are called Sobolev spaces. Though being very flexible in the choice
of function space, usually the solution and test functions are chosen to be
piecewise affine, globally continuous functions.

The discretized version of the variational form given in Eq. (4.38) can
then be expressed as the linear system of equations

�
i

Aijui = bj (4.43)

with Aij and bj being defined as

Aij =

�
Ω

∇φi · ∇φjdx (4.44)

bj =

�
Ω

fφjdx (4.45)

and ui being the discrete solution.

As the basis functions φ have compact support and are nonzero only on
a small part of the domain Ω the matrix A is sparse. Further, the matrix A
is symmetric and positive definite. Thus, iterative solvers can be employed
to exploit these properties for the efficient solution of the linear system [122].
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4.3.2 Discretization of the LLG Equation

The flow chart shown in Fig. 4.6 depicts the general sequence of operations of
the simulation software ViennaMag [123], a FEM-based simulation tool for
the computational investigation of MRAM devices. The software is written
in C++ and is based on the FEM library MFEM [124]. MFEM provides the
required basic FEM functionality, including efficient data structures, mesh
handling, solvers, as well as means to save and visualize the results. On top
of MFEM, ViennaMag adds the functionality specific to the simulation of
micromagnetic systems, such as the calculation of the demagnetizing field,
the spin accumulation, and the solution of the LLG equation. The phases of
the simulation are described in the following.

In the initial phase, input parameters are read, such as the mesh of the
structure which is to be simulated. The data structures are initialized to
establish an initial magnetic configuration in the grid function representing
the ferromagnetic layers. Additionally, the method used to calculate the de-
magnetizing field is selected, and the corresponding data structures are set
up. Afterwards, the general simulation loop is started. First, the demagne-
tizing field is calculated for the given initial magnetization, followed by the
computation of the spin accumulation. This part is performed in two steps:
first, the charge current is computed followed by the solution of the systems
of equations for the spin accumulation. The demagnetizing field and the
spin accumulation are required inputs to the LLG equation and once they
are available, the matrices can be assembled and the system of equations can
be solved. After updating the magnetization and the time step, the next
iteration is performed, until the final simulation time is reached.
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simulation start

get parameters
(mesh, calculation methods,

initial magn.,...)

initialize simulation
(magn., coeff.,

submesh creation,...)

t ≥ tfinal?

calculate Hd

calculate spin accumulation

assemble drift-diffusion
matrices

solve eqs. for Jkc

assemble LLG matrices solve eqs. for Sk

solve system of eqs.

compute next magn. state mk+1

update time step
t = t + ∆t

end of simulation

no

yes

Figure 4.6: Flow chart of the general sequence of operations performed in
the ViennaMag simulator.

The general equation which needs to be solved by the simulation, is based
on the Landau-Lifshitz-Gilbert equation:

α
∂m

∂t
+m× ∂m

∂t
= γ0Heff − γ0(m ·Heff)m (4.46)
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For the sake of stability, however, this is transformed into the tangent-
plane integration scheme. The tangent-plane scheme solves for the time
derivative of the magnetization instead of the magnetization directly. By
inserting v = ∂m

∂t
and multiplying by test functions w one gets the weak

formulation of Eq. (4.46):

�
Ω

(αv +m× v) ·w dx = γ0

�
Ω

Heff(m) ·w dx (4.47)

After solving (4.47) for the time derivative of the magnetization v, the
new magnetization can be calculated as

mk+1 = mk + θ ∆t v (4.48)

When employing the tangent-plane integration scheme, each field contri-
bution can be treated implicitly by adding a θ to the corresponding expres-
sion. However, as the exchange field is the main source of stiffness in the
LLG equation, in the formulation used in the simulation tool employed for
this work, only the exchange field is treated implicitly. The following equa-
tion presents the full weak formulation as it is solved in the simulation tool
depicted in Fig. 4.6:

�
ω

�
αv +mk × v

� ·w dx+ θ
2Aexγ

MS

δt

�
ω

∇v : ∇w dx

= γµ0

�
ω

(Hext +HK +Hd) ·w dx− 2Aexγ

MS

�
ω

∇mk : ∇w dx

+
De

MS

�
ω

�
1

λ2
J

Sk +
1

λ2
φ

mk × Sk

�
·w dx.

The demagnetizing field cannot be handled implicitly, as for its com-
putation another partial differential equation must be solved. This will be
described in more detail in Chapter 5.

The simulation software ViennaMag, whose flow chart is shown in Fig. 4.6,
uses the MFEM library [124] to solve the weak formulation of the LLG equa-
tion. For the solution of the time derivative of the magnetization v, the
generalized minimal residual (GMRES) method is used, an iterative solver
suitable for the solution of indefinite nonsymmetric systems of linear equa-
tions, as is the case for the present problem.
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4.4 Reinforcement Learning

In the preceding sections, the Greek symbols α and γ have been employed
in the context of micromagnetics, where α represents the Gilbert damping
factor and γ denotes the gyromagnetic ratio. These symbols were chosen
for their conventional usage within the field. In the field of reinforcement
learning, however, α and γ are also used to denote the learning rate and the
discount factor, respectively. Thus, in the following sections, the symbols
α and γ will be used with their meaning in the context of reinforcement to
maintain consistency with the conventions used in the literature. To avoid
confusion, in the context the symbols are used in, their meaning will be
explicitly stated.

4.4.1 Introduction

Machine learning can be roughly divided in three categories of algorithms,
as shown in Fig. 4.7. The most prominent ones are the supervised learn-
ing algorithms which learn input-output relationships of given, labeled data
sets. Examples include image recognition tasks, as well as natural language
processing.

Supervised Learning
(Classification)

Unsupervised Learning
(Clustering)

Reinforcement Learning
(~Human Learning)

Machine Learning

Figure 4.7: Machine learning branches.

Data for unsupervised learning algorithms on the other hand is not la-
belled, and the purpose of these algorithms is to make sense of the data and



50

find patterns. The third category of machine learning algorithms is rein-
forcement learning. With its origins in optimal control theory and Markov
decision processes, these algorithms try to computationally mimic the way
humans and other animals learn. Driven by a goal which they try to achieve
in a sequential decision-making problem, the data used for learning is gener-
ated during the training phase.

4.4.2 Markov Decision Processes

The mathematical basis for describing reinforcement learning are Markov
decision processes (MDP). Originating from optimal control theory, MDPs
describe decision-making processes in which current actions have influence
not only on immediate rewards, but also on rewards further into the future.
The difficulty thus lies in balancing decisions for instantaneous reward and
for reward delayed in time. As depicted in Fig. 4.8, a reinforcement learn-
ing system consists of a learning agent and an environment. The agent’s
task is to achieve an objective by maximizing the accumulation of reward
through repeated interaction with the environment. In this process, there
are a number of signals which are exchanged between these two entities: the
agent is able to perform actions in the environment, causing the environment
to transition from its current state to a new one. This state information is
returned to the agent together with a reward signal. Depending on whether
the action performed by the agent was good with respect to the objective,
the reward signal is used to reinforce good actions or discourage bad actions.
This information is thus used by the agent to improve its action-producing
function, commonly called policy and denoted as π.

Agent Environment TransitionImprove

Action at

State st

Reward rt

Figure 4.8: Basic setup of a reinforcement learning system.
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Thus, in the course of training an RL agent, the trajectories of the signals
exchanged by the agent and the environment follow the patterns

S0, A0, R1, S1, A1, R2, · · · (4.49)

with Si being states, Ai actions and Ri rewards. In the MDP framework
the environment is described as the transition function

p(s′, r|s, a) .
= Pr{St = s′, Rt = r|St−1 = s, At−1 = a} (4.50)

It describes the dynamics of the environment by returning the probabili-
ties with which the environment transitions into a next state s′ and returns
reward r, given that the environment is currently in state s and action a is
taken.

For training an agent to learn how to best behave in order to achieve
an objective, many iterations of the agent interacting with the environment
are performed in which the agent experiences (state, action, reward) tuples.
Each of these trajectories, spanning state transitions from the initial state to
some terminal state, contributes to improving the agent’s ability to navigate
the environment’s state space. A very important property of the state in the
MDP framework is that it possesses the Markov property. This means, that
the state has to contain enough information about the past to be sufficient for
the agent to make a decision at the current time step. Many real-life problems
can be framed as RL decision-making problems and there are no clear-cut
rules on how to divide goal-directed problems into agent and environment.
What is clear, however, is that the agent needs to have enough control over
the environment, such that it is possible to achieve the desired objective.

The reward signal is one of the most important and prominent features
in RL. It encodes the goal that is to be achieved and leads to the notion of
overall return over the timespan of the task, which is to be maximized by
the agent. The reward function returns a scalar value which can be either
positive or negative and is an indication of how good (or bad) the state
transition from the previous time-step t − 1 to the current time step t was.
The exact definition of the reward is implementation-dependent, as it can be
sufficient for the reward to only depend on the previous state s, but often
also the performed action a, and potentially even the next state s′ are taken
into account.
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A definition for a reward which depends on the tuple (s, a) looks as fol-
lows:

r(s, a)
.
= E [Rt|St−1 = s, At−1 = a] (4.51)

The reward is thus defined as the expected value of the reward at time t, Rt,
given that the environment is in state s and action a is taken. Consequently,
in a deterministic environment r(s, a) would exactly equal the reward Rt.

Whereas the reward function in Eq. (4.51) gives a general definition for
the reward whose explicit expression depends on the problem at hand, there
is the notion of the return, the overall reward accumulated during a task
episode:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
T�

k=t+1

γk−t−1Rk (4.52)

The return at time t, Gt, is the discounted cumulative reward, with T being
the episode length of the task to be learned, Rk the reward received at time
k and γ the discount factor, a positive real value commonly chosen to be less
than one. The choice of γ balances how strongly future rewards influence the
estimate of the return and thus the decision-making of the learning agent. If
γ is zero, an agent knowing the return at time t can only act short-sighted,
as his information horizon does only include the reward for the current time
step. Figure 4.9 shows how different choices of γ affect the discounting of
future rewards, i.e. it answers the question “How much is a reward received
t time steps in the future worth now”?
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Figure 4.9: Discounting of different γ values over time.

Looking at the two extremes shown in Fig. 4.9, when choosing γ = 0.8,
after only around 20 time steps discounting reduces the reward to below 1%
and very quickly goes to zero, encouraging short-sighted decisions. Setting
γ = 0.9997, on the other hand, a reward received 1000 times steps in the
future is only discounted by ∼ 0.74 and will thus still have an influence on
the decision-making at the present time step [125].

However, one of the biggest difficulties in RL lies in defining a rewarding
scheme which unambiguously encodes the desired objective. It was shown
in various publications that it can easily happen, that, when not carefully
designed, a reward function can lead the agent to learning suboptimal be-
havior which exploits an imperfect rewarding strategy and achieves a higher
accumulated reward by taking an undesired sequence of actions, a behavior
called “specification gaming” [126–129].

The way most RL agents judge how good the environment’s current state
and specific actions are, is by maintaining a value function. Value functions
are estimates for the expected return for following a certain policy of action,
given the state the agent is currently in. With policies being given as π(a|s),
a mapping from a given state to an action, the value function for state s
following policy π is defined as
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vπ(s)
.
= Eπ [Rt|St = s] (4.53)

However, for deciding what to do in a specific state, having an estimate
of the value function does not help much. A more useful function is the
action-value function

qπ(s, a)
.
= Eπ [Rt|St = s, At = a] (4.54)

In contrast to the value function, it directly gives estimates for the value
of all possible actions, whereas the value function combines these estimates.

An important feature of these value functions is that they can be written
in recursive form, which describes the relationship of the value of state s
and its successor states. This recursive formulation is the so-called Bellman
equation for the value functions. For the action-value function qπ it looks as
follows:

qπ(s, a) =
�
s′,r

p(s′, r|s, a) [r + γvπ(s
′)] ∀s ∈ S, ∀a ∈ A (s) (4.55)

The value function as well as the action-value function depend on a spe-
cific policy. If the policy changes, so does the estimation of the value function
and action-value function, respectively. It was already mentioned, that they
are action-producing functions, given a current state of the environment. It
should be added, though, that they are not merely a static plan for a specific
trajectory through an environment. Policies should be plans that are univer-
sal in the sense that they should provide actions for all possible states and
not just for a subset of them.

Knowing about policies and how the quality of states can be described
by value functions, what is left is to find out about algorithms that deal
with the problem of approximating value functions and improving policies
such that they converge towards the optimal ones. This is done using a
process called generalized policy iteration (GPI) and consists of two phases.
In the first phase, the current policy is evaluated (“Policy Evaluation”) and
in the second phase the policy is improved based on the outcome of the
evaluation (“Policy Improvement”). Evaluation of a given policy works by
going through the state space and iteratively improving the estimates of the
value function. This iterative process is usually performed until the change
to the value function is below a certain threshold. The value function in the
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end gives an idea of how good a state (or state-action pair in the case of the
action-value function) is, when following the given policy. With a way at
hand to evaluate any given policy, one approach for coming up with a better
policy could be to randomly generate new policies, evaluate them using this
evaluation approach and select the best one to continue. A better and more
efficient way to improve the current policy is to make use of the action-value
function Q.

As the action-value function assigns a value for each state-action pair,
one can easily adjust the current policy to take the action with the highest
value estimate in the respective states.

4.4.3 (Deep) Reinforcement Learning Algorithms

After presenting the basics of reinforcement learning in the previous section,
the upcoming sections shall introduce the different types of RL algorithms
and present one of them, the Deep Q-Network algorithm in more detail.

Value-Based Algorithms

Value-based algorithms aim to assign a value to states or state-action pairs,
representing the potential overall reward the agent can expect, i.e. how valu-
able a state or state-action pair is. Decisions are made by choice of a policy
which, in most cases is based on the approximated value.

Policy-Based Algorithms

In policy-based algorithms, the policy, i.e. the mapping from states to actions,
is learned directly. No value function indicating the expected return in any
specific state is being approximated.

Model-Based Algorithms

Whereas policy-based algorithms directly learn the state-action mapping and
value-based algorithms learn a proxy allowing for the best action selection,
model-based algorithms directly learn a model of the environment or use an
existing model, if the dynamics of the environment are known. This allows for
the prediction of the behavior of the environment and thus these algorithms
can “predict” how the environment will respond to certain actions.
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In the following we will focus on value-based reinforcement learning algo-
rithms, as these are the ones which are used in this thesis.

4.4.4 Estimating Value Functions

Now we know how the action-value function is defined. But how do we arrive
at a good estimate of it?

Two of the most well-known methods in RL for the estimation of the
action-value function are SARSA [130] and Q-learning [131]. The target
update equations are:

SARSA: Qtarget(St, At) = r + γQ(St+1, At+1) (4.56)

Q-Learning: Qtarget(St, At) = r + γmax
a

Q(St+1, a) (4.57)

The difference between the two update equations is that the SARSA
algorithm on the right-hand side uses the action which was actually taken
at time-step t + 1 to calculate the value of the action-value function. The
Q-learning algorithm, on the other hand, uses the action which returns the
maximum value from the action-value function. These different approaches
are called on-policy (SARSA) and off-policy (Q-learning).

The target update, however, is only an intermediate result for the actual
update of the action-value function:

Q(St, At) = Q(St, At) + αt [Qtarget(St, At)−Q(St, At)] (4.58)

One of the biggest difficulties in RL is the trade-off between exploration
and exploitation. Should the agent exploit its current knowledge and base
all decisions on the present approximation of the value function, or should
it continue to explore the state-action space? By focussing too much on the
exploitation of existing knowledge the agent risks getting stuck in a local
maximum. With the current estimate of the value function, a certain action
might promise the highest reward, exploration of other actions, however,
could possibly lead to an even higher overall return. The most prominent
policy balancing exploration and exploitation is the so-called ϵ-greedy policy.
Here, in ϵ percent of the cases, a random action is taken, at all other times
it’s the action promising the highest return for the respective state.
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4.4.5 Deep Q-Network Algorithm

The deep Q-network algorithm (DQN) is an important algorithm in the his-
tory of RL. It was first published in [132], where the authors presented how
using this algorithm, an agent could be trained to play Atari games with
superhuman performance with merely receiving the pixel images as state
information. Later on an improved version was published in [133].

First, the “deep” in its name stems from the fact that it uses a deep neu-
ral network to approximate the action-value function, for which the notation
needs to be changed to Q(St, At, θt), as it now also depends on the neural
network weights θt, which are changing as training progresses. Using neural
networks as universal approximators has become the standard in practical
applications, where usually the amount of states cannot be reasonably rep-
resented anymore with table-based approaches [134].

The DQN algorithm can be broken down into three main tasks: collect-
ing experiences, calculate the target update for the experiences, update the
action-value function estimate. A simple version of the algorithm which will
be discussed in more detail is given in Algorithm 4.1:

Algorithm 4.1: Deep Q-Network Algorithm
1 for each step do
2 gather experience (Si, Ai, Ri, Si+1)
3 for each batch do
4 yi ← ri + γmaxa Qπ(Si+1, a, θ

−)
5 L(θ) ← 1

N

�
i (yi −Qπ(Si+1, Ai, θi))

2

6 θ ← θ − α∇θL(θ)

7 end
8 end

As stated in Line 2, at the beginning of each time step, the agent gathers
experience tuples ei = (Si, Ai, Ri, Si+1) using the current policy, e.g. an ϵ-
greedy policy. These experiences are stored in a buffer, from where batches
of a pre-defined size are randomly sampled. Using these samples, the target
update in Line 4 is performed. This target is then used in Line 5 to calculate
the mean-squared error loss, whose gradient is subsequently computed. With
the gradient one knows in which direction to move the weights, taking small
steps scaled by the learning rate α, in order to reduce the loss and get a
better approximation of the action-value function. The DQN algorithm uses
two sets of neural network weights, the constantly updated ones, θi in Lines 5
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to 6, and a set of weights that is only updated at larger intervals, θ− in Line 4,
to avoid the chasing of a moving target when evaluating the loss in Line 5.
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Chapter 5

Efficient Demagnetizing Field
Calculation

In the following, methods for the numerical computation of the demagne-
tizing field described in Section 3.2.3 will be presented and compared. The
computational complexity due to the long-range interaction of the magnetic
moments poses a challenge which will be discussed as well.

5.1 Truncation Approach

The simplest approach to approximate the open boundary condition and
compute the demagnetization field is the so-called truncation approach. Here,
the magnetic domain Ωm is surrounded by an external domain Ωe, exempli-
fied in Fig. 5.1 by a magnetic cube surrounded by a spherical non-magnetic
domain. This external domain is truncated at a certain distance, hence the
name of the method.

The Poisson equation given in (3.18b) is then solved in the whole com-
putational domain with Dirichlet boundary conditions setting the magnetic
potential to zero at the outer surface of the sphere to account for the decay
of the potential:

Hd = −∇u (5.1)
u = 0 on ∂Ωe (5.2)

61
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x

y
z

Ωe

Ωm

Figure 5.1: Truncation approach: truncating a non-magnetic external do-
main Ωe surrounding the magnetic domain Ωm at a finite distance.

The weak formulation to calculate the scalar magnetic potential based
on Eq. (3.18b), reads as�

Ω

∇ · (∇u−Msm) vdx = 0 (5.3)

Thus, the equation is solved in the whole domain Ω = Ωm ∪ Ωe. And
when restricting the test and trial functions to the following space

V0 = {v ∈ V : v(x) = 0 ∀x ∈ ∂Ω} , (5.4)

and by integration by parts of Eq. (5.3) leads to:�
Ω

∇u · ∇vdx =

�
Ω

Msm · ∇vdx ∀ v ∈ V0 (5.5)

Of course, setting the potential to zero at a finite distance is an approx-
imation and as the potential should reach a value of zero only at infinity,
the larger the dimension of the external domain, the better the approxima-
tion. This, however, also comes with higher computational effort. Choosing
the dimension of the external domain ∼ 5 times the dimension of the mag-
netic domain in general leads to a good compromise between computational
demand and accuracy [135]. As the potential decays slowly, to further save
computational resources the mesh can progressively be made coarser towards
the outer surface of the external domain (cf. Fig. 5.1).
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5.2 FEM-BEM Approach

An approach which allows a reduction of the computational domain to the
magnetic regions only, combines the finite element method with the boundary
element method (BEM). It was introduced in the early 1990s in [136] and is
implemented and used in this thesis to solve the open boundary problem of
the demagnetizing field computation. In the following, the general idea of
the method will be introduced, and the computational implementation will
be discussed.

5.2.1 General Description

Like in the truncation approach, presented in Section 5.1, the hybrid FEM-
BEM approach also uses the scalar magnetic potential as an intermediate
quantity to be calculated, from which afterwards the gradient is taken to
compute the demagnetizing field.

The ansatz of this approach is to split the potential u as

u = u1 + u2 (5.6)

The partial potential u1 accounts for the divergence of the magnetization
and is calculated by solving the Poisson equation inside the magnetic domain
Ωm and u1 is set to zero outside:

∇2u1(r) = ∇ ·M for r ∈ Ωm (5.7a)
u1 = 0 for r /∈ Ωm (5.7b)

At the interface of magnetic and non-magnetic regions, the following Neu-
mann boundary condition must be fulfilled:

∇u1 · n = M · n for r ∈ ∂Ωm (5.8)

To have potential u = u1 + u2 satisfy the properties described in Sec-
tion 3.2.3, the partial potential u2 must satisfy the following Laplace equation
in the whole domain Ω:
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∇2u2(r) = 0 for r ∈ Ω (5.9)

as well as the two boundary conditions ∂Ωm:

�∇uin
2 −∇uout

2

� · n = 0 (5.10)

and

uin
2 − uout

2 = uin
1 (5.11)

uin
1,2 and uout

1,2 are the values of the potential at the inside (magnetic do-
main) and at the outside (nonmagnetic domain) of the interface ∂Ωm. The
following double-layer potential fulfills the requirements given in Eqs. (5.9)
to (5.11):

u2(r) =
1

4π

�
∂Ωm

u1(r′)
∂

∂n

1

|r − r′|dS
′ (5.12)

It would be possible to evaluate (5.12) in the whole magnetic domain.
However, the discretization of the integral operator in Eq. (5.12) leads to
densely populated matrices, which, as opposed to the sparse matrices in
FEM, are computationally more expensive to handle and the computation
scales with O(n2). Thus, (5.12) is only evaluated at the boundary of the
magnetic domain ∂Ωm by means of the boundary-element method. After
discretization, the relation between the boundary values of u1 and u2 results
in the following matrix-vector multiplication:

u2 = Bu1 (5.13)

The size of B and thus its memory consumption still scale with O(n2).
A remedy for the unfavorable memory consumption arising from this scal-
ing behavior are matrix compression algorithms [137, 138]. So-called hier-
archical matrix compression algorithms decompose a matrix into low-rank
sub-matrices and improve the scaling of the handling of these matrices to
O(n log(n)). Figure 5.2 shows the improved scaling of the memory consumed
by the BEM operator matrix with and without compression algorithms.
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Figure 5.2: Scaling of matrix size with number of surface degrees of freedom.
Comparison of the uncompressed matrix with H- and H2-compressed matri-
ces. This figure was published in [139]

5.2.2 Disconnected Geometries

As the interaction of the magnetic moments acts over a long range, even the
magnetic moments in structures consisting of multiple disconnected magnetic
regions interact with each other. Figure 5.3 depicts the approach how, in a
simulator handling complete MRAM cell simulation, the FEM-BEM method
can be implemented to account for these interactions.

First, a full mesh consisting magnetic and nonmagnetic domains needs to
be preprocessed. A surface mesh of only the magnetic regions needs to be
extracted. This mesh can subsequently be used to set up the BEM operator
matrix. In this case, this is done by a BEM library which then returns a
discretized version of (5.12).
Figure 5.4 shall exemplify how the interaction between magnetic moments
in disconnected magnetic domains is properly incorporated. The three discs
are uniformly magnetized in the directions as indicated by the arrows in the
middle. Figure 5.4a presents the calculated scalar magnetic potential. In
a scenario where no interaction would be considered, the potential would
be varying linearly in the direction of the uniform magnetization. One can
clearly see that this is not the case and that the potentials are shifted.
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Figure 5.3: Depiction of the process for discretizing a boundary integral op-
erator, which considers the interaction between disconnected magnetic parts.
This figure was published in [139]

Figure 5.4: Magnetic potential (a) and demagnetizing field (b) calculated for
a three-layer structure. The arrows indicate the magnetization orientation in
the respective layers. The color-coding in both figures indicates the magnetic
potential value. This figure was published in [139]

5.3 Benchmark Results

The Micromagnetic Modeling Activity Group1 at the NIST Center for Theo-
retical Computational Materials Science has defined a set of standard prob-
lems which allow researchers to compare their micromagnetic simulation
software with published results. In the following magnetization states as
described in the µMag standard problem #3 [140] as well as problem set-
tings for which analytical solutions are available will be used to verify the

1https://www.ctcms.nist.gov/~rdm/mumag.org.html

https://www.ctcms.nist.gov/~rdm/mumag.org.html
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correctness of our implementation of the two methods for the computation
of the demagnetizing field. A unit cube with three different magnetization
states will be used to evaluate the accuracy of the two methods for single
ferromagnetic domains. Then, analytic expressions for the computation of
the demagnetizing field outside a ferromagnetic disc will be used to evaluate
the quality of the methods in a multi-domain scenario. These diverse test
cases provide a comprehensive evaluation of the two methods.

For a uniformly magnetized unit cube, the demagnetizing field and thus
the demagnetizing energy given as

Ed = −µ0MS

2

�
Ω

m ·Hddx (5.14)

can be calculated analytically. Figure 5.5 shows the initial magnetization
(Fig. 5.5a) as well as the result of the calculated scalar magnetic potential
(Fig. 5.5b). Qualitatively, one can see in Fig. 5.5b that the magnetic po-
tential is highest at the top interface of the cube, where the divergence of
the magnetization is highest. A quantitative discussion of the results follows
after the presentation of the remaining test cases.

(a) (b)

Figure 5.5: (a) Uniform magnetization (b) Magnetic potential
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[140] defines two more scenarios with non-uniform magnetization. The
first of these uses an initialization of the magnetization into a so-called flower
state which is defined as the normalized version of [141]

mx(r) =
1

a
xz (5.15)

my(r) =
1

c
yz +

1

b3
y3z3 (5.16)

mz(r) = 1 (5.17)

For this initialization, the center of the unit cube must lie at (0, 0, 0).
a, b and c are parameters free to choose. In accordance with [141], the values
were chosen to be a = c = 1 and b = 2.
The initial magnetization state and the resulting scalar magnetic potential
can be seen in Fig. 5.6.

(a) (b)

Figure 5.6: (a) Flower magnetization (b) Magnetic potential

The third test case initializes the magnetization into a vortex state (cf. Fig. 5.7a).
The magnetization in the unit cube is described by the following equations

mx(r) = −y

r

�
1− exp(−4

r2

r2C
)

�1/2

(5.18)

my(r) =
x

r

�
1− exp(−4

r2

r2C
)

�1/2

(5.19)

mz(r) = exp

�
−2

r2

r2C

�
(5.20)
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Here, r =
�

x2 + y2 and rC being the radius of the vortex, which was set
to 0.14, in accordance with [141].

(a) (b)

Figure 5.7: (a) Vortex magnetization (b) Magnetic potential

Figure 5.8 presents a comparison of the demagnetizing energies of the
three aforementioned magnetization states, computed with the truncation
approach as well as the FEM-BEM approach compared to the reference
result [141]. In all three test cases, the FEM-BEM method consistently
demonstrates improved agreement with the reference result when employing
an identical mesh resolution for the magnetic domain.

A closer look at the relative error shown in Fig. 5.9 gives more quantitative
insight. While the maximum relative error of the FEM-BEM approach rises
to ∼5% in the vortex scenario, and otherwise lies below 1%, the relative error
of the truncation approach is consistently above 10%.

So far, only single magnetic domains were tested, and the correct compu-
tation of the demagnetizing field inside the magnetic domain was evaluated.
In [142], an analytic expression to calculate the component of the demag-
netizing field along the symmetry axis of a ferromagnetic disc outside the
ferromagnetic domain can be found and reads as follows

Hd(x) =
µ0M

2

�
x√

x2 +R2
− x− L�

(x− L)
2
+R2

�
(5.21)

This equation describes a scenario where the x-axis is the symmetry axis,
L the thickness of the magnetic disc and R its radius.
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Figure 5.8: Demagnetizing energy for differently magnetized unit cubes com-
puted using the truncation approach and the FEM-BEM method compared
to the reference result.

Figure 5.9: Relative error of the demagnetizing energy for differently magne-
tized unit cubes computed using the truncation approach and the FEM-BEM
method.

First, simulations of a single ferromagnetic disc with a thickness of 0.1 nm
and a radius of 1 nm, uniformly magnetized in the x direction, were per-
formed, and its value was compared to the analytic one. The value of the
demagnetizing field component along the symmetry axis was then compared
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between a distance of 2 nm and 7 nm. The results of this analysis are shown
in Fig. 5.11.

x

y
z

(a) Truncation

x

y
z

(b) FEM-BEM

Figure 5.10: Computational domains for the evaluation of the demagnetizing
field outside the ferromagnetic region (red) with the respective computational
methods.

As can be seen, the hybrid FEM-BEM approach reproduces the demag-
netizing field very well and achieves a relative error which reaches its highest
value at a distance of 7 nm with 1%. The truncation approach, however, is
only able to match the analytic results with a relative error at around 10%,
closer to the magnetic domain even reaching 13%.
Further simulations are performed to evaluate the accuracy of the two meth-
ods with respect to also considering interaction between magnetic domains.
For this purpose, again a magnetic disc will be used, however, with a second
magnetic disc placed at a certain distance.
Figure 5.12a shows the computational domain used for calculating the de-
magnetizing field employing the truncation approach. As required by this
method, the two magnetic discs are surrounded by a nonmagnetic region.

As the hybrid FEM-BEM approach only takes into account the magnetic
domain and thus the demagnetizing field values are not available outside, the
test structure has to be adjusted as shown in Fig. 5.12b. In order to receive
values for the demagnetizing field between the two magnetic discs, a third
magnetic disc is inserted in the middle. The disc in the middle, however,
possesses a saturation magnetization ≪ 1 A

m
, allowing the evaluation of the

demagnetizing field in this region of space without distorting its calculation.
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Figure 5.11: Demagnetizing field component along the symmetry axis of a
magnetic disc with L=0.1 nm and R=1 nm.

x

y
z

(a) Truncation

x

y
z

(b) FEM-BEM

Figure 5.12: Computational domains for the evaluation of the demagnetizing
field outside the ferromagnetic region (red) in a multi-domain scenario.
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Figure 5.13 presents a comparison of the truncation approach and the
FEM-BEM method with the analytic formula for two magnetic discs with
parallel magnetization. It can be seen that all results are in qualitative agree-
ment, but the field value is again strongly underestimated by the truncation
approach. The relative error again is consistently above 10%, while the FEM-
BEM results lie on top of the analytic values, only close to the boundary the
relative error rises to 0.44%.

Figure 5.13: Demagnetizing field component along the symmetry axis of
two magnetic discs with L=0.1 nm and R=1 nm and parallel magnetization.
Upper panel: absolute field values. Lower panel: relative error.

Changing the scenario to an antiparallel configuration of the magnetic
discs leads to the results shown in Fig. 5.14. Again, qualitative agreement is
achieved by both methods, however, more so with the FEM-BEM approach.
The zero-crossing of the demagnetizing field component accurately deter-
mined by both methods, but towards the ends of the tested distance range
the errors grow for both of them.



74

Figure 5.14: Demagnetizing field component along the symmetry axis of two
magnetic discs with L=0.1 nm and R=1 nm and antiparallel magnetization.
Upper panel: absolute field values. Lower panel: relative error.

5.4 Summary

Due to the long-range interaction of the magnetic moments which are the
origin of the demagnetizing field, its calculation is computationally very de-
manding. Several techniques to cope with this open boundary problem were
implemented and analyzed. It was shown that the simple truncation of a
nonmagnetic domain surrounding the magnetic domain can be a solution to
the problem, but only leads to a large relative error of ∼10%. In addition
to the relatively large error, computations need to be performed outside the
region of interest, i.e. the magnetic regions, which results in a computational
penalty.

The FEM-BEM approach on the other hand reduces the computational
domain required for the calculation of the demagnetizing field to the magnetic
region. Not without sacrifice, though, as the involved matrices are dense and
require special treatment. By employing matrix compression algorithms, also
this problem can be partially circumvented, reducing the memory consump-
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tion and the computational demands of this approach. With the use of 3rd
party libraries which provide the BEM as well as the matrix compression
capability, a more efficient and, equally important, more accurate approach
for the calculation of the demagnetizing field was implemented.

This chapter presented how these two approaches for the calculation of the
demagnetizing field work and compared their accuracy. A standard problem
as well as problem settings, for which an analytical expression is available,
were used to check the validity of the results.
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Chapter 6

MRAM Switching Scheme
Discovery using Reinforcement
Learning

In the beginning, this chapter introduces a recently developed type of SOT-
MRAM cell which enables the purely electrical reversal of the free layer mag-
netization. The challenging task of discovering new, efficient pulse schemes
for reliable and deterministic memory cell switching is subsequently shown to
be solvable using the machine learning sub-branch of reinforcement learning.
The switching performance of a trained RL agent is evaluated by changing
various material parameters and is used as a basis to derive a static pulse
sequence of which the reliability is tested further.
Extending these results, the introduced ML-based approach is expanded to
allow for the optimization of SOT-assisted STT-MRAM cell switching which
is then discussed.

6.1 Pulsed SOT-MRAM Cell

As discussed in Section 2.3, one of the biggest challenges of SOT-MRAM
devices is that they require special means for guaranteeing deterministic re-
versal of the magnetization. A simple heavy metal wire attached to the
device’s free layer producing SOT does not suffice for reliable reversal of the
perpendicular magnetization. Additional means which often complicate the
fabrication of the device are required. An SOT-MRAM cell first presented
in [143] circumvents this issue while requiring no changes to the memory

77
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cell structure and maintains purely electrical control of the cell. This special
type of SOT-MRAM cell, shown in Fig. 6.1, possesses an additional heavy
metal wire orthogonal to the first one. This second wire NM2, however, in
contrast to the NM1 wire, is only partially overlapping the free layer and
instead of lying below the free layer, it is positioned on top of it. Current
pulses can be sent through the NM1 and NM2 wires independently, creating
spin-orbit torques interacting with the free layer. It was shown in previous
publications that by carefully placing the pulses, the free layer magnetization
can be reversed deterministically [143–148].

Figure 6.1: SOT-MRAM cell for switching based on two orthogonal current
pulses. The pulses are sent through the structure via two non-magnetic heavy
metal wires, of which one is fully overlapping the FL (NM1) and one only
partially (NM2). This figure was published in [149]

The general idea behind this approach is, that a first pulse through the
NM1 wire brings the magnetization towards the plane of the free layer, and
a current pulse through the partially overlapping NM2 wire completes the
switching and allows for the deterministic reversal of the magnetization [147].

The dynamics of the magnetization in the FL of the pulsed SOT cell are
described by the following extended Landau-Lifshitz-Gilbert equation [143]:

∂m

∂t
=− γµ0m×Heff + αm× ∂m

∂d

− γ
ℏ
2e

θSHj1
MSd

[m× (m× y)] f1(t) (6.1)

+ γ
ℏ
2e

θSHj2
MSd

[m× (m× x)] f2(t)
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Here, m is the normalized magnetization, γ is the gyromagnetic ratio, µ0

is the vacuum permeability, α the Gilbert damping factor, MS is the satu-
ration magnetization. The two terms on the right-hand side of the equation
describe the torque generated by the two current pulses through the NM1
and NM2 wires. This torque depends on the effective Hall angle θSH , the
current densities j1/j2 through NM1/NM2, the thickness of the FL, d, and
the two functions f1(t) and f2(t), which define when the current pulses are
turned on or off.

Numerous publications have investigated performance and reliability of
the memory cell, e.g. [147,148,150–159]. For an investigation of the influence
of different pulse widths on the switching behavior of the memory cell shown
in Fig. 6.1, a simulation tool based on the finite difference method was used
for the numerical solution of (6.1) [120]. However, the equation was adjusted
by replacing f1 and f2 with the functions Λ1(t, T1) and Λ2(t, T1, T2), re-
spectively. This, allowed for the investigation of the influence of the pulse
widths T1 (NM1) and T2 (NM2) on the switching behavior of the memory
cell. The parameters used for the simulations are given in Table 6.1.

The effective field included the demagnetizing field, the exchange field,
the anisotropy field, the current-induced field, and a stochastic thermal field
at 300 K. Between the two current pulses, a perfect synchronization was
assumed, i.e. immediately after the first pulse is turned off, the second pulse is
turned on. The pulse widths T1 and T2 were varied from 100 ps to 300 ps and
for each simulation configuration 50 realizations were performed to account
for the stochasticity of the thermal field. The trajectories of the z-component
of the magnetization, averaged over the FL, are shown in Fig. 6.2. One can
see that there is a strong influence of the pulse width T1 on the trajectory of

Table 6.1: Simulation parameters. Heavy metal wires of β-tungsten and a
magnetic FL of CoFeB on MgO are assumed.

Parameter Value
Saturation magnetization, MS 1.1 × 106 A/m
Perpendicular anisotropy, K 8.4 × 105 J/m3

Exchange constant, A 1.0 × 10−11 J/m
Gilbert damping factor, α 0.035

Spin Hall angle, θSH 0.3
Free layer dimensions 40 nm × 20 nm × 1.2 nm

NM1: w1 x l 20 nm × 3 nm
NM2: w2 x l 20 nm × 3 nm
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the magnetization. When the pulse width is short, either 100 ps or 120 ps,
successful magnetization reversal can be achieved. For longer pulse widths
T1, however, the magnetization is not reversed.

(a) Pulse width T2 fixed to 200 ps. (b) Pulse width T1 fixed to 150 ps.

Figure 6.2: Perpendicular component of the magnetization vector (average
of 50 realizations) as a function of time for various durations of the pulses
T1 and T2, respectively. Simulation parameters as given in Table 6.1, with
j1 = 2.7 × 1012A/m2, j2 = 1.3 × 1012A/m2 and pulse widths being varied
from 100 ps to 300 ps. These figures were published in [148].

When fixing the width of the current pulse T1 and allowing the width of
the second pulse, T2, to vary, the results shown in Fig. 6.2b are obtained. The
magnetization is successfully reversed for pulse widths T2 of 200 ps, 250 ps
and 300 ps. To gain a better understanding of the influence of the pulse
widths on the switching behavior, simulations for all possible combinations of
the previously used pulse widths were performed. The switching probabilities
for the various combinations are presented in Fig. 6.3.

The results show that if the pulse T2 is short, i.e. ≤ 150 ps, the value
of T1 determines, whether reversal can be achieved or not. If, however, T2

is longer than 200 ps, the exact duration of T1 becomes less important and
the probability of switching tends to 1. For the present investigations, a
relatively small set of pulse widths was used. However, when also taking into
account the multiple realizations performed per pulse width combination due
to the thermal spread, the number of simulations that is required to cover
a wider parameter space grows exponentially. An automated approach to
find the functions f1 and f2 thus is highly desirable. Reinforcement learning
can help with discovering novel pulse schemes, which do not just reverse the
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Figure 6.3: Switching probability as a function of the first and the second
current pulse widths, T1, T2. This figure was published in [148].

magnetization, but also optimize the pulses in order to achieve objectives
like fast, reliable, or energy-efficient reversal.

6.2 Reinforcement Learning Setup

In the following, the approach of how to use reinforcement learning for the
discovery of novel switching schemes, an idea initially introduced in [160],
will be presented.

Figure 6.4 presents the agent-environment system that was used to train
an agent to learn how to switch the previously introduced pulsed SOT-MRAM
cell. The environment consists of a finite difference simulation of the mem-
ory cell. The agent interacts with the environment by controlling the current
pulses on the two heavy metal wires. The spin-orbit torque generated thereby
acts on the magnetization, causing it to deviate from its current position,
which, from the point of view of the RL agent, corresponds to a change of
the state vector. State information of the simulation as well as a reward
signal are fed back into the agent. A detailed description of the action, state
and reward signals will be given in the following sections.
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Figure 6.4: General setup of the reinforcement learning approach: A simu-
lation of the SOT-MRAM cell acts as environment which an agent interacts
with to build up a policy based on a neural network. This figure was pub-
lished in [149].

6.2.1 States

The state information that is returned to the agent after every iteration con-
sists of 11 variables. These variables are the average values of the magnetiza-
tion components mx,y,z, the change of the average magnetization components
compared to the previous iteration, ∆mx,y,z the average values of the vector
components of the effective magnetic field, Heffx,y,z , as well as two variables
indicating whether the current pulses through the NM1 and NM2 wires can
currently be enabled. It is important to include the change of the magnetiza-
tion components into the state vector, as otherwise the agent would have no
way of telling if and in which direction the magnetization is moving. Before
being fed into the neural network the state vector is normalized. With the
state vector consisting of 11 variables, this is also the number of nodes of the
first layer of the neural network, cf. Fig. 6.7.

6.2.2 Actions

The current pulses on the NM1 and NM2 wires can be in 4 different states:
both are turned on, both are turned off, NM1 is off and NM2 is on, and NM1
is on and NM2 is off. This is also the set of actions the RL agent can choose
from. The available actions determine the number of nodes in the output
layer of the neural network (cf. Fig. 6.7).
However, certain restrictions apply to the control of the current pulses. To
avoid that the RL agent turns the pulses on and off arbitrarily fast and
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to reflect technical limitations of pulse generation, the state of the current
pulses through the NM1 and NM2 wire cannot be changed for a time period
of 100 ps, limiting the switching frequency to 10 GHz. A visualization of
the various pulse configurations can be seen in Fig. 6.5, with the different
background shading indicating the different actions.

Figure 6.5: Possible pulse combinations under the restriction of a minimum
pulse width of 100 ps. The different background shadings represent the 4
possible actions.

The amplitude of the current pulses is fixed as well. Previous publications
have shown that the critical current for the pulsed SOT-MRAM cell is 120 µA
for the NM1 wire [161]. It was also shown that the amplitude for the NM2
wire can lie below this value, while maintaining reliable switching behavior.
Based on these results, the current amplitude values for the NM1 and NM2
wire are fixed to 130 µA and 100 µA, respectively.

6.2.3 Rewarding Scheme

As stated previously, the rewarding scheme is one of the most important parts
of reinforcement learning algorithms. It encodes the optimization objective
and drives the learning of the agent. The objective here is to reverse the
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z-component of the magnetization from +1 to −1. It shall be discouraged
that the magnetization is far away from the target value, but the closer the
magnetization gets to the desired state, the better the reward shall be. This
was achieved with the following rewarding scheme:

r = mz,target −mz,current (6.2)

Figure 6.6 shows a visualization of how the reward defined in (6.2) changes
with respect to the orientation of the magnetization in the FL.

Figure 6.6: Visualization of the reward function with color coding represent-
ing the reward returned by (6.2).

This rewarding scheme not only encourages the RL agent to reverse the
z-component of the magnetization from +1 to −1, but also to do it fast. As
the target value of the z-component of the magnetization is −1, the difference
mz,target −mz,current is always negative. However, its value is more negative
if the magnetization is further away from the target value than when it is
closer. Because it’s the agent’s aim to maximize its overall accumulated
reward, or, phrased differently for the given reward function, minimize the
overall accumulated negative reward, it is more favorable for the agent to
bring the magnetization towards the target value as fast as possible.

6.2.4 Agent Training

Using the agent-environment setup described in the previous sections, an RL
agent was trained to learn how to reverse the magnetization in the FL of a
pulsed SOT-MRAM cell described in Section 6.1. The code implementation
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consists of the RL part implemented in the Python programming language,
and the environment part, which is a simulator written in C++ [120]. The
Python RL library Stable Baselines3 [162] provides implementations of the
most common RL algorithms and supports the easy creation of custom en-
vironments.

Empirically, a dense neural network architecture with input and output
layers with dimensions 11 and 4, respectively, as well as two hidden layers
with 150 and 100 nodes, has shown to perform well. Table 6.3 gives an
overview of the used parameters for the training of the neural network. For
parameters not mentioned in the table, the default values of the library were
used.

A total of 1 × 106 training steps were performed. To strike the balance
between exploitation of existing knowledge about state-action pairs and the
exploration of new ones, a linearly decreasing schedule was applied to the
ϵ-greedy policy. The schedule starts with an initial value of 1, meaning every
choice of action is random and explorative. It then is reduced linearly to a
final value of 0.01 over the first 30% of the training time, gradually converging
to a more exploitive policy.

Once training of the RL agent is finished, one ideally has a trained neural
network model which is able to predict the best action for every possible
state the environment can be in. To test the capabilities of the trained agent
network, the trained model which is the outcome of the training period, can
be loaded again, and switching simulations can be performed with the agent-
environment setup. In contrast to the training phase, the reward and state
signal which are returned to the agent are only used to predict the next ac-
tion, but the weights of the neural network remain fixed. From the initial
magnetization state with the magnetization uniformly pointing in the posi-

Table 6.2: Environment simulation parameters.

Parameter Value
Saturation magnetization, MS 1.1 × 106 A/m
Perpendicular anisotropy, K 8.4 × 105 J/m3

Exchange constant, A 1.0 × 10−11 J/m
Gilbert damping factor, α 0.035

Spin Hall angle, θSH 0.3
Free layer dimensions 40 nm × 20 nm × 1.2 nm

NM1: w1 x l 20 nm × 3 nm
NM2: w2 x l 20 nm × 3 nm
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Table 6.3: DQN algorithm parameters.

Parameter Value
NN layer dimensions 11 × 150 × 100 × 4
Discount factor, γ 0.9997

Learning rate 7.5 × 10−4

Exploration fraction 0.3
Final exploration probability 0.01

Replay buffer size 3 × 105

Batch size 512
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Figure 6.7: Neural network architecture used for the approximation of the Q-
function. Input size (11) is determined by the state vector x1...11 and output
size (4) is determined by the number of possible actions y1...4. Internal nodes
a
(l)
i are numbered according to the layer l they belong to and the node number

i within that layer.

tive z direction, the trained agent decides how to apply the pulses. Figure 6.8
shows results of 50 independent realizations in which the trained agent de-
cided about the placement of the pulses. The single plot lines are slightly
transparent such that they appear more solid when multiple lines overlap,
indicating magnetization trajectories which occurred more often and pulse
positions which were applied more frequently. It is immediately apparent,
that in all 50 realizations the magnetization was successfully reversed. After
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around 1700 ps most of the magnetization trajectories cross the threshold
level of -0.9 at which the magnetization cell is considered to be switched.
Looking at the current pulses, another interesting thing can be observed.
Only a single NM1 pulse is applied right in the beginning in all the realiza-
tions. For the NM2 current pulse, however, there is more variation. After
two consecutive pulses in the beginning, a third pulse is applied in all the re-
alizations. The exact position of this third pulse varies, resulting in a slightly
blurry appearance of the pulse, due to the transparency of the plot lines.

Figure 6.8: Trajectories of the z-component of the magnetization as well as
applied NM1 and NM2 pulses of 50 realizations. Lines are plotted slightly
transparent, such that regions with more overlapping plot lines appear more
solid than regions with less overlapping lines. This figure was published
in [163].

As there is also a thermal field contribution, it is to be expected that
the magnetization trajectories exhibit a degree of variation. These slightly
different trajectories subsequently also lead to the pulses being applied at
slightly different points in time. Albeit, it can be seen that the training of
the RL agent was successful, and it eventually could deterministically reverse
the magnetization of the memory cell.

As already stated, the critical current of the given SOT-MRAM was eval-
uated to be 130µA in [161]. Experiments with a reduced current through
the NM1 wire show that the RL agent is still able to achieve deterministic
switching, as is shown in Fig. 6.9.
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Figure 6.9: Results of 50 realizations for fixed material parameters and an
NM1 current value of 110µA using the learned neural network model. Results
of the single runs are plotted slightly transparent, such that regions where
multiple lines overlap appear more solid. This figure was published in [149].

The NM1 current was reduced to 110µA, which led the agent to keep
the first of the NM2 pulses turned on slightly longer, and, as opposed to the
results shown in Fig. 6.8, after the initial two NM2 pulses, no further ones
are applied, without detrimental effects on the magnetization dynamics.

6.3 Performance Under Material Parameter
Variation

The training phase described in the previous section was performed with a
static environment configuration, i.e. an SOT-MRAM cell whose parameter
set did not change during training time. This, of course, is an idealized
case, as it was shown in [164] that MRAM device manufacturing processes
can exhibit material parameter variations of up to 10%. To evaluate how
well the agent learned to control the memory cell and to test more realistic
scenarios, simulations were performed with varying material parameters. The
saturation magnetization MS and the anisotropy constant K were changed
individually up to ±10% from their base values given in Table 6.2, with 1%
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increments and a total of 441 realizations were simulated. Figure 6.10 shows
the resulting magnetization trajectories (Fig. 6.10a) as well as the percentage
of realizations that reached a certain final z-value at the end of the simulation
time (Fig. 6.10b).

(a) Average z-component of the magne-
tization for 441 realizations with vary-
ing material parameters. Results of the
single runs are plotted slightly trans-
parent, such that regions where multi-
ple lines overlap appear more solid.

(b) Histogram showing the percentage
of realizations that reached a certain fi-
nal mz value.

Figure 6.10: These figures were published in [163].

Each bin in the bar chart of Fig. 6.11 covers a range of 0.25, e.g. from
0.75 to 1. It can be seen that the RL agent manages to bring a large amount,
i.e. 47.8% of the magnetization trajectories towards -1. Another peak in the
distribution remains close to the initial magnetization value of 1, amounting
to 15.9% of the trajectories. The third peak occurs in the region between
0 and 0.25, i.e. where the magnetization is in the xy-plane. Figure 6.11
gives a slightly different view on the results of this experiment. During these
experiments, the same setup is used to run switching simulations as was
used for training the agent but without changing the weights of the neural
network. The action, reward and state signals, however, are still exchanged
between agent and environment, and the agents decision is made based on the
current state vector. Thus, the agent also continuously accumulates reward,
which he tries to maximize and the total accumulated reward at the end of a
switching simulation can be seen as a proxy for how good the magnetization
in the memory cell could be reversed. The color-coding in Fig. 6.11 represents
the total accumulated reward.
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Figure 6.11: Accumulated reward achieved for anisotropy constant K and
saturation magnetization MS varied by ±10%. Results are shown for a total
of 441 realizations. This figure was published in [163].

Yellow corresponds to a high achieved total reward, while dark blue/pur-
ple corresponds to a low total reward. One can clearly see a pattern along
the diagonals. The smaller the saturation magnetization and the larger the
anisotropy constant, the more the switching performance degrades. This,
however, is in line with previous publications that have shown that this
regime of saturation magnetization and anisotropy constant exhibits a higher
critical current [161]. Thus, for the used current of 130 µA it is not possible
to switch the memory cell, which is confirmed by the simulation results.

The performed study demonstrates that the neural network, initially
trained under static conditions, exhibits remarkable generalizability when
tested against variable parameters typical of MRAM device production. This
adaptability is crucial, as it lowers the requirements for the generation of
training data, which is a time-consuming process. At the same time, it al-
lows for the exploration of new pulse sequences in a more efficient manner.
In practical applications, however, a static pulse sequence is more desirable.
The next section presents a method to derive such a sequence from the results
achieved with the trained RL agent.
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6.4 Static Pulse Sequence Extraction

The previous section presented that a neural network trained with RL can
successfully be used to switch a pulsed SOT-MRAM cell. Here, the neural
network dynamically adjusts the pulses depending on the current state of the
memory cell, allowing for the successful switching of the memory cell over
a wide material parameter range. However, for practical purposes, a static
pulse sequence would be more desirable. By analyzing the results presented
in Fig. 6.10 and Fig. 6.11, a static pulse sequence can be derived. The upper
panels of Fig. 6.12a and Fig. 6.12b show the percentage of simulation runs in
which the NM1 and NM2 pulse were active at any given point in time during
the 2 ns simulation time.

In the heuristic approach presented here, it is considered important to
turn a pulse on, if in more than 50% of the simulation runs the respective
pulse was active. By setting this threshold, the pulse schemes shown in the
lower panels of Fig. 6.12a and Fig. 6.12b were derived.

The final derived pulse sequence consists of a single NM1 pulse, turned
on right in the beginning of the simulation with a duration of 100 ps and
two NM2 pulses, the first pulse active shortly after the simulation starts
and lasting for 143 ps and the second NM2 pulse activated ∼ 100 ps after
the first NM2 pulse, with a duration of 106 ps. This derived pulse sequence
can then again be put under test by first performing switching simulations
without changing the material parameters. The results of these simulations
are shown in Fig. 6.13.

Again, the magnetization in the memory cell can deterministically be
reversed in all realizations. Interestingly, there is less variation between
the single magnetization trajectories as compared to the results presented
in Fig. 6.8. Further, the time it takes for the trajectories to cross the −0.9
threshold has shifted to ∼ 1000 ps, so the time to reverse the magnetization
has reduced by ∼ 700 ps. Again varying the saturation magnetization and
the anisotropy constant, the reliability of this derived pulse scheme can be
determined, and the outcome is visualized in Fig. 6.14.

It is immediately apparent that using a static pulse sequence, the behavior
is more uniform across the material parameter variation range. As expected,
the general pattern remains and the best-performing realizations lie on the
diagonal from the bottom left to the top right, and the transition from this
region to the top left becomes more abrupt. This can be explained by the
fact that with the static pulse sequence after the last pulse is turned off, the
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(a) Results for NM1

(b) Results for NM2

Figure 6.12: The top panels of (a) and (b) show the percentage of the switch-
ing realizations which had the respective pulse turned on at the respective
times of the simulation. The bottom panels show the derived static pulse se-
quences, in which pulses are turned on, if more than 50% of the realizations
had the pulse turned on. These figures were published in [163].

magnetization relaxes to the final state, either +1 or −1, but when using
the trained RL agent, the agent repeatedly applies pulses to try to bring
the magnetization towards −1, accumulating more reward, resulting in a less
abrupt transition between the yellow and dark blue/purple regions.
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Figure 6.13: Trajectories of the z-component of the magnetization as well as
applied NM1 and NM2 pulses of 50 realizations. Lines are plotted slightly
transparent, such that regions with more overlapping plot lines appear more
solid than regions with less overlapping lines. This figure was published
in [163].

Like material parameters, the thickness of the free layer of an MTJ also has
significant impact on the switching behavior. Thus, it is further investigated
how the derived static pulse sequence performs under variations of the free
layer thickness. For this purpose, the base thickness of 1 nm was varied ±10%
with 1% increments. For each thickness, five realizations were performed, the
results are shown in Fig. 6.15.

Switching time is measured as the time it takes for the z-component of
the magnetization to reach the −0.9 threshold. If the free layer thickness
is larger than 106% of the base design value, no switching can be achieved
anymore (indicated by the red coloring of the circles). It appears, as if there is
a sweet spot of free layer thicknesses, for which reversal of the magnetization
is easier. Between 1.13 nm and 1.19 nm the switching time is reduced to
∼ 600 ps.

As the NM2 wire is shared between neighboring memory cells, every NM2
pulse going through the metal wire is also “experienced” by those. It is thus
important to perform an analysis of the switching scheme’s influence on cells
adjacent to the targeted cell. Erroneous reversal of other memory cells should
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Figure 6.14: Parameter variation with derived pulse sequence. This figure
was published in [163].

Figure 6.15: Switching times achieved by applying the derived static pulse
sequence to FL thickness variations of up to ±10%. This figure was published
in [165].
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be avoided. In Fig. 6.16 results are presented for performing 50 independent
switching realizations to study the influence of the current through NM2 on
adjacent cells not targeted for reversal.

The upper panel of Fig. 6.16b shows the applied pulses, i.e. the NM1
pulse being turned off all the time, and the NM2 pulse being active for two
short periods of 143 ps and 100 ps, respectively. The bottom panel shows the
resulting displacement of the magnetization from its initial position. It can
be seen, that the largest deflection of the magnetization reaches a value of
∼ 0.95 and quickly settles back to the initial position. It is thus safe to say,
that the impact of the pulse scheme on neighboring memory cells is negligible
and does not lead to erroneous magnetization reversals.

6.5 Efficient SOT-Assisted STT-MRAM
Switching

As described in Section 2.4, SOT-assisted STT-MRAM is a promising can-
didate for low power applications. While the procedure for reading of the
stored information remains the same as in pure STT- and SOT-MRAM, al-
tering the information in the free layer happens by a combination of STT
and SOT. In the following an approach will be presented, how the previously
introduced approach to let an ML agent learn to switch a MRAM cell can
be used for optimizing SOT-assisted STT-MRAM cell switching for more
energy-efficient switching.

Since the type of memory cell changes, also the equation describing the
FL dynamics changes to:

∂m

∂t
= −γµ0m×Heff + αm× ∂m

∂t
+ f1(t)TSOT + f2(t)TSTT (6.3)

with TSOT being the torque generated the heavy metal wire attached to
the FL, f1(t) being the function defining when the SOT pulse is turned on,
TSTT being the torque generated by the current running through the MTJ
and f2(t) determining when the STT pulse is active.

The general structure of the RL approach for training an agent to learn
to switch an MRAM cell remains the same as described in Section 6.2. The
agent is able to perform 4 different actions, but instead of controlling the
current through the two orthogonal heavy metal wires, it controls the current
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(a) Schematic of cross-bar structure in which the NM2
wire is shared between neighboring memory cells.

(b) z-component of the magnetization (lower panel)
for NM2 pulse as shown in the upper panel.

Figure 6.16: Impact of NM2 pulses on neighboring memory cells in a crossbar
architecture. These figures were published in [165]
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through one heavy metal wire to create SOT and a current flowing through
the MTJ to create STT. The frequency at which the pulse states can be
altered remains at 10 GHz, the current for the STT pulse is limited to, while
for the SOT pulse a voltage is set, which is fixed to V .

Figure 6.17 shows the trajectory of the averaged magnetization compo-
nents, the pulses applied by the agent, as well as the accumulated reward
over the simulated time.

Figure 6.17: Averaged magnetization components (top panel) over a single
switching simulation, with pulses applied by the agent (middle panel), leading
to an accumulated reward (bottom panel) according to (6.2). This figure was
published in [166].

The result presented in Fig. 6.17 highlights the importance of choosing
an appropriate rewarding function for the respective application. While the
agent achieves reversal of the magnetization, it does so by permanently turn-
ing on the STT pulse, which is of no practical use. For learning to switch
SOT-assisted STT-MRAM it is thus not enough to employ the rewarding
function given in (6.2) and the reward function has to be adjusted. To
encourage the agent to turn the pulses off again, the following penalty is
introduced:
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rPulse = − (PSTT + PSOT ) (6.4)

With PSTT/PSOT being either 1 or 0 when the pulse is turned on or off,
respectively. The penalty thus is largest when both pulses are turned on,
and zero if they are turned off. Adding this penalty to (6.2) results in the
new reward function:

r = rPulse + rmz (6.5)

Figure 6.18 shows a visualization of the reward function given in (6.5).
With the reward function (6.5), the reward the agent receives is always nega-
tive, unless the average z-component of the magnetization matches the target
value and is reversed completely. Additionally, three rewarding regimes can
be identified, which are a result of the three different levels of penalizing
power consumption. The power consumption is highest when both pulses
are turned on, resulting in the most negative reward. The least negative
reward occurs when both pulses are turned off. The negative reward in this
case stems from the deviation of the FL magnetization from the target value.
When only one of the two pulses is turned on, the reward lies between the
two aforementioned regimes.

Figure 6.18: Visualization of the reward function with power consumption
penalty. Color coding represents the reward returned by (6.4). This figure
was published in [166].

Figure 6.19 presents results for a switching simulation, in which an agent
trained with reward function (6.5) controls how the SOT and STT pulses
are applied. In the middle panel, it is shown how the agent applies the
pulses and one can see that, in contrast to Fig. 6.17, the STT pulse is not
kept turned on for the whole simulation time, but is removed after 200 ps.
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This, however, has the additional effect of extending the precessional time
of the FL magnetization and increases the switching time from 0.678 ns to
2.76 ns. Looking at the accumulated reward during the simulation, shown in
the bottom panel of Fig. 6.19, one can see the transition between rewarding
regimes, indicated by the kinks in the accumulated reward.

Figure 6.19: Averaged magnetization components (top panel) over a single
switching simulation, with pulses applied by the agent (middle panel), leading
to an accumulated reward (bottom panel) according to (6.4). This figure was
published in [166].
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6.6 Summary

The ongoing challenge to achieve deterministic switching in perpendicular
SOT-MRAM devices, can be solved by several means. One of these solutions
is a recently developed SOT-MRAM cell possessing two orthogonal heavy
metal wires attached to the FL, both of which create SOT when a current
is sent through. This, however, creates a new challenge of finding suitable
sequences of current pulses to be applied to the wires in order to achieve fast
and deterministic magnetization reversal.

This chapter introduced a new approach for the discovery of novel switch-
ing pulse schemes which uses the machine learning subfield of reinforcement
learning for this purpose. It was shown how to use a micromagnetic simu-
lation software in combination with a reinforcement learning framework to
successfully train a reinforcement learning agent to efficiently reverse the
magnetization in the MRAM cell free layer. Although only being exposed to
the simulation environment with a fixed material parameter set, the agent
was able to apply its knowledge to before unseen material parameter config-
urations, while maintaining excellent switching performance.

It was shown that the reinforcement learning approach can be used to
optimize for the power consumption in SOT-assisted STT-MRAM devices,
highlighting the importance of the choice of rewarding function but at the
same time demonstrating the approach’s flexibility.

Overall, the performed work demonstrates how reinforcement learning
can be a valuable tool for optimizing the control of MRAM devices with
respect to varied objectives and can be a good replacement for tedious manual
experimentation for finding corresponding switching pulse sequences.



Chapter 7

Summary and Outlook

The increasing difficulty to further scale down CMOS based devices has
driven research for the development of alternative, nonvolatile solutions [2].
MRAM devices are promising candidates for universal memory, exhibiting
very good endurance and high speed, while at the same time being compati-
ble with CMOS technology. Potential usages range from IoT and automotive
applications to the use in last level caches.

In order to reduce development costs, reliable and accurate simulation
tools for predicting the devices’ behavior are indispensable. For this purpose,
many computational approaches exist and are used. The main aim of this
thesis was to implement and investigate existing approaches, as well as to
develop new ones that may help in driving the development of future MRAM
devices forward.

The computational challenges posed by the long-range interaction of the
magnetic moments, which are the origin of the demagnetizing field, are the
topic of the first part of this work. One approach for its calculation in-
volves truncating a nonmagnetic domain, yielding a 10% relative error and
computational penalties beyond the region of interest. Alternatively, the
FEM-BEM approach reduces the computational domain to the magnetic re-
gion, utilizing matrix compression for efficiency, offering a more accurate and
efficient demagnetizing field calculation. Using existing standard problems
and analytical expressions, the accuracy of the two presented methods is
compared.

By introducing novel computational approaches for MRAM device sim-
ulation combining reinforcement learning with micromagnetic simulations,
the second part of the thesis addresses the optimization of MRAM switch-
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ing. The way current pulses are usually applied to switch magnetoresistive
memory cells is mostly based on heuristics. This work underscores rein-
forcement learning’s value in MRAM device control, showcasing its efficiency
in discovering switching pulse sequences and optimizing various objectives,
eliminating the need for manual experimentation. A novel approach is de-
vised, which couples the device simulation to a reinforcement learning agent.
This agent autonomously interacts with the simulation, constantly exchang-
ing action signals for state information.

It is shown that an agent trained on a fixed set of parameters is able to
transfer the acquired knowledge about the dynamics of the magnetization in
the free layer to scenarios with varying environmental conditions. Over a wide
range of material parameters, reversal of the free layer magnetization can
still be achieved. Further, the approach is extended to SOT-assisted STT-
MRAM. By altering the rewarding strategy, the focus of the learned pulse
scheme is shifted to different objectives. This is successfully presented, first
optimizing for fast magnetization reversal, and then for more energy efficient
switching. From the dynamically applied pulses of the reinforcement learning
agent, static pulse sequences are condensed, which are shown to perform well
over a wide parameter range.
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