




Kurzfassung

Performance und Lebensdauer von MOSFETs werden durch Effekte, wie etwa Telegraph-
Rauschen, 1/f-Rauschen oder Bias Temperature Instability (BTI), wesentlich beeinflusst.
Diese Effekte werden durch Ladungseinfang durch Defekte in der Oxid-Schicht verur-
sacht. Die Untersuchung von Defekten und ihrem dynamischen Verhalten erlangte daher
in den letzten Jahrzehnten große Bedeutung für die Erstellung von Zuverlässigkeitsmod-
ellen in der Mikroelektronik. Eine genaue Beschreibung des Defektverhaltens wird durch
das sogenannten 4-State NMP-Modell ermöglicht. In diesem Modell werden zwei sta-
bile und zwei metastabile Defekt-Zustände angenommen, der Ladungstransfer zwischen
dem Oxid und dem Substrat des Transistors wird dabei durch eine Nonradiative Multi-
phonon (NMP) Theorie beschrieben. In diesem Modell werden Defekte für gewöhnlich
als eindimensionale quantenmechanische harmonische Oszillatoren behandelt, die korre-
spondierenden Potentialflächen sind daher Parabeln. Diese Näherung ist allgemein als
harmonische Näherung bekannt. Sie ist in der wissenschaftlichen Literatur weit ver-
breitet, ihre Gültigkeit zur Beschreibung von Oxid-Defekten wurde allerdings bisher
nicht genauer untersucht. In dieser Arbeit werden mithilfe der Dichtefunktionaltheorie
(DFT) die Übergangszustände und die zugehörigen minimalen Reaktionspfade zwischen
Defekt-Zuständen mit unterschiedlichen Ladungen berechnet. Das NMP-Modell wird
dann verwendet, um daraus Reaktionsraten für Ladungstransfers zu gewinnen. Die
Ergebnisse dieser genauen aber sehr rechenintensiven Methode dienen als Referenz, um
die Genauigkeit der harmonischen Näherung zu bestimmen. Dabei ist ein Vergleich
auf statistischer Ebene erforderlich, da alle Simulationen in amorphen SiO2 Strukturen
durchgeführt werden. Es wird gezeigt, dass die harmonische Näherung im Allgemeinen
gut mit den exakten DFT-Ergebnissen übereinstimmt.
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Abstract

Detrimental effects on the performance and lifespan of metal-oxide-semiconductor field
effect transistors like random telegraph noise, 1/f noise and bias temperature instability
are suspected to be caused by charge trapping processes at point defects in the oxide
layer. The study of oxide defects and their dynamical behavior in particular became a
major topic in device reliability over the last decades. The behavior of oxide defects can
be described accurately by the so called four-state NMP model. This model assumes
two stable and two metastable defect states, and describes charge transfers between de-
fects and the device substrate with a nonradiative multiphonon (NMP) theory. Within
this model, defects are usually treated as one-dimensional quantum mechanical har-
monic oscillators, the corresponding potential energy surfaces are therefore assumed to
be parabolas. This approximation is commonly known as the harmonic approximation.
Although widely used in the scientific literature, the validity of this approximation in the
case of oxide defects has not been investigated in greater detail up to now. This thesis
uses density functional theory (DFT) to calculate transition states and minimum energy
paths between differently charged defect configurations. NMP theory is then used to
extract charge transition rates from the obtained data sets. The results of this accurate,
but computationally demanding approach are used as reference to evaluate the accuracy
of the harmonic approximation. Since all simulations are carried out in amorphous SiO2

structures, a statistical comparison of the results is necessary. It will be shown, that in
general the harmonic approximation is in good agreement with the accurate DFT results.
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CHAPTER 1 Introduction

1.1 Motivation

Since the early days of microelectronics, reliability issues have been subject to intensive
study due to the limitations they impose on device performance and lifetime. Metal-
oxide-semiconductor field effect transistors (MOSFETs) in particular are mostly affected
by 1/f noise [1], random telegraph noise (RTN) [2], hot carrier degradation (HCD) [3]
and bias temperature instability (BTI) [4]. It is widely accepted that all these detrimen-
tal effects are linked to charge trapping events at point defects either at the interface
or in the oxide layer of the device. The need for continously higher computational
power drives technologies towards higher device densities and therefore smaller struc-
tures. From a reliability point of view, this indicates that even single point defects have
a large impact on the device performance [5]. Although significant progress was made
using ab-initio simulations in recent years [6, 7, 8, 9], the microscopic nature of the
effects listed above, is not fully understood yet and needs further research. Knowledge
of the behaviour of oxide defects on an atomic level, especially the trapping and detrap-
ping of electric charges, is essential for improving the predictive capabilities of existing
reliability models.

1.2 Scope of This Work

BTI refers to a shift of the threshold gate voltage under stress conditions and is one of the
most pronounced reliability issues impacting modern MOSFET technologies. Recently
BTI and RTN were found to presumably have the same underlying cause [10] and there-
fore can be described in an unified framework, the four-state nonradiative multiphon
(NMP) model [11]. Within this model, oxide defects are assumed to have two positively
charged and two neutral states. Using the common Born-Oppenheimer approximation
(BOA), the defect dynamics are interpreted as movements on potential energy surfaces
(PES) in a high-dimensional configuration space. In this picture, defect states are given
by local minima of the PES. Charge transfer between the device substrate and the oxide
defect is treated as a transition from one energy surface to another. In the classical limit
of quantum mechanical NMP theory, charge capture and emission events occur at the
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INTRODUCTION 1.3. Structure of This Work

minimum energy crossing point (MECP) of the two PES. Usually, the problem of finding
the MECP in the high-dimensional configuration space is avoided, by treating the defect
states as one-dimensional harmonic oscillators. The MECP is then assumed to be the
intersection point of the resulting parabolic energy profiles. This approach is commonly
referred to as harmonic approximation (HA). Although the HA is very convenient and
is widely used [12, 13, 14], its applicability to oxide defects has not been rigorously in-
vestigated so far. In this work an efficient optimization algorithm coupled with density
functional theory (DFT) is used to locate the MECP within the configuration space.
With this crossing point one can then calculate minimal energy paths between different
PESs, which allows to make more accurate estimations for charge capture and emission
rates for certain defect types. In particular the oxygen vacancy [15, 16, 17], the hydrogen
bridge [18, 19] and the hydroxyl-E center [20, 21, 22] are investigated in amorphous SiO2

structures. With this method, it is possible to analyze the accuracy of the harmonic
approximation. Furthermore, it is also applicable to other defect types, which might be
investigated in the future to get a better understanding of BTI and HCD.

1.3 Structure of This Work

Chapter 2 starts with a phenomenological description of BTI degradation and discusses
measurement techniques to characterise this effect. This is followed by an introduction
to Markov chains and the 4-state NMP model as well as the studied defects in Chapter
3. The foundations of density functional theory, the basis for all ab-initio calculations
in this work, will be outlined in Chapter 4. In Chapter 5 transition state theory (TST)
and NMP theory are discussed to link rates of the four-state model to energy barriers
obtained by DFT calculations. The implemented MECP search algorithm as well as
the commonly used PES approximation schemes like the HA are described in Chapter
6. Finally, in Chapter 7 a statistical evaluation of the HA accuracy with respect to the
MECP approach is presented.

2



CHAPTER 2 Bias Temperature
Instability

BTI in essence refers to a shift of the threshold voltage, denoted as ΔVth, due to induced
stress on the device by applying high gate voltages at elevated temperatures. Over time
this shift can lead to a violation of device specifications and eventually to failure of
the electronic circuit. This phenomenon was first described in 1966 [23] but was not
considered to be of concern in the early days of microelectronics. In the last decades the
progressive downscaling of devices has lead to higher electric fields in oxide layer, now
reaching values of several MV/cm [24]. Furthermore, SiON dielectrics are increasingly
used to reduce leakage currents in the device [25]. Due to these developments, BTI
nowadays has become a major reliability issue [4].

2.1 BTI Effects

Microscopically, BTI is caused by charge traps in the SiO2 oxide layer or at the Si/SiO2

interface. During stress, i.e. when applying a high gate voltage (VG) at elevated temper-
atures, charges can be trapped in the oxide layer and therefore alter the electrostatics of
the device, resulting in a shift ΔVth of the threshold voltage [26]. BTI occurs in pMOS as
well as nMOS devices. When occuring at negative VG it is termed negative BTI (NBTI),
conversely positive BTI (PBTI) describes the degradation mechanism at positve gate
voltages. Since pMOS devices are commonly operating at negative VG, they are mostly
affected by NBTI. Usually the effect of NBTI is much more pronounced compared to
PBTI, however, the introduction of high-k dielectrics [27] also led to considerable PBTI
in nMOS devices [4]. It was demonstrated [28, 29], that BTI degradation due to stress is
to some extend reversable. Typical measurements of ΔVth (t) are presented in Fig. 2.1.
As can be seen, the degradation is worst directly after stress and then decreases because
some traps emit their charge over time. This reversable part of BTI is referred to as
the recoverable (R) component. The permanent (P) component remains as a constant
offset to pre-stress values. Recently a recovery of the P component at high temperatures
was reported [30, 31], indicating that R and P might be the same effect but on differ-
ent time-scales. The R component is assumed to be caused by fast oxide traps, whereas

3
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Figure 2.2: Different RTN signals measured on a small-area 2.2nm pMOS. Left: A two-
state trap produces a continous RTN signal with characteristic capture and
emission times. Right: After BTI stress, a temporary RTN signal can be
observed frequently. In this case, the RTN disappears after some time and
is assumed to be caused by a three-state trap. [11]

sion times. Fig. 2.3 (left) also demonstrates the existence of traps with a nearly bias
independent emission time constant τe, which can only be explained by a model with
one additional metastable defect state [11]. In recent years this led to the development
of the widely successful nonradiative multiphonon (NMP) 4-state model, which will be
described in Ch. 3.

2.2 BTI Characterisation

An in-depth understanding of BTI relies on experimental methods to verify the results
of atomistic trap models. Several measurement techniques have been developed over the
years, the most commonly used methods will be described briefly in the following.

2.2.1 Measurement-Stress-Measurement (MSM)

This commonly used technique characterises BTI by applying repeated stress/recovery
cycles on the test device. At first, the transfer function ID (VG) of the device is recorded
in order to obtain the initial threshold voltage Vth,0. Within one measurement cycle a
high stress voltage V H

G is applied at the gate for a certain stress time ts. Afterwards
a lower voltage V L

G is applied and the temporal progress of the drain current ID (t) is
recorded. Using the previously measured transfer function, variations in ID are mapped
back to variations in the threshold voltage ΔVth [35]. Alternatively, after the stress phase
a constant drain current is enforced into the device, providing a direct measurement of
ΔVth [36].

Due to a necessary delay time td between stress and recovery phase, fast recovery pro-
cesses are missed when using MSM. To overcome this issue, schemes were developed to
measure the device degradation directly in the stress regime, these are commonly known
as on-the-fly (OTF) measurements [37, 38].
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Figure 2.3: Experimental τc and τe values of two different defects for the temperatures
T = 125◦C and T = 175◦C. The time constants spread over several orders
of magnitude during the measurement. [33, 34]

2.2.2 RTN Measurement

Analyzing RTN signals similar to Fig. 2.2 can be used to measure the characteristics
of single defects in small-area devices. For RTN measurements the device is operating
at a constant bias VG while ΔVth (t) is recorded over a long periode of time [39]. After
filtering, the Baum-Welch algorithm [40] can be used to fit a hidden-markov-model to
the signal [41]. This technique is not restricted to a simple 2 state defect but can
also be applied to characterize multi-state defects with considerably complexer dynamic
behavior.

2.2.3 Time Dependent Defect Spectroscopy (TDDS)

Similar to RTN measurements, time dependent defect spectroscopy (TDDS) [42] is a
method to experimentally extract parameters from single defects. Since RTN measure-
ments apply a constant VG, the defects are in a quasi-thermal equilibrium which limits
the measurable range of time constants to τc ≈ τe. In contrary, TDDS forces the device
to switch between two phases continuously. Analog to MSM, during the stress phase a
high voltage is applied to the MOSFET gate, forcing the device into the strong inversion
regime and thus shifting the defect equilibrium to the charged state. In the following
recovery phase in weak inversion, defects discharge with a characteristic time τe resulting
in a shift ΔVth. This shift depends on the position of the defect inside the oxide [43],
therefore the step height can be used to distinguish different defects. This experiment
is repeated many times and the measured step heights together with the corresponding
emission times are collected in a so called spectral map (see Fig. 2.4). The capture times
τc can be extracted by varying the stress time ts. If ts � τc the defect has not enough
time to be charged during the stress phase, thus the corresponding cluster in the spec-
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Figure 2.5: CET-map within experimentally accessable time scales. As indicated in this
map, the capture and emission times are only loosely correlated to each
other. [44]

2.3 Cornerstones of a Reliable BTI Model

The modelling of BTI is increasingly important for the industry to predict the device
lifespan as accurately as possible. A good BTI model should therefore be able to explain
the following experimental findings [4]:

i) As shown in Fig. 2.3, τc is exponentially dependent on the applied gate voltage.
Empirically this can be modelled by

τc = τ0 exp
�−c1Fox + c2F

2
ox

�
(2.3)

where Fox denotes the electric field in the oxide, whereas c1, c2 and τ0 are fitting
parameters.

ii) Traps can have either a field dependent (switching traps) or a nearly field indepen-
dent (fixed traps) τe. In the case of switching traps, τe can be modelled similarly
to Eq. 2.3.

iii) Both capture and emission events are temperature activated with measured acti-
vation energies EA,c ≈ 0.6eV and EA,e = 0.6− 1.4eV.

iv) τc and τe are only weakly correlated (see Fig. 2.5).

In order to reproduce the properties ii) and iv), a model with several stable and metastable
trap states is required. The following chapter will discuss the four-state model, which
can be fitted to explain the key experimental findings accurately [34].

8



CHAPTER 3 Four-State NMP Model

Since its discovery in 1966, many different models for BTI have been proposed. The
earliest models were all based on variations of a classical reaction-diffusion (RD) model
[45, 46]. This approach was widely used in reseach and industry, until it became evident
over the last decade, that this model is not able to account for the experimental findings
[4]. Furthermore, new measurement techniques like TDDS revealed an underlying charge
trapping mechanism in the oxide as the source of BTI. First attempts to explain BTI
through charged traps relied on the idea of elastic tunneling of holes between the channel
and the oxide [47, 48, 49, 50]. These models fell short to account for the experimentally
confirmed exponential temperature dependence of τc and τe. To overcome this discrep-
ancy, a mechanicsm based on the well known Shockley-Read-Hall (SRH) recombination
[51, 52] with an extension to factor in the tunneling between oxide and channel [53], as
well as the thermal activation [43] was proposed. Although this model was not able to
explain the experimental findings all at once, it played an important role as an originator
for a recently suggested model, the four-state nonradiative multiphonon (NMP) model
[54, 11], which is capable of capturing the most important features of BTI. Contrary to
the previous approaches listed above, the NMP model is entirely physics based and its
predictions for the capture and emission times can be derived rigorously from first prin-
ciples. In this chapter, the treatment of defects as Markov chains within the four-state
model is discussed. The derivation of capture and emission times from first principles
using NMP theory will be adressed in Ch. 5.

3.1 State Diagram

At its core, the 4-State model consists of a point defect inside the oxide, which can switch
between two stable states (1, 2) and two metastable states (1, 2) according to Fig. 3.1.
Here 1, 1 denote the neutral states, whereas 2, 2 represent the positively charged states.
Within this model, a shift ΔVth occurs only, when the defect captures or emits a charge,
i.e. at the transitions 1 ⇔ 2 and 2 ⇔ 1. These transitions are in principle detectable
in experiment. In contrary, the transitions 1 ⇔ 1 and 2 ⇔ 2 are related to structural
relaxations of the defect without any charge transfer. Although these relaxations are not
directly accessable to measurements, their existence is necessary to explain the observed

9





FOUR-STATE NMP MODEL 3.3. Capture and Emission Times

1 2
k12

k21

1 2
k12

Figure 3.2: Left: Simple model of a 2-state defect. The defect can switch between a
neutral (1) and a positive (2) state with transition rates k12 and k21. Right:
Model to calculate the first passage time for a hole capture event. [11]

The total probability of being in a state j at the time t is denoted by Pj (t). In the limit
Δt → 0, Eq. 3.1 to 3.3 then yield [58, 56]

Ṗj (t) = lim
Δt→0

Pj (t+Δt)− Pj (t)

Δt
=

�
i∈S\{j}

kijPi (t)− kjiPj (t) . (3.4)

This so called Master equation governs the temporal evolution of the probability of being
in state j. The Master equations for all possible states form a system of coupled linear
differential equations, which can be expressed in matrix notation as

Ṗ = K · P (3.5)

where K is the transition matrix with coefficients

Kij =

�
kji if i �= j ,

−�
l∈S\{i} kil otherwise

. (3.6)

Using the matrix exponential, if the system’s initial state is given by P (0), the future
occupation probabilities are uniquelly determined by [59]

P (t) = exp (Kt)P (0) . (3.7)

3.3 Capture and Emission Times

In principle, Eq. 3.7 describes an arbitrary complex Markov-chain completely, for ap-
plication purposes however, some special cases should be considered individually. Up to
now it was not described, how to compare experimental capture and emission times to
theoretical rates in the four-state model. This will be adressed in the following section,
which is based on the explanations given in [11].

3.3.1 Two-State System

First we will discuss the simple case of a 2-state defect as depicted in Fig. 3.2 (left). For
this system, the Master equations are given by

Ṗ1 (t) = −k12P1 (t) + k21P2 (t) (3.8a)

Ṗ2 (t) = −k21P2 (t) + k12P1 (t) . (3.8b)
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Using the relation P1 (t) + P2 (t) = 1 leads to

Ṗ1 (t) = − (k12 + k21)P1 (t) + k21 . (3.9)

With the definitions

P1 (∞) � k21
k12 + k21

and τ � 1

k12 + k21
(3.10)

the solution of Eq. 3.9 takes the form

P1 (t) = P1 (∞) + [P1 (0)− P1 (∞)] exp (−t/τ) . (3.11)

It turns out, that regardless of the initial conditions, the system always reaches the
same equilibrium occupation probabilities with the time constant τ . The equilibirum
between hole capture and emission is solely determined by the capture and emission
rates. Experimentally the equilibrium occupation can be extracted from the average
duty cycle of the measured RTN signal.

3.3.2 First Passage Time

In order to extract informations about the distribution of capture and emission times
from the two-state model, a simplified ’one-way’ model is used. Fig. 3.2 (right) shows
the state-diagram to extract the statistics of the hole capture time τc. It is assumed,
that the defect is initially neutral, thus P1 (0) = 1. The time to reach state 2 for the
first time is called the first passage time τ12 from state 1 to state 2. τ12 is therefore
only dependent on k12, the rate k21 for the backward transition can be set to zero. The
2-state Master equations then yield the solution

P1 (t) = exp (−k12t) (3.12a)

P2 (t) = 1− exp (−k12t) . (3.12b)

Since the system reaches state 2 only after the first passage time has passed, P2 (t) can
be interpreted as the probability that τ12 < t and is therefore identical to the cumulative
distribution function (CDF) of τ12:

Fτ12 (t) � Pr {τ12 < t} = P2 (t) (3.13)

Thus the probability density function (PDF) of τ12 is given by

fτ12 (t) �
dFτ12

dt
= Ṗ2 (t) = k12 exp (−k12t) . (3.14)

This calculation reveals that τ12, and therefore τc, is an exponentially distributed random
variable. The expectation value τc then follows by

τc = E [τ12] �
	 ∞

0

t · fτ12 (t)dt =
1

k12
. (3.15)

A similar procedere for the first passage time τ21 yields

τe = E [τ21] =
1

k21
. (3.16)
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21 2’
k12

k2 1

k2 2

Figure 3.3: State diagram to determine the first passage time for a transition from state
1 to 2 over the intermediate state 2. [11]

3.3.3 Three-State System

Transitions between state 1 and 2 do not occur directly in the four-state model, instead
the transition occurs across the metastable state 2 as depicted in Fig. 3.3. To obtain
the first passage time τ12 and thus τc, the Master equations

Ṗ1 (t) = −k12�P1 (t) + k2�1P2� (t) (3.17a)

Ṗ2� (t) = k12�P1 (t)− (k2�1 + k2�2)P2� (t) (3.17b)

Ṗ2 (t) = k2�2P2� (t) (3.17c)

with the inital conditions P1 (0) = 1 and P2� (0) = P2 (0) = 0 have to be solved. Intro-
ducing the abbrevations

s � k12� + k2�1 + k2�2 τ−1
1 � 1

2



s+

�
s2 − 4k2�1k2�2


τ−1
2 � 1

2



s−

�
s2 − 4k2�1k2�2


the resulting probability density function of τ12 can be expressed as

fτ12 (t) =
exp (−t/τ2)− exp (−t/τ1)

τ2 − τ1
. (3.18)

The average capture time τc is then given by

τc = E [τ12] = τ1 + τ2 . (3.19)

Although in a three-state system τ12 does not follow an exponential distribution exactly,
the experimentally important case of τ1 � τ2, can be reasonably approximated by an
effective 2-state system as shown in Fig. 3.4. This approximation yields good results
for t ≥ τ1, but overestimates the probability of capture times smaller than τ1, since the
intermediate transition 1 ⇔ 2 sets a lower limit for the overall first passage time.

With the state diagram Fig. 3.3 the temporary RTN phenomenon depicted in Fig. 2.2
can be explained easily. In this case, the defect switches between the states 1 ⇔ 2 and
generates a normal RTN signal until it reaches the stable state 2 and stays there.
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Reprinted from [11]
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Figure 3.5: Left: Schematic energy profiles between the different states of the four-state
model obtained from TDDS measurements. The ensemble of energy curves
depict the experimental spread of defect parameters.[20] Right: Schematic
energy profiles for the transitions 1 ⇔ 2. In a classical approach, the tran-
sition is assumed to occur at the intersection point of the two energy curves.
Applying an electric field Fox shifts the energies of the differently charged
states relative to each other by ΔS. [8]
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3.4 Energy Barriers

As shown in the last section, the transition rates kij in the four-state model solely deter-
mine the resulting capture and emission times. Therefore, the experimentally observed
dependence of τc and τe on the temperature and the applied bias, as discussed in Sec.
2.3, must also be represented by these rates. In a physical picture, the transition rate kij
for a certain reaction i ⇒ j depends on the energy barrier Eij, which has to be overcome
for this reaction. Assuming first order reaction dynamics, the empirical Arrhenius law
[60] yields a relation between transition rate and energy barrier of the form

kij ∝ exp (−βEij) , β � 1

kBT
(3.20)

where kB denotes the Boltzmann constant. Plotting the potential energy surface (see
Sec. 4.1 for further details) of the system along the reaction path leads to energy pro-
files as shown in Fig. 3.5. In these plots, the different states of the system are given by
the local minima of the energy profiles. In the case of purely thermic transitions, i.e.
1 ⇔ 1 and 2 ⇔ 2, the energy barrier is determined by the highest energy along the
reaction path, the corresponding configuration is called transition state. For the charge
transitions 1 ⇔ 2 and 2 ⇔ 1 however, a change in the electronic state of the system
occurs. This means, that during the transition the system switches from one energy
surface to the other. In the classical limit of NMP theory, such a transition occurs at
the intersection point of the two involved energy surfaces, as depicted in Fig. 3.5 (right).
The exact relations, derived by ab initio principles, between transition rates and energy
barriers will be described in greater detail in Ch. 5.

The influence of an electric field in the oxide is introduced by a shift of ΔS between the
neutral and positive charged energy surface. Assuming, the oxid field does not deform
the energy surfaces, the shift ΔS is given by [7]

ΔS
∼= QxtFox , (3.21)

where Q is the charge of the defect and xt denotes the distance of the defect from the
oxide/channel interface. The shift ΔS obviously changes the intersection point and thus
changes the barriers for charge capture and emission. See Sec. 5.4.3 for more details.

Fig. 3.5 (left) shows the experimental distribution of energy levels obtained by TDDS
measurements in a 2.2nm SiON device [22]. The wide distribution of barrier heights is
a consequence of the typically amorphous oxide layer, which results in slightly different
environments for each defect. This leads to a spreading of resulting capture and emission
times over several orders of magnitude. In the full four-state model, the transition from
state 1 to 2 is possible via two different paths, namely 1 ⇔ 2 ⇒ 2 and 1 ⇔ 1 ⇒ 2,
see Fig. 3.1. Given the right energy levels, these two competing paths can give rise to
a bias independent emission time τe as encountered in the case of an fixed positive trap
(see Fig. 2.3 (right)). If one of the paths is blocked due to a high energy barrier, the
corresponding defect will function as an fixed trap. [8]
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3.5 Suspected BTI Causing Defects in SiO2

Over the last decades BTI measurements have revealed the macroscopic behavior of
oxide defects and helped to accurately model the device degradation caused by BTI.
The detailed underlying physical mechanisms, however, remain uncertain. Although
some models suggested oxygen vacancies (OV) as the cause of BTI [61], it was recently
demonstrated with ab-initio calculations that the energy levels of an OV defect rule out
an electrically active charge trapping site [20]. Other authors found a direct link between
BTI degradation and the presence of hydrogen [62, 63, 64, 65], suggesting hydrogen based
defects such as the hydrogen bridge (HB) or the hydroxyl-E center (HE) as likely defect
candidates for BTI. These three defect types together with their different configurations
within the four-state model will be discussed in the following.

3.5.1 Oxygen Vacancy

The oxygen vacancy (OV) probably is the most studied defect in SiO2 [15, 16, 17]. This
defect forms, if an oxygen atom is missing in the SiO2 structure, leaving behind a Si–Si
dimer as shown in Fig. 3.6 (OV, 1). When the OV traps a hole from the substrate, the
missing electron causes the Si–Si bond to break, resulting in a paramagnetic E center
(OV, 2). These two states correspond to the stable neutral state 1 and the metastable
positive state 2. A structural change without charge transition can occur in both charge
states, when one of the Si atoms moves through the plane spanned by its three oxygen
neighbours (OV 1 and 2). These states are often referred to as ”puckered” configurations
and require a nearby 4th oxygen atom to stabilize the Si in its new position. [8]

3.5.2 Hydrogen Bridge

Although the oxygen vacancy appears to be electrically inactive, it is the precursor
of another related defect, the hydrogen bridge (HB), which was shown to support a
four-state model for BTI [20]. A hydrogen bridge forms, when a hydrogen atom is
incorporated into an OV. This can also be considered as the replacement of an O atom
with a H atom in the defect-free structure. The stable neutral state of this defect
is depicted in Fig. 3.6 (HB 1). As shown, the H atom is bound to only one of the
two involved Si atoms, whereas the other Si has an unpaired electron. When charged
positively, the unpaired electron is removed, resulting in the H atom being bound to both
Si atoms (HB 2). Similar to the OV, a puckering transition can occur in both charge
states, where the Si atom without hydrogen moves through the plane of its neighbouring
O atoms. [66]

3.5.3 Hydroxyl-E� Center

Recently another promising hydrogen induced defect was discovered in amorphous SiO2.
The so called Hydroxyl-E center (H-E) forms, when a hydrogen atom binds to an oxy-
gen and thereby breaks one of the two Si–O bonds, resulting in a threefold-coordinated
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CHAPTER 4 Density Functional
Theory

Ab-initio simulation of defect behaviors requires to solve the Schroedinger equation of
the considered many-body problem. This is computationally highly demanding and thus
requires certain concepts and approximations in practice. One of the most popular ab-
initio approaches used in computational chemistry is density functional theory (DFT).
For the scope of this work, DFT is a crucial part to obtain defect parameters in amor-
phous SiO2. This chapter is dedicated to explain the theoretical foundations of DFT as
well as the computational techniques and settings used to perform calculations in this
work.

4.1 Born-Oppenheimer Approximation

Within the first quantization approach, the properties of an arbitrary system consisting
of Nnuc nuclei and Nel electrons can be determined by solving the time-independent
Schroedinger equation

Ĥ |Φ (r,R)� = E |Φ (r,R)� (4.1)

where |Φ (r,R)� denotes the system’s wave function and

r � [r1, . . . , rNel
] ∈ R3Nel , R � [R1, . . . ,RNnuc ] ∈ R3Nnuc (4.2)

are vectors, collecting all electron and nuclei positions respectively. The general many-
body hamiltonian is given by [67]

Ĥ � T̂el + T̂nuc + vel−el + vnuc−nuc + vel−nuc . (4.3)

Using atomic units [68], the different terms are given as follows:

i) The kinetic energy of the electrons yields

T̂el �= −1

2

Nel�
i=1

∇2
ri

(4.4a)

with the Laplace operator ∇2
ri
=

�
∂2/∂r2ix + ∂2/∂r2iy + ∂2/∂r2iz

�
.
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ii) Similarly the nuclei kinetic energy is given by

T̂nuc �= −1

2

Nnuc�
i=1

1

Mi

∇2
Ri

, (4.4b)

where Mi denotes the mass of the i-th nucleus as a multiple of the electron mass.

iii) The coloumb interaction between electrons

vel−el (r) �
1

2

Nel�
i,j=1

1

|ri − rj| (4.4c)

iv) The coloumb interaction between the nuclei

vnuc−nuc (R) � 1

2

Nnuc�
i,j=1

ZiZj

|Ri −Rj| , (4.4d)

where Zi denotes the atomic number of the corresponding nucleus.

v) The coloumb interaction between electrons and nuclei

vel−nuc (r,R) � −
Nel�
i=1

Nnuc�
j=1

Zj

|ri −Rj| (4.4e)

Although Eq. 4.1 describes the whole system in theory, it can only be solved for the
most simple diatomic molecules. To overcome this, Born and Oppenheimer proposed
a separation of the electron and nuclei dynamics, known as the Born-Oppenheimer ap-
proximation (BOA) [69, 70]. This approach is justified, because electrons have much less
mass than nuclei and therefore can adjust to changes in nuclei positions almost instantly.
Mathematically, the BOA seperates Eq. 4.1 in an electronic and a vibronic Schroedinger
equation.

The electronic part describes the electrons in a potential defined by the coloumb inter-
actions among themselves and with the fixed nuclei at the positions R. The electronic
Schroedinger equation is given by


T̂el + vext (r) + vel−el (r)

|Ψk (r;R)� = Vk (R) |Ψk (r;R)� , (4.5)

where |Ψk (r;R)� is an electronic eigenstate of the system to the eigenvalue Vk (R).
The external potential vext (r) contains all potentials felt by the electrons beside their
interaction with themselves. Other influences like an external electric field can also be
incorporated in vext (r). Note that R acts only as a parameter and Eq. 4.5 therefore
defines a map

Vk : R3Nnuc → R, R �→ Vk (R) , (4.6)
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Figure 4.1: Vibrational eigenstates in a one-dimensional Morse potential. The vibronic
wave functions are offset by the eigenenergy Ekα of the corresponding state
for illustration purposes.

which assignes an effective potential energy to every set of nuclei positions R. This
map is commonly known as the potential energy surface (PES) of the electronic state
|Ψk (r;R)�. If a certain reaction path R (q) is chosen, the potential energy along the
reaction coordinate q yields a potential energy profile

Vk (q) � Vk (R (q)) (4.7)

which was already implicitly used in Fig. 3.5. As will be discussed in Ch. 6, the
reduction of the PES to a one-dimensional energy curve is necessary to perform the
calculations for the scope of this work.

The vibronic part of Eq. 4.1 describes the movement of nuclei on the potential energy
surface and is given by


T̂nuc + Vk (R)

|ηkα (R)� = Ekα |ηkα (R)� , (4.8)

where |ηkα (R)� is a vibronic eigenstate of the electronic eigenstate |Ψk (r;R)�. The
solutions of Eq. 4.8 are sketched in Fig. 4.1 for the simple case of a one-dimensional
Morse potential [71], which is often used to model the dissociation of a diatomic molecule.
As can be seen, there are multiple vibrational modes for one electronic state. The wave
functions |ηkα (R)� indicate, that the diatomic molecule vibrates around its equilibrium
position, which is given by the minimum of the potential energy surface. In general, local
minima of the PES always indicate a stable or metastable configuration. Furthermore
the concept of potential energy surfaces and their vibrational modes is crucial to extract
transition rates from ab-initio calculations by using NMP and transition state theory
(TST) in Ch. 5. The remainder of this chapter deals with solving the electronic part
Eq. 4.5 using DFT.
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4.2 Hohenberg-Kohn Theorems

For many practical purposes, including the scope of this work, only the electronic ground
state |Ψ0 (r;R)� is of interest. Using density functional theory the ground state can be
calculated even for very large systems with several thousands of atoms [72]. Density
functional theory is based on two fundamental properties of the ground state, which
were first proven by Hohenberg and Kohn in 1964 [73]. The Hohenberg-Kohn theorems
can be stated as [74]:

i) All electronic ground state properties, including the ground state energy E0, are
uniquely determined by the electron density ρ. As a consequence there exists an
energy functional in the form E [ρ].

ii) The energy functional E [ρ] is minimal for the true ground state density ρ0 and
yields the ground state energy E0 = E [ρ0]

It is trivial that the electron density can be uniquely determined by the electron wave
function:

ρ0 (r) = �Ψ0|
Nel�
i=1

δ (r − ri) |Ψ0� (4.9)

The first theorem states, that the reverse also holds true. Hence, the system energy E
is a functional of the electron density:

E [ρ (r)] = �Ψ|Ĥel|Ψ� (4.10)

According to the second theorem, the ground state density ρ0 is the solution of the
variational problem

δE [ρ (r)] = 0 with the constraint

	
ρ (r) d3r = Nel . (4.11)

So far, the variational problem Eq. 4.11 is equivalent to the electronic Schroedinger Eq.
4.5, but the dimension of the problem is significantly reduced from 3Nel for the electronic
wave function |Ψ0� to only 3 for the electron density ρ. The density functional 4.10 can
be split in several parts:

E [ρ] = T [ρ] + Vext [ρ] + U [ρ] (4.12)

The contribution of the external potential to the total energy is given by

Vext [ρ] �
	

vext (r) ρ (r) d
3r , (4.13)

whereas the functional for the kinetic energy T [ρ] and the electron-electron interaction
U [ρ] are unknown. In order to solve Eq. 4.11, these functionals must be approximated.
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4.3 Kohn-Sham Equations

Although the kinetic energy functional is not known for a system of interacting electrons,
the kinetic energy Ts of a fictional non-interacting system of single electrons with the
wave functions ψi (r) is simply given by

Ts = −1

2

Nel�
i=1

	
ψ∗
i (r)∇2ψi (r) d

3r . (4.14)

Since all ground state properties can be determined from the electron density ρ, Kohn
and Sham proposed to use non-interacting orbitals [75], the so-called Kohn-Sham orbitals
which resemble the same electron density as the original system:

ρ0 (r) =

Nel�
i=1

|ψi (r)|2 . (4.15)

The real kinetic energy functional T then can be expressed as the sum of Ts and an
exchange functional accounting for the electron exchange effects:

T [ρ] = Ts [ρ] + EX [ρ] (4.16)

Similarly to T , the full interaction functional U remains unknown. However, its classical
part is just the electrostatic energy associated with the charge distribution, the so-called
Hartree energy :

UH [ρ] =
1

2

		
ρ (r) ρ (r)
|r − r| d3rd3r . (4.17)

When outsourcing all many-body quantum effects in a correlation energy EC [ρ], the
interaction functional can be written as

U [ρ] = UH [ρ] + EC [ρ] . (4.18)

With this notations, the energy functional Eq. 4.12 becomes

E [ρ] = Ts [ρ] + Vext [ρ] + UH [ρ] + EXC [ρ] with EXC [ρ] = EX [ρ] + EC [ρ] . (4.19)

Applying the Euler-Lagrange equations [76] to solve the variational problem Eq. 4.11
then yields a system of one-particle Schroedinger equations for the wavefunctions ψi,
known as the Kohn-Sham equations:�

−1

2
∇2 + veff (r)

�
ψi (r) = �iψi (r) (4.20)

The Kohn-Sham equations describe Nel non-interacting electrons in an effective potential
veff which is given by [77]

veff (r) = vext (r) + vH (r) + vXC (r) (4.21)
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with the Hartree potential

vH (r) � δUH [ρ]

δρ

����
ρ=ρ0

=

	
ρ0 (r

)
|r − r|d

3r (4.22)

and the exchange-correlation potential

vXC (r) � δEXC [ρ]

δρ

����
ρ=ρ0

. (4.23)

Here δ/δρ denotes the functional derivative [78] with respect to ρ. The Kohn-Sham
equations are a system of nonlinear eigenvalue problems, which have to be solved self
consistently. To achieve this, an initial density ρinit is assumed and the Kohn-Sham
equations are solved to obtain a set of Kohn-Sham orbitals. These orbitals then yield a
new density via Eq. 4.15 and the Kohn-Sham equations are solved again with this new
density. This iterative cycle continues until ψk

i and ψk+1
i are equal within a set tolerance.

The total ground energy E0 then can be calculated from the Kohn-Sham energies �i by

E0 =

Nel�
i=1

�i − UH [ρ0] + EXC [ρ0]−
	

vXC (r) ρ0 (r) d
3r . (4.24)

4.4 Exchange-Correlation Functionals

It should be noted, that the obtained E0 is not exact since all many-body quantum effects
are collected in the exchange-correlation functional EXC [ρ], which is unknown. The
results from DFT calculations therefore heavily depend on the used approximation for
EXC. In the following, the most common functionals used in practical DFT calculations
are discussed.

4.4.1 Local Density Approximation

The local density approximation (LDA) functional was first introduced in the original
work of Kohn and Sham [75]. It assumes a slowly varying electron density and treats
the system as a locally homogenous electron gas (HEG). Consequently this functional is
solely dependent on the local density:

ELDA
XC [ρ] =

	
εXC (ρ) ρ (r) d3r . (4.25)

Under the assumation of a HEG, the exchange functional �X can be derived as [79]

εX (ρ) = −3

4

�
3ρ

π

�1/3

. (4.26)

The correlation functional εC on the other hand was accurately determined by quantum
mechanical Monte Carlo calculations [80]. Although LDA was the first proposed and
most simple functional for DFT, it yields quite accurate results for solids, but in general
tends to overestimate binding energies [81].
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4.4.2 Generalized Gradient Approximation

Due to its derivation from the HEG, the LDA falls short for rapidly changing charge
densities. Since this work attends to study defects in SiO2 with localized charges, the
LDA is not suitable for this purpose [82]. The LDA can be improved by introducing a
dependence on the spatial change of the electron density. This leads to the generalized
gradient approximation (GGA)

EGGA
XC [ρ] =

	
εXC (ρ,∇ρ) ρ (r) d3r . (4.27)

The use of GGA over LDA can significantly improve the accuracy of DFT calculations
[83, 84]. Contrary to LDA, several different proposals for the form of EGGA

XC exist.
Among the most popular are models like PBE (Perdew-Burke-Ernzerhof) [85] and PW91
(Perdew-Wang) [86]. Even more sophisticated functionals, known as meta-GGA, assume
an exchange-correlation function εXC (ρ,∇ρ, ts), where the second spatial derivative of
ρ is implicitly introduced by a dependence on the kinetic energy density ts [87]

ts (r) = −1

2

Nel�
i=1

ψ∗
i (r)∇2ψi (r) . (4.28)

4.4.3 Hybrid Functionals

Both LDA and GGA are known to grossly underestimate the electronic bandgap [88].
To circumvent this disadvantage, so-called hybrid functionals were developed. These
functionals employ the exact nonlocal Hartree-Fock exchange (HFX) functional [89]

EHF
X [ρ] = −1

2

Nel�
i,j=1

		
ψ∗
i (r)ψ

∗
j (r

) g (|r − r|)ψi (r
)ψj (r)d

3rd3r , (4.29)

where g denotes the ordinary Coulomb operator

g (r) � 1

|r| . (4.30)

In order to compute the HFX functional efficiently, often a truncated Coulomb operator
gTC is used [90]:

gTC �
�
g (r) if |r| ≤ rTC

0 otherwise
(4.31)

A hybrid functional usually is a linear combination of EHF
X and some other GGA func-

tional. For example, the popular PBE0 hybrid functional [91] is given by

EPBE0
XC [ρ] =

1

4
EHF

X [ρ] +
3

4
EPBE

X [ρ] + EPBE
C [ρ] . (4.32)
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PBE0 and other hybrid functionals like HSE (Heyd-Scuseria-Ernzerhof) [92] or B3LYP
(Becke, three-parameter, Lee-Yang-Parr) [93] have been demonstrated to predict the
electronic structure of various semiconductors and insulators accurately (within 10% of
the experimental value) [94]. Since this is very important for the study in this work, all
DFT calculations have been carried out with a variant of the PBE0 functional.

4.5 Basis Sets

Solving the Kohn-Sham equations 4.20 numerically requires an expansion of the electron
density ρ and the KS orbitals ψi into a set of basis functions. The basis set must be small
enough, to allow efficient calculations. On the other hand, the chosen basis functions
must be able to approximate the true electron density and the KS orbitals close enough
in order to provide accurate results. DFT calculations are usually performed with either
a plane wave or a gaussian basis set.

4.5.1 Plane Wave Basis Sets

DFT calculations in bulk materials require to impose periodic boundary conditions
(PBC) on a simulation cell with a reasonable chosen volume Ω. According to Bloch’s
theorem [95] every electronic wavefunction ψi,k in a periodic lattice is the product of a
periodic Bloch function u (r) and a plain wave with wave vector k:

ψ (r,k) = u (r) exp (ik · r) (4.33)

In this study, we will restrict ourselfs to an analysis in the Γ point (k = 0), therefore
every KS orbital can be expanded in the form

ψj (r) =
1√
Ω

�
G

�ψj (G) exp (iG · r) , �ψj (G) =
1√
Ω

	
Ω

ψi (r) exp (−iG · r) d3r

(4.34)

where G is an arbitrary reciprocal lattice vector and �ψj (G) denotes the Fourier coeffi-
cients of ψj. Applying this expansion to the Kohn-Sham equation 4.20 and integration
over the simulation cell yields [81]

1

2
|G|2 �ψj (G) +

�
G�

�veff (G) �ψj (G−G) = �j �ψj (G) . (4.35)

Here the orthogonality of the basis set {exp (iG · r)} was used. Eq. 4.35 is an infinite

system of linear equations for the unknown Fourier coefficients �ψj (G). To make this
problem solvable, the number of G points obviously must be constraint. In practice,
only points where the kinetic energy of the associated plane wave is below a certain
cutoff energy Ecutoff are considered:

1

2
|G|2 ≤ Ecutoff . (4.36)
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Physically, this restriction limits the resolvable spatial frequency. Since the wave func-
tions of the inner electrons vary rapidly over space, a large Ecutoff , and hence a huge
number of basis functions, would be needed in order to capture their behavior. Usually,
the inner shell electrons are not treated within DFT, because they do not engage in
chemical bonding. However, their influence on the nuclei Coulomb potential cannot be
ignored and is taken into account by pseudopotentials [96]. The usage of a plane wave
basis set offers some significant advantages [97]:

i) Plane waves already satisfy the periodic boundary conditions, which are necessary
to describe bulk material.

ii) As already mentioned, the plane waves {exp (iG · r)} build an orthogonal basis
set due to their construction, this allows a fast calculation of overlap integrals.

iii) The use of plane waves allows very efficient computations for the Hartree energy
UH [ρ] based on fast Fourier transformation (FFT) algorithms.

iv) Since plane waves are completely delocalized, the basis set is independent of the
nuclei positions.

v) The size of the basis set is determined by the single parameter Ecutoff

On the other hand, a large number of basis functions is needed, in order to accurately
reassemble the electron density. Furthermore plane waves necessarily require the use of
a pseudopotential to be computationally feasible.

4.5.2 Gaussian Basis Sets

The main idea behind gaussian basis sets or gaussian type orbitals (GTO) is to use a
basis set, which is centered at the nucleus and mimics atomic orbitals. A predecessor of
GTOs were so-called Slater Type Orbitals (STO), which are defined as [98]

Sklm (r, θ, φ) = Akr
k−1 exp (−αkr)Ylm (θ, φ) , (4.37)

where An is a normalization factor and Ylm (θ, φ) are the normalized spherical harmonics.
Although a basis of STOs can reproduce molecular orbitals quite well, it is expensive to
calculate matrix elements in this basis. It is computationally more feasible, to approxi-
mate Eq. 4.37 by the basis functions [99]

ϕklm (r, θ, φ) = rk−1Rk (r)Ylm (θ, φ) (4.38)

where the radial term Rk (r) is a linear combination of gaussian functions

Rk (r) =
�
i

cki exp
�−αkir

2
�

(4.39)

with the fitting parameters αki and cki. The set {ϕklm} is called a contracted gaussian
basis. The parameters of these sets are fitted to match experimental data for each
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chemical element individually. Carefully designed gaussian basis sets allow an accurate
representation of the electron density and the KS orbitals, even with a small number of
basis functions. Contrary to plane wave sets, a gaussian set can allow the calculation of
all electrons in the system without the use of a pseudopotential. Nethertheless, gaussian
basis set also have some downsides:

i) Gaussian sets are non-orthogonal and might not even be a basis set in a mathe-
matical sense, leading to linear dependencies or overcompleteness.

ii) They depend on the atomic positions and have the wrong asymptotic behavior
compared to STOs.

iii) Gaussian sets are not natively periodic.

4.6 CP2K Software Package

Since this work aims to evaluate the accuracy of the harmonic approximation of potential
energy surfaces on a statistical level, many DFT calculations have to be performed. It
is thus necessary to use a highly efficient DFT program. In this work the package CP2K
[100] was used for DFT calculations, since it provides some significant advantages for
the purpose of this work:

i) CP2K implements a hybrid basis set of plane waves and gaussian functions, known
as the gaussian plane wave (GPW) method [97, 101]. This approach combines the
advantages of both basis sets and allow the accurate describtion of large systems,
like the amorphous SiO2 structures used as a model for oxide layers in this work.

ii) In order to accurately predict defect energy levels, a hybrid functional as described
in Sec. 4.4.3 must be used. Computing the Hartree-Fock exchange EHF

X [ρ] is of
complexity O (N4) and thus quickly becomes the limiting factor in DFT calcu-
lations for large systems. CP2K offers an approximation technique, the auxiliary
density matrix method (ADMM), which significantly reduces the costs to calculate
the HF exchange [102].

In the following these two key methods are briefly discussed.

4.6.1 Gaussian Plane Waves Method

Plane wave and gaussian basis sets both have their own disadvantages, which limit their
use to accurately describe systems with a large number of atoms. In [97] a method is
demonstrated, to use both basis sets simultaneously and to overcome their downsides
when used seperately. Similar strategies were also proposed in [103, 104].

The main idea is to expand the electron density in terms of a gaussian basis set

ρ (r) =
�
µ,ν

Pµνϕµ (r)ϕν (r) (4.40)
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where Pµν denotes an element of the density matrix P . This representation is used to
calculate the functionals of the kinetic energy T [ρ] and the potential energy V [ρ]. Using
FFT, the gaussian representation of the electron density can be mapped to an expansion
in an auxiliary plane wave basis

ρ (r) =
1

Ω

�
G

�ρ (G) exp (iG · r) . (4.41)

This representation is useful to efficiently calculate the Hartree functional UH [ρ] and
the exchange-correlation functional EXC [ρ] in the frequency domain. In particular the
terms of the variational problem 4.11 then yield

T [ρ] =
�
µ,ν

Pµν

	
ϕµ (r)

�
−1

2
∇2

�
ϕν (r) d

3r (4.42a)

Vext [ρ] =
�
µ,ν

Pµν

	
ϕµ (r) vext (r)ϕν (r) d

3r (4.42b)

UH [ρ] = 2πΩ
�
G

|�ρ (G)|2
|G|2 . (4.42c)

This method is especially efficient, if the integrals in the above equations are analytic
and therefore do not have to be evaluated numerically. This is intrinsically the case for
Eq. 4.42a due to the use of gaussian functions. To speed up the calculation of Eq. 4.42b
the pseudopotential used to describe vext (r) should also be expandable in a gaussian
basis. [97, 101]

4.6.2 Auxiliary Density Matrix Method

Using a gaussian basis, the Hartree-Fock exchange functional can be expressed as

EHF
X [ρ] = −1

2

�
λ,σ,µ,ν

PµσPνλ (µν|λσ) (4.43)

where the abbrevation (µν|λσ) stands for

(µν|λσ) �
		

ϕµ (r)ϕν (r) g (|r − r|)ϕλ (r)ϕσ (r) d
3rd3r . (4.44)

The number of necessary computations strongly depends on the size and sparsity of the
density matrix P . ADMM aims to introduce a less dense or smaller auxiliary density
matrix P̂ , which yields approximately the same result as the original matrix P but with
much less effort. In order to construct P̂ , the KS orbitals are approximately expanded
in an smaller auxiliary basis set

ψ̂i (r) =
�
µ

Ĉµiϕ̂µ (r) . (4.45)
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The coefficients Ĉµi are determined by minimizing the approximation error of the KS
orbitals:

min
Ĉµi

��
i

	 ���ψi (r)− ψ̂i (r)
���2 d3r

�
(4.46)

The auxiliary density matrix can then be constructed with the optimized coefficients by

P̂µν �
�
i

ĈµiĈνi . (4.47)

For calculating EHF
X with the auxiliary matrix, it is assumed, that the introduced error

by this approximation is the same for the HF functional and an GGA functional:

EHF
X [P ]− EHF

X [P̂ ] ≈ EGGA
X [P ]− EGGA

X [P̂ ] . (4.48)

The approximate HF exhange is then given by

EHF
X [P ] ≈ EHF

X [P̂ ] + EGGA
X [P ]− EGGA

X [P̂ ] . (4.49)

Here the HF exhange is only calculated with the more efficient auxiliary matrix and
is corrected with an GGA term, which can be computated quickly in both bases. It
was demonstrated, that this approximation can outperform the standard HF exchange
calculation by a factor of 20 for large systems [102].

4.7 Simulation Settings

4.7.1 Single-Point Calculations

All DFT calculations in this work were performed with the CP2K [100] software package.
The evaluation of the energy E (R) and the atomic forces F = −∇E for a given single
set of nuclei positions R is the fundamental building block for all ab-initio calculations in
this thesis. These so-called single-point calculations were performed with the Quickstep
routine [105], which self-consistently solves the KS equations with the GPW basis set
described in Sec. 4.6.1. The following settings were used throughout this work to perform
single-point calculations:

i) A contracted gaussian basis set (DZVP-MOLOPT-GTH in [106]) with 2 basis
functions per atomic orbital was used as the primary basis for the GPW method.

ii) The GTH-PBE pseudopotential developed by Goedecker, Teter and Hutter (GTH)
[107] was used, since the primary basis is optimized to this specific potential.

iii) The used auxiliary basis for ADMM is the gaussian basis set pFIT3 in [102].

iv) The HF exchange functional PBE0 TC LRC [90] was used with a cutoff radius of
rTC = 2Å for the truncated Coulomb operator.

These settings were already successfully used in previous works dealing with defects in
amorphous SiO2 [108, 20, 8].
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Figure 4.2: Amorphous SiO2 structure consisting of 216 atoms within its cubic periodic
simulation box with a side length of 15.095 Å.

4.7.2 Geometry Optimization

Finding stable or metastable configurations requires to find a local minimum of the po-
tential energy surface. Starting with a reasonable initial structure R0, a gradient-based
optimization algorithm is used to minimize the energy in successive single-point calcu-
lations. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) [109, 110, 111, 112] algorithm
was used for all geometry optimizations in this work. The optimization was stopped,
when all atomic forces were smaller than 2.3meV/Å. Note that depending on the initial
guess R0 different local minima can be found. For example, the states 1 and 1 in the
4-state model are 2 different local minima on the same potential energy surface (see Fig.
3.5).

4.7.3 Amorphous SiO2 Structures

Ab-initio studies on the dynamics of oxide defects requires an adequate model for the
oxide layer. In previous works [113] a series of amorphous SiO2 structures were created
by molecular dynamics simulations, mimicking the melting and subsequent rapid cooling
of a β-cristobalite SiO2 crystal. The calculations used the ReaxFF potential [114] and
were carried out with an initial temperature of 5000 K and a cooling rate of 6 Kps−1.
The resulting amorphous structures were than relaxed with DFT. Physical properties,
e.g. density and bond lengths/angles, of the final structures were found to be in very
good agreement with experimental data of actual device oxide layers. For the aim of this
work, the defect types discussed in Sec. 3.5 were incorporated in these host materials.
All studied structures consist of 216 atoms and are embedded in a cubic simulation box
with periodic boundary conditions. One single-point DFT calculation in these structures
with the settings listed above requires about 3 − 5 core hours on the used VSC [115]
clusters. One of the used structures is depicted in Fig. 4.2.
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CHAPTER 5 From Energies to Rates

Using the concepts of density functional theory discussed in the previous chapter, the
potential energy surfaces of differently charged defect configurations can be explored
pointwise. Knowledge about the system’s PESs reveals the energy barriers between
different states and thus determines the transition rates kij in the four-state model. This
chapter discusses the link between PESs obtained by DFT and the resulting transition
rates for the purely thermic transitions 1 ⇔ 1 and 2 ⇔ 2 as well as the charge transfer
transitions 1 ⇔ 2 and 2 ⇔ 1. Thermic transitions are treated within classical transition
state theory (TST), whereas charge transitions will be handled in the framework of
nonradiative multiphonon theory (NMP). Furthermore the interplay of the defect and
the valence and conduction band of the device will be described at the end of this
chapter.

5.1 Thermal Transitions

When a system moves from one local minimum to another on the same PES, it has
to overcome a certain thermal energy barrier. Such transitions are therefore called
purely thermal. As an example, Fig. 5.1 shows the transitions 1 ⇔ 1 in the case of
the hydroxyl-E center. The transition rates for such reactions can be calculated with
classical transition state theory (TST), which was first developed by Eyring, Evans and
Polanyi [116, 117] in 1935. The classical TST is built upon the following assumptions:

i) The nuclei can be described by classical mechanics, i.e. they are treated as classical
particles which move on the potential energy surface.

ii) The initial state is in a thermal equilibrium, which is not disturbed by the transition
event.

iii) Once the barrier is transcended, the system does not return to the initial state.
Therefore trajectories which cross the barrier more than once are ruled out.

Especially the first assumption should be treated with caution when describing hydro-
gen related defects, since protons can have a significant tunneling probability, effectively
lowering the transition barrier [118]. Although this is neglected for the scope of this
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Figure 5.1: Schematic energy profile between the states 1 ⇔ 1 in the case of the H-E

center. The energy barriers (E11� and E1�1) of these thermal transitions are
solely determined by the energy difference between the initial state and the
transition state. The corresponding atomic arrangements of the defect along
the configuration coordinate are depicted in the upper row. [8]

work, the impact of proton tunneling on defect dynamics should be investigated in fu-
ture studies.

5.1.1 One-Dimensional Transition State Theory

For the sake of simplicity, a certain reaction path R (q) with a single reaction coordinate
q is fixed. The involved PES is therefore reduced to an one-dimensional energy profile
V (q) as depicted in Fig. 5.1. The configuration with the highest energy along the
reaction trajectory is called the transition state T. Following the derivations in [13], the
transition rate from state i to j is given by the mean forward flux through the transition
state T:

kij = E [vf ]P (qT) (5.1)

Here, E [vf ] is the mean velocity in the direction of the final state j. Under the as-
sumption of thermal equilibrium, vf obeys the Boltzmann-Maxwell distribution and its
expectation value therefore yields1

E [vf ] =

�
kBT

2π
. (5.2)

P (qT) dq denotes the probability of the system being in the interval [qT, qT + dq] and is
given by the Boltzmann distribution:

P (qT) =
1

Z exp (−βEij) with Z =

	 qT

−∞
exp (−βV (q)− V (qi,eq)) dq (5.3)

1Using mass weighted coordinates, the mass m does not appear in Eq. 5.2
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Eij denotes the energy barrier, which has to be overcome to reach the final state j:

Eij � V (qT)− V (qi,eq) (5.4)

The main contribution to the partition function Z stems from the neighborhood of the
initial local minimum qi,eq, where the energy profile can be approximated by a parabola.

V (q) ≈ V (qi,eq) +
1

2
ω2
0 (q − qi,eq)

2 (5.5)

Using this approximation, Z can be expressed as

Z ≈
	 qT

−∞
exp

�
−β

2
ω2
0 (q − qi,eq)

2

�
dq ≈

	 ∞

−∞
exp

�
−β

2
ω2
0q

2

�
dq =

1

ω0

�
2πkBT . (5.6)

Putting everything together, Eq. 5.1 finally yields the transition rate

kij ≈ ν0 exp (−βEij) with ν0 �
ω0

2π
. (5.7)

The prefactor ν0 is usually referred to as attempt frequency. Physically, this factor can
be interpreted as the number of attempts per unit time to overcome the thermal barrier.
As can be seen in Eq. 5.7, the derived transition rate is determined by the thermal
barrier Eij and obeys the empirical Arrhenius law Eq. 3.20.

5.1.2 General Harmonic Transition State Theory

Eq. 5.7 describes the transition rate in the case of a fixed reaction path. In reality,
however, the system can potentially take any path from the initial state to the final
state. Due to the exponential dependence on the barrier height Eij, the path with
the lowest possible barrier between the two states, the so-called minimum energy path
(MEP), determines the overall transition rate. The transition state along the MEP is
always a first-order saddle point of the PES with a single negative curvature in the
direction of the MEP [116]. In the vicinity of the transition state the PES can therefore
be approximated by

V (q) = V (qT)−
1

2
ω2
T0 (q1 − qT1)

2 +
1

2

3N�
k=2

ω2
Tk (qk − qTk)

2 . (5.8)

Here q1 denotes the configuration coordinate along the MEP. Similarly the PES near
the initial local minimum qM can be approximated by a paraboloid

V (q) = V (qM) +
1

2

3N�
k=1

ω2
Mk (qk − qMk)

2 . (5.9)

35



FROM ENERGIES TO RATES 5.2. Transition State Optimization

With these approximations, the general multi-dimensional TST then yields the transition
rate [119, 13]

kij = ν exp (−βEij) with ν � 1

2π

�3N
k=1 ωMk�3N
k=2 ωTk

. (5.10)

The attempt frequency in the multidimensional TST is often assumpted to be in the
order of ν ≈ 1013 Hz [4, 120, 121].

Although the calculation of transition rates within TST is trivial once the MEP is known,
finding the MEP between two local minima of a PES is computationally very expensive
and requires special methods. One of the most popular methods to determine MEPs,
the nudged elastic band algorithm, will be discussed in the following section.

5.2 Transition State Optimization

Since the MEP, per definition, leads across a saddle point of the PES, it seems natural
to first search for such a saddle point. Several schemes have been developed to perform
this task [122, 123]. Usually these algorithms start in one of the local minima and follow
a path of slowest ascent. However, this search strategy does not necessarily lead to
the desired transition state. Other algorithms [124] perform a normal mode analysis
to determine a search direction for the transition state. Those methods require the
calculation of the Hessian matrix, which is very expensive and thus impractical for
larger systems. Due to these downsides, searching for the MEP is commonly done with
so-called chain-of-state (COS) approaches.

5.2.1 Plain Elastic Band

The basic idea of COS methods is to create a chain of equidistant intermediate config-
urations (referred to as images or replica) between the initial and final state. The total
energy of this chain of states is then minimized with local optimization algorithms. The
simplest COS method, known as plain elastic band (PEB) [125], connects neighboring
images with virtual springs to maintain the initial equidistant separation of the images.
This results in an objective function

SPEB (R1,R2, . . . ,RN−1) �
N−1�
i=1

V (Ri) +
1

2

N−1�
i=1

k (Ri −Ri−1)
2 , (5.11)

which is then optimized for the images with coordinates R1, . . . ,RN−1. The force acting
on each image is then given by

F PEB
i = −∇iS

PEB = F e
i + F s

i , (5.12)

where F e
i is the physical force induced by the potential energy gradient

F e
i � −∇V |Ri

(5.13)
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and F s
i denotes the virtual spring force acting on image i

F s
i � k (Ri+1 −Ri)− k (Ri −Ri−1) . (5.14)

The endpoints of the chain , denoted by R0 and RN , are not impacted by the virtual
spring forces and are either fixed or are driven towards the local minimum positions.
The PEB method is simple and straightforward, however, it often fails to converge to
the MEP. This is due to the reason that the chain-of-states behaves like a rubber band
and tries to minimize its length, leading to shortcuts and therefore missing of the saddle
point. Furthermore, the PEB images tend to slide down the PES and thus avoid the
transition state region.

5.2.2 Nudged Elastic Band

The drawbacks of the PEB method can be overcome with a slight modification, known
as nudged elastic band [126]. The forces F i on the images of the PEB method can be
seperated in components parallel and perpendicular to the reaction path:

F
�
i = (F i · τ̂i) τ̂i F⊥

i = F i − F
�
i (5.15)

Here τ̂i is the unity tangent vector to the reaction path at the image i. The tendency
of the PEB method to take shortcuts is caused by F s⊥

i , whereas F
e�
i is responsible for

the sliding down of images. Therefore the NEB method removes these two components,
resulting in the image force

F NEB
i � F e⊥

i + F
s�
i . (5.16)

If a sufficient number of intermediate images are used, this modification allows the chain
to converge towards the true MEP as depicted in Fig. 5.2. Furthermore, since the spring
forces act only along the reaction path, the exact value for the spring constant k is not
critical. The MEP is not known in advance, therefore the tangent unit vector τ̂i needs
to be approximated. In the original NEB implementation [126] the approximation

τ̂i =
Ri+1 −Ri−1

|Ri+1 −Ri−1| (5.17)

is used. This scheme sometimes introduces convergence instabilities, which can be re-
solved by the improved tangent nudged elastic band (IT-NEB) [127].

Although this work does not directly deal with purely thermal transitions, the NEB
method will be used to construct MEPs between 2 different PESs to describe charge
transitions in Ch. 6.

5.2.3 Climbing Image NEB

As demonstrated in Fig. 5.2, the equidistant spacing of the NEB images generally
results in an underestimation of the transition barrier, since no image lies exactly at
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Figure 5.2: Left: Results of a NEB calculation on a two-dimensional analytic PES.
Initially the images are placed along the direct path (black) between the two
minima. The chain-of-states converges to to the true analytic MEP (red).
Right: Comparison of resulting energy profiles along the initial direct path,
the converged NEB path and the true MEP. In general, the direct path
always overestimates the thermal barrier. Due to the equidistant spacing of
the images, the true saddle point is missed by the NEB path, leading to an
underestimation of the barrier in general. This disadvanting is removed by
using the Climbing-Image NEB.
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the transition state. The climbing image (CI) NEB [128] allows the image imax with
the highest energy to converge (”climb”) towards the saddle point. To achieve this, the
force acting on this so-called climbing image is replaced with

F imax = F e
imax

− 2τ̂imax

�
τ̂imax · F e

imax

�
. (5.18)

The climbing image is not subject to the forces of the virtual springs. Instead, the force
on the CI is determined solely by the gradient of the PES, but the force component
parallel to the reaction path is reversed in order to drive this image upwards to the
saddle point. Thus the CI-NEB method allows a accurate calculation of the MEP.

5.3 Nonradiative Multiphonon Transitions

Contrary to purely thermal transitions, the charge transitions 1 ⇔ 2 and 2 ⇔ 1 involve
a change of the electronic state and therefore the initial and final states lie on different
PESs. As depicted in Fig. 5.3, one can distinguish between radiative transitions and
non-radiative transitions [129]. Radiative transitions require the absorbtion or emission
of photons. During a radiative transition, the geometry of the system is initially con-
served and subsequently relaxes to a minimum of the new PES. On the other hand,
nonradiative transitions are phonon-assisted and are associated with a geometry change
during the transition. These transitions preferentially occur near the intersection point
of the involved PESs. This work focuses entirely on nonradiative multiphonon (NMP)
transitions, since in this case, significantly lower barriers have to be overcome. Further-
more at typical BTI conditions with elevated temperatures, nonradiative transitions are
the primary cause of charge capture and emission events.

5.3.1 Single State Transitions

NMP transitions involve an ensemble of vibrational modes both in the initial state and
the final state. For simplicity, we first consider a simple transition from a specific initial
state |Ψi ⊗ ηiα� to a final state |Ψj ⊗ ηjβ�. Within a first-order perturbation approach
the transition rate kiαjβ is then given by Fermi’s Golden Rule [130, 131]:

kiαjβ =
2π

�
|Miαjβ|2 δ (Ejβ − Eiα) (5.19)

Here, the matrix element Miαjβ is given by

Miαjβ � �Ψi ⊗ ηiα|Ĥ |Ψj ⊗ ηjβ� , (5.20)

with the perturbation operator Ĥ . According to Eq. 5.19, a transition iα ⇒ jβ can only
occur, when the energy levels of the initial and final state coincide, thus the total energy
is conserved during the transition. Within the Born-Oppenheimer approximation, the
perturbation operator can be split in an electronic and a vibronic component:

Ĥ  = Ĥ 
el + Ĥ 

vib (5.21)
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Figure 5.3: Schematic charge transition between the neutral (V0) and the positive (V+)
charge state. Absorbtion or emission of photons lead to a radiative (optical)
transition where the geometry is conserved during transition. Nonradiative
transitions are phonon-assisted and are assumed to occur near the cross-
ing point of the PESs. Nonradiative transitions therefore have lower barriers
compared to radiative transitions and are the dominant cause of charge tran-
sitions associated with the BTI phenomenon. [8]
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Figure 5.4: Potential energy profiles of two differently charged defect states. The cor-
responding vibronic modes are represented by the dashed lines. According
to the Franck-Condon principle, the rate for a transition iα ⇒ jβ is propor-
tional to the overlap integral of the corresponding wavefunctions |ηiα� and
|ηjβ�. Furthermore, Fermi’s golden rule demands the conservation of energy
during charge transitions. Therefore only vibronic modes with coinciding
eigenenergies Eiα = Ejβ can contribute to a charge transition. This is the
case for the thick drawn modes, for which the overlap is depicted as the blue
area. [4]
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Then the matrix element Miαjβ can be expressed as

Miαjβ = �Ψi ⊗ ηiα|Ĥ 
el + Ĥ 

vib|Ψj ⊗ ηjβ� =
= �ηiα|ηjβ� �Ψi|Ĥ 

el|Ψj�+ �Ψi|Ψj�� �� �
=0

�ηiα|Ĥ 
vib|ηjβ� =

= �ηiα|ηjβ� �Ψi|Ĥ 
el|Ψj� . (5.22)

The second term vanishes due to the orthogonality of different electronic states. The
matrix element therefore is a product of an electronic matrix element and the overlap
integral (see Fig. 5.4) of the initial and final vibronic wavefunctions. This simplification
is commonly known as Franck-Condon principle [132, 133, 129, 134].

5.3.2 NMP Transitions in a Canonical Ensemble

Under typical operating temperatures, many different vibrational modes are excited for
one electronic state. All these modes therefore can contribute to the overall charge
transition rate. Assuming the initial state is in thermal equilibrium, the total transition
rate kij is determined by the thermal average of all partial rates kiαjβ across the canonical
ensemble of the initial state [12, 135, 54]. With the abbrevations

ave
α

(xα) �
1

Z
�
α

xα exp (−βEiα) , Z =
�
α

exp (−βEiα) (5.23)

the total transition rate is given by

kij = ave
α


�
β

kiαjβ


. (5.24)

Usually, the rate kij is expressed as the product of an electronic matrix element Aij and
a so-called lineshape function fij, describing the vibronic interactions:

kij = Aijfij (5.25)

Aij �
2π

�

����Ψi|Ĥ 
el|Ψj�

���2 (5.26)

fij � ave
α


�
β

|�ηiα|ηjβ�|2 δ (Ejβ − Eiα)


(5.27)

In the case of charge transitions between the defect and the oxide, the matrix elements
Aij describe the interaction between the electronic wavefunctions of the defect and the
channel of a MOSFET, for example. It is possible to simulate a whole Si/SiO2 interface
structure within DFT in order to get both of these wavefunctions directly. However,
such calculations require a large simulation cell and are computationally demanding
[136]. Since in this work, we analyze many defects in different amorphous structures,
such an approach would not be feasible. Instead, the defects are simulated in a bulk
oxide, therefore the channel wavefunctions are not accessable and the matrix elements
Aij must be approximated. Since the defect wavefunctions are strongly localized, it is
reasonable to approximate Aij by a simple tunneling factor [54], see Sec. 5.4.2 for more
details.
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5.3.3 Classical Lineshape Function

In a solid material like SiO2 the energy difference ΔEiα between consecutive vibrational
modes is usually smaller than kBT at room temperature and the eigenenergies Eiα can
be assumed to form a continuum. Therefore, in the case of oxide defects, the lineshape
function can be represented by an integral over the energy continuum of the initial state:

fij =
1

Z
	
q

g (Vi (q
)) exp (−βVi (q

)) dq, Z =

	
q

exp (−βVi (q)) dq
 (5.28)

Here g (Vi) denotes a density function and accounts for the vibrational overlaps at the
energy level Vi. As shown in Fig. 5.5, the main contribution to the overall lineshape
function is near the crossing point of the involved PESs at the energy Vi = Vj = VCP.
This allows to approximate the overlap density function with a Dirac peak at the crossing
point in the classical limit

ΔEiα < kBT � Eij � VCP − Vi,min. (5.29)

It is therefore assumed, that the transition occurs exactly at the crossing point. Within
this approximation, the lineshape function becomes [4]

fij ≈ 1

Z
	
q

δ (Vj (q
)− Vi (q

)) exp (−βVi (q
)) dq =

=
1

Z|V 
j (qCP)− V 

i (qCP) |exp (−βVCP) . (5.30)

Factoring out exp (−βVi,min) from the partition function Z finally results in

fij = γij exp (−β (VCP − Vi,min)) = γij exp (−βEij) . (5.31)

Here γij denotes a prefactor, which depends on the shape of the PESs. Similar to the
thermal transitions discussed previously, NMP transition rates are determined by an
energy barrier Eij in the classical limit. In this case, the energy barrier is given by the
difference between the crossing point energy VCP and the minimum energy Vi,min in the
initial state. Note that the prefactor γij will be omitted, since the lineshape function is
dominated by the exponential term in Eq. 5.31.

This approximation allows for a simple analytic model for NMP transitions and is there-
fore used throughout this work. Although the classical lineshape function neglects tun-
neling effects, it is in good agreement with its quantum mechanical counterpart Eq. 5.27
for oxide defects at room temperature and above [54].

5.4 NMP Transitions in Oxide Defects

Defects in the oxide layer of a MOSFET cannot be treated as an isolated system, since
they capture (emit) charges from (to) the valence or conduction band of the device
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substrate. Furthermore they interact with the electric field in the oxide, causing a bias
dependence of the charge capture and emission times. In this section, NMP transition
theory is adopted to describe the charge transitions responsible for BTI in a MOSFET.
In the following derivations we consider a so-called hole trap, i.e a defect which primarily
interacts with the valence band and can be either in a neutral (0) or a positive (+) charge
state. Throughout this section the energy minimum of the positive defect PES is chosen
to be

V+,min � 0 . (5.32)

Note that this is completely arbitrary and does not influence the physical results, since
only energy differences are important. However, this reference is convenient to explain
the interplay between an hole trap and the energy bands of the channel.

5.4.1 Charge Exchange with the Substrate Reservoir

The device substrate with its continous valence and conduction band acts as a charge
reservoir for oxide defects. When the hole trap is in its neutral state, the total energy
of the system can be expressed as

�V0 (q) � V0 (q) + V0,res , (5.33)

where V0 denotes the PES of the defect in its neutral state and V0,res is the energy of
all charge carriers in the substrate reservoir. The trap can switch to the positive charge
state, by emitting an electron with energy E into the reservoir. The total energy is then
given by �V+ (q) � V+ (q) + V+,res with V+,res = V0,res + E . (5.34)

Since the electron is injected into the substrate, its energy is increased by E. Here it
is assumed, that the other carriers in the reservoir are not affected by this transition.
Since NMP transitions only depend on energy differences but not total energies, V0,res

can be omitted, resulting in the effective defect PESs

�V0 (q) � V0 (q) and �V+ (q) � V+ (q) + E . (5.35)

Therefore every reservoir state E is associated with a shifted positive PES as depicted
in Fig. 5.6. To describe the energetic position of the neutral defect state relative to the
energy bands, it is convenient to introduce the so-called trap level2

ET � V0,min − EV . (5.36)

The transition rates then become dependent on the energy E of the involved reservoir
state and the trap-level ET:

kij(E,ET) = Aij (E,ET) fij (E,ET) (5.37)

2For defects which interact mostly with the conduction band, ET � EC−V0,min might be used instead.
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Figure 5.6: Defect PESs when interacting with the reservoirs in the channel. The positive
PES (red) is shifted by the carrier energy E of the involved reservoir state.
This leads to two bands of energy surfaces, since the defect can in principle
interact with every state in the reservoir. The green arrows represent the
hole exchange with the valence band, the blue arrows indicate the exchange
of electrons with the conduction band. The relative position of the neutral
defect state to one of the band edges (EV, EC) is called the thermodynamical
trap level ET. In this work hole traps in pMOS devices are investigated,
therefore the reference is always EV. [4]
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Summation over all reservoir states in the valence and conduction band then yield the
total transition rates [34, 4]

kV
0+ (ET) =

	 EV

−∞
Dp (E) fp (E)A0+ (E,ET) f0+ (E,ET) dE (5.38a)

kV
+0 (ET) =

	 EV

−∞
Dp (E) fn (E)A+0 (E,ET) f+0 (E,ET) dE (5.38b)

kC
0+ (ET) =

	 ∞

EC

Dn (E) fp (E)A0+ (E,ET) f0+ (E,ET) dE (5.38c)

kC
+0 (ET) =

	 ∞

EC

Dn (E) fn (E)A+0 (E,ET) f+0 (E,ET) dE . (5.38d)

Here Dp and Dn denote the density of states in the valence and conduction band re-
spectively. Since a transition 0 ⇒ + requires the target reservoir state to be empty, the
integrands must be weighted with the hole occupation probability fp (E). Similarly the
contributions to a transition + ⇒ 0 are weighted with the electron occupation prob-
ability fn (E) since the initial reservoir state must be filled. The charge carriers are
fermions, therefore their occupation probabilities are given by the Fermi-Dirac statistic

fn (E) =
1

1 + exp (β (E − EF ))
(5.39a)

fp (E) =
1

1 + exp (β (EF − E))
(5.39b)

with the Fermi level EF .

5.4.2 Band Edge Approximation

In a semiconductor the carriers are concentrated near the band edges EV and EC . In
a first-order approximation it can therefore be assumed, that the matrix element Aij

and the lineshape function fij in Eq. 5.38 only depend on the band edges and can be
factored out from the integral [137]. In the case of transitions to the valence band this
yields

kV
0+ (ET) = A0+ (EV, ET) f0+ (EV, ET)

	 EV

−∞
Dp (E) fp (E) dE (5.40a)

kV
+0 (ET) = A+0 (EV, ET) f+0 (EV, ET)

	 EV

−∞
Dp (E) fn (E) dE . (5.40b)

Using the relation
fn (E) = exp (β (E − EF)) fp (E) (5.41)

and the definition of the hole concentration

p =

	 EV

−∞
Dp (E) fp (E) (5.42)
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the rates to the valence band can be expressed as

kV
0+ (ET) = pA0+ (EV, ET) f0+ (EV, ET) (5.43)

kV
+0 (ET) = pA+0 (EV, ET) f+0 (EV, ET) exp (β (EV − EF)) . (5.44)

Matrix Elements

In a crude approximation, the unknown matrix elements Aij can be assumed to be of
the form [10]

A0+ (EV, ET) = A+0 (EV, ET) = vth,pσpϑ . (5.45)

Here vth,p =
�
8kBT/

�
πm∗

p

�
denotes the thermal hole velocity. σp = 3.0× 10−14cm2 is

the hole capture cross section [138]. The WKB tunneling factor ϑ is given by [47]

ϑ = exp (−xt/x0) , (5.46)

where xt is the distance of the defect to the interface and x0 is an effective tunneling
length.

Transition Rates

All these approximations together with the classical limit of the lineshape function finally
yield the transition rates

1

τc
= kV

0+ (ET) = pvth,pσpϑ exp (−βEB,c) (5.47a)

1

τe
= kV

+0 (ET) = pvth,pσpϑ exp (−β (EB,e − EF)) (5.47b)

with the barriers

EB,c = VCP (EV, ET)− ET (5.48a)

EB,e = VCP (EV, ET) (5.48b)

Since all studies in this work are conducted for hole traps in pMOS transisors, the valence
band edge was used as energy reference (EV = 0) to simplify the equations. Here EB,c

stands for the barrier to capture a hole from the valence band (0 ⇒ +). Similarly, EB,e

is the barrier for hole emission (+ ⇒ 0). This simple model links the results of the DFT
calculations to the rate equations discussed earlier in Ch. 3. We will use this model in
Ch. 7 to evaluate the influence of different PES approximations on transition times in
a test device. Although not needed in this work, it should be mentioned, that similar
equations can also be derived for electron traps. The full set of equations can be found
in [34, 139, 137].
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Figure 5.7: Impact of the oxide field on a hole trap in a pMOS. Left: When a low gate
voltage is applied, the trap-level is below the Fermi-level and therefore the
neutral state is thermodynamically more stable. The defect tends to emit
its trapped hole. Right: Applying a large electric field shifts the trap-level
above the Fermi-level. It becomes favourable to capture a hole. This is the
typical situation under NBTI stress. [8]

5.4.3 Interaction with the Oxide Field

The energy of the electron in an neutral hole trap does not only depend on the defect
itself, but also on the electric potential inside the oxide. It is assumed that an applied
electric field does not interact with the defect, beside a shift of the energy position.
Therefore possible interaction with dipole moments of the defect, which could alter the
PESs, are neglected. In a first-order approach, the additional energy due to the oxide
field Fox is given by the simply expression [7]

ΔS � QxtFox (5.49)

Here Q is the charge of the electron. This potential shifts the defect trap-level according
to

ET = ET,0 +ΔS , (5.50)

where ET,0 denotes the trap-level in flat-band conditions. Note that within the used band
edge approximation, the positive defect state is not affected by the field and remains
fixed at the valence band edge. Fig. 5.7 shows the typical situations for NBTI during
recovery (left) and stress (right). As can be seen, the electric field has a large impact
on the transition barriers EB,c and EB,e and subsequently the time constants τc and τe.
The ratio

τc
τe

= exp (−β (ET − EF)) (5.51)

reveals, that a hole capture event is favourable, when the trap-level is above the Fermi-
level.
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Figure 5.8: Influence of different electron-phonon coupling regimes on transition barriers
according to [140]. Left: In the strong electron-phonon coupling regime
there is a barrier in both directions. Right: In the weak-coupling regime
one of the transitions is barrier-free due to excited states, which intersect the
initial PES close at its minimum. [8]

5.4.4 Electron-Phonon Coupling Regimes

So far, in the classical limit of NMP theory the transition rate is determined by the
energy barriers Eij of the electronic ground states. However this does not necessarily
hold true when considering excited states as well. Therefore one distinguishes between
different electron-phonon coupling regimes, depending on the influence of the excited
states on the transition rate. The concept of coupling regimes is usually applied under
the assumption of parabolic PESs [141, 4]. Since this work also deals with anharmonic
PES approximations, it is necessary to use a more general approach given in [140].

Strong Electron-Phonon Coupling

The strong electron-phonon coupling (SC) regime is defined by the conditions

Vi (qi,eq) < Vj (qi,eq) (5.52a)

Vi (qj,eq) < Vj (qj,eq) (5.52b)

In this case, as depicted in Fig. 5.8 (left), the lowest possible intersection point is
determined by the ground state PESs. Therefore both transitions have a barrier and
can be described with the previously developed NMP transition theory.

Weak Electron-Phonon Coupling

Weak electron-phonon coupling (WC) occurs, when excited states enable a lower tran-
sition barrier then the ground state. In Fig. 5.8 (right) this is shown for the transition
+ ⇒ 0. Here an excited state of the neutral PES crosses the positive PES close to or at
its minimum. This excited state therefore enables a nearly barrier-free transition. Due
to the short life time of excited states, the following relaxation into the neutral ground
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state also happens with nearly no barrier.

It should be noted, that being in the SC or WC regimes is not an intrinsic defect property,
since the relative positions of the PESs depends on the shift ΔS and the energy levels
of the reservoir state. In our settings, the hydrogen bridge and the hydroxyl-E center
remain in the SC regime, whereas the oxygen vacancy is commonly close to or sometimes
even in the WC regime.

5.5 Energy Alignment

As already mentioned, the defects treated in this work are in the oxide layer but ex-
change charges with the device substrate. Since only the oxide layer is simulated with
DFT, the resulting energies have to be aligned accordingly in the band diagram of the
device. This will be adressed briefly in the following.

To compare the energies of differently charged defect states, usually the formation energy
with respect to the neutral, defect-free bulk structure is used [142]:

Ef
Q � Etot

Q − Etot
0,bulk −

�
i

niµi +Q (EV + EF) . (5.53)

Here, EQ
tot denotes the total energy obtained with DFT for the defect state with charge

Q. E0,bulk
tot is the total energy of the neutral defect-free structure. The atomic chemical

potentials µi represent the required energy to remove/incorporate ni atoms of kind i
from/into the bulk structure in order to form the defect. Since all defects studied in this
work have the same number of atoms in every charge state, these terms can be omitted.
The last term accounts for the charge carrier energy as already discussed in Sec. 5.4.1.
Note that EV is the energy of the valence band and EF is the Fermi-level with respect
to EV. Since we are using the band edge approximation described in Sec. 5.4.2 for hole
traps in pMOS devices, charge exchange is only considered at the valence band edge
(VBE), i.e. EF = 0.

In order to align the positive energy levels, the energy of the VBE EV with respect to
the DFT energies must be known. The VBE of the oxide layer can be estimated by the
energy of the highest occupied Kohn-Sham orbital (HOMO) in the neutral defect-free
structure:

ESiO2
V ≈ Ebulk

HOMO (5.54)

Furthermore it has to be considered, that the defect is in the oxide layer but charges are
exchanged with the channel VBE. Therefore the band offset EB,off between the Si and
SiO2 VBEs must be added as depicted in Fig. 5.9, leading to

ESi
V = ESiO2

V + EB,off ≈ Ebulk
HOMO + EB,off . (5.55)
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Figure 5.9: Energy alignment of the positive charge state in the device band diagram.
The obtained total energies from DFT must be corrected by the HOMO
energy to align them with the SiO2 valence band. An additional band offset
EB,off must be considered due to the charge exchange with channel’s valence
band edge.

Throughout this work, a Si/SiO2 band offset of EB,off = 4.5 eV is assumed. Including
the shift ΔS, the overall energies for the neutral and positive defect state in the band
edge approximation then yield

V DFT
0 � Etot

0 +ΔS (5.56a)

V DFT
+ � Etot

+ + ESi
V . (5.56b)

These equations link the energies obtained with DFT to the energies relevant for the
NMP model in order to calculate transition rates. This simple alignment scheme has
been used previously to describe oxide defects with DFT [6, 8] and will also be used for
the scope of this work.

It should be noted, that often an additional correction term Δv is introduced to com-
pensate for the Coulomb self-interaction of charged defects due to the finite size of the
simulation cell. This effect is neglected in this work, since Δv is usually smaller than
100meV [113, 142]

51





CHAPTER 6 PES Approximations

In the previous chapter a simple analytical NMP model was derived, to link the energy
barriers obtained from DFT calculations to the experimentally accessable capture and
emission time constants of charge transitions. However, the direct usage of physical
PESs to calculate barriers and time constants is unfeasible due to the following reasons:

i) The PES of a system with N atoms is a 3N -dimensional surface, resulting in an
incredibly large configuration space even for smaller systems.

ii) No analytic expression for the PES is available, therefore Vi (R) can only be eval-
uated numerically for a given set of nuclei positions R.

iii) Using DFT to calculate a single point of the PES is already computationally highly
demanding and can require several hours of computation time when running on a
single core.

The main issue here is the high dimensionality of the PES. In order to perform transition
calculations, the PESs are reduced to a one-dimensional curve Vi (q) by choosing a
certain reaction path R (q) between the neutral and positive charge state. Although
this approach allows a straightforward treatment, the shape of the resulting PESs and
subsequently the crossing point is strongly dependent on the chosen path. In the classical
limit, NMP transition rates are dominated by the minimum energy path, which leads
over the crossing point with the lowest possible energy, the so-called minimum energy
crossing point (MECP). In this chapter, an efficient method to locate the MECP on
the intersection surface of the two PESs is described. The barriers obtained with the
MECP will be used later on as a reference to evaluate the accuracy of two simpler
approximations, namely the direct path (DP) approximation and the harmonic (HA)
approximation.

6.1 Simple Approximation Schemes

Before introducing the MECP search strategy, the HA and DP approximations will be
discussed in more detail. Compared to the MECP search, these methods can be applied
with little computational effort and provide a rough estimation of the transition barriers.
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method leads to an energy profile expressed as [8, 143]

V DP
i (q) � V DFT

i

�
RDP (q)

�
. (6.2)

Here, RDP (q) represents the straight line connecting the minima Ri,eq and is given by

RDP (q) � R0,eq + q (R+,eq −R0,eq) . (6.3)

Note that the reaction coordinate q is normalized in the sense that q = 0.0 and q = 1.0
refer to the equilibrium positions. This normalized reaction coordinate (NRC) is also
used later on to compare the different PES approximations in a single diagram. In this
work the DP approximation is obtained by evaluating the energies with DFT for 30
uniformly spaced sampling points in the range q ∈ [−1.0, 2.0] and a spline interpolation
in between as depicted in Fig. 6.1. The DP approximation was used in previous works as
a reference to compare different analytical PES approximations [144, 8]. However, in the
next section, it will be demonstrated using the MECP method, that the DP is in general
not suitable to give accurate results due to its tendency to considerably overestimate
transition barriers.

6.2 Minimum Energy Path

Similar to the transition state theory discussed in Sec. 5.1, NMP transition rates in
the classical limit depend exponentially on the reaction barrier. The minimum energy
path (MEP) between the two states therefore dominates the overall rates. Contrary to
TST however, the MEP does not solely lie on one surface but leads across the minimum
energy crossing point (MECP) and lies on both surfaces. Therefore, in this case, the
MEP cannot be constructed by a simple NEB calculation as discussed in Sec. 5.2. In
this work, the search for the MEP along two seperate PESs is split into two seperate
tasks:

i) First, a constraint optimization algorithm is used to locate a MECP between the
initial and final state. It should be noted, that the found MECP is in general only
a local solution, due to the use of gradient-based local optimization schemes.

ii) Second, the MECP is connected to the minimum configurations by an IT-NEB
calculation. A CI-NEB is not applicable in this case, since one of the endpoints
(the MECP) is not a local minimum.

The resulting MEP is depicted in Fig. 6.2 for analytical two-dimensional PESs. At first
glance, the second step of the procedure seems to be unnecessary, since only the MECP
determines the NMP barriers. However, it can not be ruled out that there is a point
along the MEP with an energy higher than the MECP. In this case, a thermal barrier
would have to be overcome first. Although this scenario did not occur in our studies, it
was important to consider, since this would have altered the resulting transition rates
significantly. The implemented MECP search strategy will be discussed in the following.
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work to locate the MECP within the seam. Although the number of dimensions in the
studied amorphous SiO2 is much larger, during a typical charge transition only atoms
in the vicinity of the defect site move considerably, whereas the bulk material is mostly
unaffected. Therefore, the system has effectively fewer degrees of freedom and SQP can
be used for the MECP search.

Sequential Quadratic Programming

The constraint optimization problem Eq. 6.4 can be solved iteratively. Starting from an
initial guess R0, a series of vectors in the configuration space is constructed through

Rk+1 � Rk + αkdk , (6.5)

where dk denotes the search direction and αk is the step length in the current iteration.
The main idea of SQP is to approximate the original nonlinear problem with an quadratic
one in every step. The direction dk is then given by the solution of the analytically
solvable quadratic subproblem [147]

minimize
dk∈R3N

1

2
dT
kBkdk +dT

k ∇F |Rk
(6.6a)

subject to dT
k ∇C|Rk

+C (Rk)
!
= 0 . (6.6b)

Here, Bk denotes the Hesse matrix of the objective function F at the point Rk. Note
that the constraint is approximated to first order only, whereas the objective function
is approximated to second order. The DFT calculations used to obtain F and C can
only provide the energy V DFT

i (Rk) and the energy gradient ∇V DFT
i of the system. The

Hesse matrix therefore has to be approximated by an iterative scheme like the already
mentioned BFGS algorithm or the Powell scheme [148]. Further information about the
implementation of SQP used in this work can be found in [149].

6.2.2 MECP Search Implementation

As already discussed in Sec. 4.6, CP2K was used for DFT calculations due to its perfor-
mance benefits. However, CP2K does not provide an implemented routine to find the
MECP on its own. Instead, a Python script was written to act as a link between the
DFT code and an implementation of the SQP algorithm provided in the SciPy package
[150, 151, 152]. Every function call issued by the SQP optimizer is forwarded to CP2K
in order to calculate F (Rk) and C (Rk) as well as their gradients.

MECP Calculation for Varying Oxide Fields

As far as the harmonic approximation and the direct path sampling are concerned,
the reaction path is always the straight line connecting the differently charged state
minima.Therefore, the reaction path does not change when an electric field is present
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Figure 6.3: Impact of a shift ΔS induced by an oxide field on the energy profiles along
the MEP. A shift of the neutral PES causes the MECP to change its position.
As a consequence, the MEP itself is dependent on the shift ΔS, resulting in
different PES shapes in the configuration coordinate diagram above. Note
that the high-dimensional PES is still assumed to be just shifted but not
altered in its shape, the visible PES deformation is only an artifact of the
one-dimensional representation along the MEP.

in the oxide and the crossing points can be obtained by simply shifting the neutral PES
by ΔS as described in Sec. 5.4.3. However, this is not possible when calculating the
MECP, since the minimum energy path itself depends on the shift ΔS as depicted in Fig.
6.3. As a consequence, the MECP has to be calculated individually with DFT for every
considered value of ΔS. In this work, the MECP was calculated for the shift values

ΔS = 0.0, ±0.125, ±0.25,±0.5, ±1.0 eV (6.7)

This range was chosen, since it includes the shift values typically reached in our measure-
ments. The resulting capture and emission barriers EMEP

B (ΔS) for values ΔS between
these datapoints are interpolated. As will be seen later in the results chapter, for example
in Fig. 7.1, this approach is well justified.

Initial Guess

As already mentioned, SQP is a gradient based local optimization scheme, therefore a
reasonable initial guess R0 must be provided to find the (local) MECP. This problem
does not only concern the implemented MECP search routine, but also virtually all other
optimization schemes used in computational chemistry, like geometry optimization or
NEB. Typically, non-gradient based global optimization algorithms are not applicable
due to the high-dimensional configuration space. For the purpose of this work, the initial
guess was chosen to be the crossing point in the DP approximation:

R0 � RDP
CP (6.8)

This choice is reasonable, since RDP
CP is already a point inside the seam. With this

approach, the MECP search is biased in favor of local solutions near the direct path.
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Convergence Criteria

Given that a whole ensemble of defects is studied in this work, the computational effort
for a single defect must be kept to a minimum. In order to minimize the necessary
optimization steps in the SQP algorithm, rather generous convergence criteria were
applied. Throughout the statistical analysis given in the next section, the following
criteria were used:

i) |C (Rk)| ≤ 2.0× 10−3 eV

ii) |F (Rk)− F (Rk−1)| ≤ 1.0× 10−3 eV

iii) 
Rk −Rk−1
2 ≤
√
3N × 1.0× 10−2 Å

iv) 
Rk −Rk−1
max ≤ 2× 10−2 Å

These settings were derived by running a few tests with stricter criteria. The values
were chosen so that the resulting energy of the MECP would lie within 10 meV of the
results when using the strict criteria. In this case, the energy error is well below the
thermal energy kBT ≈ 26meV at room temperature and therefore insignificant. Using
these settings, typically 20− 30 iterations are necessary to reach convergence.
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CHAPTER 7 Results

In order to evaluate the accuracy of the harmonic approximation (HA) and the direct
path sampling (DP), both methods are applied to multiple defects in amorphous SiO2

structures and are compared to the results obtained using the minimum energy path
(MEP). In this study, 11 HB defects, 27 H-E centers and 14 OVs (see Sec. 3.5) are
investigated in order to provide statistical data. Note that in this study only the tran-
sitions 1 ⇔ 2 are considered. All calculations were carried out on a pMOS test device
with an oxide thickness of dox = 9.5nm and an assumed defect/interface distance of
xt = 1.0nm. Throughout this study, the band edge approximation Eq. 5.47 is used, to
relate energy barriers to capture and emission time constants. The findings presented
in this chapter will also be published in [143].

7.1 Representative Case Study

Fig. 7.1-7.3 show the different PES approximations and their influence on the transition
barriers as well as the resulting capture and emission time constants for one representa-
tive of each defect type studied in this work. In those figures, the upper right diagrams
depict the calculated PESs for all three approximation schemes as well as the corre-
sponding crossing points under flat-band conditions (ΔS = 0.0eV). As depicted in the
lower row, the resulting barrier heights EB (ΔS) for hole capture and emission are very
sensitive to the applied bias (represented by ΔS). The corresponding capture and emis-
sion times vary by several orders of magnitude due to the exponential dependence on the
barriers. The accuracy of the different approximations is quantified by a L2 norm, which
measures the deviation of the resulting time constants τc, τe from the values τMEP

c , τMEP
e

obtained using the MEP method. Lower score values indicate a better agreement with
the MEP results.

Depending on the applied bias ΔS, both charge states of the hydrogen related defects
HB and H-E can be thermodynamically stable. Therefore, these defects are electrically
active and can cause BTI degradation. The boundary between the two regimes (prefer-
ably positively or preferably neutrally charged) is given by the intersection of the τc (ΔS)
and τe (ΔS) curves. For bias conditions near this crossover region, capture and emission
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Figure 7.2: Same as in Fig. 7.1 but for an hydroxyl-E center. Again, the simple HA is
more accurate than the DP. Note that the approximation error of the HA is
larger for the H-E center than for the HB defect. This also holds true on a
statistical level as will be presented in Sec. 7.2.1. The reason for the worse
approximation is the more complex path in configuration space of the H-E

center during a transition. [143]
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time constants are very similar, leading to continous charging and discharging of the
defect, which results in an observable RTN noise. On the other hand, the trap-level of
the oxygen vacancy is far below the valence band edge, therefore the OV stays in the
neutral state for nearly all relevant bias conditions. Hence the OV is electrically inactive
and is a very unlikely defect candidate to explain the BTI phenomenon. Note that for
the OV, the different PES approximations give very similar results, since this defect is
close to the weak coupling regime (see Sec. 5.4.4) and the crossing point lies close to
the minimum of the positive PES.

A general observation for all three defects is that the DP approximation always overesti-
mates the transition barriers. This was expected, because the MECP in general does not
lie on the direct path. The DP method leads to approximation errors of several orders
of magnitude for τc and τe. Surprisingly, the simple harmonic approximation is in much
better agreement with the MEP results, however, it seems to slightly underestimate the
barrier heights. This finding also holds true on a statistical level, as will be shown in
the following.

7.2 Statistical Evaluation in Amorphous SiO2

In amorphous host materials defect parameters depend strongly on the local environ-
ment. This leads to significant variations of the defect energy levels and consequently
to a wide distribution of possible transition times even within the same defect species.
This spreading is depicted in Fig. 7.4 for the 27 H-E defects studied in this work. Note
that this figure only shows the results of the MEP approach, but similar findings also
hold for the other approximation schemes. The large variations make it evident, that
studying single defects in amorphous SiO2 is futile and reliable conclusions about the
PES approximation accuracy can only be drawn from a larger data set. In the following,
the statistical errors for the HA and DP approximation are examined. Note that only
the capture time τc is considered here, since within the band edge approximation, the
emission time τe can be calculated from τc using Eq. 5.51 and therefore contains no new
information.

7.2.1 Transition Time Accuracy

The statistical deviations of τc between the different PES approximations can be pre-
sented conveniently by double-logarithmic correlation plots as depicted in Fig. 7.5. In
these plots, the y-coordinates are the values of τc (ΔS) obtained by the DP and HA ap-
proximations, whereas the x-coordinates are the corresponding reference values resulting
from the MEP approach. For a good PES approximation, the points would lie close to
or at the diagonal in such correlation plots. To measure the approximation accuracy,
the off-diagonality was quantified with a L2 score function.
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Figure 7.4: Same as Fig. 7.2, but for all H-E defects studied in this work. The wide
spreading of defect characteristics is due to variations of the defect surround-
ings in amorphous SiO2, leading to a broad distribution of barrier heights
and transition times. The darker lines depict the ensemble averages of the
considered parameters. [143]
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The DP approximation shows a pronounced off-diagonality for the HB and H-E center
defects, indicating a significant overestimation of τc. The HA on the other hand, pro-
vides more accurate results but slightly underestimates τc in general. Furthermore it
seems as if the HA approximation generally yields better results for the HB defects than
for the H-E centers. In the case of the OV defect, the DP and HA approximation both
are in excellent agreement with the MEP method. As already depicted in Fig. 7.3, the
crossing points all lie very close to the positive minimum since the OVs are nearly in
the WC regime.

All these findings show that the insights gained for individual defects in Fig. 7.1-7.3 are
also valid on a statistical level.

7.2.2 Slope Accuracy

The logarithmic τ (ΔS) plots in Fig. 7.1-7.3 show that the slope

m � d ln (τ)

dΔS

(7.1)

is nearly constant in the regime of strong oxide fields (|ΔS| � 0.0eV). This slope can
be used to estimate the trap position xt in experiments [153]. Therefore the impact of
the PES approximations on the slope should also be considered. The correlation plots
presented in Fig. 7.6 show the slopes mc of the capture times τc (ΔS) for ΔS � 0.0 eV.
As can be seen, the DP approximation tends to underestimate the slope, whereas the
HA approximation yields much better results, further indicating its superiority over the
DP approach.

7.2.3 Activation Energies

Experimentally, the temperature dependence of the transition times is used to estimate
the activation energy EA of the transition. Assuming a first-order rate limited process,
the relation between the capture time τc and the capture activation energy EA,c is given
by the Arrhenius law

τc = A exp (βEA,c) (7.2)

where A is a temperature-independent prefactor. In so-called Arrhenius plots the tran-
sition time is plotted against the inverse temperature 1/T , resulting in a straight line
for first-order processes. The slope of this lines determines the activation energy. Such
Arrhenius plots are presented for each defect type in Fig. 7.7. Here, τc is evaluated
for the temperatures T = 50, 100, 150, 200 ◦C and all three PES approximations. The
activation energies are estimated by fitting a straight lines to these data points. Fur-
thermore the average activation energies EA,c for each defect type are given. Note that
for the hydrogen related defects, a shift ΔS = 0.3eV was assumed, whereas a strong neg-
ative bias of ΔS = −1.0eV was used for the OV in order to obtain reasonable timescales
for τc. The Arrhenius plots essentially reflect the already discussed findings concerning
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Figure 7.8: Dependence of the average capture activation energy EA,c on the bias ΔS

for the different PES approximations. The harmonic approximation again
provides much better results, especially for the HB defects. Contrary to the
OV, the activation energies of the hydrogen related defects lie within the
experimentally observed range of 0.6 to 1.4eV.
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the PES approximations. This is not surprising since the activation energies are simply
derived from the theoretical capture times. However, the resulting theoretical activation
energies can be compared to experimental values in order to identify defect types pos-
sibly responsible for BTI. Fig. 7.8 depicts the average activation energies EA,c (ΔS) as
a function of the applied bias ΔS. As can be seen, the harmonic approximation yields
nearly the same results as the MEP for the HB and OV defects. In the case of the
H-E center, the HA underestimates the activation energies. However, throughout the
entire tested range ΔS = −1.0 to 1.0 eV, the harmonic approximation clearly performs
much better than the direct path sampling. Note that the calculated average activation
energies for the HB and H-E defects lie well within the experimental range of 0.6 to 1.4
eV (see Sec. 2.3) for a wide range of applied biases, making them likely candidates for
causing BTI degradation. On the contrary, the activation energies for the OV defects
are far too high to contribute to BTI at typical operating conditions.

7.2.4 Geometric Considerations

So far, the different PES approximations were compared without considering the total
displacement of the atoms when switching the charge state. Here, the impact of the
geometric distance between the neutral and positive minimum positions of the defect on
the approximation error is briefly discussed. The geometric distance is simply defined
by

d � 
R0,eq −R+,eq
2 (7.3)

Like all other defect parameters, this distance also varies considerably within the same
defect species due to the amorphous host material. Fig. 7.9 depicts the capture barri-
ers EB,c of the HA and DP approximation (top) and the absolute approximation errors
(bottom) as a function of the total displacement d. It is reasonable to expect an in-
crease of the approximation error with larger d. This can be observed for the DP
approximation, which shows a strong positive correlation with d for the HB and H-E

defects. Surprisingly, the harmonic approximation does not show this tendency. Instead,
the approximation error of the HA is statistically almost constant across the observed
displacements. In the case of the OV, the three applied PES approximations give essen-
tially the same results, as already seen in the previous section. Beside being near the
WC regime, the OV also tends to have much smaller displacements between the min-
ima than the hydrogen related defects, which naturally leads to smaller approximation
errors.

7.3 Conclusions

Prior to the investigations presented in this work, the harmonic approximation was often
used to model defect PESs within NMP transition theory. This approximation is very
convenient since it allows simple analytical expressions for the resulting transition rates.
Furthermore, for a given defect it can be constructed by only four DFT calculations and
is therefore computationally rather cheap. It was originally assumed, that this simple
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approximation scheme is not very accurate due to the limited connection to the physical
defect PESs. For that reason, the direct path sampling method was introduces in previ-
ous works as an attempt to get more accurate PESs by sampling multiple points along
the direct reaction path. However, the study conducted in this work clearly shows that
the HA generally is in much better agreement with the results of the novel MEP method
than the DP approximation. It was demonstrated, that the DP approximation leads
to significant overestimations of the transition barriers. Also the HA reproduces the
τ -slope far better than the DP approximation. All the above findings indicate, that the
harmonic approximation is in fact much more accurate than the direct path method.
This justifies the wide use of this approximation for reliability calculations in device
simulators and for the modelling of defects in general.

Of course, these findings only validate the use of the harmonic approximation for the
studied defect types in SiO2. However, the implemented MEP search routine can be
used to reliably evaluate other approximation schemes for different material systems as
well. Although the MEP method is considered to be the most accurate PES approxi-
mation, it can not be implemented in device simulators due to its high computational
demands. Therefore it is not a replacement for traditional approximation schemes. How-
ever, it very well can provide a reference to evaluate the errors of simpler analytical PES
approximations.
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CHAPTER 8 Summary and Outlook

Predicting BTI degradation in MOSFET devices requires simple analytical approxima-
tions for the involved defect PESs, which can be employed in device simulators. In this
work an efficient method was implemented to test the quality of different PES approx-
imation schemes. Within this approach the minimum energy path between differently
charged defect states is calculated with a constraint optimization algorithm coupled to
density functional theory. The minimum energy path (MEP) provides a reliable esti-
mate of the reaction barriers of charge transitions to/from the defect. With this MEP
approach, the accuracy of the widely used harmonic approximation and the recently
proposed direct path sampling were tested for three different defect types, namely the
hydrogen bridge, the hydroxyl-E, and the oxygen vacancy, in amorphous SiO2. It was
demonstrated, that in general the harmonic approximation is in very good agreement
with the MEP results, whereas the direct path sampling leads to significantly higher
barriers and transition time constants.

Within the used models, the applied electric field in the oxide layer is assumed to only
shift the energy levels of the defects relative to each other, resulting in bias dependent
capture and emission times as observed in experiments. However, it should be inves-
tigated in future works, if the defects also interact with the oxide field through dipol
moments, which would alter the shapes of the defect PESs and would consequently lead
to an additional change in transition times.

In this work, defects were studied for ordinary MOSFETs with a SiO2 oxide layer and a
Si channel. However, the implemented algorithms can also be used to predict the defect
behaviors for different gate dielectrics like SiON or HfO2. Hence the MEP method
presented in this work can help to enhance theoretical defect models in novel material
combinations for MOSFETs in future investigations.
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