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Abstract

This master’s thesis is dedicated to the development of an interatomic potential based
on machine learning (ML) for the dynamic simulation of the thermal oxidation of
silicon. This potential is based on the Gaussian Approximation Potential (GAP), a
successful ML algorithm specifically designed to develop interatomic potentials for
molecular dynamics (MD) simulations.

Silicon (Si) in combination with its native oxide SiO2 has been of central impor-
tance in semiconductor technology for decades. The progressive miniaturization of
the devices used in this field requires a precise understanding of the complex oxi-
dation process at the atomic level. Since other methods suffer from shortcomings
in accuracy (classical force fields) or computational feasibility (ab-initio MD) when
simulating the thermal oxidation of Si, ML interatomic potentials offer a promising
alternative to overcome these limitations.

The use of ML adds a highly efficient variant to conventional simulation methods.
The GAP model is trained with data from the highly complex and accurate density
functional theory (DFT). Therefore, the employment of a GAP trained on DFT data
in MD simulations promises enormous savings in the required computing power while
maintaining almost the same accuracy.

The main goal of this thesis is to develop a reliable GAP that allows MD simulations
of larger systems on longer time scales. The results allow the generation of realistic
Si/SiO2 interfaces and provide insights into the oxidation kinetics as well as the
atomic structure of this material system.



Kurzfassung

Die vorliegende Diplomarbeit widmet sich der Entwicklung eines interatomaren Po-
tentials auf Basis von Machine Learning (ML) zur dynamischen Simulation der ther-
mischen Oxidation von Silizium. Als Grundlage für dieses Potential dient das Gaus-
sian Approximation Potential (GAP), ein erfolgreicher ML Algorithmus, der speziell
zur Entwicklung von interatomaren Potentialen für Molekulardynamik-Simulationen
(MD) entworfen wurde.

Silizium (Si) in Verbindung mit seinem nativen Oxid SiO2 hat seit Jahrzehnten eine
zentrale Bedeutung in der Halbleitertechnologie. Die fortschreitende Miniaturisierung
der dort eingesetzten Bauelemente erfordert genaues Verständnis des komplexen Oxi-
dationsprozesses bis hin zur atomaren Ebene. Da andere Methoden zur Simulation
der thermischen Oxidation von Silizium entweder an Genauigkeitsmängeln (klassische
Kraftfelder) oder an der rechnerischen Durchführbarkeit (ab-initio MD) scheitern,
bieten interatomare maschinell gelernte Potenziale eine vielversprechende Alternati-
ve, um diese Einschränkungen zu überwinden.

Durch den Einsatz von ML werden die herkömmlichen Simulationsmethoden um eine
höchst effiziente Variante erweitert. Das GAP-Modell wird mit Daten aus der hoch-
komplexen und genauen Dichtefunktionaltheorie (DFT) trainiert. Daher verspricht
der Einsatz eines auf DFT-Daten trainierten GAPs in MD-Simulationen enorme Ein-
sparungen bei der erforderlichen Rechenleistung bei nahezu gleicher Genauigkeit.

Das Hauptziel dieser Arbeit besteht darin, ein zuverlässiges GAP zu entwickeln, wel-
ches MD Simulationen von größeren Systemen auf längeren Zeitskalen ermöglicht. Die
Ergebnisse dieser Arbeit erlauben das Generieren von realistischen Si/SiO2 Grenz-
flächen und geben Einblicke in die Oxidationskinetik sowie den atomaren Aufbau
dieses Materialsystems.
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Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und
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1 Introduction

SiO2, the native oxide of silicon, still plays a crucial role in the performance and
reliability of today’s semiconductor devices such as metal oxide semiconductor field
effect transistors (MOSFETs) [1]. Silicon, a cornerstone material in the electronics
industry, is subjected to complex oxidation processes to generate Si/SiO2 structures
as employed in a wide range of innovative applications including semiconductor spin
qubits [2], spintronics [3, 4], and single-electron devices [5]. The significant advantage
of silicon lies in its ability to produce high-quality semiconductor/insulator interfaces,
characterized by low defect densities [6] and the ease of forming oxide directly on the
substrate through thermal oxidation [7]. The understanding of chemical reactions at
the atomic scale is essential for advancing materials science, particularly in the field
of semiconductor technology.

Molecular Dynamics (MD) simulations have proven invaluable for studying these
reactions [8], providing insights into the intricate details of silicon oxidation [9]. Tra-
ditional MD simulations, while powerful, often face challenges in accurately capturing
the dynamics of large-scale systems due to an inadequate description of quantum-
mechanical effects. Therefore, machine learning (ML) techniques have emerged as
promising tools to augment traditional simulation methods [10].

Density Functional Theory (DFT) is a widely used quantum mechanical method
that provides a good balance between accuracy and computational feasibility for
many systems. While DFT offers a significant improvement in accuracy compared to
simpler methods, it can become computationally expensive, particularly for large or
complex systems, due to the detailed treatment of electron correlation effects [11, 12].

This master thesis focuses on the development and training of a machine learning
potential tailored specifically for molecular dynamics simulations of silicon oxidation.
The training of the ML potential was carried out within the Gaussian approximation
potential (GAP) method[13]. Unlike classical force fields, which are often parame-
terized based on empirical data or simplified models [8, 14], the machine learning
potential in this thesis was trained using high-fidelity density functional theory data.
This training method allows the ML potential to capture complex electronic inter-
actions and subtleties in the oxidation process [15], leading to much higher accuracy
in the simulations. As a result, the ML potential offers significantly improved preci-
sion in modeling the behavior of the system compared to traditional force fields, thus
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1 Introduction

providing a more accurate and reliable representation of the material’s properties [16].

The oxidation of silicon is a dynamic process [9, 17], making it a compelling but
intricate subject of study. Silicon dioxide layers with thicknesses on the order of
nanometers are usually created by thermal oxidation of silicon. The fundamental
mechanisms driving this process have been thoroughly investigated over many years,
utilizing both experimental and theoretical approaches [18–26]. Traditional model
approaches, such as the well-known Deal-Grove model [18], are effective in describing
oxidation processes when the oxide layer has reached substantial thicknesses greater
than 15 nm. However, they do not accurately capture the dynamics of the initial
oxidation phase [27, 28], which is crucial for applications involving very thin oxide
layers in the nanometer range.

The machine-learned interatomic potential presented in this thesis enables the ther-
mal oxidation process to be modeled inside dynamic simulations, beginning with
silicon surface structures that are completely oxygen-free. In addition to examining
flat silicon surfaces, the investigation are extended to encompass more complex sur-
face geometries, such as cylindrical silicon nanowires. These structures are subjected
to an O2 gas in the MD simulation, which reacts with the surface to form an amor-
phous SiO2 coating layer. The ML potential aims to capture the intricate energy
landscapes and reactive pathways associated with silicon oxidation. The main goal
of this thesis is to bridge the gap between accuracy and computational efficiency
by leveraging the capabilities of machine learning algorithms. The trained model is
expected to provide a reliable representation of the potential energy surface (PES)
and enable accelerated simulations without compromising accuracy. The overall goal
is to improve our understanding of silicon oxidation kinetics and thermodynamics.

The thesis is structured as follows: Chapter 2 describes the properties of Si and SiO2,
followed by the theoretical background to density functional theory (DFT) and an
introductory description of the CP2K software in Chapter 3. Chapter 4 is dedicated
to the theory of molecular dynamics, with reference to the MD software LAMMPS.
The theoretical part is concluded in Chapter 5 focusing on details about the gap
algorithm and its training. The practical part of this thesis starts with the creation
of the training structures, which will be described in Chapter 6. Chapter 7 explains
how the various GAPs were trained. The methods for validating the trained GAPs
are found in Chapter 8. Chapter 9 summarizes the results of the practical part and
shows, that the trained ML model is broadly applicable to gaseous oxygen, crystalline
Si, and amorphous SiO2. Compared to the the reactive force field (ReaxFF) the ML
potential produces much more realistic interface structures. Finally, an outlook for
future investigations is given in Chapter 10.
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2 Si and SiO2

Silicon (Si) and its natural oxide SiO2 are still essential for the development of cutting-
edge device technologies today and playing an exceptional role in the semiconductor
industry [29]. Usually, Si is thermally oxidized to create SiO2 layers, whereby to-
day’s layer thicknesses of dielectric amorphous SiO2 (a-SiO2) are in the order of a
few nanometers. For example, in modern semiconductors, the SiO2 gate of metal ox-
ide semiconductor field effect transistors (MOSFETs) is increasingly being replaced
by so-called high-κ dielectrics with high permittivity [30]. However, a thin layer of
SiO2 is still required to ensure good interface quality with the high-κ dielectric.

The entire mechanism of Si oxidation and the formation of an oxide layer is far from
completely understood. Cvitkovich et al. [9] have demonstrated that most Si oxi-
dation processes may be explained by a variety of theoretical models. The initial
oxidation process can be described by chemisorption, where O2 molecules dissociate
and are adsorbed on the Si surface. As a result, the oxide layer grows rapidly at the
beginning. The subsequent layer growth is then increasingly determined by the dif-
fusion of oxygen through the growing oxide layer. This stage of the oxidation process
can be described by the Deal and Grove model [18]. This severely limits the velocity
at which the oxide layer forms.

In the following, some basic properties of Si and SiO2 will be discussed. The proper-
ties of the oxide depend strongly on its growth kinetics. For modern MOSFETs, it
is essential, that these oxide layers are defect-free and avoid charge trapping at the
interface.

2.1 Properties of Si

The electron configuration of Si is 1s22s22p63s23p2 whereas the 3s and the three 3p
orbitals hybridize resulting in four equivalent sp3 orbitals, which are tetrahedrally
arranged. This is illustrated in Fig. 2.1, where panel (a) shows a silicon atom with
its four neighbor silicon atoms positioned in the tetrahedron corners. As a result of
the sp3 hybridization, crystalline Si forms a diamond structure, which consists of two
face-centered cubics (fcc), shifted against each other by 1/4 of the space diagonal of
the cubic crystal. In Fig. 2.1 (b), a silicon crystal in the (100) plane is shown. Here,
a denotes the length of the diamond unit cell. Consequently, the two neighboring Si

3



2 Si and SiO2

(a)

(b)

Figure 2.1: Crystalline Silicon. Panel (a) shows a silicon atom with its four tetra-
hedrally arranged neighbors due to the sp3 orbitals. Panel (b) shows
crystalline silicon in the diamond structure in the (100) plane.

atoms have a distance of a(
√
3/4) = 2.35 Å [31].

Any surface of a crystal causes a symmetry break, which can be quantified by a
surface energy γ. To minimize the surface energy, the crystal undergoes relaxations
and reconstructions (Wulff shapes [32]) and tries to reduce the unsaturated, dangling
bonds. Since different crystallographic directions usually have different surfaces,
the surface energy γ depends on the orientation of the surface. This affects how
strongly other atoms (e.g. oxygen) are getting adsorbed and bonded to the surface
atoms. When manufacturing silicon wafers for electronic devices, the wafers are
usually orientated in the {100}, {111}, and {110} planes [33].

2.2 Properties of SiO2

Oxygen reacts chemically with silicon when it comes into contact with its surface
resulting in an amorphous SiO2 layer. Silicon dioxide is an excellent insulator that is
stable both electrically and mechanically. There are nine known allotropic forms of
SiO2, whereas eight of them have a tetrahedral structure [34]. In this modification,
one Si atom and four O atoms are bound via the four sp3 orbitals of Si and the
2p orbital of O. Consequently one silicon atom is coordinated by four oxygen atoms
while two silicon atoms are connected by an oxygen atom. The tetrahedral form of
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2 Si and SiO2

(a)

(b)

Figure 2.2: SiO2 structure. Panel (a) shows two silicon atoms (yellow) that are
bonded by an oxygen atom (red). The four oxygen atoms of the left
Si atom are tetrahedrally arranged. Panel (b) shows a section of an
amorphous SiO2 layer grown on an silicon surface.

SiO2 is visualized in Fig. 2.1a by assuming one Si atom in the middle and four O
atoms at the end of each sp3 orbitals. The Si–O bond length ranges from 1.52 Å
to 1.69 Å. The tetrahedral O–Si–O bond angle is 109.18° whereas the Si–O–Si bond
angle varies from 120° to 180°[35]. Fig. 2.2a illustrates two silicon atoms, which are
connected via an oxygen atom. The full amorphous structure of an SiO2 layer is
given in Fig. 2.2b.

Defects within the oxide layer can significantly degrade the performance of electronic
devices, leading to increased leakage currents, reduced reliability, and compromised
overall efficiency [36, 37]. Unsaturated dangling bonds, which are a source of charge
trapping center in the oxide, determine the stability and reliability of semiconductor
applications like modern MOSFETs [38, 39]. During operation, these defects can trap
charges from the substrate or gate. A controlled SiO2 oxidation process is therefore
essential.

2.3 Oxidation of Si

Over the last decades, many different techniques to form a SiO2 layer have been
proposed [18, 40, 41]. The following two techniques will be described in more detail:
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2 Si and SiO2

• Thermal oxidation

• Tetraethyl orthosilicate (TEOS) Oxide Deposition

2.3.1 Thermal oxidation

During thermal oxidation, which usually takes place at a temperature of about
1000 °C [9, 42, 43], O2 gas is brought into contact with the silicon surface. Initially,
the O2 molecules dissociate near the clean and reconstructed Si surface and get ad-
sorbed based on chemisorption events [9]. The SiO2 layer is growing rather quickly at
this stage. After the first oxide layer has formed, the growth of the oxide layer slows
down [9]. This stage of the oxidation process is not yet fully understood. It turns
out that an extended Deal-Grove model with non-physical exponential terms [44] and
models that include oxidation reactions in the oxide layer agree with experimental
data [45] and provide a partial explanation.

After reaching an oxide thickness > 30 Å, the oxidation process is governed purely
by the oxygen diffusion through the SiO2 layer. The oxide growth in this stage is
accurately described by the Deal-Grove model. The oxidation reaction is assumed
to occur at the interface between Si and SiO2 after the O2 molecule diffuses through
the oxide layer. Because of the low diffusion coefficient of oxygen in SiO2, growing a
thick oxygen layer takes a long time.

2.3.2 TEOS oxide deposition

In contrast to thermal oxidation, where the silicon for the oxide layer originates only
from the substrate, silicon is also present in the gas in the TEOS gas phase deposition
processes.

TEOS is the acronym for tetraethyl orthosilicate SiO4C8H20. During this procedure,
liquid TEOS is evaporated in a vacuum chamber. In the next step, the ethyl groups
are separated from the TEOS molecule at a temperature of 700 − 750 °C and are
removed. The oxide layer is formed by the deposition of SiO2 on the Si substrate.
The chemical reaction of this process is given by [42]:

SiO4C8 H20 −−→ SiO2 + 2H2O+ byproducts

This low-pressure chemical vapor deposition (LPCVD) process creates an oxide layer
with high electrical stability, whereby the pressure and the process temperature de-
termine the final quality of the SiO2 layer. Compared to thermal oxidation, the
growth rate here is higher and can reach up to several nm per minute [46, 47].
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3 Density functional theory - DFT

Density functional theory (DFT) is a useful tool and enabled technique for ana-
lyzing and investigating the electronic structure and properties of molecules and
materials, especially of condensed matter. By solving approximated versions of the
Schrödinger equation, DFT provides a practical and efficient approach to studying
many-body problems at a fundamental level [48]. This chapter summarizes the the-
oretical foundations behind DFT and their application, focusing on the code utilized
in the software CP2K [49].

3.1 From one particle to many particles

To understand the behavior of a quantum particle, one has to solve the Schrödinger
equation [50] by determining the corresponding wavefunction ψ(r). ψ(r) denotes the
one-body wavefunction with the position vector r. The probability of finding the
particle at position r is given by |ψ(r)|2 [51].

With Ĥ as the Hamiltonian operator, the symbolic form of the time-independent,
one-body Schrödinger equation can expressed as following Eigenvalue problem [52]:

(Ekin + Epot)ψ = Ĥψ(r) = Eψ(r) (3.1)

where Ekin denotes the kinetic energy, Epot the potential energy of the system and E
the eigenenergy corresponding to the eigenfunction ψ(r). For an electron with mass
me in an potential field V (r) equation (3.1) becomes�

p

2me

+ V (r)

�
ψ(r) = Eψ(r) (3.2)

p is the quantum-mechanical momentum operator and is given by

p = −iℏ
�

∂

∂x
+

∂

∂y
+

∂

∂z

�
= −iℏ∇ (3.3)

Here, ℏ denotes the reduced Planck constant and ∇ represents the Nabla operator:

∇ =
∂

∂x
+

∂

∂y
+

∂

∂z
(3.4)
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3 Density functional theory - DFT

We now add another electron to the system. The energy of the Coulomb repulsion
of both particles with a distance dee is given by [53]:

Eee =
e2

4πϵ0dee
(3.5)

Here, e is the electron charge, and ϵ0 denotes the permittivity of the vacuum. This
repulsive interaction changes the potential term V (r) from the equation (3.2) and
therefore the eigenvalues may differ compared to the one-electron Schrödinger equa-
tion.

If we additionally include nuclei in our analysis, we also need to take the repulsion
energy between two nuclei, Enn, and the attraction energy between an electron and
a nuclei, Een, into account:

Enn =
Z2e2

4πϵ0dnn
(3.6)

Een = − Ze2

4πϵ0den
(3.7)

Z stands for the atomic number of the nuclei, dnn for the distance between the two
nuclei, and den for the distance between the electron and the nuclei. Note the minus
sign in equation (3.7), which indicates an attractive force between the electron and
the nuclei. Enn and Een also may change V (r).

A realistic and practical theory of materials requires a correct description of systems
including numerous nuclei and electrons. We now consideringN electrons at positions
rN with N ∈ 1..N and M nuclei at positions RM with M ∈ 1..M . We introduce the
many-body wavefunction Ψ which is a function of all the coordinates of the electrons
and the nuclei [52]:

Ψ = Ψ(r1..rN;R1..RM) (3.8)

The probability of concurrently finding the first electron at position r1, the first nu-
clei at position R1 and so on, is given by |Ψ(r,R)|2.

Similar to eq. (3.1), the time-independent, many-body Schrödinger equation can now
be written as:

(Ekin + Epot)Ψ = ĤΨ = EΨ (3.9)

The kinetic energy of the many-body system, Te+n(r,R), consists of a term for the
kinetic energies of the N electrons, Te(r), and a term for the kinetic energies of the
M nuclei, Tn(R) [52]:

Te+n(r,R) = Te(r) + Tn(R) = −
N�
i=1

ℏ2

2me

∆i −
M�
I=1

ℏ2

2M I

∆I (3.10)

8
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Here, me denotes the electron masses and MI denotes the nuclei’s masses. ∆ denotes
the Laplace operator and is given by:

∆i;I =
∂2

∂x2
i;I

+
∂2

∂y2i;I
+

∂2

∂z2i;I
(3.11)

The potential energy terms of equations (3.5) - (3.7) can be extended to multiple
electrons and nuclei. Therefore the Coulomb repulsion between electron pairs reads
as:

Vee(r) =
1

2

�
i ̸=j

e2

4πϵ0

1

|ri − rj| (3.12)

The indices i and j range from 1 to N and the factor 1/2 is required to count each
pair only once. Note that an electron can not repel itself, so i ̸= j is required. Similar
to the equation (3.12) the Coulomb repulsion between pairs of nuclei leads to

Vnn(R) =
1

2

�
I ̸=J

e2

4πϵ0

ZIZJ

|RI −RJ | (3.13)

Here, the indices I and J range from 1 toM and ZI and ZJ denote the atomic number
of nuclei I and nuclei J , respectively. With the same argumentation as before, the
1/2 and also I ̸= J are required here. For the Coulomb attraction between electrons
and nuclei, we obtain the following equation:

Ven(r,R) = −
�
i,I

e2

4πϵ0

ZI

|ri −RI | (3.14)

The indices i range from 1 to N , the indices J range from 1 to M , and ZI denotes the
atomic number of nuclei I. The minus indicates again an attractive force between
the electrons and the nuclei.

With the equations (3.10) - (3.14) the time-independent, many-body Schrödinger
equation is given by

[Te(r) + Tn(R) + Vee(r) + Vnn(R) + Ven(r,R)] Ψ = ĤΨ = EΨ (3.15)

3.2 Born-Oppenheimer approximation

The problem is now to find an eigenfunction Ψ that solves Equation (3.15). Finding
such a wavefunction Ψ is analytical only possible for the H atom and the He+ ion.
With increasing electrons and nuclei, the number of different configurations expo-
nentially increases with the number of electrons and nuclei (hitting the

”
exponential

wall“ [54]) and an analytical solution is no longer feasible.

9
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Born-Oppenheimer presented a highly efficient approximation (also called adiabatic
approximation) in the 1920s [55], where the many-body Schrödinger equation (3.15)
is divided into two parts. Due to the much higher mass of the nuclei compared to
that of the electrons, the nuclei move much more slowly than the fast-moving elec-
trons, allowing the nuclei to be treated as nearly constant while solving the electronic
Schrödinger equation. Vice versa, the electrons can be treated as a constant elec-
tronic charge distribution while solving the Schrödinger equation for the nuclei [56].
This assumption leads to a many-body wavefunction Ψ that can be expressed as a
product of a wavefunction for the electrons, ϕ, and a wavefunction for the nuclei, η:
Ψ = ϕ · η

The time-independent, many-body Schrödinger equation for the electrons is then
given by the following eigenvalue equation:

Ĥeϕh(r,R) = [Te(r) + Vee(r) + Ven(r)]ϕh(r,R) = Eh(R)ϕh(r,R) (3.16)

where Ĥe is the Hamiltonian operator for the electrons and ϕh(r,R) are the eigen-
states to the eigenvalues Eh(R), whereas the positions of the electrons are collected
by r. Note that the positions of the nuclei, R, are fixed and only appear here as a
parameter [57].

The second part of the time-independent, many-body Schrödinger equation, which
describes the motion of the nuclei in the field of electronic charge distribution, is
given by:

Ĥnηhk(R) = [Tn(R) + Vnn(R) + Eh(R)] ηhk(R) = Ehk(R)ηhk(R) (3.17)

Ĥn denotes the Hamiltonian operator for the nuclei and ηhk(R) gives the eigenstates
to the eigenvalues Ehk(R). Note that Ĥn includes the eigenvalues Eh(R) of equa-
tion (3.16).

3.3 The Hohenberg-Kohn Theorems

DFT as a whole is based on two theorems established by Kohn and Hohenberg
1964 [58]. The Hohenberg-Kohn Theorems and the Kohn-Scham Equations, which
will be discussed in the next section, transform the many-body problem of interacting
electrons into a problem of non-interacting single electrons.

The Hamiltonian Ĥ of a many-electron system with energy E = ⟨Ψ|Ĥ|Ψ⟩ is inde-
pendent of the specific material being studied, therefore each modification in E is
linked to modifications of Ψ [52]. This observation can be expressed in the form that
the energy E is a functional of Ψ (represented by the square brackets):

E = F [Ψ] (3.18)

10
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1. Hohenberg-Kohn Theorem

The first Hohenberg-Kohn theorem states that the ground-state energy E from
Schrödinger’s equation is a special functional of the electron density ρ(r) [11, 58]:

E = F [ρ(r)] = E[ρ] (3.19)

This theorem implies that the total energy E is a functional of the electron density
ρ(r) and is all that is required to calculate the total energy in the ground state and
ρ(r) alone determines all the features of the electronic ground state. As a conse-
quence, the many-electron Schrödinger equation is now a function of just 3 spatial
variables instead of 3N spatial variables (N denotes the number of electrons).

2. Hohenberg-Kohn Theorem

The second Hohenberg-Kohn theorem states that that the energy functional E[ρ]
of the electron density ρ(r) reaches its minimum value at the correct ground-state
density ρ0(r) for a many-body system. This theorem implies that the true ground-
state electron density is the one that minimizes the energy functional:

E[ρ] ≥ E[ρ0] (3.20)

where E[ρ] represents the energy as a functional of the electron density, and E[ρ0]
is the actual ground-state energy. This principle allows the determination of the
ground-state energy of a system by varying the electron density, without the need to
know the full many-body wavefunction.

The total energy E can be expressed as a sum of two energy terms [51]:

E[ρ] = Eknown[ρ] + EXC[ρ] (3.21)

The first term, Eknown[ρ], collects all known energy components whereas the second
term, EXC[ρ], includes all quantum mechanical phenomena that are not covered by
Eknown[ρ]. XC is the acronym for exchange correlation. The determination of EXC

is the main issue in DFT as will be discussed in more detail in section 3.4.

3.3.1 The Kohn-Scham Equations

Kohn and Scham proved in 1965, that a set of equations, known as Kohn-Sham
equations, can determine the minimal energy of a system [12], where each equation
involves only one electron. The Kohn-Sham equations transform the many-body
problem of interacting electrons into a system of non-interacting electrons moving
in an effective potential. This effective potential includes contributions from the
exchange-correlation effects, which account for the complex many-body interactions.

11
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Each electron is represented by a single-electron wavefunctions ψi(r), therefore each
Kohn-Scham equation depends on only three spatial variables. The single-electron
wavefunctions, which describe non-interacting Kohn-Scham orbitals, must be orthog-
onal and resemble the same electron density ρ(r) as the original system [12, 52]:

ρ(r) = 2
�
i

ψ∗
i (r)ψi(r) (3.22)

ψ∗
i is the conjugate complex wavefunction of ψi and the factor 2 is due the Pauli

exclusion principle.

The Kohn-Scham equations have the following form:

[Te(r) + Ven(r) + VH(r) + VXC(r)]ψi(r) = ϵiψi(r) (3.23)

Here, Te denotes the kinetic energy of the N non-interacting single electrons, see
equation (3.10). Ven denotes the Coulomb attraction between electrons and nuclei,
see equation (3.14). VH denotes the so-called Hartree potential and describes the
Coulomb repulsion between the one electron considered in one of the Kohn-Scham
orbitals and the total electron density defined by the rest of the electrons of the
system. VXC denotes the exchange-correlation potential. Ven(r), VH(r) and VXC(r)),
can be interpreted as an external potential Veff (r) for the electrons:

Veff (r) = Ven(r) + VH(r) + VXC(r) (3.24)

whereas VXC(r) can be expressed as the functional derivative of EXC [ρ]:

VXC(r) =
δEXC [ρ]

δρ
(3.25)

The Hartree potential is given by:

VH(r) = e2
�

ρ(r′)
|r− r′|d

3r′ (3.26)

with e as the electron charge.

After specifying the exchange-correlation functional EXC [ρ], the total energy E and
the electron density ρ(r) of a system in the ground state can be determined self
consistently by using the following procedure [11]:

(1) Define a initial electron density ρ(r) to start with.

(2) Calculate the single-electron wavefunctions ψi(r) by solving the Kohn-Scham
equations with the initial defined electron density ρ(r) from step (1).

12



3 Density functional theory - DFT

(3) With the single-electron wavefunctions from step (2) calculate a new electron
density ρ(r) by using equation (3.22).

(4) Proceed with step (2) and step (3) as long as the difference between the electron
density from step (2) and the electron density from step (3) is greater than a
defined tolerance.

3.4 Exchange–correlation functional

The exchange-correlation functional EXC [ρ] describes the interaction and correlation
of the electrons in a many-body system. There exist several approximations for
EXC [ρ], which differ in terms of accuracy and computational cost (”Jacob’s Ladder
of Density Functional Theory” [59]). In this section, we will discuss some of the most
common functionals used in practical DFT calculations.

3.4.1 Local density approximation LDA

In the local density approximation (LDA) the exchange-correlation functional EXC [ρ]
depends only on the local electronic density ρ(r) and was first introduced by Kohn
and Scham themselves [12]. LDA works exactly for a homogenous electron gas (HEG)
distribution and gives quite accurate results for some classes of solids [60], although it
generally tends to overestimate binding energies. The exchange-correlation functional
in LDA is given by:

ELDA
XC [ρ] =

�
ρ(r)ϵXC(ρ)d

3r (3.27)

ϵXC denotes the exchange-correlation energy per particle. While the computational
expenses of LDA are comparatively modest, LDA is not appropriate for determin-
ing the band structure of semiconductors or insulators (as SiO2) due to improper
calculations [58].

3.4.2 Generalized gradient approximation GGA

The generalized gradient approximation (GGA) is obtained by including a depen-
dency on the spatial variation of the electron density in the form of the electron
density gradient ∇ρ:

EGGA
XC [ρ] =

�
ρ(r)ϵXC(ρ,∇ρ)d3r (3.28)

There exists a variety of different types of GGA, which can be categorized into one
of the following two groups: empirical and non-empirical. While the empirical GGAs
may include fitted parameters that have been changed by comparison with the ex-
perimental data, the non-empirical GGAs are derived straight from basic principles
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and are not adapted to experimental data.

In this thesis and for the study on SiO2, the non-empirical, semilocal GGA func-
tional PBE was used. PBE is the acronym for Perdew, Burke, and Ernzerhof [61]
and is widely used for solid-state calculations. The non-empirical parameters in PBE
are designed to meet several known requirements for the precise functional and per-
form equally well for finite and infinite systems. Similar to LDA, GGA tends to
underestimate the electronic bandgap [62].

3.4.3 Meta-GGA

The meta-GGA functionals contain in addition to the electron density ρ(r) and the
gradient of the electron density, ∇ρ(r), also information on the Laplacian of the
electron density ∆ρ(r) = ∇2ρ(r). Because the kinetic energy density of the Kohn-
Sham orbitals, τ(r), carries the same physical information as the Laplacian of the
electron density. Furthermore, due to a more precise information about the elec-
tronic structure, τ(r) rather than ∇2ρ(r) is used in meta-GGA functionals [11]. The
exchange-correlation functional can be read as:

Emeta−GGA
XC =

�
ρ(r)ϵXC(ρ,∇ρ, τ)d3r (3.29)

with the kinetic energy density of the Kohn-Sham orbitals τ(r):

τ(r) =
1

2

�
i

|∇ρ(r)|2 (3.30)

whereas the sum runs over all occupied states i.

3.4.4 Hybrid-GGA

In addition to the GGA functional, the Hybrid-GGA contains also contributions of
the exact exchange energy. The fundamental concept of hybrid-GGA is to use for one
part of the exchange interaction LDA, GGA, or meta-GGA, and for the remaining
part the Hartree-Fock method.

Becke suggested 1993 a hybrid exchange-correlation functional, where the correlation
energy is treated entirely semilocal. Within this approach, the exchange energy is a
linear combination of a semilocal exchange functional and the Hartree-Fock exchange
functional [63]:

Ehybrid
XC = αXE

HF
X + (1− αX)E

(meta)−GGA
X + E

(meta)−GGA
C (3.31)
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with EHF
X as the Hartree-Fock exchange functional and αX as a parameter with

0 ≤ αX ≤ 1. Two famous examples of hybrid-GGA functionals are the semiempirical
B3LYP (acronym for Becke, three-parameter, Lee-Yang-Parr) functional [63, 64] and
the PBE0 functional [65]. For instance, the PBE0 is given by:

EPBE0
XC =

1

4
EHF

X +
3

4
EPBE

X + EPBE
C (3.32)

whereas 1/4 is the default value for αX .

For the electrical structure (band gap) of insulators, semiconductors, and thermo-
chemistry (atomization energy of molecules), hybrid functionals are more accurate
than LDA, GGA, and meta-GGA. They have been shown to correctly (within 10% of
the experimental value) predict the electronic structure of a variety of semiconductors
and insulators [66]. However, compared to semilocal approaches, the calculations are
significantly more costly. Furthermore, hybrid functionals give far too high magnetic
moments for itinerant ferromagnets and are inaccurate for metals.

For strongly correlated systems there exist some even more advanced exchange-
correlation functionals like the random phase approximation (RPA) [67] and the
Hubbard-Corrected DFT energy functional DFT+U [68] which will not be discussed
here further.

3.5 Basis sets

To solve the Kohn-Scham equations (3.23), basis sets are used to approximate the
electron wavefunctions ψi of a system. Basis sets consist of a series of functions,
φj, that represent the electron orbitals and transform the model’s partial differential
equations into algebraic equations that can be effectively solved by a computer. For
efficient calculations, it is essential that the basis set is compact and at the same
time accurate enough. With the basis functions φj of a chosen basis set, the electron
wavefunctions ψi can be expressed as a linear combination in the form:

ψi =
�
j

cijφj (3.33)

Here, cij denotes the coefficient of a basis function φj.

3.5.1 Double-ζ Gaussian basis set

All calculations in this work are carried out using a double-ζ Gaussian basis set. This
basis set is an advancement of Slater-type atomic orbitals (STO) [69], with the radial
term of STOs given by:

RSTO
n (r) = Nnr

n−1e−ζr (3.34)
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Here, n ∈ N stands for the principal quantum number and N is a normalizing con-
stant. The distance between the electron and the atomic nucleus is represented by
r, whereas the constant ζ is associated with the nucleus’s effective charge.

By using two Slater-type orbitals with different ζ values for a single orbital, the
atomic orbital can be described more accurately due to the increased flexibility. This
leads to the double-ζ basis set:

RSTO
nl (r) = C1re

−ζ1r + C2re
−ζ2r (3.35)

Charge is accounted for near the nucleus by the function with a big ζ, and at in-
creasing distances from the nucleus by the function with a smaller ζ.

However, STOs are computationally inefficient. Frank Boys subsequently discovered
that these STOs may also be roughly represented as linear combinations of Gaussian-
type orbitals (GTO) [70] by replacing each STO with several Gaussian functions with
different values for the exponential parameter:

RGTO
n (r) =

�
i

cnie
−αnir

2

(3.36)

Here, cni and αni are fitting parameter. This results in a significant reduction of com-
putational costs since Gaussian basis functions make it simpler to compute overlap
and other integrals. The Gaussian basis functions are given then by [71]

φGTO
n,l,m(r, θ, ϕ) = rn−1Rn(r)Ylm(θ, ϕ) (3.37)

where Ylm(θ, ϕ) are the normalized spherical harmonics, θ is the azimuth angle and ϕ
is the polar angle. Each atomic orbital can then be described using the double zeta
basis function:

φi = a1φ
GTO
nl (r, ζ1) + a2φ

GTO
nl (r, ζ2) (3.38)

with a1, a2, ζ1 and ζ2 as fitting parameter.

3.6 CP2K software package

CP2K is an open-source software package for quantum chemistry and solid state
physics [49]. For DFT calculations, CP2K is supported by QUICKSTEP [72], a
freely available computer code, which allows accurate and efficient DFT computa-
tions.

All DFT data for the training and testing of machine learning force fields (MLFF)
in this thesis were performed with CP2K by using single-point (energy) calculations,
geometry optimizations, and ab-initio molecular dynamics (AIMD). In the following,
some basic concepts of CP2K and the setting of the DFT calculation will be described.
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3.6.1 Gaussian and plane wave (GPW) method

CP2K uses the Gaussian and plane waves (GPW) method, which is implemented in
QUICKSTEP, to solve the Kohn-Sham equations efficiently. The GPW method uses
two representations of the electron density, ρ(r) and ρ̃(r), and combines an atom-
centered Gaussian-type basis and an additional plane wave basis [73].

The first representation of the electron density, ρ(r), is used to represent the wave-
functions and is given by an expansion in atom-centered, contracted Gaussian func-
tions [72] :

ρ(r) =
�
µ,ν

Pµνφµ(r)φν(r) (3.39)

Here, Pµν denotes an element of the density matrix P and φµ(r) denotes the con-
tracted Gaussian functions given by:

φµ(r) =
�
i

diµgi(r) (3.40)

with the corresponding contraction coefficients diµ and the primitive Gaussian func-
tions g(r) [49]:

g(r) = rlexp
�−α(r− r0)

2


Ylm(r− r0) (3.41)

The primitive Gaussian functions g(r) are centered at atomic positions r0. These
functions are determined by the exponent α, the coordinates of its center r0, and the
spherical harmonics Ylm with angular momentum (l,m).

The second representation of the electronic density, ρ̃(r), is used to represent the
actual electronic density and is approximated by an auxiliary plane waves basis set:

ρ̃(r) =
1

Ω

�
G

ρ̃(G)exp(iG · r) (3.42)

Ω denotes the volume of the unit cell and G denotes the reciprocal lattice vectors of
the unit cell. ρ̃(G) denotes the expansion coefficients, with which ρ̃(r) matches ρ(r)
for a regular grid in the unit cell [72].

Within the GPW approach, the Kohn-Scham energy functional E[ρ] is given by

E[ρ] = Te[ρ] + Ven[ρ] + EH [ρ] + EXC [ρ] + EII [ρ] (3.43)

Te[ρ] is the electronic kinetic energy and Ven[ρ] describes the electronic interaction
with the ionic cores. EH [ρ] is the electronic Hartree energy and describes the total
electrostatic (Coulomb) energy, which is usually expressed via a pseudopotential (see
section 3.6.2). EXC [ρ] is the exchange-correlation energy and EII [ρ] the interaction
energies of the ionic cores.
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3.6.2 Pseudopotentials

Many chemical processes, such as the formation and breaking of bonds, only require
a precise representation of the valence electrons. Therefore the core electrons can be
approximated by a pseudopotential V PP since the expansion of an all-electron den-
sity is computationally very expensive. In the GPW approach, the well-established
Goedecker-Teter-Hutter (GTH) pseudopotentials are used to represent these closed-
shell electrons [74, 75].

GTH seudopotential

The GTH pseudopotentials are given by an analytical form and can be separated
into two parts: First, in a local part V PP

loc (r), which consists of a short-ranged (SR)
term V SR

loc (r) and a long-ranged (LR) term V LR
loc (r). Additionally, in a non-local part

V PP
nl (r, r′). The GTH pseudopotential V PP is then given by:

V PP = V PP
loc (r) + V PP

nl (r, r′) = V SR
loc (r) + V LR

loc (r) + V PP
nl (r, r′) (3.44)

The local part V PP
loc (r) is defined as [76]:

V PP
loc (r) =

−Zion

r
erf

�
r√
2rloc

�
+ exp

�
−1

2

�
r

rloc

�2
	

×
�
C1 + C2

�
r

rloc

�2

+ C3

�
r

rloc

�4

+ C4

�
r

rloc

�6
	 (3.45)

Zion denotes an ionic charge (e.g. the difference between the charge of the core elec-
trons and the charge of the nucleus), erf denotes the error function, and rloc denotes
a characteristic distance at which the pseudopotential acts. For distances r > rloc
the pseudopotential begins to behave like the corresponding Coulomb potential. In
QUICKSTEP, the short-range terms are computed as two- and three-center overlap
integrals, while the long-range term is handled as part of the electrostatic energy [72].

It is necessary to optimize the GTH pseudopotential for the exchange-correlation
functional that is being used. For QUICKSTEP, improved GTH pseudopotential
parameters based on LDA are available [49]. Furthermore, the parameters for the
common elements have been optimized also for the GGA exchange-correlation poten-
tials of Becke and Perdew (BP) [77, 78], Perdew, Burke and Ernzerhof (PBE) [61],
Becke, Lee, Yang, and Parr (BLYP) [77, 79, 80], and Hamprecht, Cohen, Tozer and
Handy (HCTH/120, HCTH/407) [81].

3.6.3 Cutoff energy

To describe the behavior of the inner electrons, a huge number of basis functions
would be needed because their wavefunctions fluctuate quickly in space. To keep
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the computing costs within reasonable limits, the kinetic energy (given in Ry) of the
plane wave with the highest plane-wave vector G has to be limited by a cutoff energy
Ecutoff [72]:

1

2
|G|2 ≤ Ecutoff (3.46)

Ecutoff therefore restricts the resolvable spatial frequency. When using Gaussian basis
sets, the required cutoff is directly tied to the largest exponent. The Gaussian basis
sets of different elements show that the value of the largest exponent rapidly increases
with the atomic number. To address this challenge, the core electrons have to be
approximated by a pseudopotential as described in the previous chapter.

3.6.4 Simulation settings

While CP2K provides a general framework for a variety of methods, this thesis focuses
on single-point calculations, cell and geometry optimizations, and ab-initio molecular
dynamics (AIMD). CP2K uses atomic units, so the energy is given in units of Hartree
with 1Hartree = 27.211 eV, and the forces in units of Hartree/a0 with a0 = 0.52918 Å
as the Bohr radius. The analytical stress components are given in units of GPa. Each
CP2K calculation requires one main input file to provide CP2K with the necessary
system information and parameters. This file consists of keywords in ordered blocks.
CP2K also requires two additional files. One file which contains the parameters for
the selected basis set. And a second file containing the parameters for the selected
GTH pseudopotential.

Following is a brief description of some important sections of the main input file:

• The section GLOBAL contains among other settings also the type of run, e.g.
ENERGY FORCE for single-point calculations, GEO OPT or CELL OPT for
optimizations, and MD for ab-initio molecular dynamics.

• In the section FORCE EVAL the method for evaluating the forces can be set.
With the setting of the method to QUICKSTEP, CP2K uses the Gaussian and
Planewaves method (section 3.6.1) for DFT calculations.

• Within the subsection SUBSYS the simulation unit cell and the initial coordi-
nates of the atoms can be set.

• In the subsection KIND the basis set (e.g. double-ζ Gaussian basis, sec-
tion 3.5.1) and the pseudopotential (e.g. GTH pseudopotential, section 3.6.2)
for each element can be defined.

• The simulation unit cell used in the calculation is defined in the subsection
CELL.
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• In the subsection TOPOLOGY the initial atomic coordinates can be specified.
The coordinates can also provided via an additional input file in the XYZ
format.

• The subsection DFT contains all information for the self-consistent Kohn-Sham
DFT calculation (section 3.3.1).

• The parameters for QUICKSTEP can be set in the subsection QS.

• QUICKSTEP uses a multi-grid representation of the Gaussian functions. The
parameters of these multi-grids can be specified in the subsection MGRID. Next
to the number of levels also the cutoff energy (section 3.6.3) of the Gaussian
basis set can be set in this subsection.

• The exchange-correlation density functional (section 3.4) can be defined in the
XC subsection.

• In the subsection SCF (self-consistent field) all parameters for the self-consistent
solution of the Kohn-Sham equations (section 3.3.1) can be specified. The
initial trial electron density function ρ(r) can be set via SCF GUESS and
the maximum number of self-consistency loops for QUICKSTEP is set with
MAX SCF. Convergence criteria for the SCF calculations, such as energy and
density matrix convergence thresholds, are specified to ensure the iterative so-
lution achieves the desired accuracy before terminating the calculation.

• There are two options for CP2K finding the ground state Kohn-Sham energy
and the electron density: The first option uses the traditional diagonalization
method, where the parameter can be set in the subsection DIAGONALIZA-
TION. The alternative to this method is the Orbital Transform (OT) method,
which can be specified in the subsection OT.

• The subsection PRINT tells CP2K the properties that should written out in
the output files.

All DFT calculations carried out for this thesis had the following CP2K setting: For
all atoms, a double-ζ Gaussian basis set was used as the primary basis for the GPW
method and the core electrons were represented by using the GTH pseudopotential.
For the description of the exchange-correlation energy, the semilocal functional PBE
as decribed in section 3.4.2 was employed. For the plane wave expansion of the
electron density, an energy cutoff Ecutoff of 650Ry was used.

Single-point calculations

Single-point calculations are static self-consistent Kohn-Sham calculations and are
used to compute the total energy, the forces on each atom, and the analytical stress
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components of the provided system. Single point energies are the lowest energy solu-
tion for the Schrödinger equation and the single-point calculations gives the energy
of the ground state of the system [61].

Cell and geometry optimizations

There are two optimization schemes used in this thesis: Cell optimization and ge-
ometry optimization. In geometry optimization, the positions of the atoms in the
system are changed iteratively in order to minimize the total energy. This is done by
adjusting the atomic coordinates in order to find local or global minima of the energy.
The optimization is continued until the change in total energy and the changes in
atomic positions between iterations are smaller than specified threshold values. Cell
optimization is the process of optimizing the lattice parameters (i.e. the dimensions
and angles) of a crystal or periodic system to minimize the total energy of the system.

In CP2K, for both optimization schemes, the movement of the atoms is based on the
computed forces of the previous step. The accuracy of the computed forces is deter-
mined by the convergence criteria of the self-consistent field (SCF) and a well-chosen
cutoff energy.

The optimization calculations in CP2K were also used to calculate the total energy,
the forces on each atom, and the analytical stress components to use as training data
of the ML potential.

Ab-initio molecular dynamics (AIMD)

CP2K can also perform molecular dynamics calculations with DFT accuracy, called
ab-initio molecular dynamics. Compared to classical molecular dynamics (MD),
which is described in chapter 4, AIMDs have a much higher computational cost. In
contrast to classical MD, which uses force fields (FF) to calculate the forces on each
atom, AIMD computes the forces directly from electronic structure computations
and uses them to generate the trajectory of the system. The forces on each atom and
the total energy of the system were recorded in the output file to be used as input
data for training the ML potential.

21



4 Molecular dynamics

Molecular Dynamics (MD) is a powerful computational technique used to determine
and simulate the dynamic behavior of molecular systems in time. MD simulations
offer important insights into the structure, thermodynamics, and kinetics of a wide
range of systems in physics [82] and nanotechnology [83], by numerically solving the
classical equations of motion for a set of interacting particles.
At its core, MD relies on the principles of statistical mechanics and Newtonian
physics. It allows researchers to explore the time evolution of a molecular ensemble
under the influence of intermolecular forces, providing a microscopic understanding
of phenomena that are often challenging to investigate experimentally [84].

In the upcoming sections, the basics of MD will be explained and also the MD
software Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS),
with which all MD simulations in this thesis were carried out, will be described in
more detail.

4.1 Concepts of MD

In contrast to quantum mechanics, molecular dynamics description uses particles to
represent individual atoms or groups of atoms [85]. The two fundamental components
that govern molecular dynamics simulations are (i) the equations of motion and (ii)
the interatomic potential (i.e., potential energy) of the particles, from which then the
forces can be calculated [86].

4.1.1 Equations of motion

Starting with classical mechanics, the force on an atom i in a system with N inter-
acting atoms is given by

Fi = miai = mi
dvi

dt
= mi

d2ri
dt2

(4.1)

Here, ai denotes the acceleration of the atom i, vi it’s velocity, ri it’s position and mi

it’s mass. The force on the atom i can also be expressed as the negative gradient of a
potential V, which is also the negative derivative of the potential energy E regarding
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the change in the atom’s position ri:

Fi = −∇iV = −dE

dri
(4.2)

The potential energy E of a system with N atoms with positions ri, is defined as

E = E(r1, r2, ..., rN−1, rN) (4.3)

In this context, the right-hand side of equation (4.3) is also referred to as the sys-
tem’s potential energy surface (PES), a scalar field with a dimension of 3N . The
PES describes the distribution of the potential energy E over the space of possible
conformations of the system and indicates how the potential energy changes when the
particles change their positions. If the exact shape of the PES is known, the move-
ment of the particles along the PES can be predicted by calculating the forces on
each particle with equation (4.2). However, approximations are necessary since it is
impossible to determine the precise form of the PES in complex systems. To approx-
imate the PES one can make use of classical potentials, such as the Lennard-Jones
potential or ReaxFF, which will be discussed in the following section.

4.1.2 Classical Potentials and Force Fields

An effective way to approximate the Born-Oppenheimer PES computationally is
through the use of classical potentials or force fields (FF). The basis of classical
potentials and FFs is a set of empirical energy functions, in which the parameters of
these functions are based on experimental data. This enables the computation of the
potential energy V of a system of particles as a function of the molecular coordinates.
Two important representatives are the Lennard-Jones Potential and ReaxFF.

Lennard-Jones potential

The Lennard-Jones (LJ) potential is a widely used classical potential in MD simu-
lations to model the van der Waals interactions between atoms or molecules. It is
named after the physicist John Lennard-Jones, who first proposed it to describe the
attraction and repulsion between neutral atoms [87]. The LJ potential between an
atom i and an atom j has the following form:

VLJ(rij) = 4ϵ

��
σ

rij

�12

−
�

σ

rij

�6
	

(4.4)

The distance between atom i and atom j is rij, ϵ is the potential energy well depth,
and σ the distance at which VLJ = 0.

The form of the LJ potential, which is graphically shown in Fig. 4.1, consists of 2
terms:

23



4 Molecular dynamics

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
−1.5

−1

−0.5

0

0.5

1

1.5

r/σ

V
L
J
/ϵ

Lennard-Jones potential

Figure 4.1: The Lennard-Jones potential VLJ plotted against the particel distance
r/σ. Repulsive forces act in the area of negative gradient, and attractive
forces in the area of positive gradient.

1. The lefthanded term with the exponent 12 represents the Pauli repulsion be-
tween the electron shells of the atoms, which becomes dominant at very small
distances. It causes a rapid increase in potential energy at small distances.

2. The righthanded term with the exponent 6 describes the Van der Waals at-
traction (dipole-dipole interactions due to fluctuating dipoles) which becomes
dominant at larger distances.

Despite being a simplified model, the LJ potential captures the key elements of
interactions between basic atoms and molecules: When two particles interact, they
repel one another when they are extremely near, attract one another when they are
somewhat apart, and do not interact when they are infinitely apart. The LJ potential
only considers interactions between 2 particles, it does not account for interactions
between three or more bodies.

ReaxFF

ReaxFF [88], which is the acronym for reactive force field, is a bond order-based
interatomic potential that uses bond orders rather than fixed bond lists to enable
continuous bond formation and/or breaking. ReaxFF links bond distance and bond
order on the one hand, and bond order and bond energy on the other.
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To describe the behavior of each atom within a system, one can determine the forces
acting on each atom by deriving them from the following energy expression [89]:

ESystem = Ebond + Eover + Eunder + Elp + Eval + Etor + EvdWaals + ECoulomb (4.5)

The individual energy terms denote bond energy, over-coordination penalty energy,
under-coordination stability energy, lone-pair energy, valence angle energy, torsion
energy, van der Waals energy, and Coulombic energy. A schematic illustration of how
each computational iteration is carried out throughout a MD simulation employing
ReaxFF is shown in Fig 4.2.

Figure 4.2: Schematic illustration of the ReaxFF simulation steps. The non-bonded
interactions are on the left-hand side, the covalent and bonded interac-
tions are on the right-hand side.

After recording each atom’s position, the initial step is finding the bond order BOij

between each pair of atoms to determine Ebond. A correction term Eover must be
included in this bond to ensure accurate modeling. Eangle and Etors are terms that
result from the breaking of an atom bond; the bond order decreases and the angle
and torsion forces acting on the atom decrease relative to the remaining atoms.

The non-bonded interactions consist of the terms ECoulomb and EvdWaals. ReaxFF is
capable of determining how charges inside atom configurations are polarized by using
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the electronegativity and hardness parameters of each element. The polarization can
be calculated as followed [89]:

∂E

∂qn
= χn + 2qnηn + C

n�
j=1

qj
{r3n,j + (1/γ3

n,j}1/3
,

n�
i=1

qi = 0 (4.6)

Here, qn denotes the charge of an element n and qj the charge of an element j, χn

denotes the electronegativity, and ηn the hardness of element n, constant C denotes
a conversion factor, rn,j denotes the interatomic distance and γn,j is the shielding
parameter between atom n and j. During MD simulation, the charge values are
computed for each time step.

Both the Coulomb interactions ECoulomb and van der Waals interactions EvdWaals are
shielded in ReaxFF by using a shielding term γ to prevent too repulsive or attractive
non-bonded interactions at short distances. ECoulomb is given by :

ECoulomb = C

�
qiqj

{r3ij + (1/γ3
ij}1/3

�
(4.7)

with γij as shielding parameter between atom i and atom j and rij as interatomic
distance. C denotes a possible conversion factor and qi and qj denotes the charges
of atom i and atom j, respectively.

In this thesis, several MD simulations were carried out with ReaxFF. The results
serve as a comparison to the MD simulations carried out with machine-learning force
fields.

4.1.3 Boundary conditions

MD calculations are performed within predefined simulation boxes, whereas bound-
ary conditions (BC) play an important role in treating various atom configurations
differently and also in reducing computational costs. The most common BCs for
MD simulations are the periodic boundary conditions (PBC) and the fixed boundary
conditions (FBC), which are not suitable for non-equilibrium situations. In this case,
for example, the Lees-Edwards boundary conditions [90] are needed.

PBC

PBCs are a collection of boundary conditions that are frequently used to approximate
a vast (infinite) system by using just a small component of the system by repeating it
numerous times in each direction of consideration. Therefore it is possible to describe
systems that are spatially homogenous concerning their boundaries [91].
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(a)

(b)

Figure 4.3: MD simulation box and the PBC. Panel (a) shows a two-dimensional
simulation box with atoms in it. Panel (b) indicates the replication of
the simulation box in the x - and y-direction for the PBC

Fig. 4.3 illustrates this for the two-dimensional case: The left picture (Fig. 4.3a)
shows the simulation box with size Lx and Ly, whereas the gray dots represent
atoms. With PBCs, this simulation box and also all the atoms within will be repli-
cated in every direction, in our case in the x-direction and the y-direction. This is
indicated in Fig. 4.3b. If an atom i has the coordinates (xi, yi), then the replicas of
atom i have the coordinates (xi±nLx, yi±nLy) with n ∈ Z ranging from −∞ to +∞.

PBCs are used together with the so-called minimum image convention. That means
that each particle in the simulation interacts with the closest image of the other
particles in the system. When integrating the equations of motion (equation (4.1)),
the wraparound impact of the periodic boundaries must be considered. This effect
must also be accounted for when calculating the interactions. PBCs are typically
used for simulations of bulk systems.

FBC

In contrast to PBC, in FBC the boundary conditions are fixed. This indicates that
the simulation box is in the considered directions non-periodic, meaning that particles
do not travel from one side of the box to the other or interact across the boundary.
In this thesis, FBCs were mainly used for the oxidation of silicon surfaces to fix the
boundary conditions in the z-direction.
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4.1.4 Ensembles

In MD simulations often only the average properties of the individual particles in a
system are of interest. To describe such thermodynamic systems, J. Willard Gibbs
introduced the concept of an ensemble in 1902 [92]. An ensemble is a set of similarly
prepared systems of particles that are in thermodynamic equilibrium. Gibbs defined
three ensembles [93], which are illustrated in Fig. 4.4:

• Microcanonical (NVE) ensemble: In the microcanonical ensemble, the
total number of particles N , the volume V , and the total energy of the system
E are assumed to be constant. To maintain statistical equilibrium, the system
needs to be completely isolated and not exchange any particles or energy with
its surroundings. Microcanonical ensembles are used to describe closed systems
that do not interact with their environment, i.e. do not exchange energy and/or
matter with their surroundings.

• Canonical (NVT) ensemble: A set of microstates with fixed total number of
particles N , constant volume V , fixed temperature T but variable total energy
E is called a canonical ensemble. The system can form weak thermal contact
with other systems but it must stay completely closed (unable to exchange
particles with its surroundings) to maintain statistical equilibrium.

• Grand canonical (µVT) ensemble: The grand canonical ensemble describes
a statistical ensemble, where neither the total energy E nor the particle number
N are fixed. This ensemble is appropriate for describing an open system in a
heat bath, where the chemical potential µ, the volume V , and the temperature
T are fixed.

4.1.5 Thermostats

Thermostats in MD simulations are methods to control the temperature of particles
by controlling their velocities. There are several thermostat techniques that add
and remove energy from the boundaries of an MD system in a realistic way like the
Berendsen Thermostat, the Langevin Thermostat, and the Nosé-Hoover Thermostat.

Berendsen thermostat

The Berendsen thermostat is used to simulate an MD system that is (weakly) coupled
to an external bath with a desired temperature Tset [94]. In statistical mechanics, the
time average of the kinetic energy ⟨K⟩ and the temperature T of an unconstrained
MD system with N particles are related as follows:

⟨K⟩ = 3

2
NkBT (4.8)
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(a) (b) (c)

Figure 4.4: Three different ensembles. Panel (a) shows the NVE (microcanonical)
ensemble, where N , V , and E are constant. There is no particle or
energy exchange with the surroundings, which is indicated by an isolated
box. Panel (b) shows the NVT (canonical) ensemble with constant N ,
V and T . There is no particle exchange with the surroundings but heat
exchange is allowed. Panel (c) shows the µVT (grand canonical) ensemble
with fixed µ, V and T . This system can exchange heat and particles with
the surroundings.

Here, kB denotes the Boltzmann constant. The kinetic energy K of a system is also
given by:

K =
1

2

�
i

miv
2
i (4.9)

with mi as the mass and vi as the velocity of the ith atom. Therefore the tempera-
ture T of an MD system and the velocities vi of the particles within the system are
correlated.

The Berendsen Thermostat achieves control from a temperature T to a desired tem-
perature T0 by multiplying the velocities vi with a scaling factor λ:

vnewi = voldi λ (4.10)

The velocities are scaled at every time step in an MD simulation in a way that the
temperature difference is proportionate to the rate of temperature change [94]:

dT

dt
=

1

τ
(T0 − T ) (4.11)

Here, τ denotes a time constant, which is defined:

τ = 2
CV τT
NfkB

(4.12)
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CV denotes the constant volume heat capacity of the MD system, Nf represents
the number of degrees of freedom of the MD system, and τT denotes the coupling
strength between the heat bath and the MD system.

The solution of equation (4.11) describes an exponential decay of the system towards
T0:

T = T0 − Ce−t/T (4.13)

where C denotes a constant factor and t the time. The scaling factor λ in the
Berendsen approach is given by

λ2 = 1 +
∆t

τ

�
T0

T
− 1

�
(4.14)

The Berendsen thermostat provides provides good approximate results for the ma-
jority of the calculated properties for large systems, even though the thermostat does
not provide a correct canonical (NVT) ensemble, especially for small systems [95].
For MD simulations, the Berendsen thermostat is a very effective way of relaxing the
MD system to a target temperature T0 after an energy minimization step.

Langevin thermostat

For the simulation of a canonical NVT ensemble, the Langevin thermostat can be
used to control the temperature of a system. Essentially, the idea is to sample the
statistical ensemble by supposing that the dynamics of each particle in the system is
governed by the Langevin equation [96]. The Langevin equation of each particle in
the system is given by [97]:

mr̈ = f − αv + β(t) (4.15)

The position and the velocity of the particles are denoted by r and v = ṙ, respectively.
f denotes a force, and α denotes a friction coefficient. β denotes a Gaussian white
noise with zero mean (⟨β(t)⟩ = 0) and its delta-function auto-correlation [98] is given
by:

⟨β(t)β(t′)⟩ = 2kBTαδ(t− t′) (4.16)

Here, t and t′ represent 2 different times, kB represents the Boltzmann‘s constant
and T the temperature. Equation (4.15) describes the motion of a particle which is
under the influence of three different forces: a deterministic force f , a friction force
−αv and a stochastic random force β.

The Langevin thermostat is now obtained by integrating the equation (4.15) over
a discrete time interval ∆t, whereas ∆t must be small enough to ensure an exact
solution for the integral. Due to the complex nature of solving the integral, a broad
variety of algorithms exist to overcome this problem [99].
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Nosé-Hoover thermostat

The Nosé-Hoover thermostat is based on an extended Lagrangian method by includ-
ing an additional degree of freedom in the Hamiltonian operator [100]. In terms of
the virtual variables, the Hamiltonian of the extended system HNH with N particles
and variable s for the additional degree of freedom is given by [101]

HNH =
N�
i

p2
i

2mis2
+ V (Rij, Pij) +

p2s
2Q

+ gkBT ln(s) (4.17)

The first term is the sum of all kinetic energies of atoms i, which are represented
by their momentum pi. V (Rij, Pij) denotes a potential which depends on both all
positions Rij and momenta Pij. ps denotes the momentum conjugate to s, Q is an
effective mass associated with s and the parameter g represents the number of degrees
of freedom of the system. Equation(4.17) leads to the following equations of motion:

dri
dt

=
∂HNH

∂pi

=
pi

mis2
(4.18)

dpi

dt
= −∂HNH

∂qi

= −∂V

∂qi

(4.19)

ds

dt
=

∂HNH

∂ps
=

ps
Q

(4.20)

dps
dt

= −∂HNH

∂s
=

� p2
i

2mis2
− gkBT

s
(4.21)

The effective mass Q represents the coupling between the system and the heat bath,
whereas a low coupling means a high Q. For an extended system the Nosé-Hoover
method produces a microcanonical ensemble. In classical molecular dynamics, the
Nosé-Hoover thermostat is currently one of the most popular thermostats for MD
simulations [102].

4.2 MD simulations

To run MD simulation, one has to compute the equation of motion (4.1) and (4.2)).
Finding a solution for these equations is not straightforward and several strategies
exist to cope with this challenge, which will discussed in the following. There will
also be a more thorough discussion of the MD simulation program LAMMPS.

4.2.1 Velocity Verlet algorithm

The equations of motion for a system with more than two atoms cannot be solved an-
alytically, but they can be addressed numerically using the finite difference method.
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The basic idea behind this method is an initial discretization of the equation of mo-
tion and then solving them by integrating over small time steps ∆t to calculate the
new positions ri and the forces Fi acting on each atom i at the timestep t+∆t.

A widely used algorithm that uses the finite difference method is the Velocity Verlet
algorithm [103]. This algorithm expresses the positions ri and the velocities vi at
time t+∆t of atom i as a Taylor series expansion of positions and velocities at time t.
The Taylor series expansion of positions and velocities at time t+∆t of the Velocity
Verlet algorithm is given by

ri(t+∆t) = ri(t) + vi(t)∆t+ ai(t)
∆t2

2
+O(∆t)3 (4.22)

vi(t+∆t) = vi(t) +
1

2
∆t[ai(t) + a(t+∆t)] (4.23)

with ṙi = dri/dt = vi and r̈i = d2ri/dt
2 = ai. A MD simulation with the velocity

Verlet algorithm is then carried out according to the following steps:

(1) Get the initial positions ri(t = 0), velocities vi(t = 0) and accelerations ai(t =
0) from all atoms in the system

(2) Compute velocities vi for t = t+∆t/2:

vi(t+∆t/2) = vi(t) +
1

2
ai(t)∆t (4.24)

(3) Compute new positions ri for t = t+∆t/2:

ri(t+∆t) = ri(t) + vi(t+∆t/2)∆t (4.25)

(4) Compute new accelerations ai for t = t+∆t using the negative gradient of the
potential Vi, which is a function over all atom positions r:

ai(t+∆t) = − 1

mi

∇Vi(r(t+∆t)) (4.26)

(5) Get the new velocities vi for t = t+∆t with the following equation:

vi(t+∆t) = vi(t+∆t/2) +
1

2
ai(t+∆t)∆t (4.27)

(6) Repeat steps (2) to (5) as long as necessary

To calculate the accelerations ai for each atom i in step (4), it is assumed that the
forces acting on the atomic nuclei remain constant during a time step ∆t.
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4.2.2 LAMMPS

LAMMPS is short for Large-scale Atomic/Molecular Massively Parallel Simulator
[104] and is a powerful code for classical molecular dynamics simulations. This soft-
ware is designed for parallel computation using MPI. The architecture of LAMMPS
is based on a modular design which makes it simple to modify or add additional
features. With the input script, which consists of a sequence of commands and pa-
rameters, MD simulations with different settings are possible. Tab. 4.1 lists and
briefly describes frequently used commands of the MD simulation settings in this
thesis.

4.2.3 MD simulation settings

Each MD simulation in this thesis is performed either with a QUIP potential or a
ReaxFF potential.

Simulations with QUIP

A QUIP potential has been used to define pair style in almost all MD simulations.
The pair coefficients (via the command pair coeff) are set by external XML files.
These XML files and their values originate from a machine learning potential, which
will be discussed in more detail in section 5.2. The units are set to metal, so the
distances in the MD simulations are given in Å, the time in ps, the energy in eV, and
the temperature in K. By setting atom style to atomic, only the default values of
each atom are getting stored or are getting read from an input file via the read data
command. The boundary conditions are set to p p f for MD simulations with Si-
surfaces and to p p p for MD simulations with Si-nanowires. The parameters for
the neighbor command are set to 0.3 bin, which creates a neighbor list with a skin
distance of 0.3 Å by an bin algorithm. With the setting of neigh modify to delay
10, the building of the neighbor list is delayed by 10 steps after the last build. For
the employed ensemble either a nve ensemble or an nvt ensemble is assigned to
the describe the system. The velocities for the atoms are set to an ensemble of
generated velocities with a Gaussian distribution. These velocities are rescaled every
timestep using a Berendsen or a Langevin thermostat. The timestep is usually
set to 1 fs and the thermo command to 1000 timesteps, meaning that every 1000th

timestep the positions of the atoms are written out. The output information is
written to one or more output files in XYZ format via the dump command. The
main output file consists of information about the actual MD simulation, which is
initialized by the run command. For subsequent geometry optimization via the
minimize command, an additional output file was created. The stopping criteria for
the energy minimization are set to 10−12 eV for the energy and 10−6 eV/Å for the
forces.
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units Sets the style of units used for a simulation e.g. real, metal, si, cgs
and electron.

atom style Specifies the style of atoms to be used in a simulation. Every style
stores atom IDs, types, velocities coordinates, and possibly addi-
tional attributes. Examples are atomic, charge and electron.

pair style
pair coeff

pair style defines the interaction between pairs of atoms within a
cutoff distance by specifying a force field (e.g. ReaxxFF, QUIP,
section 4.1.2) and a neighbor list. The pair coeff command sets
the coefficients associated with a chosen pair style.

boundary This command sets the boundary conditions individually for each
dimension of the simulation box: p denotes periodic, f denotes fixed
and s denotes shrink-wrapping (section 4.1.3).

neighbor
neigh modify

The settings that are specified by the neighbor command im-
pact how the pairwise neighbor lists are constructed. With the
neigh modify command additional arguments can be specified to
regulate which atom pairs should be stored and how often the neigh-
bor lists are built.

fix This command fixes an attribute to a group of atoms e.g. assigning
a group of atoms to an ensemble (section 4.1.4).

velocity Assigns a velocity to a group of atoms, which can be specified with
arguments, keywords, and values in a wide range. An additional
fix command can be used to control the velocity distribution via
a selected thermostat (section 4.1.5).

timestep This command sets the discrete time interval over which the equa-
tions of motion are numerically integrated (section 4.2.1). The
specific value depends on the selected units (real, metal,..)

thermo Controls the output of thermodynamic information during an MD
simulation by setting an interval of N timesteps. The thermody-
namic quantities are printed to the output file after timesteps that
are a multiple of N .

run This command is used to perform the main MD simulation, allowing
the system to evolve over a specified number of timesteps.

minimize minimize adjusts the atomic positions of an MD simulation to find
a local energy minimum. This energy minimization stops when one
of the stopping criteria is satisfied.

dump This command writes the output information about the system
during an MD simulation to an output file. The output information,
the number of timesteps after which the information is written to
the output file, the output file format, and additional settings can
be modified over a wide range.

Table 4.1: List of frequently used LAMMPS commands
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Simulations with ReaxFF

For reasons of comparability, some MD calculations were carried out with the ReaxFF
potential as pair style. With this setting, LAMMPS receives the pair coefficients
from an extern *.reac file via the pair coeff command. The parameters, such as for
the relaxations or the convergence tolerance, are defined within the fix command.
The units command is set to real, so the distances in the MD simulations are mea-
sured in Å, the time in fs, the energy in kcal/mol, and the temperature in K. For
atom style, charge is chosen, which means, that also the charges are an additional
attribute of the atoms. All other commands remain unchanged from those with the
QUIP potential.
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5 The Gaussian Approximation
Potential (GAP) method

Accurate and computationally efficient interatomic potentials have long been a chal-
lenge in the field of atomistic simulations. The demand for predictive models that
can represent complex quantum mechanical interactions between atoms has grown
as computational capacity has increased. Machine Learning Interatomic Potentials
(MLIPs) are a novel approach that provide an innovative method to overcome the
drawbacks of conventional force fields and quantum mechanical techniques. These
enable MD simulations to be performed with accuracy on par with ab-initio tech-
niques, such as DFT, but at a much lower computational cost.

In this thesis, the Gaussian approximation potential method (GAP) was used to
train MLIPs. By using a training dataset as a basis, this method creates a force
field that is specifically designed for the dry oxidation of silicon. GAP demonstrated
remarkable performance in capturing the intricacies of interatomic interactions. The
GAP framework utilizes a Gaussian process regression model to predict potential
energy surfaces and forces, achieving a high level of accuracy while maintaining com-
putational efficiency. Significant contributions to this approach include the work of
Bartók et al., who demonstrated its application to a variety of materials [105]. GAP
has also been successfully applied to more complex systems [10, 106, 107], highlight-
ing its potential to bridge the gap between the accuracy of ab-initio methods and
the efficiency required for large-scale simulations. The theory behind GAP and how
MLIPs are getting trained will be described in the following.

5.1 Theoretical background

The Gaussian Approximation Potential (GAP) method was originally proposed by
Bartók et al. 2010 [108]. The GAP approach uses a training dataset of atomic
configurations with their properties (e.g. their total energy, forces, and virial stress
components) derived from ab-initio calculations, to design a MLIP than can predict
the energy and forces of interacting atoms in an unknown system. The electrical
structure of the atomic configurations is completely neglected here.

For a particular atomic structure, GAP computes the energy of the structure and

36



5 The Gaussian Approximation Potential (GAP) method

1. Training dataset:
A set of training structures serves as a basis. Ab-initio DFT

calculations provide the necessary properties for each of
these structures, including the total energy, potential forces

acting on each atom, and the virial stress components.

2. Descriptors:
The atomic environment of each atom is getting represented

by descriptors to ensure the independence of their coordinates.

3. Gaussian process regression (GPR) fit:
GPR models functions as distributions over possible functions,
using a kernel to capture correlations between data points. It

provides predictions with associated uncertainties, reflecting both
the expected value and confidence in the results. A kernel func-
tion measures the similarity between two descriptors, whereby the
training dataset forms the sparse set M. An estimated fit, defined
by the coefficients cj (for more detail see section 5.1.3), and the
corresponding basis function leads to the prediction of the GPR.

Figure 5.1: Workflow of the GAP fit process explained in three steps.

the forces acting on each atom. To do so, GAP proceeds according to a workflow
which is represented in Fig. 5.1.

5.1.1 Total potential energy

The total potential energy E of an atomic configuration is the sum of all individual
atomic energies ϵi, which also can be expressed as a combination of a short-range
interatomic interaction term Eshort and a long-range interatomic interaction term
Elong:

E =
�
i

ϵ({rij}) = Eshort + Elong (5.1)

Here, rij = ri − rj denotes the relative position between atom i and atom j. Eshort

provides nearly all of the total energy E of the system, therefore can E be restricted
to Eshort, which consists of atoms j that are within a cutoff distance rcut with respect
to atom i: |rij| < rcut.
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5.1.2 Descriptors

To make the atomic configurations independent of their coordinates, GAP uses so-
called descriptors. This significantly reduces the number of training data structures.
A descriptor maps the atomic configuration to a vector and ensures invariance to
rotation, translation, or permutation of identical atoms [109]. In addition to the
conventional 2-body and 3-body descriptors, where either two or three atoms are
related to each other, GAP also makes use of the smooth overlap of atomic positions
(SOAP) descriptor. With SOAP, the representation of the neighbor atoms j of the
considered atom i of element a is given by a set of neighbor densities [110]:

ρi,a(r) =
�
j

δaajexp

�−|r− rij|2
2σ2

a

�
fcut(rij) (5.2)

The neighbor atoms j that are considered for the description, which are of an element
a, are within a cutoff distance rcut. fcut represents a cutoff function, that gradually
approaches zero at rcut. The smoothness of the representation is given by the hyper-
parameter σa, which has length units.

The whole set of elemental neighbor densities is created for each atom i. To ensure
rotational invariance, the neighbor density is expanded into a local basis of orthogonal
radial functions Rn(r) and spherical harmonics Y m

l (r̂):

ρi,a(r) =
�
nlm

ci,anlmRn(r)Y
m
l (r̂) (5.3)

ci,anlm =

�
drRn(r)

∗Y m
l (r̂)∗ρi,a(r) (5.4)

with the expansion coefficients ci,anlm. Rn(r)
∗ and Y m

l (r̂)∗ denotes the complex con-
jugate of Rn(r) and Y m

l (r̂) respectively. The rotational invariant power spectrum is
then given by

pi,aa
′

nn′l =
1√

2l + 1

�
m


ci,anlm

�∗
ci,a

′
n′lm (5.5)

whereas

ci,anlm

�∗
denotes the complex conjugate of ci,a

′
n′lm. This power spectrum, which

gives a concise representation of atomic neighbor environments, is frequently referred
to as the SOAP descriptor or SOAP vector [111]. The SOAP descriptor is a function
of the following five indices: the angular channel l, the radial channels n and n′, and
the neighbor-element channels a and a′. The only free parameters of SOAP are the
cutoff distance rcut and the length scale σa.
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5.1.3 Gaussian process regression (GPR) method

Only the energies of the training structures are precisely known on the descriptor-
generated representation. To calculate the energy of an unknown atomic system,
GAP uses the Gaussian process regression (GPR) method. In GPR, the energy EA

of the unknown atomic configuration A is given by [112, 113]:

EA =
�
i∈A

M�
j

cjk(xi,xj) (5.6)

The left sum covers all the descriptor vectors xi in the unknown atomic configuration
A. The second sum is over a collection of representative descriptor vectors xj from
the provided dataset (sparse points M). It describes a linear combination of M basis
functions of k(xi,xj), which are weighted with the regression weights cj. k is a Kernel
function and measures in our case the similarity between the two descriptors xi and
xj. The kernel functions have Gaussian forms, from which the GPR is derived. The
regression weights cj have to be fitted to match the ab-initio values of the sparse
points M as closely as possible. This can be expressed as a regression problem by
minimizing the loss function L with respect to the weights c = {cj}. In matrix
notation, L is given by

L = (y− ŷ)TΣ−1(y− ŷ) + cTKMMc (5.7)

The N ab-initio reference properties are represented by y, while ŷ represents the
predicted properties. Σ denotes a diagonal matrix with elements inversely linked to
the significance of each data point, containing the regularisation strength parameters
σenergy, σforce and σvirials. KMM is the kernel matrix and its elements is derived from
the kernel function values Kij = k(xi,xj), which are calculated between the sparse
point set {xi}Mi .

The first term in the equation (5.7) controls the fit to the data points, while the
second term attempts to avoid overfitting via a Tikhonov regularisation [114]. The
minimization of the equation (5.7) leads to

c = (KMM +KMNΣ
−1KNM)−1KMNΣ

−1y (5.8)

with KNM = KT
MN , whereas the components of KMN are defined as

Kij =
�
α∈j

k(xi,xα) (5.9)

The summation goes over all descriptors xα, which contribute to yj, while the sparse
set’s descriptor is given by xi.
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With the coefficients c and equation (5.6) the total energy EA of the atomic configu-
ration A can be evaluated. By differentiating EA with respect to atomic coordinates
or lattice deformations one can determine the forces and the virial stress components
of A.

5.2 GAP training

The training of the MLIPs is carried out with the gap fit program, which is part of
the software package Quantum Mechanics and Interatomic Potentials (QUIP) [115].
The source code can be found on GitHub and is publicly available [116]. QUIP also
comes with a Phyton interface, namely quippy, which provides access to a range of
functions and converts all atomic potentials into Atomic Simulation Environment
(ASE) calculators. The GAP models can also be easily integrated into MD simula-
tion programs such as LAMMPS.

The training of a new GAP consists of the following 3 steps:

(1) Reading input data

(2) Choosing the descriptors and kernels that serve as basis functions

(3) Setting the parameters to control the least squares fit

5.2.1 Input data

The input data has to be provided for the gap fit program in the extended XYZ
format. Each atom is represented in this format by its atomic number, cartesian
coordinates, and, if desired, additional forces and virial stresses. The position of the
atoms has to be provided in the units of Å, the energy in the units of eV, the forces
in units of eV/Å, and the stresses in units of eV (this is the volume times the normal
stress).

The input XYZ file is a sequence of atomic configurations, whereas a periodic lattice
unit cell is required for each structure. To obtain optimal fitting, consistency in the
calculation of forces and energies is very important. Including not only the energies
but also the forces improves the fits tremendously. For determining elastic constants
for periodic solids, virial stresses are crucial.

In addition to the actual structures which serve as a training set for the GAP, each
training set must also contain the isolated atoms of each atom type that occur in the
training set. To improve the GAP fit, it is highly recommended, that the training
set also include dimers of every combination of atom types of interest.
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5.2.2 Specifying descriptors and kernels

The next step is defining and specifying the descriptors and the kernels. As mentioned
in the previous section, GAP makes use of the 2-body, the 3-body, and the SOAP
descriptor. The 2-body and the 3-body descriptors can be specified via the following
values in the gap fit program:

• order defines the order of the N-body descriptor (e.g. order = 2 or order = 3)

• The cutoff radius cutoff , expressed in units of Å, specifies the maximum in-
teratomic interaction distance that describe interactions.

• The number of the sparse points is set by n sparse.

• covariance type defines the form of the kernel and delta the scaling of the
kernel (in eV). delta indicates how significant this description is to the total
potential and adjusts the influence of each descriptor on the overall potential.
A smaller delta value results in a more localized kernel, giving greater weight
to descriptors that closely match the training data.

• theta uniform, given in units of Å, defines the length scale of the Gaussian
Kernel and specifies, how fast the Gaussian kernel decays.

• The choice of representative points is set with sparse method.

• compact cluster determines how the cutoff is applied (e.g. T describes a sphere
around the central atom)

In contrast to the 2-body and the 3-body descriptors, the SOAP descriptor uses
a basis set of spherical harmonic functions. A single real number is obtained by
projecting the atomic density onto these basis functions, which results in the SOAP
vector as a collection of these numbers. The higher the number of basis functions
in the basis set, the more accurately the chemical environment is mapped. On the
downside, this also comes with increased computational costs. The SOAP descriptor
has the following additional parameters compared to the N-body descriptors:

• l max and n max set the number of angular and radial basis functions.

• The Gaussian smearing width of the atom density is defined with atom sigma,
in units of Å.

• cutoff transition width sets the distance at which the kernel is gradually re-
duced to zero.

• zeta specifies the power of the polynomial kernel exponent.
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5.2.3 Regularisation strength parameters

Finally, the regularisation strength parameters σenergy, σforce, σvirials and σhessians have
to be set in the gap fit program. It is very useful to divide the training set into
subcategories (e.g. single atoms, dimers, bulk, etc.), each with its own specific sigma
values. σ determines the convergence criteria for the energy, the forces, the viri-
als, and the Hessians, respectively. The lower this value, the more accurately the
corresponding structure is represented in the MLIP.

5.2.4 Output data

The resulting GAP model is stored in several output files, which consist of one ∗.xml
file and a set of text files. These files can easily be integrated into the MD simulation
software LAMMPS by using the QUIP plugin. The setting for an MD simulation
with GAP in LAMMPS can be found in section 4.2.3.

To increase the accuracy of a trained GAP, active-learning techniques are appropri-
ated, as proven by Deringer et al. [111]. The process begins with the use of a newly
trained GAP as the potential in a MD simulation. During this simulation, atomic
trajectories are generated, providing insights into the system’s behavior. From these
trajectories, specific structures are selected for further analysis based on their rele-
vance or deviations from the model’s predictions. These selected structures are then
recalculated using DFT, which serves as a more accurate reference for the potential
energy and forces. The results from these DFT recalculations are combined with the
original training set to create an updated dataset. This augmented dataset is then
used to train a new GAP, which incorporates the additional, high-fidelity information
from the recalculated structures.

The re-training process is iterative and can be repeated as needed to progressively re-
fine the accuracy of the GAP. Each iteration aims to reduce discrepancies between the
model predictions and DFT results, ultimately enhancing the GAP’s performance.
This approach ensures that the potential remains highly accurate and capable of
representing the atomic interactions with the required precision.
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The previous chapter discussed the theory behind GAP and how to train a new
GAP potential. This chapter looks at the role of the training data itself and what
structures have been created to train a GAP specifically for the oxidation of silicon.

6.1 Selection of the GAP training structures

The quality of the obtained GAP potential relies heavily on the quality and diver-
sity of its training data. The training dataset serves as an information repository
containing the relationships between the atomic configurations and the correspond-
ing potential energies. The completeness of these data has a direct influence on the
accuracy and reliability of the trained GAP model. A well-constructed and compre-
hensive training dataset is mandatory for the model to generalize effectively over a
wide range of material configurations.
There are two essential requirements a training data needs to meet. The first require-
ment is that the training set must be representative of the diverse range of atomic
environments and configurations. Inaccuracies or biases in the training data may
lead to a model that fails to capture the true complexity of the interactions within
the material. The second requirement is that the training data should originate from
high-fidelity quantum mechanical calculations, such as first-principles DFT simula-
tions, to bridge the gap between quantum mechanical accuracy and computational
efficiency.
The challenge in training a new GAP lies in the selection and preparation of the
training structures. Issues such as the size of the dataset and the trade-off between
computational cost and model accuracy must be carefully considered. Iterative re-
finement of the training data and continuous validation of the resulting models are
integral parts of the GAP development process. Based on the performance of the
previously trained GAP, the training data must be readjusted for each new training
loop.

6.2 GAP training structures for SiO2

For the training of a GAP, which is intended to physically reproduce the oxidation
of silicon correctly, a variety of different structures are generated consisting of silicon
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atoms, oxygen atoms, and/or hydrogen atoms. Hydrogen atoms are solely used to
saturate the lowest Si atoms of the Si surface structures but do in general not in-
fluence oxidation. Additionaly, the information associated with each of the atomic
structures (such as the total energy, the forces on each atom, and possibly the virial
stress components) is provided by DFT calculations performed with the CP2K soft-
ware. This information is stored as a sequence of atom configurations in an extended
XYZ format, which serves as the input file for the GAP learning algorithm. In the
following a more detailed description of the individual training structures is given.
An overview of the employed training structures can be found at the end of this
chapter.

Rather than using the complete set of generated DFT data for the training of the
GAP, some of the initially created structures are excluded from the training datasest.
After the training process, these structures are utilized as test cases for unknown
structures. Energy and force predictions of both GAP and DFT can be compared
based on this testing dataset. The number and type of structures against which the
GAPs were tested can be found in more detail in Chapter 8.

6.2.1 Single atoms

As briefly mentioned in chapter 5.2.1, each training set must contain the isolated
atoms of each atom type that occurs. This allows GAP to learn the correct free
energies and ensure that it correctly predicts the energy of isolated atoms. For the
training of a GAP for SiO2 each dataset contains a single Si-, O-, and H-atom. The
size of the simulation cell for the DFT calculations of the single atoms was set to
20×20×20 Å for the x-, y-, and z-direction respectively. The total energy according
to our DFT framework is -102.282 eV for a single Si-atom, for an O-atom -430.92 eV,
and for an H atom -13.577 eV.

6.2.2 Dimers

To significantly improve the GAP fit, each training set should also include the dimers
of every atom combination of interest, so the following dimers were added to each
training set: 97 Si-Si dimers, 23 Si-O dimers, 52 Si-H dimers, and 57 O-O dimers, in
total 229 dimers.

Small steps were taken to adjust the spacing between the two atoms under consid-
eration for the DFT calculation of the dimers. As a result, a total energy curve that
resembles the Lennard-Jones potential is produced as a function of distance. Fig. 6.1
displays this curve in the context of the Si-Si dimer example, whereas the energy
minimum of E = −208.348 eV occurs at an atom distance of r = 2.15 Å. Compared
to the Si-Si dimers, the other dimers curves have the following energy minima:
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Figure 6.1: The total energy E of Si-Si dimers given in eV as a function of the atom
distance r given in Å.

dimer energy minimum atom distance

Si-Si -208.348 eV 2.15 Å
Si-O -542.281 eV 1.50 Å
Si-H -119.234 eV 1.55 Å
O-O -868.486 eV 1.25 Å

6.2.3 Bulk Silicon

Bulk silicon has a diamond lattice structure in which each silicon atom is tetrahe-
drally surrounded by four other silicon atoms (for more detail refer to section 2.1).
This lattice is highly regular and crystalline, contributing to the outstanding elec-
tronic properties of silicon.

A total of 201 slightly different bulk Si structures were calculated. Each of the bulk
structures consists of 192 Si atoms with each cell measuring 15.523 Å in the x- and
y-direction and 16.22 Å in the z-direction. The different bulk configurations were
obtained from MD simulations as the initial Si bulk configuration is running at a
defined temperature. After a certain time interval ∆t, the positions of the atoms
are written into an output file. In Fig. 6.2a one of these configurations is illustrated.
The total energy, the forces on each atom, and the virial stress components for each
atomic configuration were evaluated using periodic cells in DFT.
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(a) Bulk silicon with 192 Si atoms (b) Clean silicon surface with 224 atoms

Figure 6.2: Panel (a) shows one of the 201 bulk silicon structures with a diamond lat-
tice consisting of 192 Si atoms and a cell size of 15.523×15.523×16.22 Å.
Panel (b) shows one structure of the 93 clean silicon surfaces consist-
ing of 192 Si atoms and 32 H atoms. The cell size of each surface is
15.523×15.523A×37.22 Å with around 21 Å of vacuum above each sur-
face, which is not shown in the figure.

6.2.4 Clean silicon surfaces

Since the GAP is primarily trained for the oxidation of silicon surfaces, it is crucial
that the training set also includes clean silicon surface structures. A total of 93
clean surface structures were calculated, which, like the silicon bulk structures, were
generated by MD simulations. 6.2b shows one of the clean silicon surface structure.
The cell size of each structure is 15.523 Å in the x- and y-direction and 37.22 Å in
z-direction. Each structure consists of 192 Si atoms and 32 hydrogen atoms, a total
of 224 atoms. Hydrogen is used to passivate the dangling bonds on one side of the
Si slab, while the clean Si-surface reconfigurates upon relaxation.
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(a) Oxidized silicon surface with 18 oxygen
atoms

(b) Oxidized silicon surface with 60 oxy-
gen atoms

Figure 6.3: Differently oxidized silicon surfaces. Panel (a) shows a silicon surface
with an oxide consisting of 18 oxygen atoms. From this variant, 86 struc-
tures in total were computed. Panel (b) shows an oxidized silicon sur-
face consisting of 60 oxygen atoms and 224 Si atoms, from which 76
structures in total were calculated. The cell sizes of both variants are
15.523×15.523×37.22 Å.

6.2.5 Oxidized silicon surfaces

To ensure that GAP accurately learns the oxidation process of silicon, various oxi-
dized silicon surfaces have been added to particular GAP training sets. These struc-
tures may differ in cell size and number of atoms. An overview of these training
structures is given in Tab. 6.1.
For structures with a cell size of 15.523×15.523×37.22 Å, four different oxidized vari-
ants, which differ in the number of atoms, were used as training structures. MD
simulations were used to generate similar structures in all 4 variants, followed by
subsequent single-point computations. A total of 422 training structures were cre-
ated. Fig. 6.3a shows the variant consisting of 242 atoms and Fig. 6.3b shows the
variant consisting of 284 atoms.

Of the oxidized structure with a cell size of 31.046×31.046×60.00 Å, single-point cal-
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(a) Oxidized silicon surface with in to-
tal 920 atoms and a cell size of
31.046×31.046×60.00 Å

(b) Oxidized silicon surface with in to-
tal 5211 atoms and a cell size of
62.092×62.092×60.00 Å

Figure 6.4: Two oxidized silicon surfaces with different cell sizes. Panel (a) shows
an oxidized surface with a cell size of 31.046×31.046×60.00 Å consist-
ing of 920 atoms. In total, 51 structures of this variant were calcu-
lated. Panel (b) shows one of the 9 oxidized surfaces with a cell size
of 62.092×62.092×60.00 Å. These structures, consisting of between 5211
and 5258 atoms, were created by means of MD simulations and subse-
quently geo-optimized using DFT calculations.

culations were carried out for a total of 51 structures, with the number of atoms
varying between 901 and 1009 atoms. These structures were also generated using
MD simulations. Fig. 6.4a shows one of these structures.

cell size (xyz) [Å] number of atoms number of structures

15.523×15.523×37.22 232 180
15.523×15.523×37.22 242 86
15.523×15.523×37.22 272 80
15.523×15.523×37.22 284 76
31.046×31.046×60.00 901 - 1009 51
62.092×62.092×60.00 5211 - 5258 9

Table 6.1: Overview of the oxidized silicon surfaces used in the training dataset

In contrast to the previously mentioned structures, the 62.092×62.092×60.00 Å train-
ing data were generated using geometry optimization calculation. Four differently
oxidized structures were subjected to geometric optimization. The forces on the
atoms and the total energy before and after the geometry optimization were in-
cluded in the training dataset. Also, for one of the four structures, the forces and
energy originating from during the geometry optimization process were added to the
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training data, resulting in a total of 9 training structures. In Fig. 6.4b one of these
geometry-optimized structures is shown.

6.2.6 Defect-free oxidized surfaces

(a) Dissociation step 1 (b) Dissociation step 2

∆t

(c) Dissociation step 3

∆t

Figure 6.5: 3 steps of the dissociation process of an O2 molecule on a silicon sur-
face with a cell size of 15.523×15.523×37.22 Å. The three steps are the
temporal sequence of the dissociation process, which is symbolized by an
arrow, and the ∆t between the subfigures. Panel (a) shows the first step
of the dissociation process: The O2 molecule (circled in blue) is not yet
chemically bonded to the Si surface. Panel (b) shows step 2 where one
oxygen atom of the O2 molecule is chemically bonded to a Si atom. Panel
(c) is showing step 3 of the O2 molecule dissociates: The bond between
the two O atoms breaks and the second, previously unbound oxygen atom
also binds to a silicon atom. Both bonded oxygen atoms are circled in
blue.

As mentioned in chapter 2.2 the properties of a SiO2 layer are decisively determined
by its defect-free condition. Therefore defect-free structures must also be present in
the training dataset for GAP to learn how to produce structures free of defects.

For this thesis, the training data of such structures were generated using 2 methods:

1. Using AIMD with a total of 203 structures. Most of these data, totaling 184
structures, include frames that show an O2 molecule dissociating on the surface
of oxidized Si. The dissociations occur on ten distinct Si surfaces with vary-
ing degrees of oxidation. Fig. 6.5 depicts one of these dissociating processes
in 3 steps. All surfaces possess a cell size of 15.523×15.523×37.22 Å. The re-
maining 19 structures are defect-free, oxidized Si surfaces with a cell size of
11.619×11.619×69.737 Å with oxidation layers of different thicknesses ranging
from 0.8nm to 2.5nm.
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(a) Si/SiO2 interface struc-
ture (b) Crystalline SiO2

Figure 6.6: A Si/SiO2 interface structure, which has only defect at the surface, and
a crystalline silicon dioxide. Panel (a) shows one of the 25 oxidized
Si surfaces from MD simulations with a total of 232 atoms and a cell
size of 11.619×11.619×69.737 Å. The oxide layer is about 1.4 nm. (b)
shows a bulk crystallin SiO2 consisting of 216 atoms and a cell size of
15.201×15.201×14.332 Å. A total of 70 of these structures were created
using MD simulations.

2. Using MD simulation with GAP as force field. Starting from two different,
oxidized Si surfaces, a total of 47 training structures were generated using MD
simulations, for which the total energy and the forces on each atom were then
determined using single-point calculations. These structures possess a cell size
of 11.619×11.619×69.737 Å with 232 and 233 atoms respectively. Fig. 6.6a
shows the structure with 232 atoms, of which 25 training structures were cre-
ated.

To prevent over-similarity between the individual structures, the period between two
structures from the same AIMD or MD simulation was choosen to be sufficiently
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long. A total of 250 defect-free training structures were generated.

6.2.7 Bulk SiO2

Furthermore, pure SiO2 structures were added to the training set to include a descrip-
tion of bulk a-SiO2. Using MD simulations, a total of 70 bulk SiO2 structures with
15.201×15.201×14.332 Å cell sizes have been created. In combination with periodic
boundary conditions, single-point calculations of infinity large bulk SiO2 structures
were carried. Each structure consists of 216 atoms in the form of periodically ar-
ranged SiO4 particles, which are connected via the tetrahedron corners, whereby
each tetrahedron is linked to four neighboring tetrahedrons [34]. Fig. 6.6b shows one
of the bulk SiO2 training structures.

6.2.8 Clean silicon nanowires

In addition to the oxidation of silicon surfaces, GAP should also physically correctly
reproduce the oxidation of silicon nanowires. Therefore it is necessary that the train-
ing set also includes clean silicon nanowire structures. For this thesis, two distinct
nanowire structures were designed to train GAP, which were created by using the
Wulff construction [32]. The first structure, which has a dimension in the z -direction
of 31.86 Å, consists of 576 Si atoms. And the second structure, which has a di-
mension in the z -direction of 21.765 Å, consists of 1680 Si atoms. Before using MD
simulations with GAP as force field to create different configurations, both structures
were first cell-optimized to obtain their lowest total energy. These two cell-optimized
structures can be seen in Fig. 6.7a and 6.7b. The cell dimension in the x - and the
y-direction for the single-point calculation of the different configurations were set to
60 Å for both structures. A total of 99 training structures with 576 atoms and 101
training structures consisting of 1680 atoms were created.

6.2.9 Oxidized silicon nanowires

Two different oxidized silicon nanowires have been created to ensure that GAP ac-
curately reproduces the oxidation process of the silicon nanowires in addition to the
accurate oxidation of silicon surfaces.

The first structure consists of a clean Si nanowire with 1680 Si atoms and one O2

molecule that dissociates at the surface. Ten dissociation processes were produced
using MD simulations with GAP as force field, from which 90 training structures
were taken from. Single-point calculations determined the energy, the forces on the
atoms, and the virial stresses. Fig. 6.8a shows one exemplary Si nanonewire structure
with one O2 molecule adsorbing onto its surface.
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(a) Clean silicon nanowire consisting of
576 Si atoms

(b) Clean silicon nanowire consisting of
1680 Si atoms

Figure 6.7: Two distinct clean silicon nanowires used for GAP training. Panel (a)
shows one of the 99 cell-optimized nanowires consisting of 576 atoms.
Panel (b) shows the cell-optimized nanowire consisting of 1680 atoms,
from which 101 variants were calculated.

The second structure consists of an oxidized Si nanowire with 1680 Si atoms at which
also one O2 molecule dissociates. Using MD simulations, 10 dissociation processes
emerged from this structure, resulting in a total of 180 structures. These structures
were geometry-optimized using DFT, from which then the energy, forces, and virials
were determined. Fig. 6.8b shows one of the geometry-optimized structures.

6.2.10 Active-learning training structures

As mentioned in section 5.2, active-learning techniques are a promising approach to
increase the accuracy of a trained GAP. For this thesis, several training structures
were created using an earlier version of the final GAP. These newly created active-
learning structures served as additional training structures to improve the properties
of GAP. The following structures were created using an active-learning technique:

• Oxidized silicon nanowire structures (consisting of 1680 silicon atoms, similar
to Fig. 6.8b): A total of 490 structures were created in 3 training cycles. In the
first training cycle, 85 structures were generated, in the second training cycle
201 structures and in the third training cycle 202 structures.

• Oxidized silicon surfaces with a cell size of 31.046×31.046×60.00 Å: A total of
500 structures were generated in 2 training cycles; 100 structures in the first
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(a) Clean silicon nanowire with one O2

molecule
(b) Oxidized silicon nanowire with one

O2 molecule

Figure 6.8: Nanowires with O2 dissociation. Panel (a) shows a clean nanowire, which
consists of 1680 Si atoms, and one O2 molecule near the surface. In total
ten dissociation processes with this nanowire were used as training data,
resulting in 90 training structures. A partly oxidized nanowire (oxide
thickness x = 0.4 nm) consisting of 1680 Si and 381 O atoms is shown
in panel (b). Ten dissociation processes were again used as training data
resulting in a total of 101 training structures.

cycle and 400 structures in the second training cycle.

• Oxidized silicon surfaces with a cell size of 15.523×15.523×60.00 Å: Using 4
differently trained GAPs, a total of 387 structures were generated.

Additionally, 15 defect-free and oxidized silicon surfaces were generated with a cell
size of 15.523×15.523×60.00 Å. Here, defect-free silicon surfaces that had already
been pre-oxidized with O2 molecules were taken for the MD simulations using SiO2

deposition to achieve a thicker oxide layer in a reasonable time. The reason is, as
described in section 2.3.1, that after the first oxide formation process by chemisorp-
tion, the oxide layer grows much slower because further layer growth requires oxygen
diffusion to the interface. Due to the small diffusion constant of oxygen, MD simu-
lations using O2 oxidation require extremely long computation times when dealing
with thicker oxide layers. SiO2 deposition accelates the oxide growth although it is
certainly a more artificial approach to simulate the oxide growth and is similar to the
TEOS oxide deposition [42], which is described in section 2.3.2. However, it is not
feasible to reproduce the entire TEOS process in this form, as it is by far too com-
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6 Generating the GAP Training data

(a) 4 O2 in a cell with size
10×10×10 Å

(b) Artifact serving for
active-learning

(c) Oxidized Si surface
with one artifact

Figure 6.9: Three of the five distinct oxygen structures to train GAP the behavior
of oxygen. Panel (a) shows one of a total of 51 configurations generated
by AIMD calculations, which consisting of four O2 molecules placed in
a 10×10×10 Å cell. Panel (b) shows an artifact consisting of 6 oxygen
atoms which originates from an active-learning method. In total, 32
artifacts were created with this technique. Panel (c) shows an oxidized
silicon surface with one oxygen artifact (circled in blue). The surface has
a cell size of 15.523×15.523×60.00 Å.

plex. After the SiO2 deposition process each defect-free and oxidized silicon surface
was single-point calculated using DFT to get its total energy, forces, and virials.

6.2.11 Oxygen gas

Several oxygen training structures were developed for the accurate physical behavior
of oxygen throughout the oxidation process in the MD simulations, which are:

• Structures consisting of two O2 molecules: A total of 27 different structures in
which two O2 molecules are located at various distances and orientations from
each other. These structures were generated by hand and the total energy and
the forces on each atom were determined by single-point calculations using a
in a box with side length 20 Å.

• Structures consisting of three O2 molecules: 4 different configurations of three
O2 molecules with various distances and a cell size of 10×10×10 Åwere calcu-
lated using single-point calculations.
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6 Generating the GAP Training data

• Structures consisting of four O2 molecules: These structures, in total 51, were
generated by AIMD calculations and a cell size of 10 Å×10 Å×10 Å. One of
these structures is shown in Fig. 6.9a.

• Active-learning structures: Six active-learning cycles were carried out, begin-
ning with a GAP that was originally trained using only single O, O2 dimers
and configurations with two O2 molecules. An MD simulation with 116 O2

molecules was initiated following each GAP training. From this MD simula-
tion, certain oxygen artifacts for new training structures were taken out, and
single-point calculated using DFT calculations. A new GAP was trained us-
ing these artifacts in addition to the current training set. In this manner, 32
active-learning structures were produced. Fig. 6.9b shows one of these artifacts.

• Oxidized silicon surface with oxygen artifacts: Oxygen artifacts in the gas
phase have been observed in certain MD simulations when a Si surface with a
cell size of 15.523×15.523×60.00 Å was oxidized. Including oxygen artifacts,
the energy of these gaseous O2 clusters is determined by DFT. In total 29
training structures were created. Fig. 6.9c depicts one of these structures with
the oxygen artifact circled in blue.

6.2.12 Overview of the training data

This section summarizes all the training structures in Tab. 6.2. This table consists
of five columns: In the first column, the structure name is listed, and in the second
column the elements, the number of atoms, or the configuration of the structure are
listed. The third column lists the computation type of the DFT calculation and the
last two columns show the number of each structure and the total number of created
training structures. In total, 3311 training structures were created.

The training structures encompass a variety of configurations, including surfaces
(surf.) and nanowires (NW), some of which are oxidized (oxid.) or defect-free
(def.-free). These structures were selected and refined through active learning (AL)
to ensure optimal performance in the GAP training process. Specifically, oxid.
surf. 1 refers to the active-learning configuration of an oxidized silicon surface
with a cell size of 31.046×31.046×60.00 Å, while oxid. surf. 2 denotes a similar
configuration but with a smaller cell size of 15.523×15.523×60.00 Å. Additionally,
oxid. surf. 3 describes defect-free and oxidized silicon surfaces with a cell size of
15.523×15.523×60.00 Å.

To obtain the necessary energies, forces, and virials at each atom for training the
GAP, single-point calculations (SP), geometry optimizations (geoopt), and cell op-
timizations (cellopt) were performed. In some cases, ab-initio molecular dynamics
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structure atoms, conf. computation number of struct.
�

single atoms Si, O, H SP 3 3
dimers Si-Si SP 97

����229
Si-O SP 23
Si-H SP 52
O-O SP 57

bulk silicon 192 SP 201 201
clean silicon surf. 224 SP 93 93

oxidized silicon surf. 232 SP 180
������������
482

242 SP 86
272 SP 80
284 SP 76

901-1009 SP 51
5211-5258 geoopt 9

def.-free oxid. surf. 178-323 AIMD 203
�
228

232-233 SP 25
bulk SiO2 216 SP 70 70

clean silicon NW 576 cellopt 99
�
200

1680 cellopt 101
oxid. silicon NW 1682 SP 90

�
270

2063 geoopt 180
AL structures oxid. NW SP 490

����1392
oxid. surf. 1 SP 500
oxid. surf. 2 SP 387
oxid. surf. 3 SP 15

oxygen gas 4 SP 27
��������143

6 SP 4
8 AIMD 51

artifacts SP 32
surf.+artifact SP 29

3311

Table 6.2: Overview of all training data

(AIMD) simulations were also employed to capture the dynamic behavior of the
atoms within the structures. These carefully curated configurations form the basis
for the subsequent analysis and testing of the trained GAP models.
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7 GAP Training

This chapter describes how the individual GAPs were trained. Generally speaking,
GAP is trained through a meticulous procedure designed to capture the complex
interactions among atoms in a material system. Therefore, the training dataset must
include a wide variety of atomic configurations and chemical conditions that are rep-
resentative of the material of interest. All the structures used to train the different
GAPs for this thesis are listed in the preceding chapter. As will be demonstrated
later, the selection and compilation of the training dataset is crucial for the GAP
training. The process of training a GAP is nonlinear, making it challenging to predict
how various training structures may affect the accuracy of the trained GAP.

Once the training dataset is assembled, the next step involves feature representa-
tion, where the descriptors are defined to encode information about the local atomic
environments. These features serve as the basis for training the GAP model and
capturing the complex atomic interactions. Furthermore, the choice of model archi-
tecture, including the selection of kernel functions and hyperparameters, is crucial to
optimize the performance of the GAP model.

The contribution of each structure type can be weighted in order to accentuate or
diminish the importance of the respective training data. In GAP, the weighting is
controlled by a parameter σ to account for their varying importance in capturing
the potential energy surface accurately. Lower sigma values indicate more critical
structures, ensuring the model focuses on the most important regions of the poten-
tial energy surface.

In the following, the preparation of the training dataset and the parameters, that
modify the GAP training, are described in more detail below. For the theoretical
background of GAP training, refer to section 5.2.

7.1 Training dataset

The training dataset must be supplied in the extended XYZ format for the gap fit
program. This format contains the atomic number, the cartesian coordinates, and,
if provided, additional forces and virial stresses for each atom in the simulation cell.
The first line of each configuration contains the number of atoms followed by the
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second line, which contains information about the cell size, the virials, the total en-
ergy, and the name of the subcategory (for assigning specific sigma values). The
individual atoms are listed in the other lines, with the element written first, followed
by its Cartesian coordinates and the forces in the x -, y-, and z -directions.

Fig. 7.1 shows an example of a section of a training dataset in the extended XYZ
format, where three configurations can be identified: 2 dimers followed by a bulk
silicon structure. In the example of the Si bulk structure, the most important details
are highlighted in color: The first line shows the number of atoms for the configuration
(here 192) which is highlighted in red. The second line shows, among other things,
the cell size of the structure (in green), the nine virials (in purple), the subcategory
(here Si bulk, in yellow), and the total energy of the structure given in eV (in blue).
The 192 Si atoms of the bulk structure are listed in the next 192 lines. In each line,
the element is shown first (in grey), followed by the Cartesian coordinates and the
three forces acting on the atom. Due to this listing of training structures, a training
dataset can consist of a large number of lines.
The units of the coordinates are given in Å, the energy and the virials in eV and the
forces in eV/Å. The link between the energies and forces of atoms and their config-
urations is what GAP is taught to reveal. Single atoms (Si, O, and H) and dimers
(Si-Si, Si-O, Si-H, and O-H) were therefore always included in all training datasets
so that the trained GAP can act as a suitable surrogate model for the PES of the
system. Each training set also included bulk silicon structures, bulk SiO2 structures,
and clean silicon surfaces. Other training structures in the training dataset varied
in type and number and the selection depended, among other things, on the perfor-
mance of the previously trained GAP. An overview of the individual training datasets
used for training the individual GAPs can be found in section 7.3.

It is important to remember that a GAP training time does not increase linearly with
the number of training structures. The following factors also determine the duration
of a GAP training:

• Type of training structure (including the number and type of atoms it contains)

• Provided structure information (total energy of the structure, forces on each
atom, virials)

• Settings of the descriptors

• The trade-off between the smoothness of GAP and its accuracy in fitting the
structures in the training dataset

The quality and quantity of the training data are crucial for the performance of
the trained GAP. An insufficient or unrepresentative training dataset can lead to a
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Figure 7.1: Section of a training dataset in the extended XYZ format, where two
dimers and one bulk silicon structure are listed. The most important
data are highlighted in color in the example of the Si bulk structure: The
number of atoms in red, the cell size in green, the virials in purple, the
subcategory in yellow, the total energy in blue, and the element symbol
in grey. For each atom, the Cartesian coordinates and the forces acting
on the atom are displayed next to the element symbol.

poorly performing GAP model. A wide variety of atomic configurations and chemical
environments is therefore essential. In addition, selecting and constructing suitable
features or descriptors representing the local atomic environment is a challenge. Ef-
fective features should be able to capture important physical properties of the system
while being dimensionally reduced to avoid overfitting. The problem of overfitting
occurs when the model becomes too closely tailored to the specific training data,
capturing not only the underlying trends but also the noise and inconsistencies [117].
This results in a model that performs exceptionally well on the training set but poorly
on unseen data or new configurations.
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7.2 The gap fit program

The gap-fit program, a GAP learning algorithm that is included in the QUIP package,
is essentially a single line of command that contains all the instructions to train a
GAP on the provided training dataset [105]. Fig. 7.2 shows an example of how
this line of code is structured. The following is a description of the most important
keywords:

• energy parameter name, force parameter name, virial parameter name: These
parameters tell QUIP where the energies, forces, and virials are written in the
training dataset. These names have to match the ones listed in each atomic
configuration‘s information line (the second line in the training dataset in the
extended XYZ format).

• at file: This parameter specifies the training dataset filename

• gap=: Start of the descriptor and kernel specifications. The individual descrip-
tors are separated from each other by colons.

• distance Nb: Sets an N-body descriptor, order=2 defines an 2-body descriptor
and order=3 an 3-body descriptor. The cutoff is the cutoff distance in the
kernel given in Åand defines the maximum distance of the interatomic inter-
actions that will be evaluated. n sparse defines the number of representative
points and controls the resolution. The covariance type sets the form of the
kernel, which is in our example ard se. ard se means Automatic Relevance
Determination Squared Exponential and models the correlation between the
input variables as an exponentially decreasing function of the distance between
the inputs. delta, given in eV, sets the scaling of the kernel and indicates how
significant this description is to the total potential. theta uniform, given in
Å, sets the length scale of the Gaussian kernel and specifies the rate of decay
of the Gaussian kernel. With sparse method one can set the distribution of
the representative points. In our example, it is set to uniform, which results
in a uniform grid up to the cutoff. compact cluster specifies how the cutoff is
applied. T in our example sets it spherically around each atom.

• soap: Sets the SOAP descriptor. atom sigma, given in Å, sets the Gaussian
smearing width of atom density for SOAP. l max and n max define the number
of angular and radial basis functions for SOAP. cutoff is again the cutoff dis-
tance in the kernel and cutoff transition width sets the distance across which
kernel is smoothly taken to zero, both given in Å. delta, covariance type and
n sparse are the same as for the N-body descriptors. zeta sets the power the
kernel is raised to. In our example zeta=4 means to the 4th power.
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Figure 7.2: Example of the code line for the gap fit program. Some keywords are
highlighted in color. The description of them can be found in the text.

• default sigma: These 4 numbers regulate the trade-off between the smoothness
of the GAP and its accuracy in fitting the structures in the training dataset.
The first number corresponds to the energy, the second to the forces, the third to
the virials, and the fourth to the Hessian. The GAP will match the training data
more accurately the lower these numbers are but it increases the probability of
overfitting.

• config type sigma: With this keyword, different sigma values can be attributed
to the different training structures. The names must match the names of the
sub-categories in the extended XYZ file.

• sparse jitter : Sets the additional diagonal regulariser. To avoid numerical in-
stabilities during GAP training, a small random error can be specified.

• gp file=: Sets the name of the output files.

The calculation effort required for GAP training can be significant, especially for
large datasets and complex training structures. To keep the calculation time within
reasonable limits, all GAPs in this thesis were calculated on the Vienna Scientific
Cluster (VSC).

7.3 Overview of the trained GAPs

For this thesis, a large number of GAPs were trained, which differ in the type and
number of training structures, as well as in different settings in the gap fit program.

The GAP training aimed to train a potential that can be applied to silicon oxidation
in MD simulations to generate defect-free oxide layers. This proved to be quite chal-
lenging since the training of GAP involves optimizing a high-dimensional, non-linear
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model to accurately reproduce quantum mechanical properties, such as energies and
forces, across a wide range of atomic configurations. Successfully training a GAP
model demands a deep understanding of both the underlying physics and the ma-
chine learning techniques involved. It requires expertise in selecting representative
training structures that adequately capture the diverse atomic environments present
in the system of interest. The large number of trained GAPs results from the initial
uncertainty in predicting the impact of new training structures in the training data
set on the behavior of the trained GAP.

There are two different sets of trained GAPs in this work. In the first set, an attempt
was made to train a GAP also on datasets including non-defect-free training struc-
tures to produce defect-free oxides. For the second group, only defect-free training
structures were used for the GAP training. It happened that none of the GAPs
could be trained to consistently produce oxides free of defects on all different kinds
of structures. The reason for that lies in the large variety of interatomic interactions
for which the GAP needs to be trained. The trained GAP should be able to map
the atomic interactions accurately as for crystalline Si, amorphous SiO2, and gaseous
oxygen [16].

The two lists in the Fig.s 7.3 and 7.4 provide an overview of the two different sets
of trained GAPs. They indicate which training data was used and which settings
were selected for the individual gap fit parameters. The nomenclature is as follows:
A capital A denotes those GAPs that were also trained on non-defect-free structures.
These are numbered consecutively if additional structures were added to the training
dataset for the GAP training (i.e. A1, A2, etc). Sub-variants are labeled with small
letters starting with a (e.g. A1a, A9b, etc). This labeling indicates that the GAP
was trained on the same training structures, but differs from the GAP with the same
name in other settings (e.g. modified cutoff radii, different σ values, etc). All GAPs
beginning with A are summarised in the table in Fig. 7.3. GAPs that were only
trained on defect-free structures are labeled with a capital B. Otherwise, the nomen-
clature follows that of the A-GAPs. This GAP group is tabulated in Fig. 7.4. In
both figures, the GAP names are listed in the left-hand column. The structures are
listed in the other columns. The number of structures used for the training dataset
is given in the rows of the GAPs. The following abbreviations are used: NW stands
for nanowire, cellopt means cell optimization and SP single-point calculation, geoopt
means geometry optimization, surf. stands for surface and AL stands for active-
learning, oxid. means oxidized (which indicates oxidized structures), AIMD means
ab-initio molecular calculation and def.free stands for defect-free.

In Fig. 7.3, various small surfaces is a summation of the following structures: bulk
silicon, bulk silicon dioxide, clean silicon surfaces, and oxidized silicon surfaces with
a cell size of 15.523×15.523×37.22 Å and 31.046×31.046×60.00 Å. AL oxid. silicon

62



7 GAP Training

NW are oxidized nanowires consisting of 1680 Si atoms, which were oxidized with
GAP A4 in MD simulations using LAMMPS. AL oxid. silicon surfaces are silicon
surfaces with a cell size of 31.046×31.046×60.00 Å, which were oxidized via MD sim-
ulations using GAP A5. The last 3 columns in Fig. 7.3 indicate whether a 3-body
descriptor, virial stress values, or sigma values deviate from the default values used
for the individual GAP training.

In Fig. 7.4, AL oxid. Surface 1 - 4 denotes oxidized silicon surfaces with a cell size
of 15.523×15.523×60.00 Å. AL oxid. Surface 1 -structures were oxidized using GAP
B1, AL oxid. Surface 2 -structures were oxidized using GAP B2, AL oxid. Surface
3 -structures were oxidized using GAP B4 and AL oxid. Surface 1 -structures were
also oxidized with GAP B4 but with Si2 molecules in the gas phase during the MD
simulations. The last column in Fig. 7.4 indicates if modified cutoff radii are used
for the GAP training.

For most of the GAP trainings, the following settings were used. This setting has
proven successful in previous GAP trainings [15]. GAPs that deviate from these
setting are marked with an x in the last column(s):

• Single atoms: σenergy=0.0001, σforces=0.001, σvirials=0.001

• Dimers: σenergy=0.01, σforces=0.1, σvirials=0.1

• Other structures: σenergy=0.002, σforces=0.02 , σvirials=0.02

• Cutoff radius 2-body descriptor: rcutoff Nb=2=4 Å

• Cutoff radius 3-body descriptor: rcutoff Nb=3=3 Å

• Cutoff radius SOAP: rcutoff SOAP=5 Å

In the next chapter, we will discuss the individual performances of these trained
GAPs. It will be shown, that the performance highly depends on the selected types
of trainings structures and their quantity in the training data set.
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Figure 7.3: Overview of trained GAPs, which also have non-defect-free structures
in the training datasets, labeled with a capital A. The GAP names are
shown in the left-hand column. The other columns show the number of
respective structures as well as modifications in GAP training in the last
3 columns.
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Figure 7.4: Overview of trained GAPs, which only have defect-free structures in their
training datasets. These GAPs are labeled with a capital B. In the first
row, the names of the GAPs are listed, followed by the number of the
number of respective structures. The last three rows indicate modifica-
tions in the GAP training.
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The reliability of a trained GAP is directly related to its ability to predict the chem-
ical and physical properties of the structures or combinations for which it has been
trained. To evaluate the accuracy of a GAP, it is commonly compared with DFT
data by testing it on a set of test structures. For this thesis, the test structures
are taken from the training structures, which are left aside and not included in the
training to serve as an independent benchmark.

The performance of a trained GAP is evaluated using statistical measures such as the
mean deviation between the GAP predictions and the DFT data of the test structures.
These metrics provide insights into the accuracy and reliability of the force field and
help to identify and address potential weaknesses. Using this test data, the training
datasets can be optimized for the new GAP training. However, the major challenge
is to predict how a change in the training dataset will affect the accuracy of the GAP.

In this thesis, two methods are used to verify the accuracy and performance of the
trained potentials. On the one hand, tests were carried out against selected test
structures. In some cases, the test structures differ between those GAPs that were
trained exclusively on defect-free structures and those GAPs that also contained de-
fective structures in the training dataset. A description of the test structures follows
in section 8.1. On the other hand, the GAPs that were trained on exclusively defect-
free structures were also verified using MD simulations. Two MD simulations were
started with the trained GAP in LAMMPS. In one MD simulation, a silicone surface
was oxidized. In the second MD simulation, the behavior of O2 in the gas phase was
investigated. Both MD simulations are described in more detail in section 8.2.2.

8.1 Test structures

8.1.1 Bulk SiO2

The bulk SiO2 structures were chosen to verify if the trained GAP accurately re-
produces silicon dioxide. Like the training structures, the test structures consist
of regularly arranged SiO2 structures with a total of 216 atoms (see Fig. 6.6b).
Using MD simulations, a total of 25 bulk SiO2 test structures with a cell size of
15.201×15.201×14.332 Å have been created based on one geometry-optimized bulk
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SiO2 structure [39]. The total energy and the forces acting on the atoms were ob-
tained by using single-point calculations.

8.1.2 Clean silicon nanowires

The oxidation of silicon nanowires is one of the trained GAP’s main tasks. The GAP
was tested against two different clean nanowires to make sure it accurately replicates
the chemical and physical behavior of clean, non-oxidized nanowires:

• Testing against 101 structures consisting of 576 Si atoms (Fig. 6.7a).

• Testing against 101 structures consisting of 1680 Si atoms (Fig. 6.7b).

All structures and data were created using MD simulations in LAMMPS and subse-
quent DFT cell optimizations.

8.1.3 Oxidized silicon nanowires

To ensure the performance of GAP concerning oxidized nanowires, tests were also
carried out against such structures. Therefore 20 oxidized nanowires, each consisting
of a total of 2063 atoms (Fig. 6.8b), were selected for this purpose. The test data of
the structures originating from MD simulation were generated by using DFT.

8.1.4 Active-learning testing structures

Tests were also conducted against two different active-learning structures that were
oxidized utilizing a previously trained GAP. The test data was generated using MD
simulations and single-point calculations. The following structures were selected for
testing:

• 200 structures of oxidized silicon surfaces with a cell size of 31.046×31.046×60.00 Å,
which were oxidized in MD simulations using GAP A5 (Fig. 6.4a).

• 201 structures of oxidized silicon nanowires consisting of 1680 silicon atoms
(similar to Fig. 6.8b). These structures were oxidized using also GAP A5 in
the MD simulations.

8.1.5 Oxygen gas

Additionally, the trained GAP was evaluated against two pure oxygen structures to
ensure it accurately represents oxygen behavior. These two structures, whose data
were generated using MD simulations and single-point calculations, are as follows:

• 4 O2 molecules in a 10×10×10 Å box, of which a total of 21 test data were
created (Fig. 6.9a).
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• 16 O2 molecules in a 20×20×20 Å box. Of these, 21 data were also created.
This test structure looks similar to the other oxygen test structure, except
that now 4 times as many O2 molecules are distributed over an 8 times larger
simulation cell.

8.1.6 Defect-free oxidized surfaces

The potentials that are trained exclusively with defect-free training structures were
also tested against defect-free structures. Various defect-free structures were selected
for testing, which are:

• Defect-free oxidized surfaces from AIMD calculations with a cell size of 15.523×
15.523×37.22 Å. Test data from a total of 395 different structures were created.
These structures have varying oxide layer thicknesses and consist of a total of
228 to 323 atoms.

• Defect-free oxidized surfaces from MD calculations, which possess the same
cell size of 15.523×15.523×37.22 Å. These structures consist of between 232
and 233 atoms (Fig. 6.6a). The test data, which originate from single-point
calculations, were taken from a total of 189 structures.

8.1.7 Summary of the testing data

All test structures are summarized in Tab. 8.1. The first column contains the name
of the structure and the second column contains the number of atoms that make up
the structure or the configuration. The third and fourth columns contain the number
of test structures.

The testing data includes nanowires (NW) and surfaces (surf). They can be defect-
free (def.-free), partly oxidized (oxid) and trained by active-learning (AL). Both
active-learning configurations, the oxidized silicon surfaces (oxid. surface) and the
oxidized nanowires (oxid. NW), were oxidized using GAP A5 as force field. Addition-
ally, also defect-free and oxidized silicon surfaces from AIMD calculations (AIMD)
and from MD and single-point calculations (MD) are contained in the testing data.
Both possess a cell size of 15.523×15.523×60.00 Å.

8.2 Testing

8.2.1 Testing against test structures

The trained GAPs are applied to the test structures to calculate the energies and
forces. These results are compared with the values from the DFT calculations by
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structure atoms, configuration number of struct.
�

bulk SiO2 216 25 25
clean silicon NW 576 101

�
202

1680 101
oxid. silicon NW 2063 20 20
AL oxid. surface 1223 200

�
401

AL oxid. NW 2413 201
oxygen gas 8 21

�
42

32 21
def.-free oxid. surf. 228-323 for AIMD 395

�
584

232-233 for MD 189

1274

Table 8.1: Overview of all testing structures

using the mean absolute error (MAE) to quantify the agreement between the GAP
and DFT. The MAE values for the energy are given in units of meV/atom, and the
MAE values of the forces in units of eV/Å. Based on these values, appropriate adjust-
ments can now be made to the new training dataset to increase the accuracy of the
new GAP. However, experience and sensitivity are required when creating the new
training dataset. It is also important to have a critical point of view on the extent
to which the test structures allow statements to be made about the accuracy of the
trained GAP. The measured MAE values prevent an accurate statement about the
behavior of the trained GAP with other structures if the test is conducted against
an insufficient number of test structures.

The tables in Fig. 8.1 and Fig. 8.2 list the calculated MAE values for the trained
GAPs, which were also trained on non-defect-free structures. These potentials were
not tested against defect-free test structures. In Fig. 8.3 and Fig. 8.4 the MAE values
of those GAPs trained on exclusively defect-free structures are tabulated. The MAE
values for the energy and forces for the respective test structure are listed in separate
columns in both figures.

8.2.2 Testing with MD simulations

The main aim of the trained GAP is to generate defect-free oxidized silicon struc-
tures. However, it is difficult to tell from the MAE values whether the oxidation of
the silicon structures in the MD simulations produces defect-free oxides. For this
reason, two additional MD simulations were carried out with those GAPs that were
trained on defect-free structures for verification.
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Figure 8.1: Part I of the MAE values for the energy (in units of meV/atom) and the
forces (in units of eV/Å) against the test structures for the trained GAPs
which also have non-defect-free structures in the training datasets. The
GAP names are listed in the left-hand column, and the test structures in
the first line. The MAE values for the energy and the forces are written
next to each other in separate columns for each test structure. GAP A12a,
which performs best when averaged over all test structures, is marked in
blue.
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Figure 8.2: Part II of the MAE values for the energy (in units of meV/atom) and the
forces (in units of eV/Å) for the trained GAPs which were also trained
on non-defect-free structures. The left-hand column lists the GAP names
and the test structures are written in the first line. MAE values for the
energy and the forces are in separate columns for each test structure.
GAP12a is also highlighted in color again.
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Figure 8.3: Part I of the table of the MAE values for the energy (in units of
meV/atom) and the forces (in units of eV/Å) which only have defect-
free structures in their training datasets. The GAP name is listed in the
left column. The MAE values for each test structure are listed in the next
columns, whereas the MAE values for energy and forces are presented in
separate columns. The names of the test structures are listed in the first
line.Here, GAP B17, which is highlighted in blue, performs best of all
GAPs in terms of the averaged MAE values.
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Figure 8.4: Part II of the table of the MAE values for the energy (in units of
meV/atom) and the forces (in units of eV/Å) which only have defect-
free structures in their training datasets. The GAP name can be found
in the left column. The MAE values for each test structure are listed in
the next columns, whereas the MAE values for energy and forces are pre-
sented in separate columns. The names of the test structures are listed
in the first line. As in Part I, GAP B17 is highlighted in blue.
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(a) Before oxidation (b) After oxidation cycle 2

∆t

(c) After oxidation cycle 13

∆t

Figure 8.5: Oxidation process of a silicon surface using GAP B4 for the MD simu-
lations. A total of 15 oxidation cycles were carried out, with the oxygen
in the vacuum being renewed after each cycle. Panel (a) shows the clean
silicon surface before the oxidation process. Panel (b) shows the sur-
face after the second oxidation cycle. The oxidation progresses relatively
quickly at this stage. Panel (c) shows the surface after the thirteenth
oxidation cycle. Further oxidation becomes more challenging due to the
thicker oxidation layer.

In the first MD simulation, a silicon surface with a cell size of 15.523×15.523×60.00 Å
is oxidized in 15 MD cycles. Each MD cycle consists of 100.000 steps. After each
oxidation cycle, the oxygen atmosphere is renewed so the oxide can continue growing.
With each GAP, five silicon surfaces get oxidized in this manner. Fig. 8.5 illustrates
this oxidation process on the example of GAP B4 : The clean silicon surface before
the oxidation is displayed in Fig. 8.5a, the silicon surface after the second cycle of
oxidation is shown in Fig. 8.5b, and the silicon surface completing the 13th cycle is
shown in Fig. 8.5c. After the last oxidation cycle, the dangling bonds in the oxide
got passivated with hydrogen atoms. This makes it easy to detect the defects.

In the second MD simulation, the behavior of pure oxygen was investigated with
the trained GAP. For this purpose, two similar MD simulations with O2 molecules
were started: One at a pressure of 50 bar and the second with O2 molecules at a
pressure of 150 bar. The simulation cell size for both simulations is 40×40×40 Å,
resulting in 116 O2 molecules in the gas phase for the first simulation and 348 O2

molecules for the second simulation. The information of the behavior of the O2 gas
with the investigated GAP was used to readjust the type and amount of the training
structures for the new GAP training.
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8 GAP Testing

8.2.3 Testing results

A total of 22 GAPs, which also have non-defect-free structures in the training datasets
(A-GAPs), and a total of 27 GAPs, which only had defect-free structures in their
training dataset (B-GAPs), were trained. With a look on their MAE values against
the different test structures, their is no linear increasing in the performance of the
individual GAPs. The changes in the respective training sets also change the perfor-
mance of the GAPs with respect to the individual test structures. The GAPs that
performed best across all test structures averaged over all MAE values are highlighted
in color in the respective tables, i.e. GAP A12a and GAP B17. A more detailed
analysis of the performance of these two GAPs is provided in section 9.1, where the
energies and the forces between GAP and the DFT values with regard to the different
test structures are also shown graphically.
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9 Results

In this chapter, the capabilities of selected GAPs are presented and compared with
other modelling approaches. The main goal of this thesis is to develop a GAP that
simulates the oxidation of silicon with ab-initio accuracy. The results will be evalu-
ated using various analyses and the predictions of the trained GAP will be compared
with ab-initio reference data to assess the agreement and accuracy of the GAP. In
addition to the growth rate of the oxide, the structural properties of the formed oxide
and the interface quality will be analyzed. Concerning MD simulations, the GAP
is also compared with the reactive force field ReaxFF from Ref. [118]. Similar to
the results presented within this thesis, a concise version of this work has been pub-
lished on arXiv [16] and is currently under review in the Journal of Chemical Physics.

As shown in chapter 7, the GAP training is an optimization process attempting to
obtain an even more accurate GAP by modifying the training data and the train-
ing parameters, which reflects the physical and chemical properties of the silicon
oxidation process even better. In this context, numerous GAPs were trained and
subsequently tested for accuracy. Two of these GAPs (A12a and B17 ) proved to
be particularly powerful in terms of MAE values across all test structures. In the
following, these two ML force fields are analyzed in more detail.

9.1 Comparison to DFT

The test structures, presented in section 8.1, are used to compare GAP with the
DFT predicted energies and forces. Here, GAP A12a, which was trained on also
non-defect-free training structures, and GAP B17, which was trained on exclusively
defect-free training structures, will be compared with these test structures.

9.1.1 Comparison of GAP A12a with DFT

GAP A12a was trained on a total of 1388 training structures, whereby in addition
to the energies and forces, also the virials were used to train GAP. The setting of
the descriptor parameters is listed on the left-hand side in Tab. 9.1. Here, δ denotes
the kernel scaling in eV, rcut is the cutoff radius, and r∆ is the distance across which
kernel is smoothly taken to zero, both given in Å. nmax and lmax define the number
of angular and radial basis functions, respectively and ζ denotes the power the kernel
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9 Results

parameter SOAP 2-body
δ (eV) 0.4 4
rcut (Å) 4 4
r∆ (Å) 1 -
nmax 8 -
lmax 4 -
ζ 4 -

structure σenergy σforces σvirials

single atoms 0.0001 0.001 0.001
dimer 0.01 0.1 0.1

default values 0.002 0.02 0.2

Table 9.1: Setting of the parameters for training GAP A12a. The descriptor param-
eters are listed in the table on the left, where δ denotes the kernel scaling,
rcut denotes the cutoff radius, r∆ denotes the distance across which kernel
is smoothly taken to zero, nmax and lmax define the number of angular and
radial basis functions and ζ denotes the power the kernel is raised to. The
table on the right lists the sigma values for each subcategory used in the
training dataset. σenergy denotes the σ parameter for the energy, σforces

for the forces and σvirials for the virials, respectively.

is raised to. The setting of the sigma values for the training of GAP A12a is given
on the right-hand side of Tab. 9.1. All training structures in the training dataset,
except single atoms and dimers, were assigned the same σ values.

GAP A12a was tested against all test structures listed in Tab. 8.1, except the defect-
free structures, which gives a total of 691 test structures. The result can be seen
in Fig. 9.1a, which compares the DFT energies and the DFT forces with the ones
calculated with GAP. The calculations for the energy and the forces yielded an aver-
aged MAE of 37.74meV/atom for the energy and 0.4 eV/Å for the forces. The MAE
values especially against the oxygen test-structures have by far the highest value, as
the GAP was primarily trained on structures containing silicon or silicon and oxygen
together. Without including the oxygen test structures, the averaged MAE value for
the energy yields to 16.89meV/atom and for the forces to 0.23 eV/Å. Dashed blue
lines with slope 1 in Fig. 9.1a indicate that the values of the energy (upper panel)
and forces (lower panel) indicate a very good correlation throughout the whole range
of structures. In the two small windows within the energy plot, the energy values for
the bulk SiO2 structures (blue dots) and for the oxidized NW (green dots) are shown
zoomed in as an example.

9.1.2 Comparison of GAP B17 with DFT

GAP B17 was trained on a total of 907 structures. In contrast to GAP A12a, no
virials were included in the training but a 3-body descriptor. The settings of the
descriptor parameters and for the σ values are listed in Tab. 9.2.
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(a) Comparison of GAP A12a and DFT (b) Comparison of GAP B17 and DFT

Figure 9.1: Panel (a) compares GAP A12a and DFT on a total of 691 test structures.
The values of the energies (in the upper panel) and the forces (lower panel)
show very good agreement throughout the whole range of structures. The
two small windows within the energy plot enlarge the energy values for
the bulk SiO2 structures (blue dots) and the oxidized NW (green dots).
The blue dotted lines indicate perfect agreement, i.e. a line with slope
1. The average MAE for the energies is 37.74meV/atom and the average
MAE for the forces is 0.4 eV/Å. Panel (b) compares B17 and DFT. In the
upper panel, the MAE of the energies are plotted with a mean MAE value
of 25.4meV/atom. The lower panel shows the MAE of the forces with
an average MAE of 0.25 eV/Å. The two graphs in the energy plot show
again the energy values of the bulk SiO2 structures (blue dots) and the
oxidized NW (green dots). Compared to GAP A12a, GAP B17 performs
better in terms of both energy and forces.
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parameter SOAP 2-body 3-body
δ (eV) 0.4 4 1
rcut (Å) 5 4 3
r∆ (Å) 1 - -
nmax 8 - -
lmax 4 - -
ζ 4 - -

structure σenergy σforces σvirials

single atoms 0.0001 0.001 0.001
dimer 0.01 0.1 0.1

default values 0.002 0.02 0.2

Table 9.2: Setting of the parameters for training GAP B17. Abbreviations are de-
scribed in the text. The descriptor parameters are listed in the table to
the left. In contrast to GAP A12a, a 3-body descriptor was also employed
to train GAP B17. The settings of the sigma values, listed in the table to
the right, are the same as for GAP A12a.

GAP B17 was evaluated against all test structures listed in Tab. 8.1, including the
defect-free ones. The result can be seen in Fig. 9.1b. When considering all structures,
the energy and forces calculations result in an average MAE of 28.34meV/atom for
the energy and 0.24 eV/Å for the forces. Without the oxygen structures, the energy
and forces calculations result in an average MAE for the energy of 25.4meV/atom
and the forces 0.25 eV/Å. If only those test structures are considered against which
GAP A12a was tested, GAP B17 performs better in terms of both energy and forces:
The difference in the MAE values are 16.46meV/atom for the energy and 0.16 eV/Å
for the forces. The two graphs in the energy plot in Fig. 9.1b are in turn an enlarged
energy plot of the bulk SiO2 structures (blue dots) and of the oxidized NW (green
dots). GAP B17 demonstrates an excellent correlation between the DFT and GAP
values.

Based on the comparison with DFT values, GAP A12a and B17 demonstrated strong
accuracy, indicating their reliability. Given their performance, these GAPs can now
be effectively employed as force fields in MD simulations. This approach offers a
significant advantage, as the GAP-based MD simulations run much faster than DFT
calculations while maintaining a similar level of accuracy. This makes them highly
suitable for large-scale simulations where both speed and precision are crucial.
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Figure 9.2: Oxidized silicon surface, which contains 5161 atoms and possesses a cell
size of 62.092×62.092×60.00 Å, used for analyzing the structural prop-
erties of the oxide. The surface was oxidized using GAP A5 in MD
simulations.

9.2 Structural properties

Another means of validating the GAP is to study the structural properties of an oxi-
dized structure that has been oxidized using the trained GAP. This analysis enables
conclusions to be drawn regarding the correspondence between the generated oxide
layer and the physical reality.

The oxidized silicon surface, which is shown in Fig. 9.2, was analyzed for structure.
This surface possesses a cell size of 62.092×62.092×60.00 Å and consists of 5161
atoms. It exhibits an oxide thickness of around 1.2 nm and got oxidized using GAP
A5 in MD simulations. The structural properties of the surface are presented in
Fig. 9.3. As can be seen in the upper left histogram, the mean Si–O bond length of
the surface agrees with the average Si–O bond length from the literature [119, 120],
which is 1.63 Å. Some bonds have a length of more than 1.8 nm. These bonds are
limited to the interface between crystalline silicon and silicon oxide, indicating a
considerable strain. The upper right histogram shows the angular distribution of
the O–Si–O bond angles. The angular distribution reveals the formation of SiO4

tetrahedrons in the oxide as ideal tetrahedrons exhibit a perfect angle of 109.47◦

between O–Si–O. Since SiO4 tetrahedra begin to form at the very beginning of the
oxidation process, even ultrathin oxide layers are comparable to bulk SiO2 in terms
of their characteristics [9]. Also, the formation of O–Si–O angles greater than the
ideal 109.47◦ for tetrahedra is consistent with previous observations [121]. The his-
togram on the bottom left shows the coordination numbers of Si and O. It shows
that most of the silicon atoms are coordinated by 4 oxygen atoms. The histogram
to the right shows the spatial distribution of the 1-fold coordinated and the 4-fold
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Figure 9.3: The structural properties of an ML oxidized surface with a cell size of
62.092×62.092×60.00 Å and which contains 5161 atoms. Panel on the
top left shows the Si–O bond length, which is close to 1.63 Å from the lit-
erature [119, 120]. Panel top right: The O–Si–O bond angle distribution
is plotted in the upper right histogram. The angles match a tetrahedron’s
ideal 109.47◦. Panel bottom left displays the distribution of coordination
numbers. The coordination of the Si atoms appears to range from 1 to 4
O atoms, with most of the Si atoms being coordinated with 4 O atoms.
The histogram in the bottom right panel shows the spatial distribution of
the Si atoms that are 1-fold coordinated with O (CN=1) and those that
are coordinated with 4 O atoms (CN=4). With zi as the z position of the
interface, the lower coordinated Si atoms are located near the interface.
Figure adaped from [16].
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coordinated Si atoms, with zi as the z-position of the interface. To evaluate zi, the
five lowest oxygen atoms’ z -positions are averaged. Si atoms with one single oxygen
coordination (CN = 1) are located primarily near the interface (zi) between bulk Si
and oxide, whereas the 4-fold coordinated silicon atoms (CN = 4) are located in the
SiO4 tetrahedra in the oxide. Furthermore, the oxide layer density is approximately
2.5 g / cm3, which is in line with the experimental values for amorphous SiO2 [119].
Furthermore, these results are also consistent with electron-energy-loss spectroscopy
(EELS) [122, 123], photoemission studies [119, 124] and transmission electron micro-
scope (TEM) images [119, 125].

Figure 9.4: The averaged oxide growth kinetics of silicon surfaces with a cell size
of 31.046×31.046×60.00 Å. Due to chemisorption, the initial oxidation
process is rather fast with an oxidation growth rate around 75 Å/ns. As
soon as the first SiO2 layer has formed, the diffusion of oxygen through
the oxide limits the further oxide growth and the growth rate decreases
to around 4.2 Å/ns. Figure adaped from [16].

9.3 Oxide growth kinetics

The oxidation growth of silicon was analyzed using clean silicon surfaces with a cell
size of 31.046×31.046×60.00 Å, which are exposed to O2 gas. For greater significance,
a total of 8 of these structures were oxidized. The layer growth was then averaged
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over all structures. To specify a representative layer thickness, the average z -position
of the five lowest oxygen atoms at the interface, zi, and the average z-position of the
five highest oxygen atoms of the oxide surface, zs, were determined. The difference
between these two mean values gives then the oxide thickness d = zs− zi. The result
of this oxidation growth process is shown in Fig. 9.4, where the oxide layer growth
is plotted over time.

The oxidation of the clean surfaces was carried out using GAP A4 in MD simulations,
whereby the surfaces were exposed to oxygen at a gas pressure of 50 bar. The oxygen
gas was renewed every 10.000 time steps in the MD simulation so that new O2 was
always available for further oxidation. The pressure of the oxygen gas of 50 bar was
chosen to keep the simulation time for complete oxidation within reasonable limits.
Due to the dynamic oxidation process, the oxide does not grow at the same rate
at each point on the Si surface, which leads to a conditional surface roughness. As
already mentioned in section 2.3.1, the oxidation rate decreases with the thickness
of the oxide. This behavior is consistent with the theoretical work on AIMD calcula-
tions [27] and was also confirmed experimentally [9]. The first oxidation stage can be
characterized by Chemisorption, in which O2 molecules dissociate and are adsorbed
on the silicon surface. Consequently, the oxide layer grows rather rapidly at first, as
can be observed in Fig. 9.4. The growth rate at this stage is around 75 Å/ns and is
limited only by the number of O2 molecules interacting with silicon. As soon as the
first SiO2 layer has formed, the growth rate decreases to around 4.2,Å/ns, as further
layer growth requires oxygen to first diffuse through the oxide layer already formed.
As can be seen in Fig. 9.4, the trained GAP is also able to reproduce this stage of
the oxidation process correctly.

9.4 Surface and Interface roughness

The oxidation of silicon is accompanied by considerable surface roughness, which is
confirmed by numerous experiments [28, 126]. Due to the random O2 adsorption
trajectories, layer growth on the Si surface does not occur simultaneously at all loca-
tions. During the initial oxidation phase, the roughness of the oxide layer increases
with thickness, but stabilizes once the layer reaches 10 nm. At this stage, the oxida-
tion rate decreases, becoming controlled by oxygen diffusion [28], as described in the
Deal-Grove model [18], rather than by surface reactions of oxygen, which drive the
faster oxidation observed in the early stages [9].
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Figure 9.5: Interface roughness of an oxidized surface possessing a cell size of
62.092×62.092×60.00 Å. The roughness results from the random adsorp-
tion trajectories of the dynamic oxidation process. The interface has an
RMS roughness of RRMS=0.73 Å. The average height of the interface is
z̄i=13.38 Å. Figure adaped from [16].

Figure 9.6: Surface roughness of an oxidized surface with a cell size of
62.092×62.092×60.00 Å. The oxide thickness ranges from 2.94 Å to
11.77 Å.
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In the following, the interface roughness and the oxide roughness of an oxidized silicon
surface are analyzed. This oxidized structure, which is similar to the structure pre-
sented in Fig. 9.2, consists of 4846 atoms and possesses a cell size of 62.092×62.092×
60.00 Å. The interface roughness of the structure resolved in the in-plane directions
is shown in Fig. 9.6. The deviation of the z -position from the lowest oxygen atom,
z, to the average interface location of all lowest oxygen atoms, zi, is used to express
the roughness in color for each sub-segment. Rmean = 0.56 Å is the mean deviation,
while RRMS = 0.73 Å is the root mean square deviation. This result is in reasonable
agreement with the observed values published in [28]. The highest absolute deviation
is about 2.17 Å.

(a) Si surface oxidized using ReaxFF as
force field

(b) Si surface oxidized using GAP as
force field

Figure 9.7: Comparison between the growth kinetics of ReaxFF and GAP as force
field in MD simulations. Both surfaces underwent 142 oxidation cycles.
Panel (a) shows the oxidized surface with ReaxFF as force field (consisting
of 1198 atoms), panel (b) shows the oxidized surface, which was oxidized
using GAP as force field (consisting of 1263 atoms). It is evident that
there is a significant difference in the growth kinetics between these two
force fields. When using ReaxFF there are 15% less oxygen molecules
dissolved on the surface. ReaxFF tends to overestimate oxygen diffusion,
resulting in a lower density of oxygen atoms distributed throughout the
silicon atoms in the crystal. Consequently, this leads to an expanded
interface with a lower-than-anticipated Si–O coordination, as illustrated
in Fig. 9.9.

The roughness of the oxide is shown in Fig. 9.6 in the in-plane direction. For each
surface section, the oxide’s thickness is shown in color and the difference in the
z-positions between the lowest (zmin) and highest (zmax) oxygen atoms is used to
calculate the thickness d = zmax − zmin per segment. As the oxide does not grow at
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the same rate everywhere, the oxide thickness varies between 2.94 Å and 11.77 Å.

9.5 Comparison between GAP and ReaxFF

ReaxFF is a widely used force field in MD simulations, described in section 4.1.2.
The trained GAP and ReaxFF were compared using two identical MD simulations.
Except for the force field, all parameters remained the same. In both simulations, a
clean Si surface with a cell size of 31.046×31.046×60.00 Å underwent 142 oxidation
cycles. After every 10.000 timesteps, which is one oxidation cycle, the oxygen in the
gas phase was renewed, bringing the gas pressure back to 50 bar. Fig. 9.7 shows both
oxidized surfaces after 142 cycles. On the left is the surface oxidized with ReaxFF
and on the right the surface oxidized with GAP A5.

There are a total of 1198 atoms in the ReaxFF-oxidized structure and 1263 atoms
in the GAP-oxidized structure. As the number of Si and H atoms is the same in
both structures, the oxide in the GAP-oxidized structure consists of additionally
65 oxygen atoms. It is also noticeable in Fig. 9.7 that, in comparison to the GAP
oxidized structure, the oxygen diffuses considerably deeper into the surface in the
ReaxFF oxidized structure. In Fig. 9.8 the structural properties of the GAP oxidized
surfaces are given. These are very similar to the structural properties of the oxidized
surfaces presented in section 9.2: The mean bond length is close to the 1.63 Å from
the literature [119, 120], although some longer bond lengths are also existing due to
considerable strain in the interface area. As can be seen in the top right histogram,
the mean O–Si–O bond angle matches the ideal 109.47◦ of the SiO4 tetrahedron very
well. The bottom left histogram illustrates that most Si atoms are 4-fold coordinated
with O atoms. There are also 1-fold coordinated Si atoms existing, which are located
exclusively in the interface area between the Si/SiO2 (bottom right histogram).
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Figure 9.8: Structural properties of an oxidized surface with a cell size of
31.046×31.046×60.00 Å. This structure was oxidized using GAP A5. The
properties are comparable to the structure given in Fig. 9.2: The mean
Si–O bond length (histogram on the top left) is close to 1.63 Å, the mean
O–Si–O bond angle (histogram on the top right) matches the tetrahe-
dron’s ideal 109.47◦, most of the Si atoms in the oxide are coordinated
with 4 oxygen atoms (histogram on the bottom left), whereas the 1-fold
coordinated Si atoms are found close to the interface (histogram on the
bottom right). Figure adaped from [16].
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Fig. 9.9 presents the structural parameters of the ReaxFF oxidized surface for com-
parison. The typical Si–O bond length, as indicated by the top left histogram, is
1.55 Å on average, which is less than the 1.63 Å stated in the literature. The scatter
of the average bond length is quite small and the densities that produce ReaxFF
are roughly 10% higher than the experimental values [119], indicating that the bond
lengths in the interfacial and oxide areas of the interfacial structure are shortened.
The histogram at the upper right shows, that the average O–Si–O bond angle closely
matches the 109.47◦ for the ideal SiO4 tetrahedron. As can be recognized in the
histogram on the bottom left, only very few Si atoms coordinate 4-fold due to the
high diffusion of oxygen into the Si crystal. The 4-fold coordinated Si atoms are only
found in the top third of the oxide, whereas the 1-fold coordinated Si atoms (CN=1)
are mainly found in the deeper part of the oxide (histogram on the bottom right).
This indicates, that ReaxFF overestimates the diffusion of oxygen and as a result,
the distribution of O atoms among the Si atoms in the crystal has a low density.
The outcome is a very large interface that strongly differs from the experimental
results [119, 122–125] in that the Si–O coordination is lower than expected.

In summary, even though the MD simulations with GAP run around 25 times slower
than MD simulations using ReaxFF, the resultant oxide layer formed by our GAP
produces much more realistic interface structures. Because of the overestimated
oxygen diffusion, ReaxFF produces oxides also with a much higher defect density.
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Figure 9.9: Structural properties of an oxidized surface with a cell size of
31.046×31.046×60.00 Å, which was oxidized using ReaxFF as a force field
in MD simulations. The left top histogram indicates that the mean Si–O
bond is 1.55 Å, which is significantly lower than the 1.63 Å from the litera-
ture. The mean O–Si–O bond angles (histogram on the top right) match
the 109.47◦ from an ideal tetrahedron. The histogram at the bottom
left shows that most of the Si atoms in the oxide are 1-fold coordinated
(CN=1) and the fewest are 4-fold coordinated (CN=4). The 4-fold co-
ordinated Si atoms are located exclusively in the top third of the oxide,
which is illustrated in the histogram at the bottom right. Figure adaped
from [16].
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10 Summary and Outlook

The present master thesis focusses on training a interatomic ML potential based on
GAP for the oxidation of silicon and investigates its applicability for MD simulations
with the purpose of modeling the thermal oxidation of Si. This process was required
by carefully creating and selecting training structures, adjusting the training param-
eters, and validating the trained potentials using selected test structures and MD
simulations. The main results of this work show that the trained GAP potential can
describe the atomistic structure, dynamics, and energetics of Si/SiO2 systems with
high accuracy and efficiency. By comparison with DFT data and experimental obser-
vations, it was shown that the GAP potential provides reproducible results that agree
well with the experimental data while significantly reducing the computational effort.

Due to the extremely complex nature of the PES, which is supposed to reflect the
chemical and physical behavior of silicon, oxygen, and hydrogen and their interac-
tions, the training of such a GAP poses various challenges. The most challenging task
was the prediction of the influence of how additional training structures will affect
the accuracy of the current GAP. It was often found that adding additional training
structures improved the MAE values for certain test structures, but simultaneously
worsened the MAE values of the other test structures. Finding a GAP that had ac-
ceptable MAE values on all test structures proved to be a major challenge, resulting
in a large number of trained GAPs. Also, an extensive training dataset will increase
the GAP training time. For example, the training time for the GAP A11a, which
utilized a training dataset of 1582 structures and virials, was 17 hours, compared to
around 3 hours for the GAP B1, which employed a total of 626 training structures.

The ultimate goal of any ML potential is to predict the interactions of the atoms as
accurately as possible, regardless of the size and shape of a given structure. However,
this goal is extremely ambitious and hard to achieve. The ML potential presented in
this thesis achieves excellent results in the oxidation of silicon, especially for surfaces.
Compared to the very successful reactive force field (ReaxFF), the trained GAP pro-
duces much more realistic interface structures. It allows to run MD simulation with
DFT accuracy for modeling interfaces and nanostructures comprised of the techno-
logically highly relevant material system Si/SiO2. Compared to AIMD calculations,
MD simulations using GAP as a force field run substantially quicker by several orders
of magnitude with significantly reduced computational costs.
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