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Abstract

Despite immense research efforts driven by the exciting promises of quantum infor-
mation processing, the physical realization of a large-scale quantum computer has
not yet been successful. The difficulties can be largely attributed to quantum noise,
which refers to unwanted disturbances that affect the memory units of a quantum
computer, known as qubits. These qubits must interact coherently and maintain their
quantum states over time to execute algorithms effectively. Additionally, the qubit
devices need to be highly uniform to ensure consistent behavior and minimize errors.

Among the various approaches for qubit implementation, spin qubits, which lever-
age the quantum mechanical properties of electron (or hole) spins, show extraordinary
potential for scalable and efficient quantum computing. Spin qubits consist of a semi-
conducting host material in which an electron (or hole) spin is confined by barrier
materials and electric fields. Split by a magnetic field, this two-level spin system
constitutes the qubit. Using silicon (Si) as a host material is a particularly promising
approach, because one of the major sources for quantum noise, hyperfine interactions
with nuclear spins in the environment, can be mitigated by the removal of 29Si, the
only Si isotope carrying a nuclear spin.

While operational quantum processors have already been demonstrated on this
material platform, it has become increasingly evident that meticulous control over
material properties down to the atomic level is necessitated by the rigorous require-
ments on coherence and uniformity. Further improvement of the device performance
calls for sophisticated atomistic modeling.

Within the scope of this thesis, density functional theory (DFT), a powerful ma-
terial modeling method, is employed to investigate the material-related qualities of
Si spin qubits, aiming to advance current modeling techniques. In contrast to previ-
ous studies that relied on empirically parameterized models, usage of the essentially
parameter-free DFT method allows for simulation of a realistic spin qubit environ-
ment, including strain, atomic disorder, and electric fields from first principles.

Representing the backbone of our calculations, particular focus is put on the
credibility of the utilized atomic model structures. Both relevant types of Si spin
qubits are considered: Si in combination with silicon-germanium (Si/SiGe) or with
its native oxide SiO2 (Si-MOS). In alignment with experimental setups, various epi-
taxially grown interface and heterostructure configurations are considered in the case
of Si/SiGe. For Si-MOS, ab-initio molecular dynamics (AIMD) are used to simulate
the thermal oxidation of a Si surface. This novel approach to generating amorphous
Si/SiO2 interfaces produces highly realistic model structures, making them well-suited
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for the intended use in the context of spin qubits. At the same time, the simulations
revealed multiple underlying oxidation mechanisms crucial to the full process. Ex-
perimentally observed but previously disconnected, these mechanisms are integrated
into a comprehensive framework. Motivated by the high computational costs associ-
ated with ab-initio calculations, a machine learning (ML) model is trained using the
previously obtained AIMD data, enabling a significant extension in both system size
and simulation time scales.

Based on the thereby achieved atomic structures, a number of properties relevant
for qubit applications are extracted from DFT, including valley and spin splittings,
hyperfine interactions and decoherence times. A large variability in this data reflects
variations in experimental observations and is related to atomistic disorder at the
interface. Finally, nuclei in the barrier materials are identified as a significant source
of noise and highlight the relevance of hyperfine interactions with non-Si atoms in the
barrier materials.



Kurzfassung

Trotz immenser Fortschritte in der Entwicklung von Quantum Computing, ist die ph-
ysische Realisierung eines für relevante Probleme einsatzfähigen Quantencomputers
bisher noch nicht gelungen. Die praktischen Schwierigkeiten können im Wesentlichen
auf quantenmechanisches Rauschen zurückgeführt werden: Diese unerwünschte Störun-
gen beeinflussen die Speichereinheiten eines Quantencomputers, sogenannte Qubits,
und führen damit zu Dekohärenz, also dem Verlust der enthaltenen Information.
Darüber hinaus müssen Millionen von Qubits gekoppelt und individuell manipuliert
werden können, wodurch die Herstellung von Qubits mit einheitlichen Charakteris-
tiken notwendig ist.

Eine der prominentesten Ansätze zur Implementierung von Qubits, Spin-Qubits,
nutzen die quantenmechanischen Eigenschaften von Elektronen- (oder Loch-) Spins
und versprechen aufgrund der Nähe zur herkömmlichen Transistortechnologie Vorteile
in Herstellung und Skalierbarkeit. Spin-Qubits bestehen aus einer halbleitenden
Nanostruktur, in der ein Elektronen- (oder Loch-) Spin gefangen ist. Die Basiszustände
dieses Spins spalten in einem äußeren Magnetfeld auf, wodurch auf natürliche Weise
ein Qubit entsteht. Die Verwendung von Silizium (Si) als halbleitendes Material ist
dabei ein besonders vielversprechender Ansatz, da eine der Hauptquellen für quan-
tenmechanisches Rauschen, nämlich die unerwünschten Wechselwirkungen mit Kern-
spins, durch isotopische Aufbereitung stark vermindert werden kann.

Zwar wurden auf Basis dieser Technologie bereits funktionsfähige Quantenprozes-
soren demonstriert, doch gleichzeitig wird immer deutlicher, dass die strengen An-
forderungen an Kohärenz und Einheitlichkeit extreme Kontrolle über die Material-
struktur, bis zur atomaren Ebene, erfordern. Um die Entwicklung von Si-Spin-Qubits
weiter voranzutreiben, sind daher Simulationen unter Berücksichtigung der atomaren
Struktur unerlässlich.

Im Rahmen dieser Dissertation wird die Dichtefunktionaltheorie (DFT) zur Un-
tersuchung der materialbezogenen Eigenschaften von Si-Spin-Qubits eingesetzt, mit
dem Ziel, die derzeitigen Modellierungstechniken zu verbessern sowie das Verständnis
der verwendeten Materialien und ihrer Eigenschaften zu vertiefen. Im Gegensatz zu
früheren Studien, die sich auf empirisch parametrisierte Modelle stützen, ermöglicht
die Verwendung der im Wesentlichen parameterfreien DFT die Simulation einer re-
alistischen Spin-Qubit-Umgebung, einschließlich Verspannung, atomarer Unordnung
und elektrischer Felder auf Basis von Naturkonstanten.

Besonderes Augenmerk liegt auf der Verwendung von realistischen atomaren Mod-
ellstrukturen, die das Fundament unserer Berechnungen darstellen. Beide relevanten
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Typen von Si-Spin-Qubits werden berücksichtigt, nämlich Si in Kombination mit
Silizium-Germanium (Si/SiGe) oder mit seinem nativen Oxid SiO2 (Si/SiO2). In
Übereinstimmung mit experimentellen Aufbauten werden im Fall von Si/SiGe ver-
schiedene epitaktisch gewachsene Interface- und Heterostrukturkonfigurationen unter-
sucht. Für die Herstellung der Si/SiO2 Strukturen wird ab-initio Molekulardynamik
(AIMD) verwendet, um die thermische Oxidation einer Si-Oberfläche zu simulieren.
Dieser neuartige Ansatz zur Erzeugung amorpher Si/SiO2-Grenzflächen offenbarte
mehrere zugrunde liegende Oxidationsmechanismen, die gemeinsam für den gesamten
Prozess entscheidend sind. Experimentell beobachtet, aber bisher nicht zusammenge-
führt, werden diese Mechanismen in ein umfassendes Modell integriert. Angesichts
der hohen Rechenkosten der ab-initio Methoden, wird ein Machine Learning (ML)
Modell mit den zuvor erhaltenen AIMD-Daten trainiert, wodurch sowohl die System-
größe als auch der Simulationszeitraum erheblich vergrößert werden kann.

Auf Grundlage dieser atomaren Strukturen werden eine Reihe von für Qubit-
Anwendungen relevante Eigenschaften aus DFT extrahiert, einschließlich Valley- und
Spin-Splitting, Hyperfeinwechselwirkungen und Dekohärenzzeiten. Die große Vari-
abilität dieser Daten spiegelt experimentelle Beobachtungen wider und tritt aufgrund
atomarer Unordnung an der Grenzfläche auf. Im Vergleich mit herkömmlichen Mod-
ellen werden Vor- und Nachteile der hier verwendeten ab-initio Methoden dargestellt.
Schließlich werden Kernspins in den Materialbarrieren als bedeutende Störquelle iden-
tifiziert und heben die Relevanz von Hyperfeinwechselwirkungen mit Nicht-Si-Atomen
hervor.
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Chapter 1

Introduction

Quantum computation holds the promise of revolutionizing the field of computation
as well as science and technology in general. Leveraging the fundamental principles of
quantum mechanics, quantum computers offer exponential speed-up for certain com-
putational tasks and even the ability to solve problems that are currently intractable
for classical computers. The implications of using quantum mechanical systems for
information processing include many mechanisms that have intrigued physicists since
the advent of quantum mechanics, most famously quantum superposition and quan-
tum entanglement. Essential contributions to quantum computation came also from
other research areas: computer science, information theory, and cryptography. There-
fore, quantum computation and quantum information is also an excellent playground
for conducting basic research in these fields.

In contrast to a classical bit that can take exactly one of two states, 0 or 1,
quantum information is stored in a quantum bit or qubit which is an combined state
of both, 0 and 1. Many of these qubits are then arranged in an array so that they can
interact and form entangled states. Processing the information that is stored in the
qubits, requires control over the individual qubit states. Furthermore, the interactions
between the qubits can be arbitrarily turned on and off, in order to run multi-qubit
operations or to “isolate” a group of qubits that can then be addressed separately. The
result of the computation is obtained upon execution of a quantum algorithm which
means that operations on one or more qubits in the array are performed according to
a step-by-step protocol.

Ideally, the states can be controlled coherently such that the quantum system
can be steered from an initial state to a target state. In real-world systems, the
qubit is not a closed system but interacts with its physical environment. As such, it
evades the sought-for coherent control, leading to the loss of information in a process
called quantum decoherence. From a technological point-of-view, removing these
interactions seems extremely difficult, if possible at all, because the qubit is always
embedded in some kind of material environment and the origin of the interactions
is manifold. In addition, other effects such as faulty quantum gates, faulty state
preparation, or faulty measurements come into play. To make matters worse, the
exact properties of each individual qubit are often not precisely known. It is thus
extremely challenging to realize a quantum computer with thousands or millions of
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qubits. These reasons call skeptics into action. “Quantum technologies are, almost
by definition, the opposite of robust; they rely on subtle, volatile, transient physical
effects. They intend to prevent a macroscopic object from behaving classically”, says
Xavier Waintal, a quantum physicist at CEA Grenoble in 2023. And: “I am very
skeptical that a quantum computer will ever solve serious problems.” While quantum
computation is surely a great topic for scientific discourse, we shall not be discouraged
by such (certainly valid) objections and delve right into the subject.

1.1 Qubits and Quantum circuits
Essentially, quantum computation utilizes the quantum nature of a given quantum
object, that is the ability to describe its state as a superposition of eigenstates, and
the possibility to couple several of these systems in order to create entangled states.
Each of these objects contains a basic unit of quantum information. In the simplest
case, the object exists in a superposition of exactly two states |0� and |1�, and is thus
described by

|Ψ� = α|0�+ β|1� (1.1)

Such a system is called a quantum bit or a qubit in analogy to the bit in classical
computation. This qubit is simultaneously in both states |0� and |1� and if we were
to measure the state of the qubit we get either the result 0 with probability |α|2 or 1
with probability |β|2. The probabilities need to add up to one, so |α|2 + |β|2 = 1. It
is this condition that lets us rewrite Eq. 1.1 in the form

|Ψ� = eiγ

cos

θ

2
|0�+ eiφ sin

θ

2
|1�

�
, (1.2)

where θ, φ and γ are real numbers. We can ignore the factor of eiγ because it is a
global phase which has no observable effects. Thus, we can write

|Ψ� = cos
θ

2
|0�+ eiφ sin

θ

2
|1�. (1.3)

The numbers θ and φ can be interpreted as coordinates on a spherical surface with
radius 1 called the Bloch sphere, see Fig. 1.1. One mind-boggling consequence of
quantum mechanics is that a collection of quantum objects that interact in a closed
box will be in all physically realizable states at the same time. Taking a second qubit
(N=2) into consideration, results in a quantum state that is a superposition of all 2N
states

|Ψ� = α1|00�+ α2|10�+ α3|01�+ α4|11� (1.4)

Such a state is fully described by four variables1. The number of variables necessary
to describe a quantum state that consists of 300 qubits is 2300 ≈ 2×1090 which is more
than the number of atoms in the universe. Nature seems completely untroubled by
this complexity which can be leveraged by storing and processing this huge amount
of information in quantum computers.

1A representation similar to the Bloch sphere picture is not known for multiple qubits.
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Figure 1.1: Bloch sphere representation of a qubit.

The second unique feature of quantum computation is the simultaneous calculation
of all possible input states |x� which is termed quantum parallelism. Applying a
function f to |x�, the input register with N qubits in superposition, gives the output
f(|x�), which is a superposition of all possible outcomes. The state contains all this
information as long as it is not observed.

Although this insight paves the way towards a new computation paradigm, it has
to be stressed that even though all of this information is present in the output register
of the quantum circuit, it is not accessible to us. This is prohibited by a fundamental
principle of quantum mechanics which states that the state of the system changes upon
measurement. More accurately, it leads to the so-called collapse of the wavefunction,
that is a projection to the outcome state, and annihilates the information that was
stored in the state prior to the measurement.

An interesting question to ask at this point is: how much information can be
represented by the qubit? The question addresses the properties of a superposition
state. Let us recall the famous two-slit experiment. Nobody has ever observed a
particle travelling through two slits at the same time, yet, the diffraction fringes that
are a result of the superposition of the state can be clearly experimentally observed.
So the information is somehow there, but also fundamentally not observable. The
properties of a quantum mechanical state can even be manipulated in ways that
change the measurement outcomes. In this sense, quantum mechanics shows that we
have to be very careful when speaking about information. It might be a good idea to
not call something information, if it cannot be measured, however, for the time being,
it is common ground to accept that the state is a superposition but its composition
can not be observed.

Quantum computers are designed to foster quantum superposition and quantum
parallelism and execute quantum algorithms which are able to solve certain types of
computational problems faster than any algorithm based on the classical concept of
computation. A quantum algorithm is a series of qubit manipulations and terminates
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with the measurement. Until today, only few quantum algorithms are known that
have an advantage over classical algorithms. Most famous are the Shor algorithm that
can be used to break classical encryption and Grover’s algorithm which establishes a
speedup for the widely applicable unstructured search problem. A detailed description
of these algorithms is not relevant for the scope of this thesis. However, we shall
shortly introduce a basic operation that can act on a single qubit in order to illustrate
the functioning of a quantum computation.

Take the quantum NOT gate for example. Analogously to the classical NOT gate,
it changes the state from |0� to |1� and vice versa. If the state is a superposition, it
exchanges the coefficients. That is, if the quantum NOT gate is applied to |Ψ� from
Eq. 1.1, we get

|Ψ� = β|0�+ α|1�. (1.5)

Such an operation is achieved with the linear operator X, with the matrix represen-
tation

X =

�
0 1
1 0

�
(1.6)

This matrix is unitary, so it preserves the normalization condition. Correspondingly,
all valid quantum operations are of this form – and this unitarity constraint is in fact
the only constraint that is put on quantum gates. Furthermore, it turns out that
these operations can be decomposed in a product of rotations�

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

�
(1.7)

and rotations about the z-axis �
e−iφ/2 0
0 e−iφ/2

�
. (1.8)

Deeper insights into such composition have been gained in the 1980s and 1990s.
Specifically, it was shown that a universal quantum computer can be realized using
only single qubit rotations (so-called single-qubit gates) and one type of two-qubit
gate, the controlled-NOT or CNOT gate [1]. Two-qubit gates have two input qubits,
the control qubit and the target qubit. The CNOT gate flips the target qubit if
and only if the first qubit (the control qubit) is |1�. It can also be used to entangle
or disentangle Bell states. The circuit representation for the CNOT gate is shown
in Fig. 1.2. The development of reliable CNOT gates is extremely important for
the implementation of quantum logic, since any arbitrary quantum circuit can be
decomposed in a combination of single-qubit gates and CNOT gates [2]. In this
sense, the CNOT gate is the quantum analog to the classical NAND gate.

1.2 Decoherence
Despite the above mentioned concerns that quantum noise and decoherence renders
quantum computation unfeasible, the processing of quantum information is a ground-
breaking idea which will be further pursued by humankind. One approach that might
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Figure 1.2: Quantum-mechanical version of the CNOT gate.

allow us to circumvent errors without the complete removal of noise is borrowed from
classical computation: a certain degree of inaccuracy is accepted and the resulting
errors are corrected in a post-processing step. The idea is to reserve some qubits in
order to encode the state of the target qubits by adding some redundant information.
Based on this redundancy, the true result can be recovered after the determination
of the quantum algorithm in the noisy environment. The successful implementation
of such error correction codes has been reported in recent years, causing excitement
in both the scientific community and the general public. Although the invention of
quantum error correction protocols was certainly a big step towards fault-tolerant
quantum computing, uniform and noise-resistant qubits are still essential require-
ments for reliable quantum computation as these protocols can only correct small
errors and typically require a state fidelity well above 99%, depending on the type of
protocol and proportion of redundant qubits. It has been stated that state-of-the-art
error-correction techniques require more than 1,000 physical qubits for each logical
qubit [3]. In this scenario, a useful quantum processor needs millions of physical
qubits.

In the last decades, several proposals for the physical implementation of qubits
have been put forward. Among the most promising platforms are superconducting
qubits [4], trapped ions [5], atoms [6], and photons [7]. Currently, the largest quantum
computers are based on nuclear spin qubits formed from arrays of optically-trapped
neutral atoms (Atom Computing were the first to report a 1000 qubit processor) as
well as superconducting qubits (IBM unveiled a quantum computer with 1121 qubits
in late 2023 [3]). However, these approaches require enormous infrastructure which
makes up-scaling to useful sizes very difficult. Fortunately, there is another very
promising approach for the implementation of quantum computation in a solid-state
system, namely spin qubits in semiconductors [8], which will be the focus of this
thesis. In semiconductors, the conduction band can be arbitrarily depleted, such that
even single electrons can be trapped in a nanostructure. The electron spin can then
be used as a qubit, as it provides a natural basis for such a system: There are two
basis states (e.g. spin up and down) and the spin can be prepared and controlled via
external electric or magnetic fields [9, 10]. This approach is particularly attractive
because such quantum devices are very similar to conventional transistors. Therefore,
materials and processes can be directly taken over from conventional semiconductor
device technology, a platform that has already proven its outstanding scalability.

Within the spectrum of relevant semiconducting materials, silicon is a remarkable
candidate because hyperfine interactions between the electron spin and the nuclear
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spins can be inhibited by removal of the spin isotopes2. This process improves the
coherence by several orders of magnitude. A similar procedure is not possible in some
other related materials, such as the prototypical semiconductor GaAs, where every
stable isotope carries a nuclear spin.

Interactions with nuclear spins are not the only reason for decoherence in semi-
conductor spin qubits. Decoherence can be induced by various physical mechanisms
such as (a) fluctuating defects, spins or electric dipoles in the environment, (b) atom-
istic disorder leading to non-uniform qubit parameters, and (c) cross-talk with other
qubits or states outside the considered two-level qubit system. Some of these issues
are addressed within this work.

What do we mean when speaking about decoherence? Quantum decoherence is
the decay of a state |Ψ� in time which corresponds to a motion along the Bloch sphere,
as depicted in Fig. 1.1 decays in time. One can already anticipate the challenges that
this implies, when recalling that a quantum gate is just a rotation around the Bloch
sphere. The problem is that the state is distrubed by random processes, therefore,
we do not exactly know how the state changes. After some time, the state |Ψ�
is effectively lost. There are two mechanisms involved: relaxation and dephasing.

Figure 1.3: Relaxation (left) and dephasing (right) in the Bloch sphere representation.
Figure taken from [11].

Relaxation describes the natural decay from an excited state to the ground state,
i.e. if we define |1� as the excited state, a decay from |1� to |0�. The convention is
to call the timescale for this process T1. Dephasing is explained by looking at the
time evolution of a spin in an external magnetic field. The spin precesses around
the axis of the magnetic field with a frequency proportional to the energy difference
between |0� and |1�. If this energy difference changes in time due to fluctuations in
the environment, then the state precesses with a different frequency and reproducible
quantum operations are not possible. The timescale for this process is T ∗

2 . Typically,
dephasing is a much bigger issue than relaxation. In Si spin qubits, experimental
studies report values for T1 in the range of seconds [12, 13] while T ∗

2 reaches only a
few tens of µs [14, 15, 16].

2In other material systems like GaAs (every isotope carries a nuclear spin), hyperfine interactions
lead to short coherence times in the range of ns
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1.3 Motivation and Research Goals

The theoretical foundations for quantum computing have been established in the
1960s and refined in the decades thereafter. Despite extensive research activities
with encouraging demonstrations of quantum supremacy [17] and operation with
fidelities above the threshold for error correction [18], a large-scale quantum computer
has still not been realized. The reasons for that can be summarized in one term,
quantum decoherence, that is the loss of quantum information due to interactions
with the environment. Nevertheless, there is a lot of progress in understanding the
various decoherence phenomena alongside with improvement of fabrication techniques
and qubit control. In this respect, spin qubits in semiconducting nanostructures
are clearly favored because such structures are miniaturized by default and offer
excellent prospects in terms of scalability. With dimensions comparable to those
of a modern transistor, they are up to 1 million times smaller than other types of
qubits, measuring approximately 50×50 nm2. The diminutive size combined with
highly optimized fabrication methods hold the promise for efficient scaling. Although
other qubit platforms are currently ahead when it comes to the number of qubits on a
chip (QuTech in Delft holds the record with 16 qubits [19], Intel’ newest chip Tunnel
Falls has 12), semiconductors are arguably the platform with the greatest potential
to deliver scaled-up quantum computing.

This thesis embarks on a journey to investigate various decoherence mechanisms
in Si nanostructures from a theoretical perspective. The main goal of this work is
to establish an ab-initio based modeling approach for semiconductor heterostructures
as used in semiconductor spin qubits. A number of atomistic modeling techniques
are employed to obtain properties of electronic states at the conduction band mini-
mum and their interactions with the environment, which is modeled as realistically as
possible. The backbone of the calculations are realistic interface structures, and the
generation of those is the first milestone in this thesis. Subsequently, the electronic
properties of the interface structures are calculated within the most sophisticated of
the employed techniques, density functional theory (DFT), a highly successful ab-
initio approach. The use of DFT in the context of spin qubits is a novelty, as the
computational costs of the very demanding ab-initio calculations put strong restric-
tions on the system size. Since the simulation of full devices lies completely out of
reach, we restrict ourselves to heterostructures which are periodically repeated in the
lateral directions. The conduction-band electron forms a two-dimensional electron
gas (2DEG) confined to a material interface by an external electric field. Corre-
spondingly, in-plane confinement is not considered. This approximation is justified
by the dimensions of a Si quantum dot which is far more delocalized in the direction
of the interface plane than in the perpendicular direction. From the spin-resolved
DFT calculation, we obtain a detailed picture of the electronic structure by intrin-
sically including interfacial effects like atomistic disorder. Furthermore, strain and
electric fields can be considered within DFT. In this context, an important feature of
DFT is the operation without the use of empirically fitted parameter sets as known
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from e.g. tight binding (TB)3. TB is a widely employed atomistic modeling technique
that, together with crystalline or idealized interfaces, has been previously used for
spin qubit modeling. The hereby presented DFT approach in combination with the
realistic interfaces goes beyond these previously utilized models.

Although the computational costs of DFT do not allow to simulate mesoscopic
devices, it serves as a versatile tool to deduct various properties of the 2DEG, like
band composition or coherence time. From the splitting of the various (spin) sub-
bands, important properties for reliable qubit operation such as the valley splitting
(splitting of otherwise degenerate valley states due to coupling at the interface, see
Sec. 2.2.3) and spin splitting (caused by spin-orbit interactions, see Sec. 5.2) can be
obtained. DFT is also often used for the analysis of defects. These capabilities can be
applied to investigate the impact of localized charge states on the trapped electron.
Additionally, the wavefunctions can be calculated under consideration of all electrons
(core + valence) so that the spin density at the nuclei can be obtained. This be-
comes important for determining hyperfine tensors, that are channels for magnetic
noise. Because the calculations are conceptually focused on properties of the em-
ployed materials, a broader application of the modeling work is possible, for instance
in nanoelectronics or spintronics. In the last decades, most of the modeling for spin
qubits has been based on effective-mass (EM) or tight-binding approaches. These
methods have proven their efficiency and will certainly not be replaced by DFT, but
they also have their weaknesses. A further motivation to conduct this DFT study is
therefore to provide benchmark values that could be used to improve the assumptions
and parameter sets on which EM and TB are based on.

1.4 Outline of the Thesis

This thesis explores the abilities of ab-initio modeling methods in the context of Si
spin qubits. In a summarized manner, the outcomes of this work have been published
previously [LC1, LC2, LC3, LC4, LC5], while the thesis contains much more back-
ground knowledge and additional data that have been omitted in the publications for
the sake of conciseness. The thesis is organized as follows.

Chapter 2 introduces the reader to the fundamentals of semiconductor spin qubits
and to Si spin qubits in particular. It starts with an introduction to quantum dots
and shows how they are implemented in various material systems. In a next step,
we bridge the gap between material properties and quantum information processing
by showing how quantum dots can be employed for quantum computing. Finally,
the physical mechanisms and current challenges directly linked to spin qubits in Si
are discussed.

3Within tight binding, a Hamiltonian is constructed based on parameters which are obtained
by fitting to a known material property, typically the band structure. This makes the calculations
relatively cheap and even systems with millions of atoms are feasible. However, in some cases these
parameters can be nonphysical and external influences like strain and electric fields are often not
considered in the fit.
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Chapter 3 outlines concepts of the utilized numerical methods and gives a detailed
description of the computational setup that was employed within this work. It gives
a rough overview of the theory behind DFT, a short introduction to the closely
related density functional based tight binding (DFTB) method, and an outline of
the employed machine learning techniques.

Chapter 4 focuses on the generation of the interface structures. A large part of
this chapter is devoted to the generation of amorphous Si/SiO2 interfaces which
was facilitated by both ab-initio molecular dynamics (AIMD) simulations and by
means of a machine learning force field. The properties of this model are carefully
investigated and compared to experiments.

Chapter 5 shows DFT results for the valley splitting and a comparison with tight
binding and effective mass approaches. We then investigate spin-orbit coupling
effects at the interface and resulting splittings between the individual spin levels.

In Chapter 6, we determine hyperfine tensors in order to estimate decoherence due
to interactions with nuclear spins. We show that atoms in the barrier layers are a
significant source of hyperfine noise limiting the spin coherence time in isotopically
purified Si.

Finally, Chapter 7 concludes the findings of this work and gives ideas for future
research directions.





Chapter 2

Fundamentals

This chapter provides a summary of the theoretical foundation quantum information
processing in semiconductor quantum dots and points out advantages and disad-
vantages of employing Si as a host material for such applications. The theoretical
insights are garnished with some of the most important experimental findings. We
start with a general introduction to quantum dots, and review typically employed
material systems. Next, we review the current state-of-the-art of spin qubits. This
section includes a comparison of employed material systems, approaches to read-out
and manipulate spin states in semiconductors, and a description of the theoretical
and experimental realization of two-qubit logic. Finally, we discuss the physics of
silicon spin qubits with a focus on valley splitting, spin-orbit coupling and hyperfine
interactions, since these topics are specifically addressed within this thesis.

2.1 Spin qubits in semiconductor quantum dots

Since Loss and DiVincenzo proposed the use of quantum dots for quantum compu-
tation in 1998 [8], Si has become a serious contender for hosting quantum devices.
The idea is to trap a single electron or hole in a semiconducting nanostructure. Upon
application of an external magnetic field, the two spin states “up” and “down” split
and can be utilized as qubit basis states. An outline of the Loss/DiVincenzo approach
is given in the following.

2.1.1 Quantum dots

Quantum dots are material structures in which the charge carriers are confined within
a few nanometers in all three spatial directions. The confinement is strong enough to
give rise to discrete energy levels, similar to a quantum particle in a box or electrons in
single atoms, see Fig. 2.1. Hence, quantum dots are also often referred to as artificial
atoms. The reason why quantum dots have recently attracted a lot of attention in
nanotechnology and material science is that the optical and electronic properties of
such an artificial atom can be tuned by changing the size, shape or electron occupation
of the nanostructure. In 2023, Alexei Ekimov, Louis Brus and Moungi Bawendi were

11
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awarded the Nobel prize for chemistry for the discovery and synthesis of quantum
dots. Due to their versatile properties, quantum dots are used as photon sources for
scientific applications (ranging from biology to all-optical computational systems) and
even found commercial application in solar cells, TV screens and other illumination
sources. However, and most importantly for the topic of this thesis, quantum dots in
semiconductors offer control over the number of electrons in the conduction band (or
holes in the valence band) at ultra-low temperatures in order to trap and manipulate
single electrons or holes in the dot. The spin of the respective charge carrier is then
used as a qubit system [9, 10]. Split by an external magnetic field, the spin levels
(Zeeman-split states referred to “up” and “down” or equivalently |1� and |0�) naturally
define a qubit.4

Figure 2.1: A particle in a box (black circles) shows the same dispersion relation
as a free particle (gray line). However, the confined particle may only have discrete
energy levels. Similarly, in a quantum dot, the valence and conduction band split
into discrete energy levels due to the confinement. This splitting becomes significant
as the size of a quantum dot (described by variable r) becomes smaller than a certain
threshold value.

Various types of quantum dots can be fabricated, e.g. in AlGaAs/GaAs [22],
Si/SiGe [23], or in Si-metal-oxide-semiconductor (Si-MOS) setups, that is Si in com-
bination with its native oxide SiO2 [24, 25]. Typically, such devices are based on
semiconductor heterostructures that are grown either by chemical vapor deposition
(CVD) or by molecular beam epitaxy (MBE). To create a quantum dot out of these
planar heterostructures, an additional confinement is introduced in the remaining two
dimensions. Here, one can distinguish between self-assembled quantum dots, where
a random semiconductor growth process provides the two-dimensional confinement,
and electrostatically defined quantum dots, where lithographically fabricated metallic
gates create the confinement, see Fig. 2.2. As can be seen, the top gates P1 and P2
(called plunger gates) are used to create the confining potential in plane. Moreover,
the gate potential is used to load/unload the quantum dot, that is capturing/emit-

4There are also other types of spin qubits. For instance, one can trap two electrons and use the
singlet and triplet state as the qubit basis states [20, 21].
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ting of a charge carrier. At low temperatures < 1K, the conduction band can be
completely depleted. If the potential well that arises from the gate is deep enough,
single particles can either “fall" into the well from adjacent materials or get injected
by an external current.

Figure 2.2: Gate setup on top of a planar GaAs/AlGaAs heterostructure to form a
electrostatically defined quantum dot. The gates confine the particle in the planar
direction. Taken from [26].

Electrostatically confined quantum dots have a number of advantages over self-
assembled dots [27]. First, the growth of well-defined heterostructures gives better
uniformity than a randomized growth process. Second, the confinement of the dots, as
well as loading and measuring of electrons in the dot can be controlled via the gates
which allows for convenient operation. Third, the gates also allow to manipulate
the state of the trapped particle coherently by application of AC fields that drive
oscillations between the ground and excited states mediated via spin-orbit coupling.
As a result, α and β of Eq. (1.1) depend on the duration of the external driving
field. The state of a qubit can be manipulated using this effect. This feature is called
electric dipole spin resonance (EDSR, see Sec. 2.2.4.2) and becomes essential when
building larger arrays of dots that have to be controlled individually. State transitions
in self-assembled quantum dots on the other hand are usually driven optically which
makes individual control of thousands of qubits extremly difficult. All these reasons
combined led to the use of gate-confined dots for modern qubit applications.

A quantum dot can also contain multiple charge carriers. Such a state is created
by further increasing the voltage of the plunger gate. When the voltage of the plunger
gate is swept, periodic peaks in the conductance of a quantum dot appear. These
peaks occur when a discrete energy level of the quantum dot aligns with the Fermi
energy of the charge reservoir. At the conductance peak, the dot is equally stable in
both charge states and thus occupied half of the time. When the plunger gate shifts
the energy levels of the dots further down/up, the quantum dot captures/emits a
charge. The conductance reaches a minimum if the Fermi energy of the reservoir falls
exactly halfway between the quantum dot energy levels. In order to determine the
charge state of the quantum dot, a quantum point-contact (QPC), a narrow, ballistic
constriction, can be placed close to the QD [28]. The conductance of such a device is
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Figure 2.3: Charge sensing via a quantum point contact (QPC) taken from [28].
The gate setup depicted as an inset is deposited on a GaAs/AlGaAs heterostructure.
The gates are labelled G1 to G5. The QPC is established between G1 and G2, the
quantum dot is on the right, where G4 acts as a plunger gate. The resistance in the
charge sensor modulates periodically above a rising background. The oscillations cor-
relate directly with the Coulomb peaks in the conductivity of the dot. The measured
detector resisitivity can be used to measure the occupation number in the dot.

very sensitive to changes in the electrostatic potential. Different charge occupation
states of the QD can thus be directly distinguished by measuring the current through
the QPC.

The techniques outlined above allow the measurement of the occupation of a
quantum dot. This principle was further evolved in order to measure also the spin
of the charge carrier by a electrical single-shot readout [29]. Assuming the spin-up
state is the excited state, corresponding to the energies Eup > Edown. Now, the idea
is to align two Zeeman split spin states of a trapped particle in such a way with the
reservoir that the spin-up state lies above and the spin-down state below its Fermi
level, see Fig. 2.4. If the charge state of the dot changes within a certain time window
τ (the inverse of the tunnel rate between dot and reservoir), it is evident that the
charge carrier was in the up state. The energy of a spin-down electron would have
been too low in order to leave the dot and tunnel back to the reservoir.

The occupation of a quantum dot can be measured by the read-out procedure de-
scribed above. This measurement protocol is often referred to as Elzermann readout.
Let us now consider transport through the quantum dot, as sketched in Fig. 2.5. The
depicted setup constitutes a single-electron transistor (SET). Electrical current can
only flow if the quantum dot has an available level in the bias window between source
and gate. The levels of the quantum dot are spaced by ΔEQD = EC + ΔE, where
ΔE is the spacing due to the quantum confinement and EC = e2/2C is the charging
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Figure 2.4: SEM image of a device used for single-shot spin read-out. By measuring
the current through the QPC channel (denoted in the figure as IQPC), the change in
the charge of the quantum dot that results from tunneling of charge carriers between
reservoir and quantum dot can be recorded. A spin state can then be associated to the
dot by the outcome of the single-shot current measurement. Figure taken from [29].

energy needed to add the unit charge e to a system with capacity C. The ladder of
states in the dot can be shifted by means of an external gate. Whenever a free state
in the dot alignes with the electrochemical potential of source and drain, current can
flow. Since the quantum dot states are equally spaced in energy, a periodic signal in
the conductance of the channel from source to drain dI/dVSD can be observed. These
are the so-called Coulomb peaks. With no available states, there is no current flow-

Figure 2.5: Electrochemical potential of a single-electron transistor consisting of a
quantum dot coupled on both sides to charge reservoirs (source and drain) (a) with
no states available for charge transport (Coulomb blockade) and (b) with transport
enabled by a state that is aligned between the electrochemical potentials of source
and drain. In (b), the number of electrons in the dot alternates between N and N-1
and thus generates a single-electron tunneling current. Taken from [9].

ing. Mapping the conductance of the channel from source to drain dI/dVSD reveals
a periodic pattern (diamond pattern) that allows to determine the occupation of the
dot for the respective gate voltages, see Fig. 2.6.
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Figure 2.6: Diamond pattern observed in the conductance as a function of voltage
between source and drain (VSD) and plunger gate (VG) through a single-electron tran-
sistor. The occupation number is constant in each dark diamonds, while the edges of
the diamonds mark the Coulomb peaks. Figure adapted from [30].

2.1.2 Materials for semiconductor spin qubits

The performance of solid-state qubit platforms critically depends on the quality of the
host material. Disorder and other material properties ultimately impact important
qubit metrics such as coherence time and operation speed. Currently fabricated qubit
devices suffer from significant decoherence caused by a variety of material imperfec-
tions including point defects, grain boundaries, and interfacial disorder [31] leading to
strong variabilities between individual devices [32, 11] [LC3]. Having the QD imple-
mented in a solid-state material means that the spin is surrounded by noise sources.
If the environment contains nuclear spins, magnetic noise due to hyperfine interac-
tions between the central spin and the nuclear spins leads to quick decoherence [33].
Similar to the improvement of classical transistor technology that is driving modern
computation until today, solving the challenges imposed by the host material might
be key for reliable quantum computation.

Until today, two-qubit logic has been demonstrated in three host materials: GaAs,
Si, and Ge, see Fig. 2.7. Despite early achievements such as spin injection, control
and read-out accomplished in GaAs-based devices, it has soon been realized that
hyperfine interactions in this material system impose strong restrictions on the co-
herence time of such devices [34, 35]. Based on this insight, silicon has moved to the
center of attention, because it offers the possibility of removing the isotope 29Si, be-
ing the only isotope carrying nuclear spin with about 5% natural abundance. Other
reasons are high availability, low charge-noise susceptibility and well known fabrica-
tion techniques. These are all good arguments for using electron spins in Si, although
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Figure 2.7: Overview of material stacks that have demonstrated two-qubit logic until
today. Figure taken from [31].

there are a few drawbacks. Among those is the intrinsically low spin-orbit coupling5of
conduction-band electrons in silicon which leads to slow spin operations when using
EDSR to manipulate the electron spin state, as shown in Sec. 2.2.4.2. There are
novel approaches to overcome this problem, namely the use of hole spins in Si [36] or
Ge [37] which are new candidates showing strong potential [38]. A hole qubit can be
manipulated faster due to the strong spin-orbit interaction, but is also more prone
to charge noise, a problem that could be addressed by properly chosen structural ge-
ometries and magnetic field orientations [39, 40]. However, it is still an open question
which material system is best suited to host spin qubit devices. Currently, research
activities examine all possible directions.

2.1.3 Barrier materials for qubits in silicon

Within the realm of Si qubits, there are two materials that can be combined with
Si to realize the confinement, both naturally coming with distinct advantages and
disadvantages. One approach is to interface Si with SiGe (the Ge content is typically
between 25 and 30%), the second is adapted from the Si metal-oxide-semiconductor
(Si-MOS) technology and combines Si with its native oxide SiO2.

Before going into more details, let us discuss the requirements that we put on a
suitable arrangement of materials. First, the conduction band of the barrier material
needs a positive band offset with respect to the Si conduction band edge to ensure
confinement. Larger band offsets yield large valley splittings and are therefore favored.
Second, the resulting interface should be uniform. Any source of disorder should be
minimized in order to reduce variabilities of the qubit device parameters. Third, low
defect densities are desired because defects can act as fluctuating charges or dipoles
and thus generate charge noise. Furthermore, as will be shown in this thesis, also the
barrier should be free from isotopes with nuclear spin as these nuclei impose a limit
on the coherence of the electron spin.

We can now discuss the advantages and disadvantages of both barrier materials.
As depicted in Fig. 2.8, the Si/SiGe interface is pseudomorphic, that is, the atoms

5The intrinsically low spin-orbit coupling is also an advantage because it reduces the influence
of charge noise.
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are arranged on the same lattice. In comparison to the Si/SiO2 interface, the degree
of disorder in Si/SiGe is in principle much lower and mobilities are rather high (≈
105 cm2/Vs vs. ≈ 104 cm2/Vs) [41]. On the other hand, the Si/oxide interface has
a band offset that is one order of magnitude larger than the Si/SiGe interface. Due
to the large band offset, the valley splitting (cf. 2.2.3) in Si-MOS is large enough to
provide a clean two-state spin system, making operation at 1 K feasible.

Figure 2.8: Interfaces between Si/SiGe and Si/SiO2 as obtained within this work (Si
in yellow, Ge in rose, and O in red). The blue isosurface represents a wavefunction
confined to the interface.

2.1.4 Quantum computing with quantum dots

We have seen in Sec. 1.1, that any arbitrary quantum circuit can be build up from
a combination of single qubit gates and the CNOT gate. In the Loss-DiVincenzo
quantum computer, a quantum computer based on confined spins in quantum dots,
the controlled NOT gate is further decomposed in SWAP6 operations and local spin
manipulations [8]. The latter is a single-qubit operation and can be performed by
local magnetic fields, while the former is a two-qubit gate that requires application
of a pulsed inter-dot gate voltage. This voltage is applied on a gate that controls the
coupling between the two qubits. If the gate voltage increases the barrier potential
between the two qubits, tunneling is forbidden and the qubit states are stable with
no evolution in time. If the barrier is low, the total two-qubit system is described by
the Heisenberg Hamiltonian

Hs(t) = J(t)S1S2 (2.1)

where J(t) = 4t0(t)/u is the time-dependent exchange constant produced by turning
the tunneling matrix element t0(t) on and off in time. We then obtain the time
evolution operator

Us(t) = T exp {−i

� t

0

dtkHs(t
k)} (2.2)

6The SWAP gate swaps two qubits.
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T is the time-ordering operator and ensures correct ordering. Assuming a specific
pulse duration τS such that the time integral of J(t) gives J0τS = π (modulo 2π).
In this case, US turns into the SWAP operator USW, that is USW = US(J0τS = π).
Furthermore, the square root of the SWAP gate U

1/2
SW is obtained when taking half

the pulse width U
1/2
SW = US(J0τS = π/2). Other gates can be built by combining U

1/2
SW

with individual spin rotations. For example, the XOR gate can be decomposed to

UXOR = ei
π
2
Sz
Le−iπ

2
Sz
RU

1/2
SWeiπS

z
LU

1/2
SW , (2.3)

where SL and SR refer to the spins. A CNOT gate is directly obtained from the XOR
gate by surrounding the target qubit with Hadamard gates [8].

The essence of the seminal work of Loss and DiVincenzo is that universal quantum
gates can be constructed from relatively simple building blocks. By taking a set of
double quantum dots in which the coupling between the qubits can be controlled,
SWAP operations and therefore CNOT operations become feasible. This was truly
exciting news and started the increasingly active research on semiconductor spin
qubits.

2.1.5 Double quantum dots

In the previous section, we have discussed the need for two-qubit gates to build
arbitrary quantum gates. A prototypical setup, as shown in Fig. 2.9 consist of two
gate defined quantum dots that are coupled via exchange interaction. The device
in Fig. 2.9 depicts a Si/SiGe quantum well. The coupling can be controlled by the
middle barrier gate. For single qubit operations, the barrier to the other qubit is
established by gate M before manipulating the qubit state, either by a magnetic field
or (more practically) by electrical fields, see Sec. 2.2.4. Subsequently, the barrier can
be removed so that the coupling to other qubits is restored.

Figure 2.9: Two-qubit device in Si/SiGe from [42]. Depicted are the two gates L and
R defining the quantum dots in a Si/SiGe heterostructure. The coupling is controlled
via gate M. This device was used to demonstrate a CNOT operation in ≈ 200 ns.

The first demonstration of a two-qubit logic gate in silicon was presented in
2015 [43]. The device used in this work was based on isotopically purified Si (with
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800 ppm 29Si) in combination with SiO2 as a barrier material, see Fig. 2.10a. It was
operated at a temperature of ≈ 50mK.

Figure 2.10: Two-qubit device in Si-MOS from [43]. (a) Schematic and (b) scanning
electron microscope image of the device. The electrons are confined by gate GC and
the occupation of the dots is controlled by gates G1 and G2, respectively. (c) Coloumb
diamonds in the conductance of the close by SET with occupation numbers given in
brackets. (d) Rabi oscillations of qubit 1 and 2.

Furthermore depicted in Fig. 2.10c is the charge stability diagram of a double
quantum dot. The occupation of the two dots is indicated in brackets for left and
right quantum dot respectively. Similar to the Coulomb diamonds of Fig. 2.6 in
single qubits, measuring the current through a close by SET as a function of the
gate voltages that define the dots reveals a diamond-like pattern reflecting regions of
constant QD occupation.

Figure 2.10d shows Rabi oscillations in the two qubits, both can be controlled
individually. Here, qubit manipulation was achieved by an ac current through a
nearby placed wire, generating an ac magnetic field driving the Rabi oscillations. A
more convenient mechanism to drive spin transitions, namely by oscillating electric
fields, is presented in Sec. 2.2.4. Another point is worthwhile to mention: This device
showed an extremely long dephasing time of T ∗

2 = 120 µs [14], a record that has not
been beaten until today even though this experiment was conducted 10 years ago.

2.2 Physics of Si spin qubits

Silicon has been at the center of the most groundbreaking technological achievements
of the last century: the semiconducting material proved to be extremely well suited
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for the implementation of transistors. One reason for that is that semiconductor-
insulator interfaces with extraordinary low defect densities can be formed between Si
and its native oxide SiO2. This led to the successful integration of billions of micro-
and nanoscale devices on a single chip. The most important representative device
in which the material system Si/SiO2 is employed is the metal-oxide-semiconductor
field-effect transistors (MOSFETs), the most fabricated device in human history.

As discussed in Sec. 2.1.2, the implementation of logic gates in gate-confined
quantum dots has been demonstrated in several host material systems. Typically, a
combination between a semiconductor and a barrier material (which could be semicon-
ducting too, but should then show an adequate band-alignment) with similar lattice
parameters has to be found. Material systems in which quantum dots for qubit appli-
cations have been fabricated include GaAs/AlGaAs [44], Si/SiGe [42], Ge/SiGe [38],
and Si/SiO2 (Si-MOS) [14].

Each of these material systems come with advantages and disadvantages and the
most suitable platform is yet to be found. Numerous experimental and theoretical
research in the last decades, allowed to identify limiting factors for reliable qubit
operation. Some of which can be resolved by adequate engineering solutions, e.g. by
replacing magnetic fields by electric fields in order to conveniently drive spin-rotations,
see Sec. 2.2.4, or by design measures that can minimize charge and hyperfine noise [45].
Other problems are directly linked to the material system. For example, all stable
isotopes in GaAs have nuclear spin which means that the coherence of an electron
or hole spin in this material is strongly affected by hyperfine interactions. These
interactions can be minimized in silicon or germanium by enrichment of isotopes
that are nuclear-spin free, as is the silicon isotope 28Si. On the other hand, the
degenerate valley structure of Si introduces detrimental loss channels for the quantum
information contained in the spin state. This was one of the main reasons why Si
qubits attract a lot of interest in the quantum device community [46]. Furthermore,
the vast advancements of Si technology over the last 70 years can be directly applied
to quantum devices. This includes highly advanced fabrication processes such as the
MOS technology [30] and the theoretical and practical knowledge of other commonly
used materials like SiGe. Given the high compatibility between classical MOSFET
and state-of-the-art quantum devices, the potential in terms of scalability is obvious.

The research effort put into Si qubits pays off. Operating on Si-MOS structures,
encouraging achievements such as the experimental realization of two-qubit gates [43],
which has been elaborated to carry out high-fidelity two-qubit operations [16], have
been reported. Using SiGe as a barrier material, recent achievement of fidelities
exceeding the threshold for quantum error correction in one and two-qubit gates
impressively demonstrates the practicality of this material platform [47, 18]. Although
the important step of demonstrating single and two-qubit logic has been taken, Si
spin qubits are still facing a number of issues, including limited coherence time and
operation speed. Currently, many research activities focus on mitigating such adverse
effects to establish reliable platforms for spin qubit applications [48, 32]. Within the
scope of this thesis, the physical mechanisms connected to the host material Si are
specifically investigated, either in combination with the semiconducting SiGe or with
its native oxide SiO2.
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2.2.1 Conduction band valleys

To ensure self-containment for later discussions in this thesis, a concise overview of
established analytical band structure approximations is provided. For comprehensive
details, readers may refer to fundamental texts on solid-state physics focused on
semiconductors [49, 50]. We start from the Schrödinger equation for mobile electrons
in a periodic lattice

−�2

2m

d2Ψ(r)

dr2
+ VC(r)Ψ(r) = EΨ(r) (2.4)

for which the Bloch theorem tells us that the solutions will have the form

Ψ(r) = uk(r) exp(ikr) (2.5)

where uk(r + R) = uk(r) is a cell-periodic function (Bloch function) which is also
periodic in reciprocal space. By inserting Eq. (2.5) into Eq. (2.4) we get�
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uk = E(k)uk (2.6)

We can now solve this equation for uk for any k we select. Since this equation has an
infinite number of eigenfunctions, we will label the solutions as En(k). Repeating this
procedure for all k results in the disperion relation En(k) of band i. One important
result is that E(k) can often be approximized by a parabola near a band minimum
or maximum, e.g. for the conduction band

E ≈ EC +
�2k2

2m∗ . (2.7)

The value that determines the curvature of the parabola is called the effective mass
m∗7. The parabolic relation means that (close to the band minimum) the electron
in the crystal behaves like a free electron but with a different mass. For many semi-
conductors the conduction band minimum is at k = 0 (usually referred to as the
Γ point) for example in GaAs. Thus, the constant energy surface in k-space is a
sphere. However, for Si, the situation is more complex. The effective masses become
non-isotropic and the minimum of the conduction band is not at Γ but close to the
edge of the Brillouin zone near the X point, see Fig. 2.11. The silicon conduction
band at these points can be well described by the effective mass expression

E(k) =
�2k2

x

2mt

+
�2k2

y

2mt

+
�2k2

z

2ml

, (2.8)

where ml = 0.98 and mt = 0.19 are the longitudinal and transversal effective masses,
respectively [50]. As a consequence of Eq. (2.8), there are six energy degenerate
conduction band minimas that form ellipsoids lying on the axis of reciprocal space,
for instance at k = [0, 0, 0.852π

a
] in [001] direction.

7In anisotropic materials, the effective mass is a tensor
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Ideally, a qubit should be comprised of exactly two energy levels. In a spin qubit,
these two levels arise by application of an external magnetic field which splits each
spin-degenerate valley state by the Zeeman effect. For Si spin qubits, the valley degen-
eracy is detrimental because it introduces additional states in the energy range of the
qubit states (from other valleys) that can act as a decoherence channel. Fortunately,
the degeneracy can be lifted as shown below and in Sec. 2.2.3.
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Figure 2.11: Electronic bandstructure of silicon obtained from DFT. The conduction
band edge has a minimum close to the X point of the Brillouin zone which is referred
to as conduction band valley or simply valley.

2.2.2 Strained Silicon

The band structure of Si and thus particularly its valley degeneracy can be influenced
by straining the material. A detailed mathematical description including strain can
be found in the literature [51, 52]. Let us directly discuss the results of a numerical
calculation of biaxially strained bulk Si, as presented in Fig. 2.12. Tensile strain of
1 % is applied in the x/y-plane. As a result, the four in-plane valleys are lifted far
above the remaining z-valleys. The separation of the energy levels is on the order of
100 meV and therefore large enough for qubit applications.

The easiest way to strain the crystal in plane is to deposit Si on a layer with com-
parable but slightly larger lattice constant, for example a relaxed layer of SiGe [53].
Fortunately, the fabrication of quantum dots in Si/SiGe requires to do exactly that.

2.2.3 Lifting the conduction band degeneracy

As pointed out in Sec. 2.2.1, the conduction band minimum of silicon is six-fold
degenerate. The degeneracy of these so-called valley states can be partly lifted by
the application of strain (let us assume in the x/y-plane), so that two of these states
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Figure 2.12: Lifting the valley degeneracy by strain. The shown band structure is
obtained from DFT by straining the unit cell of Si by 1 % in x and y directions. The
plot shows the band structure in the energy range of the conduction band minimum,
so that all six valleys can be seen. The graph consists of three panels, each panel shows
the results for k-points along direction i (i = {x, y, z}) across the first Brillouin zone
(from Xi to X−i). The two z valleys lie approximately 100 meV below the four-fold
degenerate x- and y valleys.

(+z and −z valley) remain [9]. During the past two decades, another aspect has been
established in the literature: inter-valley coupling mediated by the interface [54, 55].
This mechanism enables splitting of the two z-valleys by scattering between the +z
and the −z valley, see Fig. 2.13. The energy separating the two valley states is the
valley splitting EVS. The scattering potential is the quantum well potential and is
thus essentially the energy barrier at the interface. Note that this barrier arises due
to the conduction band offset between Si and the barrier material.

Ideally, a spin qubit consists of only two levels (spin up/down, singlet/triplet,
etc.). In a real system, any other states have to be separated from the two states that
comprise the qubit. Thus, in a Si spin qubit, large valley splittings are needed, so that
the two spin states of the lowest valley do not interact with any of the higher states.
Fulfilling this requirement becomes even more challenging since current Si/SiGe de-
vices suffer from a large variability in the valley splittings in the range between 20
and 300 µeV [56, 57, 58, 59]. Wide distributions can even be observed on devices
that have been fabricated on the same wafer. Recent experimental evidence consol-
idates theoretical presumptions that these variations can be traced back to atomic
fluctuations at the interface [60, 48]. It was also shown that the valley splitting varies
strongly when a quantum dot is moved along a Si/SiGe interface by adjusting the
gate biases [61]. These results underpin the importance of details of the interface.

Since fabricating very sharp interfaces, possibly with monolayer precision and
a very low amount of alloy disorder, is currently extremely challenging, theorists
have been searching for other ways to enhance valley splitting. Several proposals
for enhancing EVS by constructive measures in the well, such as Ge spikes [62] and
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Figure 2.13: Valley splitting in a Si/SiGe quantum well. The sixfold valley degener-
acy of bulk Si is broken by large in-plane tensile strains emerging due to the lattice
mismatch between Si and SiGe. The strain splits the six levels in sets of two (marked
by Γ) and four (marked by Δ) levels, respectively. The remaining twofold degen-
eracy is broken by the confinement (symmetry reduction) and the splitting is even
further enhanced by external electric fields pushing the electron against a quantum
well interface.

oscillating Ge concentrations [63, 64] have been put forward. The idea is to build
wells that guarantee large valley splittings independent of atomic-scale fluctuations.
It turned out that wells with oscillating Ge content (so-called wiggle wells) can give
extremely large valley splittings.

The principle mechanism can be described by an effective-mass approach (EMA).
The unperturbed valley wavefunctions are

Ψ±(r) = Φ(z)e±ik0z
�
K

c±(K)eiK·r, (2.9)

where Φ(z) is the envelope function, K are the reciprocal lattice vectors, and the
sum is a Fourier expansion of the cell-periodic part of the Bloch function. These
coefficients can be found in [65]. In the next step, we separate the full scattering
potential Vscat = Vosc + Vif + Vlat in three parts: contributions from the oscillating Ge
concentration, from the interface, and from the lattice. In the following, we consider
only the oscillating potential, assuming that the growth process can be engineered to
produce suitable wells. The valley splitting EVS induced by the added Ge in the well
is then [66, 63, 64]

EVS = 2|�Ψ+|Vosc(z)|Ψ−�| = 2|
�
K,K�

c∗+(K)c∗−(K
k)δKx,K�

x
δKy ,K�

y
I(Kz −K k

z)| (2.10)

where the last term represents the integral

I(Kz −K k
z) =

�
|Φ(z)|eiQzV0 cos(qz)dz, (2.11)
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in which we use Q = Kz −K k
z − 2k0 and assume a harmonically oscillating potential

Vosc = V0 cos(qz). The integral I peaks strongly when the condition

q = ±Q (2.12)

is fulfilled (Because |Φ(z)|2 is a smooth function with exactly one peak, its Fourier
transform has a single peak at zero). Therefore, the valley splitting will also show a
peak if this condition is fulfilled. Because |Kz −K k

z| is an integer multiple of 4π/a,
Eq. 2.12 has multiple solutions and thus, multiple peaks are found for EVS(q). Indeed,
EVS(q) has three peaks at q ≈ 3.5nm−1, 10nm−1, and 2k0 ≈ 20nm−1, see Fig. 2.14.
The strong peak at q = 2k0 (|Kz −K k

z| = 0) corresponds to an oscillating quantum
well potential with λ = 2π/(2k0) ≈ 0.3 nm. This means that the matrix element of
Eq. 2.10 reaches a maximum if the potential oscillates with a wavevector that corre-
sponds to the distance between the valleys in k-space. In other words, q = 2k0 is the
resonance condition for the coupling between ψ+ and ψ−. A smaller peak appears at
q = 2k0/2 which is identified as a harmonic of the first peak [64]. Another peak at
q ≈ 3.5 nm−1 (|Kz −K k

z| = 4π/a) becomes rather small because the various combina-
tions of K and Kk cancel out due to symmetries in the crystal lattice. Nevertheless,
a peak appears due to the reduced symmetry due to alloy disorder.

Figure 2.14: Valley splitting due to scattering between −z and +z valley as proposed
in [64]. The scattering potential is the oscillating part of the quantum well potential
due to Ge concentration oscillations in the quantum well, for Ge peak values shown in
the inset box. The left inset shows two neighboring Brillouin zones, with the valleys
depicted as constant energy isosurfaces in blue. The peaks at q ≈ 3.5 nm−1 stems
from Umklapp coupling between the z valleys across two Brillouin zones, and the
peaks at q ≈ 20 nm−1 arise from coupling between z valleys within one zone.

Based on simple yet effective perturbative arguments, Losert et al. suggested a
universally applicable theory according to which EVS is proportional to the 2k0 Fourier
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component of the quantum well potential Vqw(z) [67]. This becomes apparent when
evaluating the intervalley-coupling matrix element with simplified valley wavefunc-
tions Ψ± ≈ e±k0zΦ(z)

EVS = |�Ψ+|Vqw(z)|Ψ−�| =
�

e−2ik0zVqw(r)|Φ(r)|2dr3 (2.13)

This effective-mass approach provides an idea on how the valley splitting can be
conceptually understood and also provides a recipe for enhancing the valley splitting
drastically: Incorporation of an oscillating Ge content with wavevector q ≈ 20 nm−1.
However, these insights are only partially applicable to real devices because it com-
pletely neglects the atomic lattice. A wavevector q ≈ 20 nm−1 is associated with
a wavelength of λ = 0.3 nm. So the wavelength is even shorter than the spacing
between two Si layers, which makes the fabrication of such structures virtually im-
possible. Realistically speaking, out of the three peaks that are predicted by the
EMA, wiggle wells with q ≈ 3.5 nm−1 seem the only feasible solution in the near
future. Other approaches to enhance the valley splitting are qualitatively explained
by this model as well. Ge spikes, for example, enhance the valley splitting because
the Fourier transform of the scattering potential (which is a rather sharp peak in real
space) gives a very broad spectrum so that the scattering amplitude is also enhanced
at q ≈ 20 nm−1.

With current growth/deposition techniques, the fabrication of oscillating Ge con-
centrations with a wavelength of λ = 2π/q = 2π/20 nm−1≈ 0.3 nm – which is close
to the distance between two atomic layers – is far out of reach, see Fig. 2.15. Devices
with q = 4 nm−1 on the other hand, could be realized in the foreseeable future.

A different approach to quantify the valley splitting in Si is given by TB [54, 68,
55, 67]. It is quite remarkable that a good description can already be obtained by
simple two-band models with one atom of two orbitals per unit cell [54]. Losert et.
al recently reported an agreement between the effective mass solution of Eq. (2.13)
and a more advanced sp3d4s∗ TB model [67].

2.2.4 Spin-orbit coupling (SOC)

Spin-orbit coupling (SOC) arises through the relativistic motion of a charged particle
in a potential gradient [69]. For isolated atoms, SOC leads to splittings of electronic
energy levels called fine structure. In solid state materials, the potential is generated
by the ionic environment of the electron. Thereby, the atomic structure is imprinted
into the electronic wavefunction. Roughly speaking, the spin becomes coupled to its
orbital motion.

Take Si as an example. At the valence band maximum (with p-like character),
the heavy and light-hole band are separated from the so-called split-off band due to
SOC [70]. On the other hand, SOC is relatively weak for conduction band electrons
due to the stronger s-like character [71]. In electron spin qubits, the low SOC implies
weak coupling to charge noise and thereby enhances qubit lifetimes. The downside
is that strong SOC facilitates fast and easy qubit manipulations as such techniques
require a physical mechanism suitable to drive transitions between the qubit states.
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Figure 2.15: Ge oscillation profiles of the three peaks proposed based on the effective
mass approach from [64]. The dots mark the positions of the monolayers. The quickly
oscillating profile with q ≈ 20 nm−1 requires extremely fine control of the Ge content
in each monolayer. Furthermore, such profiles would need to withstand Ge diffusion in
order to maintain their shape. Slower oscillations with q ≈ 4 nm−1 are more practical
to fabricate.

Constructive measures, such as placing a micromagnet in the vicinity of the qubit, can
be used to artifically enhance SOC. The magnets generate a magnetic field gradient
which strongly enhances the SOC, see Fig. 2.16. By doing so, it was shown that the
Rabi frequency can be increased by one order of magnitude [57]. By means of this
method, high-fidelity qubit operations have been demonstrated [72, 73, 74].

Rather than simply fast operation, reliable quantum computation requires high-
fidelity qubit operations. The upper bound of the qubit fidelity is given by the Rabi
oscillation quality factor [72]

QRabi = TRabi
2 /Tπ (2.14)

where TRabi
2 is the decay time during Rabi oscillations and Tπ is the time needed

for a π rotation. A straightforward approach to obtain a qubit fidelity higher than
the quantum error correction threshold for fault-tolerant quantum computing would
either be to prolong the qubit decay time TRabi

2 or shorten the π rotation time Tπ [72].
Therefore, faster rotations yield higher fidelity.

The realization of a SOC-based spin-driving mechanism is difficult given the small
intrinsic SOC strength in Si. Previously, it was believed that SOC would be practically
negligible for electrons in Si. However, it turned out that SOC is strongly enhanced
in 2D electron/hole gases as found in quantum dots. This enhancement is facilitated
by inversion asymmetry of the crystal at the barrier interface [75, 76, 77, 78]. The
physics behind this mechanism will be discussed below.
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Figure 2.16: (a) Scanning electron micrograph of a Si two-qubit device with a micro-
magnet. The 250 nm thick Co magnet is depicted in orange (additionally labeled “Co
MM”). In order to drive the transitions, AC pulses are applied to gates C and R. (b)
Numerically simulated distribution of the stray field in the x direction. The origin of
the plot is at the center of the two QDs. (c) Numerically simulated distribution of
the stray field in the z direction. Figure from [73].

2.2.4.1 SOC in quantum dots

Given the weak SOC in bulk silicon, the discoveries of Dresselhaus [79], Rashba [80]
and Golub et al. [76, 77] have opened an exciting gateway to manipulate electron
spins in Si. These works commonly show enhanced SOC by additional terms that
arise due to a symmetry reduction with respect to the bulk crystal. As inversion
symmetry is broken by the interface barrier (the confining potential is asymmetric),
the additional SOC terms cause a splitting of the energy bands that is large enough
to drive transitions between the spin states by ac electric fields.

First, Dresselhaus showed that in materials with bulk inversion symmetry (BIA),
such as ZnSe or wurtzite crystals, SOC terms appear that are odd in momentum.

HD = αD(σxkx − σyky), (2.15)

where αD is the Dresselhaus coefficient, σi are the Pauli matrices and ki denotes the
momentum in direction i. Because silicon is inversion symmetric, this term is absent.
It is, however, strong in III-V materials.

About thirty years later, Vas’ko, Bychkov, and Rashba applied this idea to two-
dimensional systems and predicted a coupling of the form

HR = αR(σxky − σykx), (2.16)

with the material-dependent Rashba SOC coefficient αR. This term is based on
structural inversion asymmetry (SIA), namely the asymmetry of the heteropotential
that arises due to the presence of the interface.

In 2004, Golub et. al showed that another contribution to SOC can arise in
quantum-well heterostructures [76, 77], which depends on the symmetry of the com-
plete heterostructure and is based on interface inversion asymmetry (IIA). Assuming
perfectly planar interfaces, this term can only appear if there is a odd number of
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layers in the quantum well, and vanishes if the number of layers is even. The term
has the same representation in the Hamiltonian as the Dresselhaus term in Eq. (5.4)
and is therefore often simply referred to as the Dresselhaus term (which would be
absent otherwise in Si).

2.2.4.2 Electric dipole spin resonance

The most promising spin-driving method that harnesses SOC is called electric dipole
spin resonance (EDSR) and is specifically convenient because it allows to use the
top gates to control the spin [81]. Fig. 2.17 depicts an efficient scheme for high-
speed and high-fidelity qubit operation using EDSR, a technique that is employed
to electrically control the spin of a single qubit by shifting the quantum dot position
periodically by modulating the gate voltage. The movement in the gradient generates
an oscillating magnetic field in the motion frame of the electron. This field is used to
drive transitions between the spin states. One advantage of this technique is that the
dots can be addressed independently by local electric fields which simplifies operation
compared to using magnetic fields that typically have a large stray field. Zajac et. al
were the first to demonstrate EDSR on their Si/SiGe double-dot device [42].

Without EDSR, the infrastructure supporting the qubit operations is more com-
plex, as additional on-chip coplanar striplines [14, 43] have to be added to the ar-
chitecture. Such striplines have a number of disadvantages. For example, they are
not suitable to generate large magnetic fields. Furthermore, in an array of qubits,
avoiding cross-talk between the magnetic AC fields would be challenging and inhibits
scalability.

Figure 2.17: Two-qubit device from [81]. Depicted are the two gates VL and VR

defining the quantum dots. The dots are occupied with one electron each. The
degeneracy of the two respective spin levels is lifted by a large homogeneous magnetic
field. In addition, there is an inhomogeneous field creating a field gradient ∂Bz

∂x
along

the double-dot axis. This gradient shifts the spin resonance frequencies relatively to
each other.
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2.2.5 Interaction with nuclear spins

One of the main requirements for quantum computation is coherent control of the
spin during the execution of quantum gates and operations. Interactions with the
environment impede coherence and allow the quantum information to “escape”. The
interplay between various coherence mechanisms is still under debate [82, 83], how-
ever, hyperfine interaction between the electron spin and nuclear spins in the host
material is indisputably one major source of spin decoherence in quantum dots. While
hyperfine interactions have been known for many decades [84], the theoretical works of
Burkard et al. [85], Coish et al. [86, 87], Merkulov et al. [88], and Khaetskii et al. [89]
published around the turn of the millennium provide an analysis of this phenomenon
in quantum dots.

With regard to hyperfine interaction, Si is an outstanding candidate platform to
implement spin qubits due to the naturally low abundance of 29Si, the only stable
Si isotope carrying nuclear spin. Natural silicon contains about 4.7% of 29Si. The
nuclear spin of all other isotopes, including the naturally most abundant isotope 28Si,
is zero and does not contribute to hyperfine noise. It was shown experimentally that
the coherence of an electron spin can be highly enhanced when removing 29Si isotopes
from the Si substrate. Tyryshkin et al. reported coherence times up to seconds enabled
by means of such isotopic purification [90].

What is the principle mechanism of hyperfine interaction and how does it lead
to spin decoherence? Assume an electron spin in a constant magnetic field so that
the two spin levels are split by the Zeeman effect and therefore constitute a two-level
quantum system. Because the electron resides in a crystal, it is exposed to a spin
bath composed of nuclear spins. The nuclear spins combined generate an effective
magnetic field, the so-called Overhauser field, which in turn interacts with the electron
spin. Decoherence can be illustrated by an additional Zeeman splitting due to the
Overhauser field. If the Overhauser field fluctuates, caused by fluctuations of the
spin bath, the energy splitting changes. Because driving the spin requires accurate
knowledge of the splitting (for determining the excitation frequency), coherent control
is inhibited and the spin state is quickly lost. This is a highly illustrative description
of the phenomenon. Let us be more rigorous in the following.

In the following, we give a quick overview of the theory of hyperfine interactions.
More information can be found in the classic book of Abragam [84] or in the excellent
review of Schliemann [91]. The Hamiltonian describing hyperfine interaction by means
of a hyperfine tensor A was derived by Fermi in 1930 [92] and can be simply denoted
as

H = yIAyS (2.17)

where yI is the nuclear spin operator and yS is the operator of the electron spin.
The hyperfine tensor is typically notated as the sum of isotropic and anisotropic
contributions [93].

A = AisoI+Aani (2.18)

where I is the identity matrix. The anisotropic part results from dipole-dipole inter-
actions and is typically negligible for electrons in an s-type band, such as the silicon
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conduction band [94]. Resulting from the Fermi contact interaction, the isotropic
part is proportional to the electron density |Ψ(r)|2 at the atomic core positioned at
r.

Aiso =
4µ0

3
geµBgNµN|Ψ(r)|2, (2.19)

with the prefactor given by the vacuum permeability µ0, the Bohr and nuclear magne-
ton µB and µN, and the electron and nuclear g-factor in vacuum ge and gN. Equation
(2.19) is the non-relativistic limit, in which the Fermi contact interaction takes the
form of a delta function. In its relativistic form Aiso is defined as

Ar
iso =

4µ0

3
geµBgNµN

�
dr|Ψ(r)|2δ(r), (2.20)

The delta function is smeared to a finite size by relativistic effects and its exact shape
is determined by the atomic number of the nucleus. This smearing is important to
remove spurious divergencies and is adopted in the DFT code CP2K. The implemen-
tation in the code was done by Declerck and all information regarding the calculation
can be found in [95, 96]. The difference observed between the relativistic and the
non-relativistic approach within the utilized simulation framework is significant but
typically below 10%. However, in this text, we restrict ourselves to the non-relativistic
limit for simplicity.

For energies within a crystal band, the electron density depends on the wavefunc-
tion envelope Φ and the Bloch part u [91],

|Ψ(r)|2 = |Φ(r)|2|u(r)|2. (2.21)

With the Bloch part normalized to one over the crystal unit cell, the latter factor is
dimensionless. It is usually denoted as η ≡ |u(r)|2. It quantifies how much the electron
is pulled towards the atomic core compared to the rest of the unit cell. Quoted values
for the silicon conduction band are within η ≈ 160–190 [91, 97]. For germanium, the
authors of Ref. [98] “have made an experimental estimate based on observed nuclear
spin relaxation times which indicates ηGe is an order of magnitude larger than ηSi.”
The authors of Ref. [99] say “We arrive at a value of 570 by an informal fit to our
aggregated data across multiple devices with multiple quantum wells, and assume this
value throughout, although we acknowledge that the present data leave this number
about 30% uncertain.” An important difference between this work and Ref. [100] is
that our DFT calculation delivers wave functions estimates reliable also near atomic
cores. In Ref. [100], the value of η is an input that supplements the tight-binding
method and the authors adopted the value from Ref. [98].

Earlier computational studies have quantified hyperfine interactions from DFT
calculations in bulk materials [94, 93], utilized tight-binding methods [100], or com-
bined DFT and k · p calculations [101]. The novelty of the approach presented in this
thesis (and in [LC1, LC3]) is the application of DFT on heterostructures. The inter-
actions between a 2DEG and all other atoms can then be translated into an effective
interaction strength, that is used to calculate decoherence times in the ergodic limit.
While the latter is discussed in the following, actual results of the study are presented
separately in Chapter 6.
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2.2.5.1 Decoherence in the ergodic limit

Ergodicity is a term that expresses the capability of a dynamic system to go in all
possible states driven by random (thermal) fluctuations in a finite time. The time
scale that is of interest for us is the data acquisition time Δt of an experiment, that is
the time needed to collect data e.g. for determining the dephasing time T ∗

2 by means
of Ramsey spectroscopy [102]. In typical experiments, the acquisition time consists of
hundreds of measurement cycles and therefore, exceeds the dephasing time by orders
of magnitude. During data collection, the spin bath evolves as a result of thermal
fluctuations and nuclear spin-spin couplings.

The ergodic limit in this example describes the situation where the values of the
fluctuating Overhauser field prior to BN(t) and after the experiment BN(t +Δt) are
completely uncorrelated. Under these conditions, a measurement of the dephasing
time T ∗

2 yields always the same result. If, however, the data collection time is much
shorter, ergodicity does not apply, and T ∗

2 is prolonged [102]. The reason for that is
that the spin bath fluctuations are still correlated on the shorter time scale of Δt.

Starting from Eq. (2.17) and under the assumption of unpolarized and thermally
fluctuating nuclear spins, a standard derivation8 [103] gives the hyperfine-induced
variance of the electron spin energy as

�δE2� =
�

i∈isotopes
pi
Ii(Ii + 1)

3

�
n∈isotope i

|m ·Ai,n|2. (2.22)

Here the index i ∈ {73Ge,29 Si} or i ∈ {17O,29 Si} runs over spinful isotopes and n runs
over atoms of a given isotope. The isotope and atom indices apply for the hyperfine
tensor in Eqs. (2.17)-(2.19). For example, we could reinstate these indices on the
right-hand side of Eq. (2.19) by recognizing the isotope-dependence of gN → gN,i

and the atom-dependence by r → ri,n. We have omitted indices in Eq. (2.17)-(2.19)
to simplify the notation. All atoms of a given isotope have the same nuclear spin
magnitude Ii, being 9/2 for 73Ge, 5/2 for 17O, and 1/2 for 29Si, and the isotopic
concentration pi, being 7.8% for 73Ge, 377 ppm for 17O and 4.7% for 29Si in natural
silicon and 50–800 ppm in isotopically purified one. Finally, m is the unit vector along
the direction of the magnetic field and |·| is the Euclidean norm of a vector. We take m
along the z axis but expect no relevant directional dependence of the dephasing since
the hyperfine tensors are dominated by the isotropic part. Concerning the dephasing
from the oxygen atoms in Si-MOS, we expect that any anisotropy of the hyperfine
tensor would be averaged out by the random orientation of the atomic bonds in the
amorphous oxide.

Eq. (2.22) estimates the energy fluctuations of the two-level qubit system. The
dephasing time T ∗

2 can be evaluated in the ergodic limit by the textbook formula [84,
10]

T ∗
2 = �

√
2��δE2� . (2.23)

8The derivation averages over the nuclei states in a semi-classical approach, assuming that the
nuclear spins are continuous vectors pointing in all possible spherical directions.
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Let us stress again, that the assumption of ergodicity is valid in experiments where
the total time for the data collection (data acquisition time) is much larger than the
auto-correlation time of the nuclear spin bath. The latter depends on the diffusion
constant of the nuclear spins, which is estimated for the relevant atomic nuclei in
App. E.



Chapter 3

Computational methods

The goal of this thesis is to establish an ab-initio based description of material prop-
erties that affect the performance of Si spin qubits. We employ density function
theory (DFT) calculations in order to determine the electronic structure at the con-
duction band minimum of quantum confined electrons in Si. The outstanding feature
of DFT calculations with respect to other numerical methods for such applications
is that it provides a description of the electronic configuration without any specifi-
cally designed parameters. As implied by its name, ab-initio methods derive material
properties from first principles, i.e. natural constants. There are, however, some
subtleties that are worth discussing. As we will see in the following section, DFT
uses some approximations necessary to make the calculations feasible. Although it
has been known since the 1930s that determinantal functions (so-called Slater de-
terminants) can be constructed from molecular orbitals and provide arbitrarily good
approximations to the full wave function, such methods are extremely challenging to
implement numerically for larger systems. The approximations that are being made
in DFT concern the computation of exchange and correlation effects. The Slater de-
terminant ensures that the wavefunction is antisymmetric with respect to exchange
of two particles, as stated by the Pauli principle [104]. As such, it is an eigenstate
of the interaction-free many-body Hamiltonian. Correlation effects, meaning spatial
correlations in the motion of electrons, result from the fact that electrons interact
with each other through Coulomb interactions – they repel each other as they carry
negative charge.

The extreme computational requirements resulting from treating exchange by this
approach can be easily exemplified. Taking all electrons of a single Au atom (atomic
number 79) results in a determinant with 79!=8.95×10116 terms (again, a number
that is larger than the number of atoms in the universe). A single Slater determinant
corresponds to only one of all possible configurations (for example the singlet state
of a two-electron system). Thereby, it is assumed that the motion of electrons is
independent. Treating correlation is enabled by taking linear combinations of Slater
determinants, a method called configuration interaction (CI). Despite the incredible
advances in computational power since the 1930s, Dirac was right when claiming,
that this procedure can not be implemented in practice, so that approximations are
essential.

35
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That is why the ideas of Hohenberg, Kohn, Sham, and others that led to the
development of density functional theory were so successful. DFT is one of the most
accurate methods to determine the electronic structure of a given atomic configuration
that has proven its capabilities over the last decades [105]. Its rise truly began with
the formulation of efficient functionals that approximate exchange and correlation
with satisfying accuracy. While the vast possibilities and applications of DFT speak
for themselves, steady improvement of computational infrastructure is an additional
driving force for using this method.

Although the foundations of DFT can be considered “textbook knowledge”, a
rough overview is given in the following. Excellent literature on this topic includes
the detailed books of Parr and Weitao [106] as well as Szabo and Ostlund [107],
the less rigorous book of Dreizler [108], and the rather recent review of Jones from
2015 [105].

3.1 Density functional theory

DFT is a quantum mechanical modeling technique that is widely used to investigate
the electronic structure of many-body systems. It is an ab-initio method meaning
that its predictions and calculations are solely based on quantum mechnical consid-
erations and natural constants. There are no empirically fitted parameters9 present
that would be tuned for a specific application in order to reproduce experimental
results. Such parametrizations are required in other atomistic modeling techniques
like tight-binding, in which the hopping parameters and on-site energies are adjusted
to reproduce the band structure of the respective material.

A usual approximation in many-body electronic structure calculations is that
the nuclei of the system are assumed to be fixed. This assumption is called Born-
Oppenheimer approximation and is justified by the difference in the mass of electrons
and nuclei: Since the electrons are much lighter, the corresponding time-scale of their
motion is much shorter. Following this argument, we are allowed to separate the full
Hamiltonian into electronic and nuclear terms. We consider a stationary electronic
state with N particles as Ψ(r1, . . . , rN) in a static external potential V . Interactions
in the system are described by the electronic Hamiltonian

ĤΨ =
�
T̂ + V̂ + Û

�
Ψ =

�
N�
i=1

�
− �2

2mi

∇2
i

�
+

N�
i=1

V (ri) +
N�
i<j

U(ri, rj)

	
Ψ = EΨ,

(3.1)
where T̂ , V̂ and Û are the kinetic energy, the potential energy and the electron-
electron interaction energy, respectively. The operators T̂ and Û are universal for
any given system, while the external potential V̂ is system-dependent. This equation
is not further separable because of the e-e interaction term Û which makes solving
Eq. 3.1 a very challenging task.

9Hybrid functionals are an exception as they use a free factor that controls the mixing between
Hartree-Fock and LDA exchange, see Sec. 3.1.4.
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3.1.1 Hartree equations

In order to overcome this practical limitations, physicists employed further approxi-
mations. Historically, one of the first approaches to obtain approximate solutions was
the Hartree method. It uses the simplest way to approximate the wave function of a
many-body system, that is a simple product of wave functions of individual particles
χi(ri), so

Ψ(r1, . . . , rN) = χ1(r1) · · ·χN(rN). (3.2)

This expression is called the Hartree product. Douglas Hartree developed an itera-
tive method to solve Eq. (3.1), the so-called self-consistent field method [109]. This
method first assumes that the wave functions of each electron are independent (non
interacting), so that Eq. (3.2) is valid. The total charge density at position r due to
all electrons except i is

ρ(r) = −e
�
j b=i

|χj(r)|2. (3.3)

As can be seen, the interactions between the electrons are replaced by a interaction
of the electron i with an average field and is thus a mean-field theory. This charge
distribution creates a mean field potential ∇2VMF(r) = −ρ(r)/:0, with :0 the vac-
uum permittivity. This is the Poisson equation which can be solved using a Green’s
function

VMF(r) = − e

4π:0

�
d3rk

|χj(r
k)|2

r− rk
(3.4)

We can then use this potential to write down a Schrödinger equation for electron
i which results in a set of coupled differential equations for the full system�

− �2

2m
∇2 − eVlat(r)− eVMF(r)



χi = Eiχi (3.5)

These equations are called the Hartree equations. The Hartree potential VH is the
potential from the lattice Vlat and mean field electronic potential VMF combined.

This set of equations can be solve iteratively, by means of a variational method.
The basic idea is that the energy of a system Ĥ calculated with a trial wavefunction
is always larger than the ground state energy: ET > E0. We start from known
eigenfunctions χi(r), e.g. the orbitals of the hydrogen atom, and calculate the mean-
field potential. Then, we can solve the Hartree equations with VMF which yields a
total energy ET and a new set of χi(r). We can obtain a new VMF, plug it into
the Hartree equations, get again new eigenfunctions, and so on. An estimate for
the ground state energy is found, when the difference in ET between two consecutive
iterations is smaller than a certain threshold, i.e. the solution has converged to a set of
eigenfunctions representing the electronic ground state. As the mean-field potential
contains informations about all electrons j, the solution is called self consistent.

3.1.2 Hartree-Fock equations

The description of a fermionic system by means of a Hartree product is not suit-
able because the wave function in Eq. (3.2) is not antisymmetric under exchange of
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two particles as demanded by the Pauli principle (which was not fully understood
when Hartree formulated his equations). The antisymmetry was incoorporated three
years later by Fock and Slater independently. They built the wavefunction out of
determinants, the so-called Slater determinants. Writing a two-particle state as

Ψ(r1, r2) =
1√
2
[χ1(r1)χ2(r2)− χ1(r2)χ2(r1)] (3.6)

satisfies Ψ(r1, r2) = −Ψ(r1, r2) and can also be extended to the general case with
N particles Ψ(r1, . . . , rN). Consider the case of two particles in the same orbital
χ(r). Exchanging the particles leaves the system unchanged. The only way to satisfy
the antisymmetry requirement while still having an unchanged wavefunction is that
the function is zero everywhere. This corresponds to the characteristic property of
fermions, that is that two particles can not occupy the same orbital. Using a slater
determinant for the operators T̂ and V̂ in Eq. (3.1) gives the same result as the
Hartree product in Eq. (3.2). However, operators that couple the particles, like Û
above, yield an additional “exchange term”. Take, for example, a Coulomb interaction
Û = e2/r12 with r12 = |r1 − r2|. Then we get

�Ψ|Û |Ψ� = 1

2

�
ij

�
�χiχj| e

2

rij
|χiχj� − �χiχj| e

2

rij
|χjχi�



, (3.7)

where |χiχj� denotes a Hartree product state. These terms are referred to as the
Coulomb term and the exchange term, respectively. Employing slater determinants in
the self-consistent scheme, is called the Hartree-Fock method. Hartree-Fock assumes
that the N -body wave function can be approximated by a single Slater determinant.
There are more accurate theories, often referred to as post-Hartree-Fock methods,
like configuration interaction (CI) or multi-configurational self-consistent field (MC-
SCF) which use linear combinations of Slater determinants. However, the problem of
these (post-)Hartree-Fock calculations is the tremendous computational effort that is
needed for larger systems.

3.1.3 Mapping to the electron density

DFT offers a practical alternative to solving the Hartree-Fock equations that can be
applied to atoms, molecules and periodic bulk structures alike. The trick in DFT is to
express all properties of the system by the electron density. The electron density is a
function of the spatial directions, and thus its properties are expressed as a functional,
that is, roughly speaking, a function of a function. First, let us consider the electron
density

n(r) = N

�
d3r2 · · ·

�
d3rN Ψ∗(r, r2, . . . , rN)Ψ(r, r2, . . . , rN). (3.8)

It can be shown that the ground-state density n0 is directly connected to the ground-
state wavefunction Ψ0, in fact Ψ0 is a unique functional of n0 [110]. Based on this,
we can also express other measurable quantities that are expectation values of ob-
servables, as functionals of n0. Specifically, the ground-state energy can be expressed
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as
E0 = E[n0] =

�
Ψ[n0]

��T̂ + V̂ + Û
��Ψ[n0]

�
(3.9)

More generally, the same can be done for electron densities which are not the ground-
state density. Assuming we have suitable expressions for T [n] and U [n] (these are
universal functionals) and for a given system-specific V̂ we can write down a energy
functional

E[n] = T [n] + U [n] +

�
drV (r)n(r) (3.10)

which has to be minimized with respect to n.
In one of the most successful DFT procedures called Kohn-Sham DFT, the kinetic

energy is computed by assuming that the density corresponds to a wavefunction
consisting of a single Slater determinant (“non-interacting limit” analogous to Hartree-
Fock) as shown in Eq. (3.5)

Ts[n] =
�

�χi| − �
2m

∇2|χi� and n(r) =
N�
i=1

|χi(r)|2 (3.11)

The electron-nuclei interactions (expressed by V̂ , last term in Eq. (3.10) can be com-
puted exactly, and so can the Coloumb part of the electron-electron interactions J [n]
(a part of Û) by

V [n] =
�
A

�
dr

ZAn(r)

|RA − r| and J [n] =
1

2

� �
drdrk

ρ(r)ρ(rk)
|r− rk| . (3.12)

These expressions contain errors, first, because J [n] is not the full electron-electron
term. We have seen in Eq. (3.7) that there should appear exchange terms. Further-
more, the single-particle expressions for the kinetic energy is only an approximation.
This errors are usually collected in the so-called exchange-correlation term EXC. In
condensed matter physics, “correlation” denotes the interaction between electrons in
a quantum system and “exchange” describes the terms that appear due to the anti-
symmetry of the wavefunction with respect to exchange of the particles. EXC is
unknown but crucial for accurate results. The challenge here is to find an expression
which gives good results with acceptable computational costs.

3.1.4 Exchange-Correlation Functionals

Many functionals have been developed, with quite different approaches to estimate
the exchange and correlation parts which ultimately determine accuracy and com-
putational costs. We can arrange these approaches in a hierarchy of DFT exchange-
correlation functionals from lowest to highest accuracy, which corresponds directly to
the scaling of the computational costs.

• Local density approximation (LDA): The functional depends only on the density
at a given point. Example: S-VWN
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• Generalized Gradient Approximation (GGA): The functional depends on local
density and its gradient. Examples are PBE, PW91, LYP, B88

• Meta-GGA: Functional depends on density, its gradient, and its second deriva-
tive. Example: M06-L

• Hybrid DFT: Mixes in Hartree-Fock exchange. Examples: PBE0, B3LYP (hy-
brid GGA)

LDA or LSDA (local spin density approximation) if spin orbitals are employed, is
a simple way to estimate exchange and correlation based on results for a uniform
electron gas (slowly varying electron density). It served as a starting point for the first
DFT calculations used by Kohn and Sham in 1965 [111]. However, the electron density
in real molecules can vary rapidly over a small region in space. GGA improves over
LDA by also taking changes of the electron density into account. Satisfying results
can be achieved by GGA specifically for solids. A drawback that remains is that
GGA can not capture the −1/r asymptotic behavior of the exchange potential [112].

Hybrid functionals were introduced by Becke in 1993 [113] and marked the onset
of an extreme rise of the popularity of DFT calculations. Becke utilized Hartree-Fock
theory which treats exchange exactly at a cost that scales well with the size of the
system but still gives unacceptable results without further corrections for correlation.
Post-Hartree-Fock approaches like CI on the other hand capture correlation but do
not scale well with system size. As we have seen before, local density-functional corre-
lation approximation can be evaluated easily (by numerical integration of functionals
that depend only on the electron density). So the idea in hybrid functionals is to mix
Hartree-Fock theory and L(S)DA, which turned out to give much better results with
reasonable computational costs. The mixing is controlled via a free parameter that
can be adapted by the user.

3.2 DFT setup
We conduct most of our DFT calculations within the CP2K package [114]. This code
provides a general Kohn-Sham DFT framework to obtain the electronic structure of
molecules or bulk materials as well as for geometry optimizations, molecular dynamics
or transition state optimization using the nudged elastic band (NEB) method. In
every DFT approach, the wavefunctions are expanded in terms of a basis

χi(r) =
�
α

cαiφα(r). (3.13)

Common choices for basis functions are Gaussian-type orbitals (GTO) and plane
waves (PW). A PW set has the advantage that the orbitals are orthogonal and it is
thus computationally simple. For instance, derivatives are straight-forward to per-
form. However, representing orbitals requires a large PW basis set which furthermore
scales with the simulation cell. Localized basis sets like GTO are typically more com-
pact (it is sufficient to have a few basis functions per atom) and allow to model various
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regions of the cell with different accuracy. On the other hand, they are non-orthogonal
and often computationally more demanding.

CP2K employs both Gaussian-type orbitals (GTO) and plane waves (PW). The
basis sets are mixed in order to combine benefits of both methods. This approach is
called gaussian and plane wave (GPW) approach. In our usual framework, the core
electrons are not explicitly considered but replaced with so-called pseudopotentials so
that the bare Coulomb potential is replaced by a screened Coulomb potential. The
calculation of hyperfine interactions is a specific use case which demands knowledge
of the spin density at the nucleus and therefore requires explicit treatment of the
core electrons. Such all-electron calculations are done within the gaussian augmented
plane wave (GAPW) approach which uses an augmented basis set and separates
domains of hard and soft densities for increased performance [115].

As we are dealing with rather large structures containing up to 2500 atoms, we
employ various correlation and exchange functionals depending on the use case. The
structure is first optimized using the semi-local GGA functional PBE [116], and, in
the next step, the electronic structure is determined by means of the hybrid functional
PBE0 [117] which gives accurate results in semiconductors [118]. In the case of valley
splitting calculations in SiGe, presented in Cha. 5, the cell is additionally relaxed using
PBE0 [117] which improves the band offsets (and therefore also the valley splittings)
with respect to experimental values.

For calculating hyperfine interactions, the orbitals are expanded in correlation-
consistent polarized double-ζ basis sets10 for valence and core electrons [119, 120, 121].
Since the same basis sets are not available for Ge, we used the 6-31G double-ζ Pople
basis sets [122], which were previously reported to provide accurate hyperfine cou-
plings [123, 124]. The combination of PBE0 and all-electron basis sets for the calcu-
lation of hyperfine interactions is currently not feasible, therefore these calculations
were performed using PBE. The orbitals are expanded in double-ζ basis sets [125] and
the core electrons are approximated by Goedecker-Teter-Hutter (GTH) pseudopoten-
tials [126]. In all calculations, homogeneous electric fields are applied within the
formalism presented in [127]. Calculating spin splittings requires the consideration
of spin-orbit coupling which is unfortunately not implemented in CP2K. For those
cases we employed the Vienna Ab-initio Simulation Package (VASP) [128] with its
projector-augmented-wave method [129, 130].

3.3 Density functional based tight binding
The Density Functional Based Tight Binding method is an approximate version of
density functional theory which reduces the Kohn-Sham equations to a tight bind-
ing Hamiltonian [131]. As such, the approximation gives accurate results for many
bonding situations but fails if a delicate charge balance is required between differ-
ent atom types. This basic description, can be significantly improved by considering
a second-order expansion of the Kohn-Sham energy [132, 133]. In fact, this gives

10The valence orbitals are often represented by multiple basis functions. Basis sets with two (or
three) basis functions per valence orbital are called double (or triple) ζ basis sets.
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rise to a self-consistent treatment of the (Mulliken) charge in the system [134]. The
self-consistent charge (SCC) scheme combined with the computational approach of
tight-binding (TB) allows a good approximation to the DFT results while reducing
the computational effort drastically.

The standard TB method [104] expands the eigenstates of a given Hamiltonian
in an orthogonal basis of atomic-like orbitals. Then, the many-body Hamiltonian is
represented as a Hamiltonian matrix in this basis. The matrix elements would be
overlap integrals of the atomic orbitals responsible for tunneling of particles between
neighboring orbitals. However, these integrals are replaced by “hopping” parameters,
which are chosen in such a way that the Hamiltonian reproduces the bandstructure of
a reference system. DFTB starts from the Kohn-Sham energy functional Eq. (3.10)
with Eq. (3.11) and substitutes the electron density with a superposition of a ref-
erence density and a small fluctuation n → nref + δn. Upon expansion around the
reference density, terms linear in δn cancel out, and the obtained functional is correct
to second order in the density fluctuations. Furthermore, some correction appear
that are necessary for a TB total energy when charge fluctuations are considered.
The complete derivation of the DFTB Hamiltonian can be found in [134].

We employed DFTB as implemented in the DFTB+ code [135] for generating
realistic Si/SiO2 interfaces. We modeled the full thermal oxidation of Si as elaborated
in Sec. 4.2. This process required simulations on long time scales and large system
sizes well outside the scope of feasibility of DFT. DFTB provides a suitable alternative
for conducting simulations on such scales. In order to justify the use of DFTB, we
compared the results of a DFT based ab-initio MD with data from DFTB. A typical
reaction that occurs during the thermal oxidation of Si was chosen as a test case:
The adsorption and subsequent dissociation of an O2 molecule at the clean Si surface.
The details of this process are described in the next section, however, the qualitative
and quantitative agreement between the approaches is evident. As shown in Fig. 3.1,
the charge transfer during the reaction marks the dissociation of the O2 molecule.
As can be seen, the transfer of one elementary charge is captured by both methods
and the dissociation happens on a similar time scale. The spontaneous character of
the adsorption process is indicated by a barrierless energy profile along the reaction
trajectory.

3.4 Machine Learning

Machine learning (ML) has attracted a lot of attention in recent years. The extreme
rise in its popularity is connected to the potential applicability in almost every area
of science and technology. With respect to material science, ML has had specifically
strong impact when it comes to large-scale calculations of molecular dynamics (MD)
simulation [136, 137]. The idea is to train a ML model on atomistic structures and
their corresponding DFT energies and forces. Assuming a well chosen data set, the
machine learning force field (MLFF) should then be able to predict the energies and
forces of arbitrary yet related structures solely based on geometric informations of the
atomistic structure, that is without any knowledge of the electronic structure. This
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Figure 3.1: The results of dynamic molecular dynamics simulations calcuated with
DFT and DFTB, respectively (left panel). The charge transfer reaction proceeds at
comparable time scales. Recalculating some frames of the MD run indicates barrier-
less reactions in both cases with a similar energy gain (right) of around 8 eV.

can then be put to use for dynamic simulations. Instead of calculating the electronic
structure at every time step t of the MD run – a computationally very expensive
procedure, especially for larger systems – the MLFF is used to predict the forces
which are used to determine the atomic positions at t +Δt. Ideally, the predictions
of the MLFF yield the same results as a DFT calculation, however, with strongly
reduced computational costs. As presented in the next chapter, Ch. 4, the growth
of SiO2 on a Si substrate can be simulated via ab-initio calculations. However, the
system size is limited to a few hundred atoms. We trained a ML model on the DFT
data generated during the thermal oxidation process. The resulting machine learning
force field (MLFF) allows to extend the system size as well as the time scales of our
approach. In the following, we will briefly describe the methodology as well as the
utilized tools for this process.

3.4.1 Atomistic Structure Descriptors

The potential energy of a given atomistic structure is an inherent property that does
not change when the structure is rotated or translated in space. One example for a
description that contains an artificial offset is the typical representation in cartesian
coordinates, as it is based on an arbitrarily chosen origin. However, the usage of
unbiased metrics is essential for the training data of a ML model. For this purpose,
so-called descriptors are used to generate more abstract representations of the input
structures. A descriptor maps the atomistic structure to a mathematical object like
a vector that is invariant to rotation, translation, or the permutation of identical
atoms. This approach allows to reduce the size of the training data-set drastically
by only providing the essential information to the ML model without any artificially
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introduced offset. In other words, the descriptor processes the structural data in order
to provide the ML model with an optimized representation.

Within the scope of this work, we employed the often used smooth overlap of
atomic positions (SOAP) descriptor [138]. SOAP builds a local description of the
structure using gaussian smeared “orbitals” based on spherical harmonics and radial
basis functions. The accuracy is controlled by the user who can set parameters cor-
responding to quantum numbers in atomic orbitals. It generates a vector of real
numbers (the number of entries depends on the settings) which will be passed on to
the ML model either for training or for evaluation.

3.4.2 Gaussian Approximation Potential (GAP) Method

The Gaussian Approximation Potential (GAP) is one of the most successful ML
models for interatomic potentials [139]. For our purposes, we use QUIP, the software
implementation of GAP. Interatomic potentials can be separated in short and long
range contributions. Long range interactions are typically electrostatic effects like
polarizability or van der Waals forces. GAP builds on the hypothesis that the long
range interactions are negligible when computing the total energy of a system. Of
course, this is an ad hoc assumption and its validity has to be verified by numeric
experiments. However, within the scope of this assumption, the total energy of a sys-
tem can be taken as a sum of local contributions. Each of these contributions depend
on the local atomistic environment (neighboring atoms, bond lengths, etc. We now
employ the SOAP descriptor to generate a representation of the local environment,
defined by a cut-off radius rc. This data will be compared to other contributions in
the training data-set that was generated in an analogous procedure. The comparison
is represented by a function K(di, dt), with the SOAP vectors di and dt from the given
structure and training data, respectively. The total energy E is then evaluated as a
sum of the local contributions :j

E =
�
j

:j with :j =
�
i

αiK(di, dt) (3.14)

as schematically shown in Fig. 3.2. The weights α are learned during the training.
As can be seen, GAP estimates the potential energy surface without any previous
knowledge about its functional form. Efficient training is enabled due to the linear
relation between :j and K [140].
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Figure 3.2: Schematic of the GAP potential. The total energy : is obtained by
comparison (using the kernel function K) of the input structure (red) with structures
from the training dataset (blue). The weights αn are obtained from training the ML
model.





Chapter 4

Structure generation

Within the scope of this thesis, we present modeling approaches for two types of Si
heterostructures in which the confining material is either SiGe or SiO2. The principle
set-up of the simulation cell, as depicted in Fig. 4.1, is valid for both. However, the
interfaces are qualitatively very different, see Fig. 2.8. The alloy Si1−xGex crystallizes
in a diamond lattice just like Si. The Ge atoms simply occupy Si lattice sites leading
to a lattice mismatch of up to 4% for x = 1 [141]. The oxide SiO2, on the other
hand, is an amorphous material which implies a more complex atomic configuration
especially at the interface between the crystalline Si and the amorphous SiO2.

The drawback of DFT, as of any ab-initio method, is certainly the high computa-
tional costs which limit the size of our model system to a few thousand atoms. The
modeling of a complete quantum device is currently completely out of reach and even
a quantum dot of realistic size alone is far out of reach. Therefore, we have to neglect
planar confinement and consider cells that repeat after a few nm in the in-plane di-
rections. The resulting heterostructure represents a quantum well, and the electrons
are confined in z direction within the well.

Realistic atomistic interface structures are the backbone of our calculations and set
this work apart from previous computational studies. The rigorous generation of the
interfaces is an essential condition for modeling the subtle effects that arise in spatially
confined Si structures. In order to obtain realistic atomistic interfaces, we relied
on several computational methods such as ab-initio molecular dynamics (AIMD) or
density functional based tight binding (DFTB) and employed a machine learning
(ML) model to generate larger structures with less computational costs. Especially
the production of realistic Si/SiO2 interfaces is a challenging task. Here, we present
a novel approach for the generation of such crystalline/amorphous interfaces [LC4]
which can be potentially extended to other material systems as well.

The two types of heterostructures that will be investigated require distinct ap-
proaches for the generation of the interfaces. Si/SiGe interfaces are straight-forward
to construct and can be directly used as credible model structures after optimizing
their cell and geometry. For Si/SiO2 interfaces, we model the thermal oxidation of a
Si surface within a framework of dynamic simulations. A detailed description of the
applied procedures is given in the following for both material systems, respectively.
The section on Si/SiO2 (Sec. 4.2) additionally contains a number of insights that
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Figure 4.1: Schematic of the heterostructure model employed in the DFT calculations.
The electron envelope Φ(z) is sketched in orange.

have been gained from the dynamic growth model. This includes a comprehensive
oxidation scheme that explains the growth kinetics of thermal oxidation of silicon.

4.1 Si/SiGe

As explained above, SiGe and Si share the same lattice type with different lattice
constants, aSi and aSiGe. When forming a periodic heterostructure the resulting
lattice constant of a cell optimization will be somewhere in between aSi and aSiGe.
However, in typical qubit designs, there is only a thin layer of Si (around 10 nm or
70 monolayers) that is sandwiched between thick Si1−xGex layers. Thus, the Si layer
gets strained as it adapts to the Si1−xGex substrate. A Ge concentration of 30 %
is typically used in experimental prototypes [9] and also employed as the confining
material in our models. We furthermore adapt the in-plane lattice to the pristine
Si0.7Ge0.3 lattice constant aSiGe = bSiGe = 0.555 nm from a cell optimization within
our DFT framework. For the pure Si cell we find a0 = 0.545 nm. The Si layer
experiences a tensile, biaxial strain of 1.8 % in our simulation cell. In plane, we
use a three-by-three superlattice which adds up to 1.665 nm in plane, see Fig. 4.2.
The thickness of the Si layer is up to 10 nm which means that we reach the actual
dimension of Si heterostructures utilized for spin qubits [48]. The cell vector of the full
simulation cell in z-direction is optimized for every structure individually to account
for different average Ge concentrations that occur due to disorder or as a result of
the various Ge profile that we consider in our simulations, see Fig 4.2. Ge atoms
are randomly distributed at the lattice sites of each monolayer in such a way that
the cross-section averaged Ge concentration reproduces a predefined Ge profile. This
way, we include atomistic disorder but avoid unrealistically strong fluctuations in the
Ge concentration that would be averaged out in both larger models or real devices.
Here, one drawback of DFT that can not yet be overcome is the limited size of the cell
which limits consideration of long-range disorder. Each monolayer in our supercell
consists of 18 atoms. Therefore, we obtain a step-like distribution of Ge atoms in the
cell, as one Ge atom per monolayer in the [001] oriented simulation cell represents a
Ge concentration of 1/18≈ 5.5%, Fig 4.2a. As a result, we can not model arbitrary
Ge profiles. After distributing the Ge atoms on the lattice as described above, the
resulting SiGe/Si/SiGe heterostructure is relaxed within a cell optimization based on
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DFT calculations with the hybrid PBE0 TC LRC functional [117]. Residual atomic
forces are below 3×10−4 H/a0.

As elaborated in Sec.2.2.3, spin qubits in Si/SiGe often show detrimentally low
valley splitting. Recently, there have been various propositions on how to overcome
this problem, namely by engineering the properties of the quantum well by means of
Ge spikes or oscillating Ge concentrations in the well [67]. Our ab-initio approach
allows to incoorporate such designs to some extend. We have seen in Sec. 2.2.3
that the valley splitting can be understood as a coupling of the valley states via the
quantum well potential. Evaluating the matrix element within the framework of an
effective mass approach leads to the insight that the valley splitting is proportional
to the Fourier transform of the (envelope weighted) quantum well potential evaluated
at 2k0 ≈ 20 nm, see Eq. (2.13). The step-like Ge distribution corresponds to sharp
features in the quantum well potential which in turn corresponds to a broad Fourier
spectrum. Thereby, the Fourier component at 2k0 is lifted, resulting in artificially
large valley splittings. This error would become smaller with increasing cell size. In
order to circumvent these problems, we restrict ourselves to a subset of well designs,
namely Ge profiles in which the Ge content varies within each monolayer in steps
of 5.5%. Obviously, such profiles can be built in large simulation cells containing
thousands or millions of atoms, but they are also naturally reproduced when filling our
simulation cell with Ge. Thus, comparison with other modeling techniques becomes
possible.

4.2 Si/SiO2 from first-principles

The results presented in this section have been published
in [LC4]. Text and figures are adapted from there.

The construction of credible Si/a-SiO2 interfaces is a more complex process as
we are dealing with a crystalline/amorphous interface and can not simply optimize a
lattice structure as in the case of Si/SiGe. Such a calculation would simply converge
into a local energy minimum of two adjacent crystalline materials. The production of
amorphous materials has a long history in material modeling [142, 143]. A commonly
used method is the so-called melt-and-quench procedure in which a crystalline struc-
ture containing the correct atomic composition is the starting point. This structure
is melted within a molecular dynamics run using a classical inter-atomic force-field
by ramping up the temperature above its melting point at several thousand K. Sub-
sequently, the temperature is quenched (i.e. reduced to 0 K within a few ps) which
“traps” the structure in an amorphous phase. For this purpose, classical force-fields
are used because of the relatively long simulation time of µs. Although the melt-
and-quench procedure is commonly used to generate amorphous atomistic structures
that agree reasonably well with the experimental values of geometry parameters such
as density or bond lengths, the approach involves several constraints that become
particularly important when constructing interface structures to crystalline materi-
als. First, the atoms of the crystalline material (in our case the Si layer) are fixed
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Figure 4.2: Si/SiGe heterostructures. (a) The limited size of the simulation cell
leads to a step-like distribution of Ge atoms in the respective layers. The Ge atoms
randomly replace Si atoms in each monolayer in such a way that the cross-section
averaged Ge content corresponds to the desired well profile. (b) The heterostructure
consists of a 10 nm thick Si layer with 4.3 nm SiGe barriers on both sides. A region
around the Si/SiGe interface is depicted in the lower panel. Represented by a blue
isosurface is the wavefunction of a conduction band electron as obtained from DFT.

during the MD to retain their crystalline structure. Thus, an extremely unrealistic
temperature gradient between the melt (several thousand K) and the crystal (0 K)
is considered in the simulation cell. Second, atoms from the melt tend to diffuse to
the crystalline part due to their high kinetic energy. The migration of these atoms is
usually avoided by introducing artificial potentials (acting as reflective “walls”) at the
interface. Third, the classical force fields are used for their low computational costs,
however, also imply lower accuracy. All these effects combined, might artificially in-
fluence qualities of the structures like interface roughness, strains, and thickness of
the transition layer.
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To overcome the limitations of the melt-and-quench procedure, we modeled the
thermal oxidation of an initially clean and reconstructed Si surface that is exposed
to gaseous O2. We employ ab-initio molecular dynamics (AIMD) simulations based
on DFT as well as density functional based tight-binding (DFTB) simulations to
grow an ultra-thin layer of amorphous SiO2 on the Si surface at a temperature of
1000 K. In addition to obtaining more realistic interface structures, this approach
offered new insights concerning the thermal oxidation process itself, as many details
such as the onset of amorphization and O2 diffusion are still under debate in the
literature. Furthermore, the interface structures have been used to train a machine
learning force field (MLFF) that allows to conduct simulations on a larger scale due
to lower computational costs while keeping the accuracy of DFT.

In this subsection, we provide details about the oxidation scheme as based on our
AIMD/DFTB results and a detailed geometric analysis of the atomic configuration.
We furthermore compare to the state-of-the-art melt-and-quench procedure, which
shows that more realistic interfaces can be obtained by the proposed gradual sur-
face oxidation. Finally, we show larger models of oxidized surfaces that have been
generated with the machine learned potential.

4.2.1 Thermal Oxidation of Si

While we use the interface structures within the context of qubit applications, Si/SiO2

is still an integral part of many electronic devices. In fact, silicon has played a major
role in semiconductor technology since the 1950s. The insights into the thermal oxi-
dation process from the ab-initio perspective is therefore not only relevant within the
scope of this thesis but might find a broad range of applications spanning from mod-
ern transistors to single-electron devices [144] and up to spintronics [145] or quantum
devices [9].

One of the most important reasons for the extensive use is the interplay with
its native oxide SiO2 which allows to construct semiconductor/insulator interfaces of
exceptional quality [146]. Massively produced devices like MOSFETs benefit from
low defect densities at the interface and convenient growth of the oxide directly onto
a Si substrate by thermal oxidation [147]. Although pure SiO2 is being gradually
substituted as a gate dielectric by other materials possessing significantly higher di-
electric constants [148, 149], commonly referred to high-k dielectrics, the inclusion of
an ultra-thin SiO2 passivation layer on the Si substrate prior to the application of
the high-k film remains crucial. This SiO2 passivation layer greatly enhances device
performance, making it an essential component also in modern devices [150, 151, 152].
Contemporary trends in fabrication and down-scaling of device dimensions have redi-
rected research focus towards low-temperature chemical-based bottom-up fabrication
methods [153, 154, 155]. Among these methods, the creation of ultra-thin SiO2 layers
holds paramount significance.

Typically, thin layers of SiO2 are generated through the thermal oxidation of
silicon. The underlying mechanisms of this process have been examined extensively
over decades, both through experimental and theoretical means [156, 157, 158, 159,
160, 161, 162, 163, 164]. In modern technologies, a-SiO2 layers have thicknesses on
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the order of a few nm. Consequently, the intricacies of the initial oxidation phase
have gained heightened significance in recent times. Nevertheless, issues such as the
onset of amorphization and the intricate interplay of various oxidation mechanisms
are still unresolved.

Here, we provide a comprehensive bottom-up approach focused on the atomistic
details during the full thermal oxidation process and the intricacies associated with
the various oxidation mechanisms. For the first time, the complete growth of an
ultra-thin SiO2 layer was realistically modeled within dynamic simulations in full
agreement with all experimental and theoretical knowledge that has been gained on
this subject until now. The results have been published in [LC4] with a preliminary
version in [LC5].

4.2.2 State-of-the-art models and experiments

Among the various theoretical assessments of thermal oxidation, the seminal model
developed by Deal and Grove accurately describes the later stages of the silicon ox-
idation process [156]. The model is based on the well-established concept for Si
oxidation that O2 molecules enter the SiO2 surface layers and diffuse to the Si/SiO2

interface where they dissociate and individually relax into their respective lattice
sites [157, 158, 159, 160, 161, 162, 163, 164]. However, these assumptions seem
to be only valid for a well-progressed oxididation stage (oxide thickness > 30Å)
as the model predictions strongly underestimate the growth rates for thin oxide
films [165, 166], see Fig. 4.3.

Figure 4.3: The prediction of the Deal-Grove model (dashed line) fails in the initial
oxidation stage, the oxidation rate is strongly underestimated which can be explained
by spontaneous surface reactions. The experimental data at 850°C (black circles) is
taken from [165].
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Previous ab-initio calculations showed that the initial oxidation of a clean and
reconstructed Si surface is based on chemisorption events resulting in the dissoci-
ation of the adsorbing O2 molecule directly at the surface [167, 168, 169]. This
was confirmed experimentally in recent electron microscopy and photoemission stud-
ies [170, 171, 172]. In addition, metastable molecular surface states were observed by
means of scanning electron microscopy and electron spectroscopy techniques on thin
oxide layers [173, 174, 172, 175, 176]. At low temperatures, these states precede disso-
ciation events, however, vanish upon annealing. Hence, they are merely intermediate
states toward the dissociative surface reaction. Both adsorption types, direct and
molecular precursor mediated, were observed in molecular beam experiments [177].
According to this study, incident O2 molecules of high kinetic energy (> 1 eV) tend
to dissociate directly, whereas the molecular precursor states originate from trapping-
mediated adsorption of O2 with low kinetic energy (< 0.2 eV). Upon dissociation,
the O atoms moved into backbonds of Si surface atoms, as correctly predicted by the
above mentioned theoretical studies [167, 168, 169].

Combing these results, two major kinetic mechanisms seem to be at work: surface
reactions dominate the initial stage, while the diffusion of O2 becomes more impor-
tant as the oxidation continues. Based on this concept, a theoretical growth model
that considers dissociative chemisorption at the surface has been formulated [178]
and reported to give good agreement with experimental data. Further experiments
indeed support the concept of two distinguishable oxidation stages. As reported in a
photoelectron spectroscopy study [179], the initial stage at low O2 exposure of up to
10 L (1 L: 10−6 Torr s) featured relatively rapid oxidation. Maintaining the supply
of O2, the oxygen surface coverage saturated and the oxidation rate was reduced as
the system gradually transitioned into the Deal-Grove regime. According to trans-
mission electron microscopy (TEM) experiments on Si nanoparticles, diffusion of O2

molecules becomes important after formation of a 5Å thick oxide layer [170].
Besides establishing the fundamental processes of oxidation, the origin of amor-

phization is still a controversial issue in literature. Although some studies predicted
the initial growth of a crystalline Si oxide monolayers [180, 181], an increase in the
surface roughness during the initial oxidation was observed by atomic force micro-
scope measurements [166] indicating an amorphous oxide growth. More recent TEM
measurements support this idea and reported evidence that amorphous oxides were
obtained by rapid thermal oxidation (RTO) [182, 170]. These experiments only stud-
ied oxide surfaces with more than five monolayers (ML) of SiO2 (from crystalline
SiO2: 1 ML: 6.78 × 1014 atoms/cm2 [179]). In contrast, our simulations go beyond
these measurements and offer detailed insight into the oxidation process from the
onset of oxidation.

4.2.3 Oxidation scheme

The thermal oxidation was modeled by the subsequent adsorption of O2 molecules
within ab-initio molecular dynamics (AIMD) simulations in conjunction with density
functional theory (DFT). Energy barriers for the migration of oxygen in the oxide
layers were obtained by nudged elastic band (NEB) calculations. The initial oxidation
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process featured the highest oxidation rate enabled by spontaneous surface reactions.
An immediate amorphization was indicated by arbitrarily incorporated oxygen along
many possible adsorption trajectories. The oxidation led to the spontaneous for-
mation of SiO4 tetrahedrons, the characteristic structural elements of a-SiO2. With
increasing O coverage, we observed that O-coordinated Si atoms were less susceptible
for O2 chemisorptions. Hence, repulsion of the incident O2 became more probable
and the oxidation rate decreased gradually as the surface was oxidized. In this stage,
direct dissociation (< 0.5 ps) was only possible for O2 molecules of high kinetic energy
while the molecular precursor states were typically observed for low energy molecules
leading to a further decrease in the oxidation rate. The subsequent transition to the
diffusion limited regime and the associated migration of O2 was investigated on a
20Å thick surface layer of a-SiO2. O2 diffusion became the dominate mechanism as
soon as a sufficiently thick surface layer was saturated with O. The saturation was
consistent with the formation of a-SiO2 and indicated the transition into the Deal-
Grove regime. A spontaneous dissociation, similar to the surface reaction, was then
observed at the Si/SiO2 interface. An overview of the mechanisms and their onset
during the oxidation process is given in Fig. 4.4.

Our calculations were mainly conducted at the ab-initio level utilizing density
functional theory (DFT). In order to study oxidation mechanisms beyond the initial
steps of O adsorption and dissociation, further investigations inevitably had to be
carried out on larger model systems. Especially for DFT calculations, the computa-
tionally feasible simulation time was limited to a few ps and could be even lower for
structures with an increased density of crystallographic defects. To be able to fur-
ther extend our data set, we additionally used density functional based tight binding
(DFTB) in conjunction with a Slater-Koster parameter set designed for Si surfaces
and interfaces with SiO2 [183, 184]. Initial benchmarks showed that both methods
yield comparable results. The details of the utilized methods and their applications
within this work (cf. Fig. 4.4) are summarized in Sec. 3.

The starting point of our investigations was a 4× 4× 12 reconstructed Si surface
structure. A cleaved Si surface leads to undercoordinated Si atoms at the surface
that reconstruct by forming alternating rows of tilted dimers to minimize its energy.
This reconstruction reduces the number of dangling bonds on the surface via electron
transfer from the lower Si dimer atom to the upper one [185]. In the present structure
eight dimer pairs formed within the simulation cell. The dimers were aligned in rows
that build terraces on the surface separated by cavities, the so-called channels. The
dangling bonds at the bottom of the structure were passivated with hydrogen. The
bottom Si layer and the passivating H atoms were fixed in AIMD runs to resemble a
bulk like structure. After reconstruction of the surface, optimizing the cell including
the ionic cores in the lateral directions within DFT resulted in cell dimensions of
a = b = 15.523Å. The cell size in the c-direction was set to c = 37.22Å leaving
a vacuum of 20Å above the slab. The thermal oxidation of Si was studied on this
model by means of AIMD until 1.6 ML of O were adsorbed. Thereafter, we employed
DFTB to model the thermal oxidation up to an oxide thickness of 8.5Å.
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Figure 4.4: Oxidation scheme: In the initial stage, spontaneous and dissociative ad-
sorptions of O2 molecules are observed in DFT-based ab-initio MD (AIMD) calcula-
tions. These surface reactions are responsible for the increased growth rate compared
to the Deal-Grove regime and lead to an immediate amorphization of the surface ox-
ide. After oxidation of the first layer (oxygen coverage of 1 ML), an adsorption barrier
forms and requires imposing initial velocities onto the O2 molecules. As soon as the
oxygen coverage reached 1.6 ML, the predominant adsorption mechanism changed to
a slower process exhibiting molecular O2 precursors that dissociated after a few ps.
In order to cope with the longer simulation times needed, we employed DFTB for the
further oxidation of the Si slab until a 8.5 Å oxide layer formed which showed struc-
tural characteristics of bulk a-SiO2. Eventually, the saturated surface became inert
to any surface reactions and O2 diffusion to the Si/SiO2 interface – the fingerprint of
Deal-Grove oxidation – set in as observed on a 20 Å thick oxide.

4.2.4 Initial O2 adsorption and amorphization

Our investigations started with a single O2 molecule that was placed 2.5Å above
the reconstructed Si(100) surface. An ensemble of randomly generated and Maxwell-
Boltzmann (MB) distributed velocities, scaled to match the specified temperature
T = 1000K, was assigned to all atoms and a spin-restricted (S = 0) AIMD simulation
with a simulation time of 3 ps and a step size of 0.5 fs was performed. Subsequently,
the structure was relaxed within DFT. In this vein, several simulations with various
starting configurations yielded consistent results as discussed in the following. Fig. 4.5
shows snapshots of one representative O2 adsorption and dissociation event together
with the associated charges obtained by a Mulliken charge analysis. The O2 molecule
spontaneously moved toward an upper Si dimer atom that was charged positively as
the O2 molecule approached. After 170 fs the molecule was centered above the Si
dimer atom and started to dissociate. Within the next 80 fs, the dissociation process
was completed and the charges remained constant for the rest of the simulation. The
two oxygen atoms relaxed into the backbonds of the upper Si dimer. In total, a
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charge of roughly −e was transferred from the surrounding Si surface atoms to the
O2 molecule. In a simple molecular orbital picture, the donated electron occupied
the antibonding π∗ orbital of the O2 molecule, triggering its dissociation. Note that
the gradual increase of charge depicted in Fig. 4.5 resulted from the adiabatic rep-
resentation within DFT. In reality, the charge would be transferred much faster in
a non-adiabatic process. Regardless, a spontaneous dissociative surface reaction was
indicated by the very rapid reaction with the Si surface that was found to be indepen-
dent from the starting configuration. This result was further supported by a series
of static calculations. Placing O2 molecules at random positions above the clean and
reconfigurated Si(100) surface and relaxing the structure within DFT led to the dis-
sociation of the molecule. Furthermore, a barrierless dissociative oxidation was also
reported in [168]. Compared to the pre-adsorbed state, the intact O2 molecule above
the pristine Si slab, the dissociated and geometry optimized structure was 7.28 eV
lower in energy. As shown in the last snapshot in Fig. 4.5, the Si atom on top was
still undercoordinated resulting in a surface dangling bond. This exact configura-
tion was already observed experimentally by STM images of a sparsely oxidized Si
surface [172].

Crystalline oxide structures on Si surfaces have been investigated thoroughly
within theoretical studies [180, 181]. However, the fact that thermally grown SiO2

is amorphous was established decades ago and more recent studies reported evidence
that this is also true for thin films of 10Å to 50Å obtained by RTO, as reported
by various TEM studies [182, 170]. However, it is still unclear if the very first oxide
layer is already amorphous. Within our dynamic simulations, strong evidence for
immediate amorphization was found as presented in the following.

We modeled the thermal oxidation process by a series of AIMD simulations at
1000K in which O2 molecules were consecutively introduced above the reconfigurated
Si(100) surface as shown in Fig. 4.5. The individual initial position was assigned ran-
domly within a distance of 2Å to 3Å above the top Si atom. As for the adsorption
in Fig. 4.5, the velocity was chosen randomly from a MB distribution at T = 1000 K.
The axis of the O2 molecule was aligned with the surface in order to allow for ef-
fective interaction due to larger spatial overlap between the surface dangling bonds
and the oxygen π∗ orbital. The simulation time for each adsorption event was set to
1 ps. After this time, another O2 molecule was introduced similarly to the previous
one, while all other atoms continued to move according to their current velocity. A
Mulliken charge analysis showed that the fundamental oxidation mechanism – a dis-
sociative chemisorption via a charge transfer similar to the reaction shown in Fig. 4.5
– underlay every single adsorption during the initial surface oxidation. However,
adsorption became less probable as the oxidation progressed. Only the first six ad-
sorptions, corresponding to an oxygen coverage of 0.7 ML in our structures, happened
spontaneously. After that, the O2 molecules were occasionally repelled from already
oxidized Si atoms. In this case, the run was discarded. After 9 successful adsorptions
(or 1.1 ML), a spontaneous adsorption could not be observed within 10 runs. We
interpreted the decrease in adsorption probability as the emergence and subsequent
increase of an adsorption barrier with proceeding oxidation. In order to overcome
the formed adsorption barrier and to study further oxidation within a reasonable
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Figure 4.5: The dissociative chemisorption of O2 (red atoms) onto a clean and re-
constructed Si(100) surface (yellow atoms). Snapshots of the AIMD simulation are
given in the upper panel. The top right panel shows the geometry optimized struc-
ture after dissociation. The spin density for values ±0.002 e/a0

3 is depicted by cyan
and magenta isosurfaces, respectively. The Mulliken charges of the oxygen atoms,
the top dimer Si atom (T), and the neighboring Si atoms (N) during the first 500 fs
of the chemisorption are shown in the lower left panel. A barrierless adsorption and
dissociation is indicated by a NEB calculation along the adsorption trajectory in the
lower right panel.
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time frame, we imposed an initial velocity of 1000m/s toward the surface for the O2

molecule from this point onward. This value roughly complies with the average veloc-
ity of v = 810m/s according to the MB distribution of non interacting O2 molecules
at T = 1000K. Adsorption of O2 – a process that happened spontaneously onto the
clean surface within static and dynamic calculations – was inhibited by the oxide
formation on the surface. This behavior qualitatively explained the decrease of the
oxidation rate measured in the initial stage of oxidation [179] and gave rise to the
non-reactive O2 diffusion process later on [156].

The immediate amorphization of the oxide layer is enabled by a stochastic adsorp-
tion process in which the adsorption trajectory of each O2 molecule depends strongly
on its initial position and velocity and even on fluctuations of the surface lattice due to
thermal vibrations. The stochastic character of the oxidation process is indicated by
many different adsorption trajectories featuring comparable energy gains and strongly
varying final configurations.

The adsorption trajectories were very sensitive to changes of the environment as
investigated by two comparative AIMD runs. As shown in Fig. 4.6, the adsorption
of an O2 molecule was sampled for two different velocity distributions (taken from a
MB distribution as described above) of the surface lattice. The initial position and
velocity of the O2 molecule was identical for both runs. The resulting trajectories are
completely different although the energy gain of around 6.5 eV is very similar. This
implies that even weak perturbations alter the resulting structure substantially. The
intrinsic high degree of randomness during the oxidation provides strong evidence for
the immediate amorphization of the oxide layer.

4.2.5 Molecular precursors and surface saturation

Sampling slower surface reactions and more spontaneous adsorptions in which the
adsorption barrier was overcome, requires a longer simulation time together with an
increased number of calculations. Furthermore, extending our investigations in the
direction of the formation of a-SiO2 required a larger amount of oxygen. Hence,
we conducted these calculations within DFTB. The molecules were placed about 2
to 3Å above a surface Si atom before MD simulations of 10 ps with a step size of
0.5 fs were conducted. The first simulation started with random initial velocities
(MB distribution at T = 1000 K) for all surface atoms that were passed on to the
subsequent run. The O2 velocities were sampled from the same distribution though
restricted to the negative z-direction. If a molecule was repelled from the surface, it
was removed from the simulation cell at the end of the run.

After the first Si layer was oxidized, spontaneous dissociative adsorptions could
hardly be observed. Instead, the O2 molecules adsorbed via a metastable molecular
precursor state. Dissociation events of these molecules could be sampled within the
time-extended DFTB simulations, as shown in Fig. 4.7. Again, the dissociation was
induced by a charge transfer. The surface was subjected to a considerable reconfigu-
ration, mainly associated with the breakage of multiple Si-O bonds which adjust for
the dissociation and incorporation in a SiO4 tetrahedron. Such precursor states block
further adsorption of oxygen molecules and thus effectively lower the rate of oxida-
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Figure 4.6: Two examples of O2 adsorption trajectories of O2 adsorptions with the
same initial position and velocity of the O2 molecule but different velocities for the
surface atoms. The snapshots show the final positions after a simulation time of 450 fs
superimposed with the starting configuration. Also shown are the trajectories of the
adsorbing O atoms (red lines). The energy gains ΔE were calculated for geometry
optimized structures.

tion. As mentioned above, we also observed the direct adsorption and dissociation
mechanism, provided the O2 molecules possess a sufficiently high kinetic energy, see
the supplemental material. However, this process required O2 velocities from the top
one percent of the MB distribution and was thus ranked negligible in the framework
of this work. However, both mechanisms involve the breaking of bonds between al-
ready dissociated O atoms and neighboring Si which is only feasible if the O atoms
find new positions, i.e. can bind to Si atoms below not fully oxidized ones. Thus, the
rate for direct dissociative oxidation gradually decreases as the oxidation advances
and eventually can be considered negligible once a few layers of Si are oxidized. The
precursor-mediated process with a reduced oxidation rate is dominant in this regime.

The oxide layer reached a total thickness of 8.5Å after the adsorption of 32 O2

molecules or 4 ML. As presented in the following section, the oxide could be sub-
divided into a 3.5Å thick layer of a-SiO2 on top of a 5Å transition region. In this
stage, all Si atoms on the surface were fully O coordinated and incorporated in a
spontaneously formed SiO4 tetrahedron, see Fig. 4.7 and 4.8. As a result, the surface
structure was highly unordered. A spontaneous adsorption of O2 molecules onto this
surface could not be observed, as an additional molecule was repelled from 25 ran-
dom positions. The chemical composition of the a-SiO2 surface layer was SiO1.95. A
structural analysis of this layer showed that the bond lengths and angles are already
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t = 0 fs t = 3800 fs

Figure 4.7: Molecular precursor mediated adsorption. The O2 molecule adsorbs to a
already fully oxidized Si atom (the SiO4 tetrahedron is indicated by blue planes) and
stays in the vicinity of this atom for around 4 ps within our simulations until it finally
dissociates. Two O atoms migrate to lower Si atoms which adjust their position to
the incorporation of the dissociated O atoms, as indicated by the black arrows.

comparable to the experimentally obtained values for bulk a-SiO2 [186, 187]: the av-
erage Si–O distance was 1.66Å and the binding angles showed an average of 108° for
O–Si–O and 132.5° for Si–O–Si, see Fig 4.8. The slightly larger bond lengths (com-
pared to 1.62Å of bulk SiO2) could be assigned to surface effects. The O–Si–O angles
matched the perfect tetrahedral bond angle of 109.47°. The Si–O–Si angle averaged
at 132.5°, which agreed well with the conclusions reached in Ref. [188], that the angle
is reduced to 135° in thin films compared to 148° in bulk structures. Furthermore,
the Si–O–Si angles were broadly distributed between 100° to 160° which indicated
a vitreous (amorphous) form of silica. The density of the SiO2 layer was roughly
2.33 g/cm3 in agreement with measured values [186]. The density of the transition
layer directly at the Si/SiO2 interface was slightly increased to values up to 2.7 g/cm3

which agrees with an intrinsic compressive stress as reported in [189, 190]. A Mul-
liken charge analysis allowed us to infer the oxidation state of each Si. Due to the
strong electronegativity of O, a Si-O bond is represented by an increase of the Si’s
associated Mulliken charge. As determined by a reference calculation in defect-free
a-SiO2, the fully oxidized state Si4+ corresponded to an increase of roughly 1e in our
DFT setup, yielding ∼ 0.25e of excess charge on the Si ion per Si-O bond. The preva-
lence of different Si oxidation states as determined by this relation during the thermal
oxidation is shown in the middle panel in Fig. 4.8. For a sparsely oxidized surface,
the O was distributed evenly on the Si atoms as shown by the large number of Si+.
In later stages however, most Si were fully O coordinated with only a few partially
O-coordinated Si atoms that were located at the interface to the Si substrate. Si4+
atoms were fully coordinated by O and incorporated in a SiO4 tetrahedron. We ob-
served that the transition into the O2 diffusion regime (Deal-Grove regime) happened
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Figure 4.8: Characteristics of the SiO2 growth obtained by dynamic simulations
within DFTB. Distributions of the bond lengths and angles and the comparison to
experimental values of bulk SiO2 [186, 187] (dashed lines) are shown in the top panel.
The prevalence of different Si oxidation states as obtained by a Mulliken charge anal-
ysis is shown in the middle panel. As oxidation continues, the amount of Si4+ (fully
oxidized Si atoms that are incorporated in SiO4 tetrahedrons) increases whereas the
amount of Si+ converges to a lower value that represents states in the transition re-
gion (TR) between the oxide and the crystalline Si substrate. The final and geometry
optimized structure is shown in the lower panel. SiO4 tetrahedrons on the immediate
surface are indicated by blue planes.
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as soon as a sufficiently thick surface layer was fully oxidized. During this stage,
the O2 could not chemically react with the surface anymore and thus diffusion of O2

through the oxide set in.

4.2.6 Transition layer at the interface

Within computational material modeling, the construction of credible interface struc-
tures between amorphous oxides and crystalline substrates is a challenging task [191,
192]. Typically, computationally modeled Si/SiO2 interfaces are created using a melt
and quench procedure [193, 194, 142, 143]. In this approach, atomistic structures are
melted at temperatures of up to 7000K within simulation times of tens of picoseconds
while ensuring that the silicon maintains its crystalline structure and the oxygen is
confined to a certain region. In contrast, by consecutively adsorbing O2 molecules
onto the Si surface in dynamic simulations, we naturally obtained a credible interface
between the amorphous oxide and the crystalline Si substrate. In order to inves-
tigate oxidation states at the interface, we plotted the Mulliken charges of the Si
atoms vs. the corresponding z-position, as shown in Fig. 4.9. Note that the oxidation
state +1 that is associated with one Si-O bond corresponded to a charge transfer
of 0.25e in the Mulliken charge analysis. In addition to our observations, previous
studies reported an intrinsic stress around the interface [189, 190]. This stress gave
rise to lattice distortions that blurred the Mulliken charge analysis. Hence, only a
rough assignment of oxidation states in the transition region was attainable. The
decrease of the charge of some Si atoms in the transition region was considered to
be an artifact of lattice distortions, as these atoms were situated in a layer below
the oxidation front and correctly coordinated to other Si atoms. However, binding
lengths to upper Si atoms were stretched by about 4% or 0.1Å which directly affects
the Mulliken charge. In the following section, we show that these weakened interface
bonds represented preferred places for the dissociation of O2 molecules. All Si atoms
in the surface SiO2 layer were fully oxidized and their associated Mulliken charge was
increased by e. The transition region was about 5Å thick and could be identified
via intermediate charge states of the silicon atoms. The linear transition of associ-
ated charges in the transition region was also found in structures obtained by the
melt and quench method [193]. Furthermore, interface regions between crystalline
Si and the amorphous oxide of 5Å to 7Å were indicated by TEM images [186] and
electron-energy-loss spectroscopy [195] (EELS) measurements.

4.2.7 Oxygen migration

Another important aspect of the surface oxidation process is the migration of incor-
porated oxygen. Here it is important to differentiate between diffusion of single O
atoms – atoms that are bound in the oxide and migrate while forming and breaking
bonds to neighboring Si atoms – and the migration of O2 molecules – molecules that
enter the oxide without chemically reacting to the environment. First, we examined
the possibilities of thermal diffusion of already adsorbed single O atoms by calcu-
lating energy barriers for the migration in Si bulk and from the surface oxide into
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SiO2

lattice distortions

Figure 4.9: Oxidation states as obtained by a Mulliken charge analysis of Si atoms
vs. their respective z-position at an oxygen coverage of 4 ML. Amorphous SiO2 is
indicated by fully oxidized Si atoms (oxidation state +4). The oxidation states in
the roughly 5Å thick transition region can only be assigned approximately and are
blurred by lattice distortions.

deeper layers of the Si surface. Large diffusion barriers suggest that this mechanism
is not important for the oxide growth. In contrary, in later stages of the oxidation
process, i.e. after a layer of about 5 to 10Å of a-SiO2 formed on the surface, oxygen is
incorporated by diffusion of O2 molecules through the amorphous oxide, as assumed
within the Deal-Grove model. We investigated this mechanism by AIMD simulations
and confirmed the assumptions of Deal and Grove, namely, that oxygen molecules en-
ter the oxide non-reactively and dissociate spontaneously when reaching the Si/SiO2

interface. Larger oxide models were used for these simulations since the interface of
our DFTB obtained structure (see Fig. 4.8) is still close to the surface and thus allows
for the dissociative incorporation of molecular precursors as described above.

4.2.7.1 Migration of adsorbed O atoms

To obtain diffusion barriers for single O atom migration in a bulk Si system we first
calculated the energy barrier for the migration of one single O atom in a Si bulk ma-
terial. As verified within geometry optimizations, the energetically favored positions
of an O atom incorporated in a Si crystal are the Si bond center sites [196]. Utilizing
NEB calculations, we obtained the minimum energy path between two neighboring
bond center sites. The energy barrier of 1.72 eV in our pristine Si crystal agrees with
other theoretical studies of O migration in Si [197, 198, 199]. With this result the
experimentally derived energy barrier of 2.5 eV [200] can be obtained by considering
a coupled-barrier diffusion [201]. In order to derive an estimate for the rate of the
process at T = 1000K we employed the Arrhenius equation with an attempt fre-
quency of 6 × 1012 s−1 [202] and the 1.72 eV barrier yielding 9 × 104 s−1. Enlarged
barriers were found for O migration from the surface oxide structures obtained by
our AIMD simulations, see Fig. 4.10. We specifically investigated diffusion in the
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Figure 4.10: Energy barriers for thermal diffusion of O in Si bulk (left) and from a
surface oxide layer (right) as obtained by NEB calculations. The trajectories of the
diffusion are indicated by solid blue and cyan lines in the top panels and the resulting
energy barriers are shown in the respective lower panels. Intermediate configurations
along the trajectories are depicted as smaller O atoms. The results show that thermal
diffusion of O from the oxidized surface layers is strongly inhibited compared to the
diffusion in bulk Si and would only contribute marginally to the overall oxidation
process that is almost exclusively driven by O2 diffusion through the oxide.

transition region between the crystalline and amorphous structures since it offered
alternative positions for O atoms. Two examples of possible diffusion paths for one O
atom were calculated and yielded energy barriers of at least 2.8 eV, or a reaction rate
of 4× 10−4 s−1. Keeping the experimental oxidation growth rate of about 1Å/s [203]
for the initial stage of thermal oxidation of Si in mind, only a small contribution to
the overall growth rate by thermal migration of single O atoms is expected. How-
ever, migration of O atoms is required for the dissociation of molecular precursors
and thus still plays an important role in the oxidation process. The observation of
slow oxygen migration in the amorphous surface layers together with an increased
adsorption barrier explains the decrease of oxidation rate as the oxidation proceeds.
In this manner, the oxide growth rate decreases gradually as the dominant oxidation
mechanism transitions from spontaneous surface reactions to precursor reactions and
finally into the non-reactive O2 diffusion regime.

4.2.7.2 O2 diffusion through the oxide

Diffusion of O2 through thicker oxide layers during thermal oxidation as proposed by
[156] was thoroughly investigated in other studies [157, 158, 159, 160, 161, 162, 163,
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164, 204, 205, 206]. The diffusion barrier was found to be extremely sensitive to the
local structural topology which is reflected by a wide spread of DFT calculated values
from 0.5 eV to 2.8 eV [159, 204]. Experimentally, values between 0.7 and 1.6 eV [206]
were found for oxide films produced in various ways. Our own NEB calculations of O2

diffusion processes agree nicely with previous theoretical and experimental results and
yielded barriers between 0.7 and 2 eV. Hence, molecular stability as well as sufficient
diffusibility of O2 in silicon dioxide can be safely assumed also within the framework
of our calculations.
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Figure 4.11: Diffusion of O2 in a-SiO2 is easily possible for thicker oxide layers. The
non-reactive incorporation and migration through the oxide layer is shown by the
results of an AIMD simulation with a simulation time of 3 ps. An initial velocity of
800 m/s was assigned to the O2 molecule. The trajectory of the center of mass of the
molecule is depicted by a solid blue line. The molecule eventually reaches the Si/SiO2

interface and dissociates, see Fig. 4.12.

We observed the non-reactive incorporation of O2 molecules on a 20Å thick oxide
layer that was obtained by a melt and quench procedure [193]. As shown in Fig. 4.11,
a seamless migration through the oxide could be sampled in an AIMD simulation with
a simulation time of 1 ps. Again, the molecules’ initial velocity was set to 1000m/s.
Without interaction, the O2 entered the oxidized surface and migrated along a random
path determined by deflections at the SiO2 structure. These results show that the
molecular state of O2 represents a stable configuration in ultra-thin layers of a-SiO2.
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As assumed within the Deal-Grove model [156], the oxidation rate is now governed
by the O2 diffusion rate.

4.2.7.3 O2 dissociation at the interface

In the O2 diffusion regime, further oxidation of the Si substrate happens at the Si/SiO2

interface upon dissociation of the O2 molecule [156] as could be confirmed within our
simulations by another set of AIMD calculations.

An O2 molecule was placed in the transition region between the amorphous oxide
and its crystalline substrate. Due to lattice distortions, some Si atoms in the tran-
sition region possess strained bonds or even dangling bonds11, cf. Fig. 4.9. These
dangling bonds are known to affect the reliability of semiconductor devices and are
therefore usually passivated with H after the oxidation [193, 207]. However, the sim-
ulations showed that these atoms were the preferred dissociation spots. The initial
velocity of the O2 molecule was set to zero in order to verify the feasibility of a spon-
taneous reaction. As shown in Fig. 4.12, the O2 molecule spontaneously dissociates
via essentially the same charge transfer process as in the dissociative chemisorption at
the Si surface, cf. Fig. 4.5. In addition, further evidence for a barrierless dissociation
was obtained by another NEB calculation. Here, O2 was placed above the transition
region in order to include a short diffusion path of 4Å preceding the actual dissoci-
ation. The migration toward the strained bond was governed by a comparably low
diffusion barrier of 0.2 eV. In Fig. 4.12, the beginning of the dissociative process is
indicated by a strong decrease of the potential energy surface. The large energy gain
of 9.4 eV could be justified by a complex reconfiguration at the interface in which
multiple bonds with considerable binding energies break (O-O: 2.1 eV; Si-Si: 4.9 eV)
and form (Si-O: 6.5 eV). Additionally, the molecular configuration contained the
incorporation energy of the oxygen molecule in the oxide layer which was evaluated
to be 0.4 eV in bulk SiO2 by DFT calculations [208]. During this stage, the oxide
growth rate is not limited by the supply of oxygen to the surface anymore but by the
O2 diffusion rate through the oxide and is thus certainly much slower compared to
the initial oxidation, as assumed within the Deal-Grove model [156].

4.2.8 Properties of the Si/SiO2 interface structures

A comparison between the stepwise oxidation and the melt-and-quench technique is
shown in Fig. 4.13. Due to the implicit constrains of the melt-and-quench technique,
the resulting interfaces are more ordered, meaning, the bond lenghts are distributed
more uniformly and the surface is less rough. The stepwise generated interface is
characterized by elongated bonds, large interfacial strains and a large number of O-
coordinated Si atoms. The formation of a 0.5 nm thick transition region is common
for both techniques. Furthermore, we compare our results to crystalline interfaces
which have been used in many earlier studies [209, 169, 180]. As can be seen, the
transition region of crystalline interfaces is much smaller, and, obviously, there is no
surface roughness at all.

11The calculation here is done on a structure without dangling bonds.
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Figure 4.12: O2 dissociation at the Si/SiO2 interface. The left panel shows the tra-
jectory of the center of mass of the O2 molecule (solid blue line) together with the
initial (molecular) and final (dissociated) configurations of the NEB calculation. The
Mulliken charges for the spontaneous dissociation as captured within an AIMD sim-
ulation are depicted in the top right panel. The Mulliken analysis reveals another
charge transfer of −e that strongly resembles the dissociative reactions at the surface
during the initial stage of oxidation, cf. Fig. 4.5. The associated charges of the Si1
and Si2 atoms show an offset due to the implications of the interface, cf. Fig. 4.9.
The potential energy surface of this process is displayed in the lower right panel and
indicates diffusion along a 4Å long trajectory that is only inhibited by a low barrier
of 0.2 eV. In addition to the AIMD results, the NEB calculation provides evidence
for a spontaneous dissociation as soon as the molecule reached the dissociation spot.

To summarize, the interfacial structures that are obtained from our novel oxidation
approach are more realistic than previous modeling attempts. We find streched Si-O
bonds that are increased by up to 12%, which also indicates a larger probability to
find defects and/or dangling bonds at the interface. The interfaces are rougher, less
ordered and strongly strained, while still in line with structural data from experiments
(cf. Fig. 4.8)
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Figure 4.13: Comparison between interfaces obtained via various modeling techniques:
the stepwise oxidation approach from this work (red) is compared to the melt and
quench method [193] and to ad-hoc crystalline Si-quartz interfaces (black). (a) Dis-
tribution of bond lengths and angles around the interface. The stepwise generated
interface shows bonds that are elongated by up to 12% and strongly distorted Si–O–Si
angles that indicate large strain. (b) O-coordination of Si atoms near the interface.
The melt and quench method produced mostly two-fold O-coordinated Si reminiscent
of crystalline interfaces. In contrast, the stepwise approach yields higher coordinated
Si atoms. (c) Oxidation states as obtained by a Mulliken charge analysis of Si atoms
vs. their respective z-position. Amorphous SiO2 is indicated by fully oxidized Si atoms
(oxidation state +4). The oxidation states in the roughly 5 Å thick transition region
can only be assigned approximately. The stepwise oxidation method shows negative
oxidation states that are indicative of strong lattice distortions. (d) Distribution of
Si atoms vs. their respective z-position. The stepwise approach inherently yields a
broader distribution indicating a larger degree of disorder compared to the melt and
quench approach in which non-oxidized Si atoms are artificially fixed during the MD
calculation. A number of interfaces were compared, however, for the sake of simplicity
only one representative configuration is shown in (a), (c) and (d) as the results were
very similar for each method.
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4.3 Machine learning force field for the thermal ox-
idation of silicon

The results presented in this section have been published
in [LC2]. Text and figures are adapted from there.

We have seen above that AIMD is an excellent tool for the generation of credible
Si/SiO2 interface structures. The downside are the extremely high computational
costs. Given recent advances in machine learning (ML) that, among many other
applications, led to the development of ML-based interatomic potentials, we decided
to explore the possibilities of machine learning force fields (MLFF) for our purpose.

From the methodological perspective, the process of thermal oxidation offers an
interesting use case for machine learned interatomic potentials, as our MLFF is uni-
versally suitable for gaseous oxygen, crystalline Si, and amorphous SiO2. Machine
learning techniques enable overcoming the strong limitations on cell sizes and simula-
tion times, the typical drawbacks of ab-initio calculations, while keeping the accuracy
of the results practically unchanged [137, 210]. The ability to enlarge the system size
and for simulating on larger time scales allows for the investigation of the growth
kinetics of the oxidation process and for the generation of even more realistic models
of Si/SiO2 interfaces, including long-range disorder and interface roughness. Fur-
thermore, we extend our investigations from flat Si surfaces to more complex surface
structures such as cylindrical Si nanowires. As shown in Fig. 4.14, our ML approach
allows modeling of the thermal oxidation process within dynamic simulations starting
from entirely oxygen-free silicon surface structures. Within the MD simulation, these
structures are exposed to an O2 gas which reacts with the surface and forms a coating
layer of amorphous SiO2.

4.3.1 Tools and Methods

Training of an MLFF typically requires the combined use of descriptors [138], machine
learning algorithms [139], and high-accuracy training data. Methods and computa-
tional techniques employed in this work are described in the following.

4.3.1.1 Machine Learning Force Field

Our MLFF is implemented within the Gaussian approximation potential (GAP)
method [139]. Similar to other ML models employed in the context of interatomic
potentials, GAP completely neglects the electronic structure of a given system and
assumes that the potential energy can be determined solely from the atomic con-
figuration. GAP represents the total potential energy as the sum of local energy
contributions from each atom. These local contributions are obtained by comparing
a given local atomic environment to the local atomic environments of the atomic con-
figurations available in the training dataset. The training dataset contains a number
of atomic systems along with the corresponding energies and forces taken from any
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Figure 4.14: Overview of the simulation procedure. (a) Reconfigured Si(100) surfaces
or (b) Si nanowires are exposed to gaseous oxygen within molecular dynamics calcu-
lations. (c) The O2 molecules spontaneously react with the surface and dissociate to
form an oxide coating around the surface. After every 10.000 steps (Δt = 1 fs), the
structure is optimized to avoid heating (each dissociation event releases energy), and
O2 molecules in the gas phase are refilled to maintain the pressure according to an
ideal gas law.

other computational method that can be used to calculate the potential energy of an
atomic system. GAP learns to estimate the energy of local atomic environments in
the training process based on this data. Analogous to this procedure, GAP can also
learn and estimate forces which further reduces the amount of necessary structures
in the training dataset.

The usage of unbiased metrics is essential for the training data of a ML model
and necessitates the usage of descriptors, see Sec. 3.4. The user-defined parameters
used in this work are given in App. A.1.

4.3.1.2 DFT training data

Our MLFF is trained on data from more than 900 density functional theory (DFT)
calculations. Underlying structures include single atoms, dimers, bulk structures of Si
and SiO2, as well as oxidized Si surfaces and nanowires with various oxygen coverage.
Data for the initial training set is obtained by the stepwise oxidation process as
presented in [LC4]. In this approach, the starting points are oxygen-free Si surface
structures which become gradually oxidized within AIMD calculations. Oxygen is
provided by placing O2 molecules in the vicinity of the Si surface. A comprehensive
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Figure 4.15: Comparison between DFT and the ML model for 400 Si/oxide struc-
tures. (a) The values of the energies show excellent correlation over the full range
of structures as indicated by dashed blue lines with slope 1. Blue and grey points
shown in the insets correspond to oxidized Si(100) surfaces and oxidized nanowires,
respectively. The MAE is below 10 meV/atom. (b) Good agreement between the two
methods is also obtained for the inter-atomic forces with an MAE below 0.16 eV/Å .

overview of the structures contained in the training dataset together with a detailed
description of their generation can be found in App. A.2.

All density functional theory calculations are carried out using the CP2K pack-
age [211], a code that uses the mixed Gaussian and plane waves approach (GPW). We
use double-ζ Gaussian basis set for all atom types and the well-established Goedecker-
Teter-Hutter (GTH) pseudopotentials to represent closed-shell electrons [212, 213].
The electron density is expanded using a plane-wave basis with a cutoff of 650Ry.
The exchange-correlation energy is obtained by means of the semilocal generalized
gradient approximation (GGA) functional PBE. Atomic relaxations were carried out
with a force convergence criterion of 15meV/Å. Within the AIMD simulations, the
total energy was conserved (microcanonical or NVE ensemble) and the total spin was
restricted to 0.

4.3.2 Comparison to DFT

Validation of the ML model is done on a set of structures which are similar to the
training dataset, i.e. structures of oxidized surfaces and nanowires. We compare
the energies and forces predicted by DFT with the values from the ML model, see
Fig. 4.15. The deviations are estimated by the mean absolute error (MAE) between
both methods. The MAE in energy is below 10 meV/atom, and the forces are pre-
dicted with an accuracy of 0.16 eV/Å. The clear linear correlation for systems with
200 to 5000 atoms indicates a very good agreement between DFT and the MLFF and
allows to rule out systematic errors between the two.
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4.3.3 Structural properties

The ML model can be further validated by the structural qualities of the resulting
structures, as shown in Fig. 4.16. The results refer to an oxidized Si surface which
measures 6×6 nm2 in plane and exhibits an oxide thickness of around 1 nm. While
the mean Si–O bond length of 1.63 Å is in line with experimental values of bulk
SiO2 [186, 187], there are a number of strained bonds with a length of more than
1.8 Å. These bonds are exclusively found at the interface indicating a considerable
strain in this region.

An important result is the formation of SiO4 tetrahedrons, the building blocks
of SiO2, indicating that even ultra-thin oxide layers already exhibit the structural
properties of bulk SiO2 [LC4]. The mean O–Si–O bond angle (Fig. 4.16b) matches
the ideal tetrahedral bond angle of 109.47° which means that the tetrahedrons are
rigid and form already in an early stage of oxidation. The tendency to find enlarged
O–Si–O bond angles (the angles between two tetrahedrons) at the interface (up to
140°) agrees with the previous observations of such interface structures [188] [LC4].
Further evidence for the formation of SiO2 is provided by a coordination number
analysis, see Fig. 4.16c and Fig. 4.16d. Most of the Si atoms in the oxide are fourfold
coordinated by oxygen. Lower O-coordination can only be found at Si atoms close
to the Si/oxide interface. The interface is not sharp, but represented by a transi-
tion region of 0.5 nm thickness. Within this region, the amount of oxygen increases
steadily such that the O-coordination of the Si atoms increases from 0 to 4 in growth
direction. Above the transition region, all Si atoms are four-fold O coordinated and
integrated in a SiO4 tetrahedron. These results are not only in line with the AIMD
simulations from [LC4], they also agree with transmission electron microscope (TEM)
images [186, 214], electron-energy-loss spectroscopy (EELS) [195, 215], and photoe-
mission studies [186, 216].

4.3.4 Growth kinetics

As found experimentally [165] and confirmed theoretically by means of AIMD calcula-
tions [LC4], the oxidation rate decreases strongly as soon as an oxide layer has formed
on the initially clean Si surface. As long as the Si surface is only sparsely oxidized,
that is, the surface still shows unoxidized Si dimers, O2 molecules can spontaneously
adsorb and dissociate at the surface. During this phase, the oxidation rate is limited
only by the amount of oxygen available to the surface.

At a later stage, in which the surface is fully covered by an oxide film, the ox-
idation rate decreases as the limiting factor is now the diffusion of O into deeper
layers of Si. The diffusion is necessary in order to make room for further dissocia-
tive surface reactions. This behavior is also captured by the MLFF. We evaluate the
position of the Si/SiO2 interface zi and oxide surface zs by averaging the z-position
of the five lowest and the five highest oxygen atoms, respectively. The oxide thick-
ness t is then the difference between surface and interface t = zi − zs. Evaluating
the thickness of the oxide layer by this procedure in an MD run that simulates the
thermal oxidation starting from a clean Si surface allows to estimate t as a function
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Figure 4.16: Geometric measures indicating the quality of the Si/SiO2 structures.
The results are shown for a representative interface structure with an effective oxide
thickness of 1 nm. (a) The Si-O bond lengths (average 1.65 ) agree reasonably well
with experimental values (dashed line) of 1.62 of bulk SiO2 [187, 186]. (b) Similar
agreement is found for the O–Si–O bond angles which match the optimal tetrahedral
bond angle of 109.47° (dashed line). (c) The O-coordination for Si atoms ranges
from 1 to 4, as expected for interfacial structures. (d) Position of Si atoms with one
O neighbor (CN=1) and four O neighbors (CN=4). Fourfold O-coordinated Si are
found in SiO4 tetrahedrons in the oxide while lower coordinations correspond to Si
atoms close to the interface.

of time as shown in Fig. 4.17.12 The oxidation rate has a maximum at the beginning
and decreases significantly as soon as the surface is saturated with oxygen. At this
point, O2 molecules can not dissociate spontaneously anymore but adsorb onto the
surface where they eventually dissociate after a few ps. This behavior explains the
experimentally observed decrease in oxidation rate [165] and is in line with previous
observations from [170, 217, 218] [LC4].

12We artificially enhance the growth rate by exposing the Si surface to a large number of O2

molecules, corresponding to a pressure in the O2 gas of p = 50bar. This is necessary as the actual
oxidation time (in the range of seconds) is still well outside the scope of feasible calculations even
when using the MLFF.
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Figure 4.17: Oxide thickness during dynamic oxidation of Si as a function of sim-
ulation time. Initially, fast oxidation is enabled by spontaneous surface reactions.
After the surface is saturated with O, the dominant reaction mechanism changes to
molecular precursor mediated dissociation, a process associated with slower oxidation
rates [170].

4.3.5 Interface quality

Numerous experiments have shown that the growth of SiO2 on a Si substrate results in
a significant interface and surface roughness [219, 220]. In the initial oxidation regime,
the roughness increases with the oxide thickness but saturates after the oxide layer
exceeds 10 nm. At this point, the oxidation rate becomes constant and the process
is governed by O2 diffusion [220], as assumed within the Deal-Grove model [156],
instead of O2 surface reactions which enable a faster oxidation in the early oxidation
stages [LC4].

In order to investigate the interface roughness, we oxidize a 6×6 nm2 Si surface by
means of the MLFF and depict the roughness of one representative Si/SiO2 interface
resolved in the in-plane directions in Fig. 4.18. For this analysis, we take the z-position
of the lowest oxygen atom in each lateral 2D bin and connect their coordinates. The
interface deviates from the average interface position z̄i by up to 2.5 Å with an average
deviation of Ra=0.57 Å. Typically, the interface roughness is characterized by the root
mean square deviations for which we find Rq = 0.79 in reasonable agreement with
the measured values of ≈ 0.5Å reported in [220].

Furthermore, we find a mass density of around 2.5 g/cm3 in the oxide layer which
slightly overestimates experimental values of ultra-thin a-SiO2 reported in the range
of 2.24 to 2.36 g/cm−3 [186]. On the other hand, the mass density in the interface
region complies with the experimental values from [186].
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Figure 4.18: Interface roughness as resulting due to the dynamic oxidation process
governed by random adsorption trajectories. The RMS roughness of the interface is
found to be Rq = 0.79.

4.3.6 Comparison to classical force field

In order to further validate our ML force-field, we compare it to one of the most
commonly used classical force fields, namely the reactive force field (reaxFF) from
Ref. [221]. A comparative data set is generated by dynamically oxidizing a 3× 3 nm2

Si surface with the same initial parameters of position and velocity from identical
starting configurations. The simulation time is set to 1.4 ns integrated over 1.4 million
time steps. As before, after every 104 steps, new oxygen molecules are added to the
vacuum above the surface, to keep the pressure at 50 bar.

Analyzing a number of geometric properties gives results summarized in Tab. 4.1.
In terms of two- and three-body geometric measures, our MLFF performs slightly
better than the reaxFF potential. While the mean O–Si–O bond angles are close
to the ideal tetrahedral angle, the reactive force field gives mean Si–O bond lengths
of 1.55 Å (compared to the MLFF value of 1.68 Å and the experimental value of
1.62 Å [186, 187]). Furthermore, we compare the volumetric mass density in the
interface region ρIF and in the oxide layer ρOX. As mentioned before, our MLFF
slightly overestimates the density in the oxide layer but reproduces the density in the
interfacial transition region. ReaxFF on the other hand, gives densities about 10%
larger than experimental values [186], in line with implications from shortened bond
lengths, in both the interface and the oxide regions of the interface structure.

The growth kinetics, however, differ substantially between the two force fields. The
number of oxygen molecules that dissolved at the surface is 15 % lower when using
reaxFF. On the other hand, reaxxFF overestimates the diffusion of oxygen which
leads to a low-density distribution of O atoms among the Si atoms in the crystal.
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Figure 4.19: Structural properties of a Si/SiO2 interface generated by the reactive
force field from Ref. [221]. The plot is analogous to Fig. 4.16. For comparison, the
experimental and averaged MLFF values for the bond lengths and the tetrahedral
angles are shown as blue and red dashed lines, respectively. With respect to the
MLFF and experiments [186], reaxFF slightly underestimates bond lengths while the
tetrahedral angles are well captured. The properties of the interface, however, do
not match experimental expectations, as O diffusion is overestimated by reaxFF. The
number of four-fold O-coordinated Si is very low; on the other hand, there are many
Si atoms with only one O neighbor. This results in a thicker interface and a thin
oxide layer.

The result is a very large interface (the transition region dIF measures about 1 nm
and the oxide thickness dOX is only 4 Å), with lower than expected Si–O coordination,
as shown in Fig. 4.19. To summarize, the structures obtained by reaxFF are in strong
contrast to the experimental findings of [186, 214, 195, 215, 216], while the MLFF –
similar to AIMD – reproduces much more realistic interface structures.

4.3.7 Dangling bond density

Finally, the last test we subject our model to is the determination of the dangling
bond density resulting from the oxidation process. In the most simple definition, a
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Table 4.1: Comparison between a classical reactive force field [221], AIMD simula-
tions, the herein presented MLFF, and (if available) experimental values. Basic two-
and three-body measures like Si–O bond lengths and O–Si–O angles are relatively
well captured by all approaches, with slightly deviating values from reaxFF. In terms
of volumetric mass density, we compare the density in the interface region ρIF and in
the oxide layer ρOX. Clear differences in the interface properties are indicated by the
thickness of the interface dIF and oxide thickness dOX obtained after 1.4 ns of dynamic
oxidation at 1000 K and 50 bar.

property reaxFF AIMD
[LC4] MLFF experiment

[186, 214, 195]

Si–O length [Å] 1.57 1.66 1.68 1.62

O–Si–O angle [°] 112.28 109 109.45 109.47

ρIF [g/cm3] 2.45 2.34 2.37 2.36–2.41

ρOX [g/cm3] 2.65 2.5 2.5 2.24–2.36

dIF [nm] 1 0.5 0.5 0.5

dOX [nm] 0.4 - 1 -

dangling bond corresponds to a missing neighbor, that is every Si atom with less than
4 and every O atom with less than two neighboring atoms is identified as a dangling
bond.

By means of this simple analysis, we detect at least one dangling bond in 96 %
of the obtained interface structures. Typically, these dangling bonds do not vanish
if the structure is relaxed within a subsequent DFT optimization, as this requires
the breaking of other bonds which is unlikely to happen. On average, we find 2.9
dangling bonds in structures grown on a 1.5×1.5nm2 Si surface area, corresponding
to a dangling bond density of 1.3/ nm2 (130× 1012cm−2).

Compared to the experimentally determined defect density of 0.05/ nm2 (5 ×
1012cm−2) [222], our MLFF seems to overestimate the number of defects by almost
two orders of magnitude. However, only electric spin resonance (ESR) active defects
(depending on the applied bias and the location of the defect in the band gap) appear
in the ESR measurement of [222]. Another important difference between simulation
and experiment is the presence of hydrogen, which is unavoidable in reality, how-
ever, completely absent in our structures. Since atomic hydrogen passivates dangling
bonds [223], and therefore reduces the dangling bond density, a significant impact
on the experimentally obtained value can not be ruled out. Furthermore, we suspect
that the density of dangling bonds in the simulated structures could be reduced by
equilibrating the structure at elevated temperatures for some µs. Given these uncer-
tainties, we conclude that our MLFF produces structures with significantly increased
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dangling bond density, although a direct comparison to values inferred from ESR
measurements is not valid.

A detailed analysis of the dangling bonds in the simulated structures that goes
beyond the simple coordination analysis above requires thorough investigations by
means of DFT. Within DFT, one can determine trap levels and relaxation ener-
gies [224] and thereby investigate whether the defects are ESR-active. We leave such
extensions for the future.



Chapter 5

Valley and spin splitting

Parts of the results presented in this section have been published
in [LC3]. Text and figures are adapted from there.

After dealing with the fundamentals of Si spin qubits in Chapter 1 and explaining
our approach to computation and structure generation in Chapters 3 and 4, we are
ready to investigate properties of conduction band electrons in the Si heterostruc-
tures by means of DFT. First, in the following section, the splitting between the
(spin-degenerate) valley states mediated by a coupling at the interface is evaluated.
Subsequently, the wavevector-dependent splitting of the spin states (spin splitting) is
examined in Sec. 5.2.

5.1 The 2DEG subbands and the valley splitting

It was shown in Sec. 2.2.3 that the remaining valley degeneracy of the Si conduction
band can be lifted due to coupling mediated by the confinement potential. For spin
qubit applications, the resulting valley splitting should be as large as possible (but
at least above 200 µeV) in order to provide a clean two-level system comprised of
the two spin states in the lowest valley [9]. The concepts of analytical theories to
understand the bandstructure of crystalline materials, such as effective-mass theory
(EM), have been successfully employed to obtain an intuitive understanding of valley
splitting [55, 67]. Although many ideas of EM theory are transferable to interpret
DFT calculations, the language of the modeling techniques is not fully compatible. In
order to bridge this gap, we now review the properties of our ab-initio model and the
interpretation of its results, while contrasting the concepts of EM theory and DFT.

5.1.1 Properties and interpretation of the DFT model

As demonstrated (see Sec. 2.2.3 for details), the valley splitting is expressed within
the effective mass approach as

Δ = �Ψ+|Vqw|Ψ−�, (5.1)
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describing coupling between the +z and −z valleys via the quantum well potential in
a perturbative picture. In contrast, the DFT outcome does not allow for a rigorous
assignment of these quantities. Within DFT, we do not have access to the pure
valley states, but only to the resulting coupled states. Furthermore, there is no well-
defined distinction between the Bloch part and envelope, and the extraction of Φ(z)
is therefore always accompanied by some uncertainties.

In an ideal well without electric field, the DFT wavefunctions correspond to the
symmetric and anti-symmetric solutions of the lowest orbital [9]. However, in a real
gated Si quantum device, the electron resides in an electrostatically defined quantum
dot. Therefore, the 2DEG is confined to one interface by the external electrostatic po-
tential. We apply an external electric field of F = Fzez = 10mV/nm in the direction
perpendicular to the interfaces. This ensures realistic modeling conditions and allows
to investigate the impact of interface qualities like roughness and disorder. The two
lowest conduction band wavefunctions are shown in Fig. 5.1a. Since the properties
of a periodic heterostructure (without lateral confinement) can be described by the
planar average of its quantities, we consider cross-section averaged well potentials
and wavefunctions for our analysis. As expected, the coupled valley wavefunctions
oscillate with k0 = 2π/a0 and are phase shifted with respect to each other. Further-
more, we obtain a reasonable estimate for Φ(z) from the wavefunction by convoluting
the DFT probability densities with a Gaussian (σ = 3.4nm). This is essentially a
low-pass filter which removes atomic-scale oscillations and returns the slowly varying
envelope.

The Si/SiGe quantum well potential in Fig. 5.1a (and similarly for Si-MOS in
Fig. 5.3a), is represented by the Hartree potential VH, that is the electrostatic poten-
tial of ions and electrons combined which is naturally obtained within the ab-initio
framework. One characteristic of the Hartree potential is that it does not contain
any information about exchange and correlation. The DFT calculation builds these
interactions by means of hybrid functionals containing exact exchange from Hartree-
Fock theory. Thus, there is no local representation of the full potential. Due to the
non-locality of the DFT potentials, VH is still the closest representation available from
DFT to the ’classical’ well potential. Besides averaging over the lateral extend of the
cell, VH(z) is low-pass filtered by convolution with a Gaussian, analogous to the pro-
cedure for the envelope Φ(z). However, a good estimate of the height for the potential
barrier can be determined from the local density of states (LDOS) in Fig. 5.1b, and
corresponds to the valence band offset (VBO) of 200 meV between Si and Si0.7Ge0.3,
overestimating the experimental value of 170 meV [258].

Furthermore, the LDOS provides a comprehensive picture of the full electronic
structure in the quantum well, including higher orbital states. The orbital states can
be distinguished by the number of nodes n = 0, 1, . . . and are split by a few tens
of meV. Not visible on the energy scale in Fig. 5.1b is that each peak in the LDOS
is composed of two valley states which are split again by about 0.1 meV. The spin
degree of freedom is not considered for the calculation of the valley splitting.

Using representative Si/SiGe and Si-MOS structures (see Sec. 4), in Fig. 5.2 we
compare the local density of states at the conduction band minimum resolved in z
direction. The low lying states come in pairs, each pair corresponding to a subband
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Figure 5.1: (a) Cross-section averaged valley wavefunctions Ψ±(z) confined in the
quantum well represented by the Hartree potential VH(z). The wavefunctions are
phase shifted with respect to each other and have slightly different envelopes Φ±(z).
The wavefunction is pushed towards the interface at z = −5 nm by an external
electric field Fz = 4.3mV/nm. (b) The local density of states (LDOS) shows the
full electronic structure of the conduction band (Fz = 0). The orbital states with
n = 0, 1, . . . nodes can be identified within the Si layer. Valley splittings in the range
of 0.1 meV are too small to be clearly visible at this energy scale. The DFT model
yields a valence band offset (VBO) of 200 meV.
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Figure 5.2: Local density of states in the energy range of the conduction band min-
imum as obtained from DFT for (a) Si-MOS and (b) Si/SiGe. The interface is at
z = 0. The energy of the lowest state is set to zero. Each orbital state is comprised
out of two valley states (±z) which are degenerate in bulk Si but couple here due to
the presence of the interface. (a) For F = 50mV/nm, the valley splitting in Si-MOS
reaches values in the range between 1 and 10 meV, depending on details of the inter-
face.(b) In Si/SiGe, the coupling is much weaker, with splitting below 300 µeV (see
Chapter 5), which is not discernible given the figure energy-axis scale.

of the 2DEG. They arise as the eigenstates of the one-dimensional, approximately
triangular, confinement of the interface: the wavefunction of the n-th excited state
has n nodes, if we count the ground state as the 0-th state. The subband energy
splitting is determined by the electric field and is found to be 15 meV for Si/SiGe and
150 meV for Si-MOS. Each pair is further split by a much smaller energy (the valley
splitting) and displays k0 oscillations originating in the valley character of the state
at the Si conduction band minimum. These oscillations are shifted by half a period
in the two states of a pair.

5.1.2 Comparison to 2-band tight binding model

In the following, valley splittings obtained by DFT are compared to values from
Boykin’s TB model [54] with results summarized in Fig. 5.3. The method from [54]
consists of a one-dimensional chain of (Si) atoms with one atom per unit cell, each
with two orbitals (s and p). The simple 1D two-band second-nearest neighbor Si TB
model considers hard wall boundary conditions (|Ψ±(z)|2 vanishes at the interface –
infinite well) or soft wall boundary conditions (the wavefunction extends in confining
layers whose on-site energies are increased by 3.2 eV, which is the experimental band
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Figure 5.3: (a) The two valley wavefunctions averaged over the cross section confined
in a 2D quantum well represented by the Hartree potential. The z and −z valley
states are phase shifted in real space, which leads to different penetration depths into
the confining barrier and introduces the valley splitting. The well is tilted due to the
application of an electric field. (b) The valley splitting depends on the width of the
Si layer. The electric field can push the wavefunction against one interface, so that
the splitting stays constant even if the well size is further increased. The dot-dashed
lines are DFT calculated values at F = 10mV/nm for qualitatively similar interfaces
which are distributed over one order of magnitude. (c) Electric field dependence of
the valley splitting. The onset of the single interface regime is indicated by a power-
law increase (note the log-log scale). For comparison with experimental values of
qubit devices, one needs to consider the strongly influential Si width.

offset of SiO2). Despite its simplicity, this model qualitatively captures the trends for
the well width dependence as well as the influence of the electric field. In contrast to
our DFT models, the basic TB approach does not take the disorder of the interface
into account. Thus, there is no spread in the TB results. As can be seen in Fig. 5.3b,
the valley splitting (VS) decreases substantially for certain numbers of Si layers in
the well. This results from an interference between the two interfaces: without an
electric field, the valley states couple with both interfaces. In order to probe single
interfaces, we push the qubit wavefunction to one interface by applying an electric
field in z direction. Thus, for a given field, there is a Si width beyond which the
valley splitting stays constant (blue line in Fig. 5.3b). Extending the Si width does
not change the wavefunction anymore. The interference effect can also be observed in
the electric field dependence (Fig. 5.3c) which results in a power-law increase above
a certain value of the electric field, indicating the single-interface regime. As can be
seen in Fig. 5.3b and Fig. 5.3c, the atomistic disorder yields a wide distribution of
valley splittings by about one order of magnitude, in agreement with a wide range of
experimentally observed valley splittings in Si-MOS and Si/SiGe [58, 56, 225].
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5.1.3 Comparison to sp3d4s∗ tight binding model

In order to validate the DFT model and to work out differences with another atom-
istic modeling technique that is capable of treating disorder, the valley splittings
in Si/SiGe heterostructures are compared to a sp3d4s∗ TB model implemented in
TB_Sim [226]. A big advantage of TB are the extremely reduced computational
costs with respect to solving a full many-body Hamiltonian. Thereby, calculations
in relatively large simulation cells containing millions of atoms become feasible. The
results of larger simulation cells tend to show smaller variabilities because the effects
of disorder average out. In some cases, the median value is a meaningful quantity
when comparing different simulation cell sizes, as explained in App. D. However, here
we aim to work out fundamental differences between DFT and TB, therefore the
simulation cells used for both calculation methods are exactly the same including the
atomic composition in the disordered SiGe layers. Only slight divergences in the atom
positions appear after relaxing the cells using the hybrid functional in DFT and a
valence force field [227, 226] in the case of TB.

Before discussing the results, other aspects of the modeling conditions shall be
clarified. First, the application of an external electric field. As elaborated in App. B,
a relatively complex external potential profile arises in DFT, see Fig. 5.4. Fulfilling
the requirement of continuous and periodic potentials, the electric field in the Si and
SiGe layers point in opposite directions. On the other hand, in TB, an external
potential is simply included by adapting the on-site energies of the atoms [54]. As in
DFT, discontinuous potentials should be avoided (see App. B). However, other than
that, the potential profile can be chosen arbitrarily. Making the modeling conditions
as similar as possible, we sample the DFT potential profile from Fig. 5.4 at the
monolayer positions and add these values to the respective on-site energies in order
to rebuild the external potential in the TB model as closely as possible.

There is another important difference that complicates the comparison, namely
the valence band offset (VBO). The VBO in DFT (typically around 200 meV, see
Fig. 5.1) overestimates the experimental value of 170 meV [258]. In TB, we find a
VBO of 140 meV for the strained Si/SiGe heterostructures. The VBO (that is the
energy barrier confining the 2DEG) controls the decay of the wavefunction in the
barrier layers and therefore also the valley splitting. Thus, a comparison between
TB and DFT is only meaningful if the band offsets match. At this point, we modify
the standard TB parameters of [226] in order to match the band offset from DFT.
The DFT band offset of 210 meV is reproduced by increasing the parameter for the
unstrained valence-band offset between pure Si and Ge from 0.68 eV to 1.00 eV.

Having specified the modeling conditions, the TB and DFT models shall be com-
pared in terms of resulting valley splittings as depicted in the scatter plot of Fig. 5.5.
Various clean Si/SiGe quantum wells with interface widths ranging from 0 to 8 mono-
layers (ML) serve as the testbed for the comparison. Avoiding artifacts connected to
the limited cell size of our model, the Ge profiles are chosen such, that an increase
of the simulation cell size would not influence the median values, see App. D. The
DFT potential profile for each of these structures is passed on to the TB model as
explained above. In general, the trend towards increased valley splitting for sharp
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Figure 5.4: External potential profile Vext for the SiGe/Si/SiGe model structures.
The bias corrected potential profile is continuous, periodic, and anti-symmetric. As
a result, the electric fields in the material layers point in opposite directions. For
comparison to TB calculations, this potential profile is included in the TB model.

interfaces along with a minimum for slightly smoothed interfaces is obtained by both
methods and is also in line with experiments and previous studies [231, 67]. Indi-
cated by larger spreads in the DFT results, the ab-initio calculations seem to be
more sensitive to disorder at the interface. The TB results, on the other hand, imply
that the valley splitting is mostly determined by the quantum well profile while the
impact of the atomic details is less important. In Fig. 5.5, DFT and TB valley split-
ting values of each atomic configuration are connected by dashed lines. There is no
clear correlation with respect to the disordered structures. Some configurations with
large EVS in TB show low values in DFT and vice versa. However, on average, DFT
gives slightly lower values (0.20 meV vs. 0.22 meV), as also depicted in Fig. 5.6. The
averages align exactly if the unstrained valence-band offset between pure Si and Ge
is further increased to 1.10 eV which corresponds to a band offset of 245 meV in the
strained heterostructure. Tuning the VBO shifts the obtained valley splitting values
but does not significantly impact the variability.

5.1.4 Well designs and comparison to “2k0-theory”

Next to TB, material-related properties of spin qubits have been modeled by means of
effective-mass (EM) approaches [63, 231, 67]. In this section we compare the outcomes
of DFT to some fundamental results of EM.

Recalling Eq. (2.13), which assumes we are in the weak valley-orbit coupling
regime, the inter-valley coupling matrix element can be expressed in a perturbative
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Figure 5.5: Comparison between DFT and TB. The valley splitting values obtained
by methods are connected by dashed lines. The valley splitting EVS strongly depends
on the interface qualities. First, the interface width determines the overall trend
with large EVS for sharp interfaces and lower values for smooth interfaces. Although
the configurations for each interface width show the same cross-section averaged Ge
profile, the valley splitting varies strongly between these configurations. This spread
is associated with atomic disorder, an effect that is much more pronounced in DFT.

Figure 5.6: Correlation between valley splittings obtained from TB and DFT. The
dashed line is a guide to the eye with slope 1. On average, the DFT results are slightly
below TB with averages of 0.20 meV and 0.22 meV, respectively.
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picture as [63]

Δ = �Ψ+|Vqw|Ψ−� =
�

dze−2ik0zVqw(z)|Φ(z)|2, (5.2)

which suggests that the valley splitting EVS = 2|Δ| is proportional to the Fourier
transform of the envelope-weighted quantum-well potential

Ṽ w
qw(k) =

�
dze−ikzVqw(z)|Φ(z)|2, (5.3)

evaluated at k = 2k0. We refer to this model as “ 2k0 theory” [67].
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Figure 5.7: Schematics of studied quantum well geometries and associated DFT re-
sults. Disorder is introduced by distributing the Ge atoms randomly within the lateral
layers so that the desired Ge profile is realized. (a) Clean Si wells with smooth in-
terfaces. The number of monolayers used to transition between Si and Si0.7Ge0.3
determines the resulting width of the interface. (b) Wells with oscillating Ge concen-
tration proportional to cos(qz + φ) as proposed in [64]. (c) Wells with Ge spikes at
different z positions. (d) Randomly distributed Ge atoms with the same average Ge
concentration as (b). (e) Comparison of the 2k0 theory from [67] against our DFT
model. Procedure for the calculation of Ṽ w

qw(k). The envelope |Φ1(z)|2 and Hartree
potential VH(z) for each configuration are obtained from DFT. The lower panel shows
the spectrum of the product V w

qw(z) = VH(z)|Φ1(z)|2 which is evaluated at k = 2k0.
(g) Correlation between the valley splitting obtained from DFT and the Fourier com-
ponent of the density weighted well potential Ṽ w

qw(k) at k = 2k0, characterized by a
Pearson correlation coefficient of 0.91. The dashed line is a guide to the eye with
slope 1.

In the following, four well designs are considered (Fig. 5.7a–d) for obtaining the
valley splitting values from DFT, yielding results depicted in Fig. 5.7g. Verification
of this approach for our comparatively small simulation cells can be found in App. D.
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The first type of well that we consider are Ge-free wells with smooth interfaces as
shown in Fig. 5.7a. With respect to practical growth conditions, step-like interfaces
are extremely difficult (if not impossible) to fabricate and smooth interfaces represent
more realistic growth profiles. We model the monotonous increase of Ge by means of
a step-like function (steps of 1/18, see App. D). The width of the interface is given
in monolayers (ML).13

The main consequence of Eq. (5.2) is that EVS is expected to reach a maximum if
the quantum-well potential oscillates with a wavevector q = 2k0 [63, 64]. This can be
realized by introducing an oscillating Ge concentration in the well (wiggle wells), see
Fig. 5.7b. Similarly, the valley splitting can be increased by introducing Ge peaks in
the well [62], compare Fig. 5.7c.

Additionally, we compare the wiggle well results to randomly distributed Ge atoms
considering that the average Ge concentration in the well stays the same, see Fig. 5.7d.
The reduced valley splitting with respect to wiggle wells at q = 19 nm−1 confirms the
impact of periodically aligned Ge-enriched layers in the quantum well. The relatively
large EVS of up to 13 meV is attributed to strong local gradients in the Ge distribution
that appear due to the random placement of Ge and effectively broaden Ṽ w

qw(k). The
same interpretation is valid for wells with Ge spikes in Fig. 5.7c.

The 2k0 theory has been verified against tight-binding calculations using a virtual
crystal method in [67]. We refine this approach by using the envelope and quantum
well potential obtained from first-principles to calculate Ṽ w

qw for every structure as
depicted in Fig. 5.7e and Fig. 5.7f. Good correlation with EVS from DFT (Pearson
correlation coefficient of 0.91) as shown in Fig. 5.7g justifies the implications of the
2k0 theory but also indicates limitations as discussed in the following section.

5.1.5 Valley-orbit coupling

A number of conceptual differences between DFT and EM have been outlined in
Sec. 5.1.1. Another possible explanation for the deviation between the two methods
could be the assumption leading to Eq. (5.2), namely, that both valley states share
the same envelope Φ+ = Φ− which is equivalent to considering an isolated two-valley
system that does not coupling to excited orbital states. A pronounced valley-orbit
coupling is indicated by our DFT calculations, a scenario in which the concept of
pure valley splitting from Eq. (5.2) can not be applied [232].

Taking a closer look at the DFT envelopes of various well geometries reveals
envelopes with the signature of the excited orbital states, namely the appearance of
a second maximum in the quantum well. This indicates mixing of first and second
orbital state, that are the envelopes with 0 and 1 node, respectively. In Fig. 5.8,
three different scenarios are compared. First, the results for an entirely Ge-free well
with an applied electric field F = 7.5mV/nm are shown in Fig. 5.8a. Such structures
show typically low valley splitting with envelopes of the resulting states that are very

13The abbreviation ML has already been used to denote “Machine Learning”. However, it was
decided to keep this standard abbreviation also for “monolayer” as it can be clearly distinguished in
the respective context.
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similar but not exactly overlapping14, compare Fig. 5.1. The electric field increases
the splittings of both valleys and orbitals. Due to the large energy difference between
ground and excited orbital states, mixing of these states is negligible and the envelopes
overlap.

Next, a structure with an Ge oscillation of q = 3 nm−1 is examined in Fig. 5.8b.
The valley splitting is increased due to the wiggle well design. Here, no electric
field is applied. Therefore, the obtained orbital splitting is only about 15 meV. The
asymmetric envelopes occur due to an asymmetric distribution of Ge atoms in the
well. The most important insight from this plot however is, that the appearance of a
local minimum in the envelope of the excited valley state.

A structure with an Ge oscillation of q = 20 nm−1, fulfilling the 2k0 condition
from Eq. (2.12). The valley splitting is strongly increased to 5.12 meV due to the
“resonant” Ge oscillation. Again, no electric field is applied and an orbital splitting of
about 15 meV is found. In this example, valley-orbit mixing is especially important
because the valley splitting is in the range of the orbital splitting. The excited valley
state couples to the excited orbital state.

In conclusion, valley-orbit mixing is important in cases of large valley splitting
and low orbital splitting. The assumptions of EM theories [67] are therefore valid
under application of a strong electric field because this shifts the excited orbital state
out of reach. However, the DFT results indicate that a comprehensive EM models
should indeed contain valley-orbit mixing.

5.2 Spin splitting

So far, we did not consider spin in the simple band description above, thus each
band is spin degenerate. This degeneracy is lifted by spin-orbit coupling (SOC). As
described in Sec. 2.2.4, it can be shown that two types of spin Hamiltonians are
allowed in a quantum well structure. We obtain Rashba- and Dresselhaus-type of
spin-orbit couplings:

HR = αR(σxky − σykx)

HD = αD(σxkx − σyky)
(5.4)

Knowledge about the SOC in a spin qubit is essential for driving qubit state transitions
by EDSR. Compared to holes (in hole spin qubits), the SOC is rather weak in the
conduction band, which limits the electrical manipulation of electron spin qubits. For
this reason, an enhancement of the SOC is highly desirable, and can be achieved either
by placing micro-magnets in the vicinity of the qubit [14] or by engineering the shape
of the quantum wells [233]. However, our results imply that SOC in electron spin qubit
devices could also be enhanced by modifying the microscopic structure of the interface.
We calculate the SOC for three Si-MOS heterostructures. As depicted in Fig. 5.9, we

14The states from DFT can not be assigned to |+� and |−�, however we keep this notation for
simplicity and use the convention that the ground and excited valley state are represented by |+�
and |−�, respectively.
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Figure 5.8: Local density of states for three different quantum wells an various
electric fields (left) and associated envelopes |Φ±(z)|2 of the valley-orbit states |+�
and |−� (right). (a) Clean well with smooth interface (5 ML transition region) at
F = 7.5mV/nm. The excited orbital states are separated by about 30 meV. The DFT
envelopes overlap almost perfectly. (b) Ge oscillation with q = 3nm−1 at zero electric
field. The asymmetry comes from the asymmetric Ge distribution in the well. This
configuration yields a moderate valley splitting of 520 µeV. The orbital splitting of
15 meV. is reduced because there is no electric field. While the envelope of |+� resem-
bles a prototypical envelope of the lowest orbit, |Φ2|2 develops a local minimum in the
center of the well, that is the signature of valley-orbit mixing with the orbital state
above. (c) Ge oscillation with q = 20nm−1 (≈ 2k0) at zero electric field. The valley
splitting of 5.6 meV is strongly enhanced by the Ge oscillations. Strong valley-orbit
coupling with higher orbital states is indicated.
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find a linear-in-k spin splitting for small k. For larger k, the splitting can be fitted
to a cubic term as expected by the theory. This is depicted in the inset. The spin
splitting was calculated for k points along the [110] and [11̄0] directions, respectively.
This allows for simple extraction of the Rashba and Dresselhaus coefficients αR and
αD by symmetry arguments. With respect to the rotated k-axis, the Dresselhaus term
gives the symmetric contributions while the Rashba term results in anti-symmetric
contributions. The extracted values for αR vary between 0.4 and 0.8 µeVnm and for
αD from 37 to 664 µeVnm. The dominating Dresselhaus contributions vary by more
than one order of magnitude purely due to differences in the atomistic configuration
at the interface. However, the average of 240 µeVnm agrees well with the experimental
value of 178 µeVnm [234]. We interpret this result as a verification for our modeling
approach.
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Figure 5.9: Spin splitting of the lowest valley state for k = [kx, ky] along the in-plane
directions [110] and [11̄0] at E = 10 mV/nm for Si-MOS. The blue shadings distinguish
three different interface structures. The splitting is linear in k for small k and cubic
for larger k as shown in the inset.

Because SOC is not implemented in CP2K, the Vienna Ab-initio Simulation Pack-
age (VASP) was employed for the purpose of extracting the SOC coefficients. Un-
fortunately, VASP demands more memory. Therefore, we could not conduct similar
calculations for Si/SiGe (larger cells with more atoms compared to Si-MOS). This
extension is left for future endeavors.





Chapter 6

Coherence limit due to hyperfine
interactions

The results presented in this section have been published
in [LC1]. Text and figures are adapted from there.

On the quest to understand and reduce environmental noise in Si spin qubits,
hyperfine interactions between electron and nuclear spins impose a major challenge.
Silicon is a promising host material because one can enhance the spin coherence time
by removing spinful 29Si isotopes. As more experiments rely on isotopic purification
of Si, the role of other spinful atoms in the device should be clarified. This is not a
straightforward task, as the hyperfine interactions with atoms in the barrier layers are
poorly understood. We utilize density functional theory to determine the hyperfine
tensors of both Si and Ge in a crystalline epitaxial Si/SiGe quantum well as well as
Si and O atoms in an amorphous Si/SiO2 (MOS) interface structure. Based on these
results, as elaborated in Sec. 2.2.5, we estimate the dephasing time T ∗

2 due to magnetic
noise from the spin bath and show that the coherence is limited by interactions with
non-Si barrier atoms to a few µs in Si/SiGe (for non-purified Ge) and about 100 µs in
Si-MOS. Expressing these numbers alternatively, in Si/SiGe the interactions with Ge
dominate below 1000 ppm of 29Si content, and, due to low natural concentration of the
spinful oxygen isotopes, the interactions with oxygen in Si-MOS become significant
only below 1 ppm of 29Si content.

6.1 Introduction
Although the relative importance of various decoherence mechanisms is still under
debate [82, 83], a major source of decoherence is the hyperfine interaction with the
nuclear spins of the host material [235, 103]. In this regard, silicon is an outstanding
platform for implementing spin qubits due to the naturally low abundance of 29Si,
its only stable spinful isotope. Removing 29Si by isotopic purification [236] improves
several key spin-qubit metrics [35] including coherence, which can be pushed even
up to a second for donor-bound electrons in bulk silicon [90]. The second reason
for the auspicious status of silicon is the compatibility with classical semiconductor
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device fabrication, the metal–oxide–semiconductor (MOS) technology [30]. Hence, the
development of Si-MOS spin qubits is a direction currently pursued, with encouraging
achievements such as high coherence [237, 238, 239], high-fidelity single and two-
qubit gates [240], fast and high-fidelity single-shot readout [241, 242], high quality
factors [243, 244], or the operation above 1 K [245]. As an alternative, Si/SiGe devices
rely on a two-dimensional electron gas that is well separated from the heterostructure
interface offering a clean system [246] and coherent [247, 83, 248, 249] and high-fidelity
[20, 250, 251, 252] spin qubits.

We employ DFT to determine the hyperfine interactions between a conduction
band electron in a Si quantum dot and a nuclear spin bath that is composed of atoms
in the Si host lattice and the barrier layer. While previous ab-initio studies focused
on donor-bound electrons [253] or delocalized electrons in bulk [93, 101], we consider
realistic interfaces to which a conduction-band electron is confined by an external
electric field. This model allows us not only to calculate the hyperfine interaction
with 29Si, which is the dominant source of decoherence in natural Si, but also with
spinful isotopes in the barrier, a weaker interaction with the evanescent tail of the
electron that only becomes important for highly purified Si. Besides 29Si, spinful
isotopes appearing in the barrier include 73Ge in SiGe and 17O in MOS structures.
Based on the DFT results, we estimate dephasing times T ∗

2 due to quasi-static noise
from nuclei in the barrier.

For Si/SiGe, we come to the conclusion that 73Ge isotopes limit the coherence time
to a few µs already at 3500 ppm of 29Si fraction. This value is less than 4.68%, the
natural abundance of 29Si, but substantially more than 50 ppm, the lowest currently
available fraction of 29Si in purified silicon. Considering isotopically purified Ge in
addition to purified Si will suppress the nuclear noise further and, according to our
model, allows to improve the decoherence time by another order of magnitude.

For Si-MOS, the hyperfine coupling to oxygen atoms in the barrier would overtake
the spin-qubit dephasing if the isotopic purification of silicon would be increased
by almost two orders of magnitude compared to the lowest currently used value
of 50 ppm. While these conclusions depend on external parameters, especially the
confining electric potential, we conclude that the spinful non-Si isotopes will not be
a limiting factor of Si-MOS qubits unless the silicon is purified to levels much below
50 ppm.

6.2 Methodology

In addition to the information given in previous parts of this thesis, the employed
methodology for the calculation of the hyperfine interactions is given in the following.

6.2.1 DFT setup

We employ density functional theory (DFT) implemented in the CP2K code [254] us-
ing the semi-local GGA functional PBE [116] for all calculations. We relax the geome-
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Figure 6.1: (a) Schematic device layout of a quantum dot (depicted as a blue ellipsoid)
in a Si-based material stack. The dot is formed at the Si/barrier interface by top
gates (not shown) which also confine the electron wavefunction in the lateral (xy)
plane. Nuclear spins in both material layers (schematically represented as red and
yellow arrows) act as a source of magnetic noise. This interaction and the resulting
decoherence is mostly determined by the electron wavefunction amplitude at atomic
nuclei. (b) Exemplary 3D model of an atomistic Si/SiO2 interface structure (side
view). We assume an external electric field 50mV/nm in z-direction (perpendicular
to the Si-barrier interface). The simulation cell measures 1.15×1.15×15 nm3 and
contains 780 atoms (Si in yellow, O in red, H for the passivated dangling bonds in
blue). The cyan surface displays the real part of the electron wavefunction as obtained
from DFT. (c) A part (7.5 nm) of the Si/Si0.7Ge0.3 cell. The full cell of the model
is 1.65×1.65×25 nm3 and contains 2500 atoms (Si in yellow, Ge in magenta). The
plotted wavefunction corresponds to an electric field of 5.8mV/nm. Because of the
lower field, the wavefunction extends further into the Si layer.
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tries of the interface structures and calculate their electronic ground state imposing
periodic boundary conditions in all directions. Since obtaining reliable hyperfine cou-
plings within an ab-initio framework requires accurate modeling of the spin density in
the vicinity of atomic nuclei [255], we use all-electron basis sets. Also, the orbitals are
expanded in correlation-consistent polarized double-ζ basis sets for valence and core
electrons [119, 120, 121]. Since the same basis sets are not available for Ge, we used
the 6-31G double-ζ Pople basis sets [122], which were previously reported to provide
accurate hyperfine couplings [123, 124]. The systems are self-consistently relaxed with
a force convergence criterion of 0.02 eV/Å per atom. The calculation of the hyper-
fine tensors (including relativistic effects) is based on the CP2K implementation of
Declerck [95].

We include a homogeneous electric field perpendicular to the heterostructure in-
terface, using the Berry-phase formalism [229, 230] as presented in [228, 127]. This
implementation corresponds to imposing closed-circuit boundary conditions with a
constant applied bias across the simulation cell. The electric fields in the material
layers adjust according to the layer thickness and relative permittivity, as discussed
in Sec. 5.1.3. The values for the electric field F quoted throughout this work refer
to the field in the Si layer that is extracted from the Hartree potential. For the
Si/SiGe heterostructure, we apply electric fields F within the typical range of 1 to
10 mV/nm [64]. For the Si-MOS heterostructure, the electric field in the 2DEG de-
pends on the doping density of the Si substrate [256]. Assuming a doping density of
at most 1018/cm3 in the substrate and a carrier density of at most 1012/cm2 in the
2DEG, we estimate the field F in the semiconductor [257] to be below 60 mV/nm.

6.2.2 Atomic structure and supercell

In contrast to the valley splitting calculations presented in Sec. 5, we do not use
quantum wells with barrier layers on both sides of the Si layer for the calculation
of the hyperfine interactions. Instead, a barrier material is only put at one side of
the Si layers while the other side is passivated by H. An electric field is applied in
the perpendicular direction to the Si/barrier interface, pushing the conduction-band
electron (or better: the 2DEG) towards this interface, see Fig. 6.1. Because the 2DEG
is strongly confined to one side of the Si crystal, the effects from the other interface are
expected to be weak. Removing this second barrier allows to reduce the complexity
of the DFT calculations that are quite challenging to converge numerically. The
principle methodology for the generation of the interfaces as presented in Chapter 4
is unchanged. As before, we do not consider in-plane confinement and enforce periodic
boundary conditions on simulation cells with lateral size of 1.15 or 1.6 nm along the
interfaces. We extrapolate the calculated quantities to realistic in-plane quantum dot
sizes by a straightforward rescaling of the electron wavefunction density, with the
details given in Sec. 6.5.
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6.2.2.1 Si/SiGe

Modeling typical experimental setups, we consider a SiGe layer with roughly 30% Ge
content interfaced with a strained Si layer to get the correct band alignment to form
a quantum well in the Si part of the simulation cell. By means of the PBE functional,
we find a band offset of 200 meV, slightly overestimating the experimental value of
150 meV [258]. For the generation of the structure, we start from a pure [001] Si crystal
with 120 monolayers in z direction and 3 × 3 unit cells along x and y, cf. Sec. 4.1.
A 4.3 nm thick region (32 monolayers) on one end of the crystal is assigned to form
the SiGe barrier. In this region, SiGe layers are produced by replacing random atoms
of the Si lattice by Ge, such that the Ge proportion in each layer equals 27.7% (5
out of 18 atoms are Ge). The next 12 nm of pure Si represents the Si quantum well
and the final 6 nm of vacuum serves as a boundary barrier in the model.15 Dangling
bonds at the material/vacuum interfaces are passivated with hydrogen. The whole
cell is relaxed under 1 % of tensile in-plane strain in the Si layer. In total, we get a
simulation cell of 1.65×1.65×25 nm3 with 2232 atoms.

6.2.2.2 Si-MOS

We generate the amorphous interface structures by ab-initio molecular dynamics
(AIMD) simulations, following our initial AIMD approach from Sec. 4.2 [LC4]. The
thickness of the Si and SiO2 layers were chosen such that the decay of the electron
wavefunction into the semiconductor (along z) and into the oxide (along −z) makes
the electron wavefunction negligible at the layer boundary (present in the model
only) away from the interface. A Si thickness of 10 nm and an oxide thickness of 1 nm
proved sufficient to suppress boundary effects as the wavefunction decays quickly as
a result of the large conduction band offset (|Ψ|2 decays by about a factor of 105 per
nm in SiO2), in combination with the strong electric field. We observe that after a
roughly 0.5 nm thick transition region at the crystalline Si, the amorphous SiO2 shows
geometric qualities (bond lengths and angles, densities) of bulk silicon dioxide [LC4].

To impose the periodicity in z-direction required by the DFT code, we adopt the
repeated slab model: The top edge of the oxide layer and the bottom edge of the
Si crystal are passivated with hydrogen and separated from their periodic image by
a vacuum of 20 nm. Subsequently, the whole simulation cell is relaxed in x and y
direction with respect to the lattice parameter of bulk Si (our DFT setup gives a
relaxed Si lattice parameter a0 = 0.544 nm which is very close to the experimental
value of a0 = 0.543 nm).

6.3 The lowest subband of a Si heterostructure 2DEG
As described in Sec. 2.2.3, the six-fold degeneracy of the conduction band minimum
of bulk silicon is lifted by the heterostructure confinement and, for Si/SiGe, by the

15Alternatively, one could consider sandwiched Si layers (barriers at both sides) as a way to
confine the electron instead of using the electric field, and smooth transition between the Si and
SiGe parts instead of an abrupt interface. We leave these extensions for the future.
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Figure 6.2: Real-part of the cross-section averaged wavefunction at the conduction
band minimum as obtained from DFT for the Si-MOS and Si/SiGe interface model,
respectively. The first atom in the barrier is at z = 0. When compared to Si-MOS,
the Si/SiGe wavefunction extends further into the Si part of the simulation cell (+z)
due to the lower electric field F . In addition, due to the lower barrier ECB, it also
extends further into the SiGe barrier (−z). The associated envelopes Φ(z) (black
lines) are obtained by low-pass filtering the wavefunction density with a Gaussian
filter.

in-plane strain in the Si layer. [9, 10]. A four-dimensional subspace is raised in en-
ergy, leaving two so-called valley states at the conduction band minimum, at crystal
momenta k0 ≈ ±2π

a0
0.83 [9, 10].

These valley states are further split by the interface [54] [LC3], that is by the
electric field pressing the electron onto the barrier.16 Our DFT results are in line
with this picture. We obtain a conduction band offset of about 0.2 eV and 2.7 eV for
Si/SiGe and Si-MOS, respectively. The valley splitting is below 300 µeV in Si/SiGe
and in the range of 1-3 meV for the oxide interface, cf. the results in Chapter 5.

The ground state wavefunctions are plotted in Fig. 6.2. One can identify the
oscillations assigned to the expected valley wave vector k0. The valley content of
states at the conduction band minimum is also imprinted in the local density of
states as already shown in Fig. 5.2 for an illustration.

6.4 The magnitudes of the hyperfine couplings
Having the conduction-band wavefunction, including a reliable description of its shape
near the atomic cores, we can evaluate the hyperfine tensors. Building on the the-

16For zero electric field, they would be split by the Si/SiGe quantum well interfaces.
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oretical foundations and notation from Sec. 2.2.5, we denote the hyperfine tensor A
and the direction of the magnetic field m. The hyperfine tensor A are obtained for
each atom in the system from DFT. We define – loosely speaking – the ‘hyperfine
strength’, as the quantity entering the dephasing time formula17,

A⊥ = |m ·A|, (6.1)

where we again drop the indexes i, n. Figure 6.3 shows A⊥ plotted against the atoms’
distance from the interface. It shows large variations which are easily explained by the
proportionality of the dominant (isotropic) part to the electron wavefunction density
given in Eq. (2.19). Thus, the overall trend in Fig. 6.3 reflects the confinement in
z-direction. We attribute variations on top of this trend to Bloch oscillations and,
especially relevant for the Si-MOS case, details of the atomic configuration at the
interface. Though probably of little practical importance, we have also confirmed
that the tails of the hyperfine strengths at the left and right boundaries are due to
the anisotropic contribution. Here, as the electron wavefunction drops exponentially,
the anisotropic hyperfine terms take over. Thus, the saturation at the wavefunction
tails seems to be physical rather than a numerical artifact and it is reassuring that
our numerical calculations can uncover these small tails.

The most important observation in Fig. 6.3 is that the hyperfine coupling to
non-Si nuclei in the barrier is comparable to the coupling to silicon (if located at a
similar distance from the interface). While we refrain from any quantitative fitting
of η,18 the lack of an essential difference between germanium/oxygen and silicon is
obvious from the figure. This is the crucial finding that decides the magnitude of the
barrier-induced dephasing.

To quantify their contributions, we assign the following extensive quantity to each
isotope, as a short-hand notation for its contribution in Eq. (2.22),

�Δi� ≡ Ii(Ii + 1)

3

�
n∈isotope i

|m ·Ai,n|2. (6.2)

Even though our numerical calculations and plots include the anisotropic contribu-
tions, we find that they are small. It is then useful to neglect them in the preceding
equation, upon which we obtain

�Δi� ≈ Ii(Ii + 1)

3

�
n∈isotope i

A2
i,n (6.3a)

= c2i
�

n∈isotope i
|Ψ(rn)|4, (6.3b)

17If one drops the anisotropic contributions, the ‘hyperfine strength’ equals the hyperfine coupling
A given in Eq. (2.19) and does not depend on the magnetic field direction m.

18As already mentioned, η is not well defined in the amorphous oxide. While well defined in
crystalline semiconductors, fitting η for both Ge and Si, is complicated by the interference of different
valleys. We limit ourselves to a remark that we do not see any evidence of η for Ge being much
larger than for Si and, thus, our data give more support to the estimate for ηGe/ηSi ≈ 3 made in
Ref. [99] compared to ηGe/ηSi ≈ 10 made in Ref. [98], see also the text below Eq. (2.21).
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where ci collects the constants from Eqs. (2.19) and (2.22),

ci =
4µ0

9
Ii(Ii + 1)geµBgN,iµN . (6.3c)

The quantity �Δi� gives the total sum of (squared) hyperfine couplings A⊥ for a
given isotope, and, through that, the isotope contribution to the electron spin energy
variance.

With this notation, the dephasing time becomes,

T ∗
2 = �

√
2��

i pi�Δi�
. (6.4)

One point is worth discussing here. In the DFT code, we do not distinguish among
different isotopes of the same element. Correspondingly, in Fig. 6.3 we plot the
hyperfine strengths for all atoms in the simulation cell. In reality, out of these, only a
few atoms will be the spinful isotopes for each of the considered elements (Si, O, Ge).
The quantity pi�Δi� is thus the average contribution to the electron energy variance
from a given isotope, the average being over all possible distributions of the spinful
isotopes within the set of atoms of a given element. We hint at this fact by using the
angular brackets. By excluding the factor pi, we have made the average quantity �Δi�
independent of the isotopic concentration, and thus useful when judging the effects
of purification. The total hyperfine coupling �Δi� is set by the heterostructure: the
2DEG width, the confinement field, and the barrier chemical composition.

With this clarification, let us look at the composition of �Δi� for our structures.
For Si-MOS, the maximal hyperfine coupling to an oxygen atom is two orders of
magnitude smaller than the one for silicon. Nevertheless, as we will see below, the
coupling is large enough to contribute to the dephasing appreciably. Finally, due to
the exponential decay of the wave function in the barrier, interactions with atoms
deeper than 1 nm can be neglected.

For Si/SiGe, the difference between the maximum hyperfine coupling of Si and
Ge is less than one order of magnitude. Therefore, a stronger dephasing is expected
from the Ge atoms in the barrier. In addition, the exponential decay in the barrier is
significantly weaker compared to Si-MOS (a factor of about 10 per nm SiGe vs. 105
per nm oxide) because of the much lower conduction band offset of only 200 meV
(vs. 2.7 eV in Si-MOS). This difference results in appreciable interactions with Ge
atoms located up to several nm inside the barrier.

6.5 Rescaling the results for gated quantum dots
To estimate the dephasing time in a quantum dot spin qubit, we have to resolve one
more issue. Namely, the size of a structure for which a DFT calculation is possi-
ble is limited. We focused on having a realistic description of the device along the
z direction, to faithfully describe the irregular interfaces. The lateral area of the
modeled cell is thereby restricted to only about one or two square nanometers. How-
ever, gated quantum dot areas are hundred to thousand times larger. We overcome
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Figure 6.3: Effective hyperfine interaction A⊥/2π�, for (a) Si/SiGe and (b) Si-MOS,
of all atoms plotted along the z-direction of the simulation cell. The distribution can
be largely attributed to the shape of the wavefunction density (not smoothed, black
line). The boundary of the barrier layer interfacing the Si at z = 0 is indicated by
a dashed line. The interactions with barrier atoms further away from the interface
subside quickly as a result of the exponential decay of the wavefunction in the barrier,
while the saturation tail is due to anisotropic hyperfine interaction.

this limitation by relying on the scaling of the hyperfine strengths with the electron
wavefunction given in Eq. (6.3b). As already stated, and in line with claims in litera-
ture [94], we have found that the isotropic contribution dominates the total hyperfine
strength �Δi�. Equation (6.3b) predicts that upon enlarging the lateral area of the
simulation cell by a factor N , the quantity �Δi� gets N -times smaller: while there
will be (on average) N -times more atoms of a given isotope, each individual hyperfine
strength drops by a factor of N2, since the electron probability density is reduced as
|Ψ(r)|2 → |Ψ(r)|2/N .

With these considerations, we define an effective density of the total hyperfine
coupling �Δ1d� by multiplying the value obtained from our DFT code according to
Eq. (6.2) by the lateral area of the simulation cell. The isotope contribution to the
quantum-dot electron energy variance is then

�δE2
i � = pi × �Δ1d

i �/S, (6.5)
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Figure 6.4: Scaling of the simulation cell size. The total hyperfine strength for oxygen
�Δ17O� in three runs with, respectively, single, double, and quadruple repetition of a
unit block of 1.15 nm×1.15 nm area. The dashed line is the expected scaling �Δ� ∝
1/S.

where S is the actual area of the quantum dot in the lateral dimensions. This ap-
proximation assumes that the structure of the interface does not change drastically
upon moving along the lateral coordinates and that the quantity �Δi� in a quantum
dot is self-averaging. We expect that this is the case, with supportive evidence and
further comments given in the following.

6.6 Scaling of the total hyperfine coupling with the
dot area

The scaling of the total hyperfine strength �Δ� with the quantum-dot area S, is
illustrated in Fig. 6.4. It shows the results of three runs in which the original cell is
replicated two and four times laterally. We observe the scaling predicted by Eq. (6.3b)
to good accuracy. Small deviations can be attributed to anisotropic contributions and
numerical noise.

On the other hand, these results are not much more than a code sanity check
since in those three runs we use the same configuration of atoms in each of the
elementary squares depicted as the point labels in the figure. The inverse scaling with
the quantum dot area (or volume) then follows from Eq. (6.3b) and from the fact that
the isotropic hyperfine coupling dominates, which is obvious from Fig. 6.3. To check
that the definition of �Δ1d� is of practical use, we need to estimate the variance of
�Δ� with respect to atomic configurations. To this end, we have repeated the full
simulation, including the molecular dynamics, a few times. The configurations of the
amorphous oxide vary, resulting in a spread of �Δ�. The obtained values, given in
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Table 6.1: Statistical uncertainty of �Δ� for Si-MOS. The total hyperfine strength
�Δ� for 17O and 29Si as obtained in four full simulations at F = 50mV/nm, including
molecular dynamics building anew the semiconductor-oxide interface and the barrier
oxide atomic structures.

�Δ�[MHz2nm2]

run number H atom count 17O 29Si

1 0 7.41 3766
2 1 3.43 3736
3 2 2.7 3912
4 2 2.8 3852

mean ± std 4.1± 2.2 3817± 80

Tab. 6.1, can be considered independent samples of �Δ� for our standard computation
cell with 1.15 nm lateral size.

Apart from the variations in the atomic configurations in the oxide, the spread is
further increased by varying hydrogen content at the interface. Paralleling their role
in experiments, hydrogen atoms are used in DFT codes to passivate defects that oc-
cur as the structure is generated by ab initio molecular dynamics. Namely, imposing
cell-size restrictions together with periodic boundary conditions generates simulated
structures with defects at the interface with a large probability. Typically, these de-
fects are Si dangling bonds, which are bonds at which oxygen would sit in a defect-free
SiO2. Due to the small cell area in our simulations, with less than five oxygen atoms
at the interface on average, the structures with even a single defect show a signif-
icantly lower oxygen and an unrealistically high hydrogen concentration.19 Despite
all these limitations, we conjecture from the four runs for Si-MOS listed in Tab. 6.1
that, first, the presence of hydrogen-passivated defects has a strong influence, and,
second, defect-free structures (more likely to be observed in experiments) will have a
somewhat higher �Δ� than the average calculated from also including structures with
overestimated defects densities. The analogous data for Si/SiGe, given in Tab. 6.2,
are in line with this guess. Here, the structure is crystalline and defect-free, and
four runs gave values with a much smaller spread. The spread is due to variations in
the placement of germanium atoms within the silicon matrix. Finally, the spread in
the total effective hyperfine strength for silicon, in both Si/SiGe and Si-MOS, is well
self-averaging even in our small simulation cell, as it is dominated by the contribution
from the atoms in the defect-free crystalline silicon matrix of the 2DEG.
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Table 6.2: Statistical uncertainty of �Δ� for Si/SiGe. The total hyperfine strength
�Δ� for 73Ge and 29Si as obtained in four full simulations at F = 5.8mV/nm.

�Δ�[MHz2nm2]

run number 73Ge 29Si

1 64.9 1434
2 63.1 1422
3 65.5 1473
4 64.3 1461

mean ± std 64.5± 1.0 1448± 24

Table 6.3: As a function of the electric field (top row), the middle three rows give the
isotope contributions �Δ1d

i � to the electron-spin energy variance in units of MHz2nm2.
The bottom row gives the threshold isotopic concentration p29Si at which the barrier
element (germanium or oxygen) contributes as much as silicon. These thresholds are
calculated using Eq. (6.6) and natural isotopic concentrations, p73Ge = 7.76% and
p17O = 377 ppm.

Si/SiGe Si-MOS

electric field F [mV/nm]
4.5 5.8 7.5 43 50

isotope
29Si 1185 1450 1563 3592 3766
73Ge 13.9 64.5 163.3
17O 5.86 7.41

crossover [ppm] 910 3453 5773 0.60 0.72
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6.7 Discussion
Equation (6.5) allows us to extrapolate our DFT results to quantum dots of experi-
mentally relevant sizes. As an illustration, we consider a quantum dot with harmonic
confinement with confinement lengths lx = ly = 30 nm, which corresponds to an
effective QD area20 of S ≈ 5500 nm2.

With this, we calculate the dephasing time T ∗
2 according to Eqs. (6.4) and (6.5).

We fix the isotopic concentration of Ge and O to their natural values, that is p73Ge =
7.76% and p17O = 377 ppm, and plot the electron spin dephasing time as a function of
the 29Si content in Fig. 6.5. We find a strong increase of T ∗

2 , boosting the coherence
time by a factor of 20 when reducing the amount of 29Si from its natural abundance of
4.7% down to the purest samples of nearly nuclear-spin-free Si with 50 ppm 29Si [240].
The obtained T ∗

2 of 1 µs for natural Si and 20 µs for purified Si at 50 ppm are in line
with earlier theoretical [94, 93] and experimental results [259, 36, 83, 240, 90, 14, 260,
261].

Further reduction of the 29Si content unveils the interactions with the barrier
atoms. Identifiable as a crossover in Fig. 6.5, they (germanium in Si/SiGe and oxy-
gen in Si-MOS, respectively) will eventually dominate and limit the dephasing time
achievable by silicon purification. The location of the crossover can be obtained by
equating the contributions from the barrier atom and silicon using Eq. (6.5),

pX�Δ1d
X � = p29Si�Δ1d

29Si�, (6.6)

where X stands for 73Ge or 17O.
Solving for the silicon concentration using the DFT output gives results as listed

in the last row of Tab. 6.3. In Si/SiO2 we find p29Si around 1 ppm, while in Si/SiGe
the threshold is much higher, and in many devices it will be above 3000 ppm.

As already mentioned, these numbers are particular to the structure details. As is
clear from Eq. (6.6), the lateral size of the quantum dot is irrelevant for the crossover.
However, the applied electric field is essential, especially for Si-MOS, as it determines
how much the electron is pushed into the barrier. In our model the electric field
has the same importance in the Si/SiGe variant even though for low electric fields,
the penetration into the barrier will eventually be determined by the quantum well
thickness. In both cases, increasing the electric field (or equivalently decreasing the
quantum well thickness) enhances the barrier atoms’ contribution, while the silicon
contribution is affected less since the atoms inside the 2DEG dominate. As a result,
the value of p29Si at the crossover increases. This behavior is on top of the expected
dependence on the quantum dot area, which has been discussed around Eq. (6.5):
With other factors fixed, in a twice larger dot the individual hyperfine couplings A⊥

will be four times smaller, the total couplings �Δ� twice smaller and the dephasing
time twice longer. Such changes in quantum dot size would shift all curves plotted in
Fig. 6.5 in the same way and do not change the horizontal position of the intersection.

19One defect, being one passivating hydrogen atom in our simulation cell area of about one nm2,
means a defect density about a hundred times more than what is expected from experiments [222].

20We use a standard definition of ‘effective quantum dot volume’ V given by V −1 =
� |Ψ(r)|4 dr.

Applying the definition within the xy plane gives the effective area S =
√
2πlx ×√

2πly.
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[247, 83, 18]

[262]
[263]

[240]

Figure 6.5: Dephasing times T ∗
2 as a function of the amount of spinful 29Si nuclei. The

field is F = 5.8 mV/nm for Si/SiGe and F = 50 mV/nm for Si-MOS. The increase of
T ∗
2 upon silicon purification is eventually limited by the germanium or oxygen atoms in

the barrier. The uncertainty in the vertical position of the horizontal lines is pictorially
represented by the double-headed arrows. The sources of this uncertainty are listed
in the box and are explained and discussed in the main text below Eq. (11). The stars
represent experimental values for Si/SiGe at 800 ppm from Ref. [247, 83, 18, 262], at
50 ppm from Ref. [240], and in natural Si from Ref. [263].

We represent the dependence of the barrier atoms’ contribution on various factors
pictorially in Fig. 6.5 with the double arrow and list the factors in the text box. As
discussed, the electric field is crucial for the barrier atoms’ contribution as it deter-
mines the strength of the wave function tails. The details of the atomic arrangement
at the interface are of similar relevance in Si/SiO2. Although not explicitly inves-
tigated, we suspect that analogous details might play a role in crystalline Si/SiGe,
namely, how abruptly the Ge density changes (the interface width). We list this fac-
tor as ‘interface details’ in the box of Fig. 6.5. The next source of variations is the
random location of the spinful isotopes, as we have already mentioned. This effect
increases as the average number of spinful isotopes in the QD decreases and becomes
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Figure 6.6: Coherence times for Si/SiGe as a function of isotopic purification of 29Si
and 73Ge. We plot T ∗

2 evaluated according to Eq. (6.4) using the parameters from
Tab. 6.3 at F = 5.8 mV/nm.

pronounced when this number becomes of order one. Therefore, at the crossover, this
effect will be strong in Si-MOS. 21

Having all these error sources in mind, we anticipate a sizable spread of deco-
herence times in individual devices, even if they are dominated by nuclear noise.
Comparison to experiments is further complicated by the fact that at low isotopic
concentrations the coherence might be limited by other sources, for example charge
noise [82, 264]. We have included a few experimentally measured dephasing times in
Fig. 6.5 for illustration.

For Si purification above a few hundred ppm, Fig. 6.5 implies stronger dephasing
in Si-MOS compared to Si/SiGe. The difference is not related to the barrier type
but solely due to the stronger electric field. Pushing the QD against the interface
generates a large spin density in the Si layers close to the interface, which translates
into a stronger total hyperfine coupling.

21We define the average effective number nX of spinful atoms of isotope X contributing to the
dephasing in a QD using the inverse participation ratio. Namely, we collect the values of individual
atoms contributions A⊥

n , normalize these numbers as a probability distribution, A⊥
n → Pn so that�

n Pn = 1, and define nX = pX/
�

n P
2
n . In this way, for an area S = 5500 nm2 and at the

crossover, we obtain n29Si ≈ 3136 and n73Ge ≈ 3661 in Si/SiGe and n29Si ≈ 0.3 and n17O ≈ 14.2 in
Si-MOS.
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Finally, we discuss the isotopic purification of Ge, as its contribution to electron
dephasing in Si/SiGe structures has been anticipated [100, 37, 83, 99]. Motivated
by this prospect [265], in Fig. 6.6 we plot the dephasing as a function of both Si
and Ge isotopic content. The figure visualizes the crossover map for various isotopic
concentrations.

6.8 Summary
We calculate hyperfine interactions within a state-of-the-art ab-initio framework and
estimate the resulting dephasing of a spin qubit in Si-MOS and Si/SiGe quantum dots.
The simulations include planar heterostructures with disordered interfaces at which
a 2DEG is induced by an external electric field. We extract the hyperfine tensors for
the interaction between the conduction-band electron and nuclear spins of every atom
in the structure and examine the impact of isotopic purification on the coherence. We
find that the improvement of the electron spin coherence time by isotopic purification
is limited by the presence of spinful atoms in the barrier layer of the heterostructure
once the 29Si content drops below a threshold value. The threshold strongly depends
on the interface electric field. For the Si-MOS case, this threshold is around 1 ppm
at F = 50 mV/nm, below which the coherence-time is limited to 200 µs by oxygen
atoms. In Si/SiGe with the natural abundance of 7.7% 73Ge, the threshold at F = 5.8
mV/nm is 3500 ppm of 29Si, below which the coherence time is limited to 10 µs by
germanium atoms.



Chapter 7

Conclusions and outlook

The realization of a useful quantum computer requires the joint effort of physicists,
material scientists, electronic engineers, computer scientists, and logicians. Expertises
from all these fields need to be interwoven, rendering quantum computing one of the
most interesting challenges of today’s scientific endeavors. Of course, such a venture
comes not without several pitfalls and it is still an open question if and how quantum
computers can be made robust and noise resilient. The present work deals with
the material aspect of one of the most promising platforms for quantum computing,
quantum-dot based spin qubits, from a theoretical perspective. Focussing on electron
spin qubits, the two most important material systems, Si/SiGe and Si-MOS, are
investigated. Several material properties as well as their impact on qubit parameters
are determined from elaborate DFT calculations.

DFT is a method to determine the electronic structure of a given atomic configu-
ration. Therefore, the generation of credible atomistic interface models is an essential
requirement for this study, and the first intermediate goal presented in this thesis.
While the construction of Si/SiGe interfaces is trivial, Si/SiO2 interfaces (as used in
Si-MOS qubits) require sophisticated modeling. By means of dynamic AIMD cal-
culations, we simulate the full thermal oxidation process of Si, leading to numerous
insights in oxide growth and resulting interface properties. The simulations revealed
an oxidation scheme which naturally integrates all previously reported experimental
observations, from spontaneous surface reactions to molecular precursor mediated dis-
sociation and O2 diffusion through the oxide. This sequence of oxidation mechanisms
leads to a decrease from the comparably fast oxidation rate in the initial regime (be-
fore the surface is saturated with O) to the linear oxidation regime described by the
Deal-Grove model. The resulting interface structures show a 0.5 nm thick interfacial
transition region characterized by increasing Si-O coordination and strained chemical
bonds.

Running these AIMD simulations is a computationally highly expensive and time-
consuming process (several months per structure). Because the O2 molecules are
introduced above the Si surface individually (and often repelled), constant supervision
is required. This process becomes increasingly cumbersome, since the adsorption of
O2 molecules is inhibited with increasing oxygen surface coverage. Therefore, we
introduced a Gaussian approximation potential (GAP)-based machine learning (ML)
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interatomic potential tailored for generating ultra-thin oxide layers on a Si substrate.
The training data is mostly taken from the AIMD calculations above. By means
of this ML model, the thermal oxidation can be modeled even more realistically, in
the sense that the Si surface is exposed to an oxygen atmosphere that is periodically
“refilled” to maintain a constant pressure. In addition, given the highly reduced
computational costs compared to AIMD, one oxidation cycle to generate a Si/SiO2

interface structure with an oxide thickness of 1 nm requires about one week using a
single core (compared to 384 cores used for AIMD).

In the next step, we establish an ab-initio based modeling approach to extract
valley- and spin splittings from atomistic heterostructures. This first-principles based
approach goes beyond modeling techniques that have been used so far, most im-
portantly TB and k · p, and allows to investigate the impact of atomistic disorder in
considerable detail. Stress and strain, disorder at the interface, and atomistic fluctua-
tions are inherently captured by our DFT model. We find wide distributions of valley
and spin splittings by more than one order of magnitude, which can be attributed
to the variability of atomic details at the interface to the confining materials. In a
reliable quantum processor, millions of individually controllable qubits need to be
integrated on one chip necessitating highly uniform devices. In this respect, our cal-
culations underline the importance of reproducible interfaces as the qubit properties
are strongly influenced by atomic disorder. On the other hand, our results imply
that valley- and spin splittings could be tuned by engineering the interfaces to the
confining materials.

Finally, we employ the DFT model for the determination of hyperfine tensors of
all atoms in the simulation cell. Calculation of the expected decoherence time of a
quantum-dot electron spin from these hyperfine tensors yields the following insights:
In Si-MOS, oxygen is not relevant for electron spin coherence even at the highest cur-
rent Si-purification levels. However, in Si/SiGe the 73Ge isotopes limit the coherence
time to a few microseconds already at 3500 ppm of 29Si fraction. This value is less
than 4.68 %, the natural abundance of 29Si, but substantially more than 50 ppm, the
lowest currently available fraction of 29Si in purified silicon. This provides compelling
evidence that the germanium must be purified in addition to silicon to suppress nu-
clear noise effectively. Our model indeed predicts a possible improvement of the
coherence time by another order of magnitude. Our work therefore quantifies the
effects of a new source of magnetic noise that must be dealt with to further improve
the performance of Si spin qubits.

7.1 Future prospects

Semiconductor spin qubits are a highly pursued area of research and have evolved
extremely quickly over the last decades. Given the fact that a broad range of material
platforms fulfill the requirements to trap and manipulate electron or hole spins, many
different approaches have attracted interest over the last years. In the course of this
process, advantages and drawbacks of each material platform have been identified.
Two prime examples are the strong hyperfine interaction in GaAs or the detrimentally
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low valley splitting in Si/SiGe. Some of these obstacles can be overcome in other
materials (Si instead of GaAs to remove nuclear spins) or by structural engineering
of the devices (wiggle wells in Si/SiGe to enhance the valley splitting). This thesis
investigates some of these aspects. However, and possibly more importantly, it shows
that DFT can be applied for modeling spin qubits. In this respect, the possibilities
explored here have only scratched the surface. In the following, an incomplete list of
possible extensions is given:

Transferring the methodology to holes. Recently, hole spin qubits in Ge have
attracted a lot of attention. Reasons are fast and all-electrical driving (EDSR) and
Ohmic contacts to superconductors. Applying DFT in this framework would be
highly interesting.

SOC in Si/SiGe. The calculation of the SOC coefficients in Si/SiGe failed only
due to technical issues (in combination with a limited amount of time to finish a
PhD).

Calculation of the g-factor. A very important quantity for qubit application is
the g-factor which can in principle be obtained from DFT.

Larger simulation cells. It is hard to say if DFT modeling of a full devices will
be possible in the foreseeable future. However, taking larger simulation cells to have
better averaging (especially in Si-MOS), less restrictions (e.g. arbitrary Ge profiles),
and more long-range disorder would certainly improve the accuracy and predictive
power of DFT models.

Other device designs. Next to planar heterostructures, qubits have also been
fabricated in FinFETs or nanowires. In combination with larger simulation cells,
modeling of such devices might become feasible.

Hyperfine interaction in SiGe/Si/SiGe structures. In order to reduce the
system complexity for the calculation of the hyperfine interactions, only one interface
to a barrier was considered. Since Si/SiGe qubits are typically realized in sandwiched
Si layers, the second barrier would also impact the dephasing times.





Appendix A

Machine learning parameters and
training dataset

A.1 Descriptor parameters
The descriptors can be tuned by the user via a number of parameters as given in
Tab. A.1. The weight of each descriptor is controlled by δ, rcut is a cut-off radius
which defines a sphere within which neighboring atoms are considered. rΔ is the
cutoff transition width, which defines the distance needed for the descriptor cut-off
to smoothly go to zero. nmax and lmax are the number of angular and radial basis
functions for the SOAP descriptor, respectively, and ζ is the power the kernel is raised
to.

A.2 Generation of the training dataset
One of the main challenges when developing an MLFF is finding suitable training
data. Among the problems that can be encountered are overfitting [266], data quality
issues (incomplete or biased data), as well as imbalanced data (some classes of struc-
tures in the training dataset appear more frequently than others, resulting in a bias
or poor performance). A detailed overview of the data used for our MLFF is given in
Tab. A.2. The dataset contains single atoms, dimers, periodic bulk structures (crys-
talline and amorphous), surfaces and nanowires, as well as gaseous O2. In a first step,
we tried several data compositions and chose the MLFF that gave the best results
(based on evaluation of the properties from Fig. 4.16 and Tab. 4.1). This initial ML
model was then used to generate new structures that were recalculated by DFT. This
additional data was then implemented into the training dataset from Tab. A.2. With
this data, we obtain the final MLFF.

Our efforts to further improve the MLFF by including more data into the training
dataset gave the opposite result: the performance decreased. From this, we conclude
that the model is prone to overfitting. One of the ways to avoid overfitting is the so-
called “early-stopping strategy” [266]. Since the MLFF already gave satisfying results
in its second iteration, we decided to stop at this point.
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Table A.1: Parameters of the employed SOAP, two-body and three-body descriptors,
based on values from [210]. The meaning of the parameters is given in the text (with
detailed description for SOAP in [138]).

Parameter SOAP Two-body Three-body

δ 0.4 4 1
rcut 5 4 3
rΔ 1 - -
nmax 8 - -
lmax 4 - -
ζ 4 - -

Table A.2: Structures in the training dataset of the GAP force field. The type of
structure is given along with the number of atoms in the structure as well as the
number of individual structures. The associated parameters σE and σF represent the
regularisation in the GAP corresponding to energies and forces, respectively [267].

Structure type Number of Number of σE σF

atoms structures
single atoms 1 3 0.0001 0.001
Si dimers 2 97 0.01 0.1
O dimers 2 57 0.01 0.1
Si–O dimers 2 23 0.01 0.1
Si–H dimers 2 52 0.01 0.1
Si bulk 192 90 0.002 0.02
SiO2 bulk 216 70 0.002 0.02
clean Si surface 224 50 0.002 0.02
ox. Si surface 232–5211 213 0.002 0.02
Si nanowire 576–1680 100 0.002 0.02
ox. Si nanowire 1682–2063 9 0.002 0.02
O2 gas 3–200 143 0.002 0.02



Appendix B

Electric field from first principles

The use of the Berry phase method [229, 230] allows to consider electric fields in
periodic (supercell) structures. CP2K [114] employs the formalism presented in [228,
127]. This approach uses the Berry-phase formalism [229, 230] to enable application
of a voltage bias across the whole simulation cell and circumvents problems arising
from potential jumps in a periodic cell.22 The implementation in CP2K is based on
imposing closed-circuit boundary conditions with a constant bias. The electric fields
in the material layers adjust according to the layer thickness and relative permittivity.
However, the potential is ensured to be continuous, as illustrated by the Hartree
potential VH representing the DFT quantum well potential in Fig. B.1. Roughly
speaking, the code works as follows. The applied bias polarizes the material layers
and thereby leads to the formation of charge layers at the interfaces (see also Fig. C.1).
Then, the initially applied bias is subtracted again in order to reinstall continuity of
the potential at the cell border. With this, one arrives at the effective potential in the
DFT calculation which strongly depends on the employed materials and the overall
simulation setup. Considering simulation cells without vacuum (as employed for the
valley splitting calculations of Chapter 5), one arrives at a scenario in which the
electric fields in the material layers (Si and SiGe) point in opposite directions. This
is not the case for slab models, as used for the calculations of hyperfine interactions
in Chapter 6. In this case, the bias compensation changes the field direction in the
vacuum.

Because VH contains contributions from both the quantum well and the external
bias, the pure external potential profile Vext is obtained by removing the quantum
well potential at zero electric field VH,0 from the Hartree potential VH, see Fig. 5.4.

22 A constant bias, i.e. a constant displacement field across the whole simulation cell is only
consistent with periodic boundary conditions if discontinuities of the electrostatic potential appear.
Such discontinuities lead to unphysical results.
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Figure B.1: Electrostatic potential profiles across the biased SiGe/Si/SiGe simulation
cells with (red line) and without (black dashed line) bias correction. The latter
represents an electric field distribution in the stacked materials according to their
permittivity. Such a potential requires jumps at the cell border. The bias correction
implemented in the DFT code maintains a continuous electrostatic potential across
the cell border. Including the correction, a potential profile as represented by the
Hartree potential VH emerges and defines the effective potential in DFT. Thus, the
field in the Si layer is obtained by fitting to VH (blue line).



Appendix C

Permittivity

In order to validate the DFT approach, the relative permittivity :r is calculated as
a sanity check for our calculations. Note that the structure is not relaxed under the
influence of the applied bias. Thus, the ionic contributions to the displacement field
are not taken into account as is the case for high-frequency (or optical) excitation.
Experiments show that the high-frequency permittivity in Si is practically the same
as in the electrostatic case (:r ≈ 12) [268]. However, the permittivity of SiO2 reduces
from 3.8 to around 2 in the high-frequency regime [269, 270]. The electric field is
applied in growth direction, perpendicular to the interface.

For the calculation of :r, the induced charge density (ICD) method is used [271,
272]. We start with Gauss’ law

∇ · p(r) = −ρind(r) (C.1)

using the microscopic polarization p(r) and the ICD ρind(r). The ICD ρind(r) is
defined as the difference in charge density induced by application of an external
electric field. In other words, ρind(r) is obtained when subtracting the charge density
of two calculations with different electric fields (here ± 30 mV/nm). With the electric
field aligned perpendicular to the interfaces (i.e. in z direction), Eq. (C.1) simply
writes

d

dz
p̄(z) = −ρ̄ind(z) (C.2)

where p̄(z) and ρ̄ind(z) are cross-section averages of polarization and induced charge
density, respectively. Resulting from DFT calculations on a Si-MOS heterostructure,
the averaged ICD ρ̄ind(z) is plotted in Fig. C.1. The induced charge density is concen-
trated at interfaces and surfaces, where jumps of :r occur. Integration of Eq. (C.2)
gives

p̄(z) = p̄0 −
� z

0

dzkρ̄ind(zk). (C.3)

Here, p̄0 is a constant resulting from integration and represents the polarization at
one end of the simulation cell. The integration spans the entire simulation cell. When
using slab models, i.e. structures passivated with H and surrounded by vacuum as in
the present case, p̄−∞ can be set to zero, because the charge density in the vacuum
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Figure C.1: Cross-section average of the induced charge density ρ̄ind(z) plotted along
the z direction of a Si-MOS heterostructure.

is zero. From the polarization profile, one can determine the spatially resolved (high-
frequency) permittivity :r(z) by means of the relation [271]

:r(z) =
:0Fext

:0Fext − p̄(z)
(C.4)

with the vacuum permittivity :0 and the external electric field Fext. Because we ap-
plied ± 30mV/nm, Fext = 60mV/nm. As can be seen in Fig. C.2, the permittivity
matches our expectations, going from 2 in the oxide layer to 12 in the Si crystal. Fur-
thermore, one can identify the interfacial transition region (TR) in the plot. Similarly,
we obtain :r ≈14 for SiGe.
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Figure C.2: Permittivity profile of a SiO2/Si heterostructure. The materials are
indicated by colored regions making the transition region (TR) visible.





Appendix D

Validation of the simulation cell setup

The high computational costs of DFT calculation put restrictions on the size of the
simulation cell. As a direct consequence, simulation cells with arbitrary Ge profiles
can not be constructed. Because the simulation cell holds 18 atoms per atomic mono-
layer, the Ge content can only take discrete values with a step size of 1/18 ≈ 5%.
Since arbitrary Ge profiles can indeed be reconstructed in an infinitely large simu-
lation cell, calculations in the small cell lead to artificially introduced errors. More
specifically, the small cell introduces sharp step-like features in the Ge profile, broad-
ening the Fourier transform of the confining quantum well potential and therefore
increasing the valley coupling spectrum at all k, and specifically at k ≈ 2k0. As a
result, the obtained valley splitting is overestimated with respect to a larger cell (large
enough to correctly reconstruct the demanded Ge profile).

D.1 Convergence of median EVS with supercell size
In order to circumvent this problem, we narrow down the considered Ge profiles
to target profiles with jumps of 1/18 ≈ 5.5%. Such profiles can be rebuild in our
simulation cell without deviations. The median valley splitting values is therefore
directly obtained correctly. However, significant fluctuations around the median value
originating from disorder at the interface can be expected. In larger simulation cells,
the impact of disorder gets averaged out. In order to verify this idea, we performed
tight-binding calculations on various cell sizes, see Fig. D.1. As can be seen, the results
match our expectations of converged median values and fluctuations decreasing with
increasing cell size.

D.2 Spectra of wiggle wells
Wiggle wells with oscillating Ge content in the well do not fulfill our requirement of
step-like Ge distributions with steps of 1/18 %. Thus, the resulting profile in the small
DFT cell can not represent the demanded oscillating profile exactly. Nevertheless,
when calculating the Fourier spectrum of the Ge distributions in Fig. D.2, we find
that peaks at the desired wave vectors. From this we conclude that the wiggle well
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Figure D.1: Convergence of the median values of the valley splitting EVS for Ge
profiles in which the Ge amount varies in predefined steps of 1/18. The underlying
quantum wells show Ge oscillations with wavevector q, see also Fig. D.2. Because
the steps of 1/18 where chosen such that the profile is independent of the cell size,
the median values obtained by a 3x3 supercell are directly converged. Averaging over
the atomic fluctuations reduces the spread between the respective realizations with
larger supercells.

oscillations are still captured correctly even in our small simulation cell, validating
the calculations within the DFT framework.
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Figure D.2: Discrete Fourier transform of some representative Ge profiles that con-
stitute wiggle wells with wave vector q. Despite the small cell size which allows only
rough jumps of 5.5% in the Ge content, each structure shows a pronounced peak at
the desired q.





Appendix E

Estimation of the diffusion coefficient
for 17O atoms

In the main text, we have estimated the effects of the oxygen and germanium nuclear
spins on the quantum dot electron spin coherence assuming the so-called ergodic
limit [102]. It applies if the total time over which data are collected (to evaluate
the electron dephasing) is larger than the time scale over which the nuclear spin
configuration changes due to its inherent dynamics. To make sure that the limit
applies, the latter time scale must not be exceedingly long. One can understand this
requirement also by pointing out that if the dynamics of the oxygen or germanium
nuclear spins is very slow, the associated Overhauser field remains frozen during an
experimental run probing the properties of the electron spin and does not contribute
to its dephasing.

To estimate the internal dynamics time scale, we assume that the nuclear spins
undergo diffusion induced by their dipole-dipole interaction. The diffusion constant
can be estimated by the method of moments [273, 274]. To this end, we evaluate
formulas derived in Ref. [275]. We aim at an order-of-magnitude estimate, and adopt
approximations accordingly.
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E.1 Expression for the diffusion constant derived by
the method of moments

Previous work [275] considered an ensemble of alike nuclear spins in external magnetic
field B interacting pairwisely,23

H = −�γB
�
i

I iz +
1

2

�
i b=j

�
AijI

i
+I

j
− +BijI

i
zI

j
z

�
, (E.1)

where for dipole-dipole interaction the couplings are

Bij =
µ0

4π
γ2�2

1− 3 cos2 θij
r3ij

, (E.2a)

Aij = −1

2
Bij, (E.2b)

expressed through quantities

ri = position of nucleus i, (E.3a)
rij = ri − rj, (E.3b)

cos2 θij =
|rij · z|2

r2ij
, (E.3c)

and with γ = gµN/�, g being the nuclear g-factor, µN being the nuclear magneton,
and µ0 being the vacuum magnetic permeability. We have also assumed that the
magnetic field is applied along a unit vector z and define the nuclear spin operator
in Cartesian components accordingly, with Iz= I · z.

Starting from Eq. (E.1), Ref. [275] derives a simplified expression for the diagonal
elements of the diffusion tensor,24

Dµµ t
�

πI(I + 1)

4
√
12�

�
j |rij · µ|2B2

ij��
k(Bik − Bjk)2

. (E.4)

Here in the upper (lower) sum the term j = i is excluded (the terms k = i and k = j
are excluded) and the index µ denotes a Cartesian component along a unit vector µ.
Following Ref. [275], we drop the cross term BikBjk from the sum in the denominator,
which gives

�
k(Bik − Bjk)

2 ≈ 2
�

k B
2
ik upon renaming the summation index. With

this change, we now further simplify the expression in Eq. (E.4).
23Our Eq. (E.1) is Eq. (19) of Ref. [275], except that we define the Zeeman term with the

opposite sign. In addition, we note that in experiments, a micromagnet inducing spatially dependent
magnetic field is often employed to enable electrical manipulation of the electron spin. A large
gradient could suppress the nuclear spin diffusion by inducing a mismatch of Zeeman energies for
a spin pair that could otherwise make an energy-conserving spin flip-flop. Large inhomogeneous
electric field gradients, coupling to the nuclear spins I > 1/2 through the quadrupole interaction,
or inhomogeneous Knight fields, could act similarly. Within our simple approach, we ignore these
effects.

24It is given in Ref. [275] as Eq. (35), considering the relation Aij = −Bij/2.
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Table E.1: Estimated diffusion constants. The last column gives the diffusion constant calculated according to Eq. (E.13) for
the isotope and material given in the first two columns. The table lists other quantities that enter the evaluated formula: the
isotope nuclear spin g-factor g, spin magnitude I, (for crystalline materials) the number of atoms per unit cell with volume a30,
and the concentration (of the isotope among all isotopes of the given chemical element) p. The quantity ρspin is the isotope
volume density, given by ρspin = pρatom, and it defines the effective radius rρ by Eq. (E.12).

system gN I ρatom p ρspin rρ D

isotope lattice dimensionless dimensionless [ 1
a30
] [ppm or %] [ 1

nm3 ] [Å] [nm
2

s
]

17O SiO2 -1.89 5/2 – 380 ppm 0.017 24 8.5
29Si SiO2 -0.555 1/2 – 4.67 % 1.02 6.2 0.85

29Si diamond -0.555 1/2 8 4.67 % 2.3 4.7 1.1
29Si diamond -0.555 1/2 8 800 ppm 0.04 18 0.29
29Si diamond -0.555 1/2 8 50 ppm 0.0025 46 0.11

29Si SiGe -0.555 1/2 4 4.67 % 1.1 6.1 0.86
73Ge SiGe -0.878 9/2 4 7.76 % 1.8 5.1 15

75As GaAs 1.44 3/2 4 100 % 22 2.2 36
71Ga GaAs 2.56 3/2 4 40 % 8.8 3.0 83
69Ga GaAs 2.02 3/2 4 60 % 13 2.6 59
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First, we average over the direction of the diffusion, that is, the components of
the diffusion tensor,

�· · · �µ =
1

3

�
µ∈{x,y,z}

· · · . (E.5)

This averaging simplifies the expression in the numerator of Eq. (E.4),

�|rij · µ|2�µ =
1

3
r2ij. (E.6)

Second, we average over the orientation of the magnetic field with respect to the
crystal lattice,

�· · · �z =
1

4π

� 2π

0

dφ

� π

0

sin θ dθ · · · . (E.7)

The average of the angular factors present in Eq. (E.4) is

�(1− 3 cos2 θ)2�z =
4

5
. (E.8)

Applying Eq. (E.6) in the numerator, and Eq. (E.8) separately in the numerator and
the square of the denominator, we simplify Eq. (E.4) into

D t
�
πI(I + 1)

4
√
24�

µ0

4π
γ2�2

�
j(1/3)× (4/5)r−4

ij��
j(4/5)× r−6

ij

. (E.9)

Next, we replace the discrete sums with integrals, assuming that the spins j are
distributed approximately uniformly in space with density ρspin,��

j

r−n
ij

�
ρ

=

� ∞

rmin

4πr2ρspin × r−n = 4πρspin
r3−n
min

n− 3
, (E.10)

for n > 3. Implementing the procedures defined in Eqs. (E.5), (E.7), (E.10), the
average of Eq. (E.4) is

�D�µ,z,ρ t π

3
√
40

�
I(I + 1)

µ0

4π
γ2�√ρspinrmin. (E.11)

We define the ‘nearest-neighbor distance’ as 2rρ, twice the radius of a sphere that has
a volume equal to the volume per single spinful isotope. The latter is defined by the
relation

ρ−1
spin =

4π

3
r3ρ. (E.12)

The density ρspin equals the density of a given atomic element in the lattice ρatom (for
example, for Si it is 8 atoms per unit cell of the diamond lattice) times the isotopic
ratio of a given isotope p (for example, for 29Si with it would be 4.7% for Si with
natural isotope composition).

As the final step, we choose the short-distance cutoff rmin = rρ. This choice means
that in the integral in Eq. (E.10) we implement the condition j b= i by excluding a
sphere around spin i with radius rρ, excluding a spherical volume corresponding to a
single nuclear spin in the lattice. We obtain

�D�µ,z,ρ t
√
π

4
√
30

�
I(I + 1)

µ0

4π
γ2�

1

rρ
. (E.13)
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E.2 Numerical values for the diffusion coefficient in
various materials

We evaluate Eq. (E.13) for several scenarios in Tab. E.1. While we are interested
in the diffusion of nuclear spins of 17O and 73Ge, we include other standard spin-
qubit materials and elements, namely Si, SiGe, and GaAs, to check the prediction
of Eq. (E.13). The table lists the quantities that enter the formula, and gives the
averaged diffusion constants in the last column. They are of order ten(s) of nm2/s
for GaAs isotopes and 73Ge in SiGe. The spins of silicon 29Si diffuse slower, about an
order of magnitude, due to its lower spin magnitude, lower g-factor, and lower isotopic
concentration. Surprisingly, the diffusion of 17O is not slow, despite its minuscule
isotopic concentration. In SiO2, it is an order of magnitude larger than that of Si.
Again, the difference originates from the larger spin and g-factor of oxygen. We
thus believe that concerning the expected time scales for the internal dynamics of
Overhauser fields, there are no qualitative differences between oxygen in SiO2 and
isotopes of GaAs or SiGe. The latter fields have been observed to decorrelate on
scales of seconds to minutes. We conclude that neither the oxygen- nor germanium-
induced Overhauser field is frozen in a typical experiment and they both contribute
to dephasing.

As an illustration, we further quantify the diffusion of oxygen nuclear spins by
converting the diffusion constant value given in Tab. E.1 to a correlation time and
a power spectral density. We do this conversion only for the Si-MOS case. The
presented quantitative characteristics should be taken as ballpark estimates.

E.3 Autocorrelation time of the Overhauser field

We start with the auto-correlator of the electron energy fluctuations due to the Over-
hauser field,

�δE(t)δE(t+ τ)� ≡ C(τ) =
p�Δ��

µ(1 + γµ|τ |)1/2 . (E.14)

We conjecture this equation from Eq. (A5) in Ref. [264]. We also amend it for our
case and notation: The index µ ∈ {x, y, z} enumerates Cartesian coordinates, the
quantity Δ is the oxygen-induced Overhauser field contribution defined in Eq. (6.2)
and γµ = 2Dµµ/l

2
µ. For Dµµ we take the value from Tab. E.1. In Ref. [264], the

quantities lµ denoted the quantum dot confinmenet lengths. Instead, here we take
lµ equal to the typical distance between spinful isotopes, 2rρ.25 We stipulate that,
since there are very few spinful oxygen atoms in a given quantum dot, as soon as the
nuclear spin diffuses to the next available position in the oxide, it will not be coupled
to the electron anymore, with a high probability. These considerations result in the

25Since the value of 2rρ is about 5 nm, the difference to taking quantum dot size would not be
radical.
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Figure E.1: Power spectral density. The curves show the integral in Eq. (E.17)
evaluated analytically for n = 3, adopting the isotopic concentration p as denoted
in the curve labels, and the area S = 2π × (30 nm)2. Further, we took, for oxygen,
D = 8.5 nm2/s and lµ = 4.8 nm to evaluate τ0 and �Δ1d� = 4.1× (2π�)2 MHz2 nm2

to evaluate �Δ�. For silicon, we took D = 0.29 or 0.11 nm2/s (depending on p29Si, as
given in Tab. E.1), lµ = (4× 2π× 302)1/3 nm, and �Δ1d� = 3817× (2π�)2 MHz2 nm2.

correlation time scale

τ0 ≡ 1

γ
=

2r2ρ
D

, (E.15)

which evaluates to about 1 second for the parameters in the first line of Tab. E.1.
This is the expected time scale over which the 17O nuclear spin configuration, as seen
by the electron spin, changes.

E.4 Power spectral density

A second quantity of immediate interest is the resulting noise spectral density. Defined
by

P (ω) ≡
� ∞

−∞
C(τ) exp(iωτ) dτ, (E.16)



Appendix E. Estimation of the diffusion coefficient for 17O atoms 131

we get it in rescaled units ω̃ = ωτ0 as

P (ω̃) = P0

� ∞

0

2 cos(ω̃x)

(1 + x)n/2
dx, (E.17)

where the scale is
P0 = p�Δ�τ0. (E.18)

We have given the above equation for a variable number of dimensions n. The quantity
n is defined as the number of axes along which the diffusion can proceed, and enters
our formula as the domain of the index µ in Eq. (E.14). For example, if for some
reason the diffusion is only along z, the index µ ∈ {z} and n = 1. The case n = 3
being µ ∈ {x, y, z} corresponds to the three-dimensional diffusion considered in the
above.

Taking �Δ1d
17O� = (2π� × 4.1Mhz)2/nm2 from Tab. 6.1 and S = 2π × (30 nm)2,

we get P0 = 3.7× 105(2π�×Hz)2/Hz. The corresponding PSD is plotted in Fig. E.1
using n = 3. We compare it with the PSD due to 29Si for two concentrations. The
1 ppm shows a PSD that, integrating over all frequencies, is approximately of the
same strength as that of oxygen. Because of the difference in the characteristic times
τ0, which is much larger for the diffusion of silicon nuclear spin, the shape of the
curves is different. We also include the 50 ppm case. Interestingly, even though the
total noise power is now much larger for silicon, the difference in the curve shapes
still makes the oxygen contribution dominant at high enough frequencies. The reason
is the same, the different characteristic times τ0.
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