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Keep Going

“When things go wrong, as they sometimes will,
When the road you’re trudging seems all uphill,
When the funds are low and the debts are high,
And you want to smile, but you have to sigh,
When care is pressing you down a bit,
Rest, if you must, but don’t you quit.

Life is queer with its twists and turns,
As every one of us sometimes learns,
And many a failure turns about,
When he might have won had he stuck it out;
Don’t give up though the pace seems slow-
You may succeed with another blow.

Often the goal is nearer than,
It seems to a faint and faltering man,
Often the struggler has given up,
When he might have captured the victor’s cup,
And he learned too late when the night slipped down,
How close he was to the golden crown.

Success is failure turned inside out-
The silver tint of the clouds of doubt,
And you never can tell how close you are,
It may be near when it seems so far,
So stick to the fight when you’re hardest hit-
It’s when things seem worst that you must not quit”

by Edgar Guest, “Keep Going”, published in Detroit Free Press (4 March 1921)
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Abstract

Nearly two-thirds of the global population now have internet access. As a result, an-
nual global Internet traffic has increased exponentially to 4.8 Zettabytes (ZB) by 2022.
The rise of users has driven the growth of data centers and smart devices for Internet-
of-Things (IoT), expected to take a share of 23% of the global energy footprint by
2030. This problem is going mutually with the von-Neumann computing architecture
bottleneck. The saturation of clock frequency in the central processing unit (CPU) has
flattened out the current computing machine efficiency, which cannot sustain future data
processing and generation demand. Eventually, the digital brick wall leads to a comput-
ing gap where a new computing technology is necessary.

On the other hand, the brain is a powerful natural computer within humans, which
has a large scale and an efficient algorithm beyond the human-built computer. The
brain has the capability to perform 1013 − 1016 operations per second with a power of
only 15-25 W, which is eight orders of magnitude more efficient than the current dig-
ital electronic supercomputer. The parallel processing of the brain’s neural network is
the core of high-speed computation, which has been studied to develop artificial intel-
ligence (AI). The success of AI, which has empowered decision-making machines, has
pushed the investigation of brain-inspired computers at the physical level or a so-called
neuromorphic computing.

Photonics, with its inherent parallelism and proven ability to offer low latency and
fast signal processing in the GHz range, is a promising platform for neuromorphic com-
puting. This potential of photonics for neuromorphic computing offers hope for the
future of technology, with the possibility of developing faster and more efficient com-
puting systems.

The neural network is based on two essential ingredients: the linear weighted sum-
mation, where all the neural inputs are weighted and summed, followed by the nonlinear
activation function for the decision boundary. One approach to performing analog neu-
romorphic processing is to employ it in the optical domain, where the equivalent neural
network functions have to be identified. Towards this direction, this thesis plays an im-
portant role in finding the key ingredients in the photonics realm based on the frequency
coding of the synaptic signals.
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The first part presents a synaptic receptor that functionally integrates the weighting
and summation functions. The matrix multiplication based on the frequency coding
of synaptic signals can be performed by employing the wide bandwidth of a semicon-
ductor optical amplifier (SOA) and an electroabsorption modulator (EAM). It will be
shown that two spike trains can be simultaneously processed with opposite polarities
and detected as the weighted sum. The result proves that the synaptic receptor can carry
multiple colors of synapses and can potentially scale the optical neural network (ONN).

Afterwards, this thesis investigates the photonic activation function, focusing on the
rectified linear unit (ReLU) function. The ReLU unit is performed by optical frequency
coding of signals via a linear transmission of an optical filter and a subsequent pho-
todetector with its noise for clipping the signal. A digital neural network (DNN) based
on the Iris flower classification case is used as a benchmark. It will be demonstrated
that a small penalty of 3% in accuracy is achieved when transferring the classification
challenge from the digital to the optical domain. This renders that the scheme can be
efficiently employed in the ONN.

Next, the constituent ingredients are combined to perform the photonic neuron.
Multiple neural sub-circuits can be collapsed over the photonic ReLU. The demon-
stration reveals that the weighting functionality can be integrated over the same ReLU
unit, which motivates the simplification and cost-optimization of ONN scaling. A low
penalty of 1% can be achieved in terms of accuracy compared to DNN.

Nevertheless, optoelectronic conversion is the main bottleneck between the linear
and nonlinear operations in the photonic neuron. A translucent concatenation scheme
is discussed afterwards, where the photocurrent of the weighted sum directly drives the
subsequent FM translator in the activation circuit without the need for electronic ampli-
fication. This investigation promises an energy-efficient interface that can be scaled to a
smaller footprint.

Eventually, the functional complete neuron in neuromorphic processing is presented
in a space-switch architecture. Especially, the space-switch architecture can be made
reconfigurable as a so-called photonic processing unit (ΦPU) to employ other signal
processing functions, taking advantage of re-using the optical elements. It will be con-
firmed that ΦPU has a penalty-free operation. Furthermore, the neuromorphic process-
ing in the space-switch is compared with the one in wavelength-routed architecture by
employing the translucent concatenation scheme. A penalty <2% can be achieved for
multiple optical/digital sub-circuits implementation scenarios.

The novelties presented in the thesis contribute to the neuromorphic photonics field
and the possibility of scaling the ONN in a smaller device footprint.
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Chapter 1

The Role of Optics in Computing

Neural networks and optics were independent entities, until the idea of an optical neural
network came up in 1985 [1]. This chapter will cover the background and motivation
behind their union. The discussion will start with the challenge inherent to the explosion
in data generation/processing and their effects on the global energy consumption. On
top of that, conventional digital electronic processor has met challenges, which trigger a
demand for new computational architecture. Therefore, the discussion continues with a
comparison between different processing machine architectures, including an ingenious
brain-inspired neural network. Then, the idea of optics as a promising building block
is introduced. Finally, the scope of research will be described to define the objectives
of the thesis. Eventually, an outline of the thesis will be presented, including a list of
contributions to the field through published research work resulting from the thesis.

1.1 The Edge of Information Age

Our modern society is unavoidably connected to internet. Communication with friends
through social media, reading electronic news in mobile phone, storing data in cloud
services, ordering goods via electronic commerce, and digital streaming services for
entertainment and gaming. These are examples how our lives are attached to a large
amount of data. Unsurprisingly, the data volume has grown excessively since the birth of
the Information Age in the mid-20th century. The internet traffic rose at an exponential
pace to 1.1 ×1021 bytes or Zettabytes (ZB) in 2017 and has greatly influenced the world’s
power consumption [2]. Cisco predicted that the annual global internet traffic would
reach 4.8 ZB per year by 2022 [3]. Figure 1.1(a) shows the expected impact in years
based on four main categories of information communication technology (ICT) such as
networks (including wireless and wired), data centres (storage and computation usage),
consumer devices (televisions, mobile phones, computers, etc.) and the productions of
the respective appliances for all the aforementioned categories).
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Figure 1.1: (a) Expected impact of information communication technology (ICT) to
energy consumption during recent years. Data is sourced from [4]. (b) Comparison of
data generated (ZB), numbers of transistors or Moore’s law (thousands) and computer
clock frequency (MHz) in logarithmic scale through years. Data is sourced from [5]-[6].

To give an idea of the impact, ICT was responsible for 3-4% global human induced
carbon dioxide (CO2) emissions in 2020. This is equivalent to 24 nuclear reactors or
the footprint of the commercial aviation industry (900 billion kilograms of CO2) [2].
Based on Fig. 1.1(a), the use of electricity by consumer devices (�) is reducing and
vastly being taken over by the networks (�) and data centers (■). It can be seen that
the power consumption of networks and data centers will keep growing, following an
exponential pace. Moreover, the forecast [4] has projected that in the worst case, the
total electricity demand due to ICT could lead to a high share of up to 23% in the global
energy footprint by 2030 if no measures are taken to mitigate the energy burden of ICT
systems.

Apparently, 8% of the ICT portion to the global emission is coming from hyperscale
data centres to accommodate an excessive data generation. Hyperscale data centre refers
to information factory having an ability to scale the computing infrastructure efficiently
up to hundreds of thousands of servers. This trend emerged about a decade ago when
companies such as Amazon and Google began to build more data centres. Currently,
there are 5620 data centers in the world [7] and the number is expected to increase in
the future. Therefore, beyond a doubt, the ICT could share one-fifth of global energy
consumption in 2030, as predicted by the forecast. It appears that the term “Data Age”
is recently arising as the world is inevitably being controlled by data [8].

Moreover, Moore’s law, referring to a doubling in the number of transistors in a
computer chip every two years, has governed the evolution of computation technology.
Figure 1.1(b) shows a comparison of data being generated, the number of transistors
(Moore’s law), and the computing efficiency (clock frequency) in logarithmic scale,
against the years of technology development [9]. It can be seen that the growth of tran-
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sistor density (■) follows the same pace as that linked to data generation (�), meaning
that Moore’s law is still progressing to fulfil the demand of computation. However,
slightly before 2010, the computing efficiency began to plateau, due to a saturation in
central processing unit (CPU) clock frequency (▲) [10]. Therefore, it is apparent that
while the data keeps growing, the current computation efficiency cannot sustain the de-
mand in data processing. Even though the computational machine can be clocked at its
maximum frequency, it will induce an excessive power consumption, accompanied by
significant heating. This “brick wall” in computation efficiency is believed to culminate
in an end of Moore’s law [10], leading to a computing gap where a new technology
is required to fill in. In the next section, a cutting-edge architecture to overcome this
important challenge will be discussed.

1.2 Bio-Inspired Neural Networks and the Role of Arti-
ficial Intelligence

The human brain is an important element in human life and yet it is considered a quite
complex system in the universe. The human brain hosts about 1011 neurons; each of
these is connected with ∼104 inputs, resulting in a total of 1015 synaptic connections [9].
It has extraordinary abilities to think, learn, adapt, and decide. These capabilities are
carried out with 1013 to 1016 operations per second with a power of only 15-25 W [11].
This corresponds to a computational efficiency that is eight orders-of-magnitude higher
than human-created digital machines [12]. Due to this astonishing advantage over the
classical computers, a bio-inspired artificial neural network (ANN) model has been an
integral part of modern technologies concerning artificial intelligence (AI).

Figure 1.2: Illustration of a neural network.



4

An example for a conventional ANN architecture is shown in Fig. 1.2, consisting of
two fundamental operations. In the first operation, each of neurons xi (i = 1, 2, 3, ...) is
weighted with a real number wi in a range within [-1,1]. The positive (w+) and negative
(w−) weights give rise to an excitatory and an inhibitory inputs, respectively. The mul-
tiplication between neural input and weight is inherently a linear combination, referred
to as a multiply accumulate (MAC) operation, resulting in a summed value Σ. This op-
eration is also known as a linear weighted summation. Afterwards, a bias b is added to
the Σ, before executing the second operation.

In the second operation, the weighted sum Σ undergoes a thresholding process via
a nonlinear activation operation. The activation function is usually bounded and mono-
tonic. If the sum in a neuron exceeds a certain threshold, the neuron is activated, mean-
ing that the sum is forwarded to another node in a subsequent layer of ANN. This is
analogous to a signal being transferred to the next neuron in a biological model. On the
other hand, if the sum is below the threshold, it is not passed to the next layer, as the
neuron’s output is zero.

Software-based brain-inspired NNs become popular for solving day-to-day tasks
of otherwise computationally hard problems. However, training an AI is costly for
most of the complex deep learning models. Based on the trend, training a single deep
neural network could consume the CO2 emissions of five cars over their lifetime [13].
However, with the demonstration of a successful coding algorithm for solving complex
problems, tremendous efforts have focused on the development of intelligent machines
based on ANNs, aiming at an energy-efficient information processing machine. In the
next section, comparison between this “neuromorphic” computing method and other
architectures will be discussed.

1.3 Computing Methods
One cannot easily turn away from traditional computing machines developed based on
von-Neumann architecture. A continuous development of digital electronic processing
machine infrastructure to the level of supercomputer helps in solving complex issues.
Furthermore, quantum computing has emerged since few years back and becomes pop-
ular, following Google revealed its breakthrough with quantum supremacy [14]. How-
ever, neuromorphic computing is becoming intriguing due to its ability mimicking hu-
man brain. The characteristics of each processing machine technology are discussed in
the following.

1.3.1 Von-Neumann Computing
Conventional digital electronic computers are based on von-Neumann architecture [15].
It consists of a memory that stores both data and instructions, a CPU, inputs, and outputs
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Figure 1.3: Illustration of computer architectures: (a) von-Neumann computing, (b)
quantum computing, and (c) neuromorphic computing.

(Fig. 1.3(a)). In this architecture, the communication goes sequentially as data moves
between the physically separated processor and memory. Furthermore, von-Neumann
computers encode information represented by binary values or bits (0 and 1). However,
since instructions are executed one at a time between memory and CPU (point-to-point
communication), a latency is unavoidable. Moreover, the data transfer rate (∼50 Gb/s)
between the processor and memory is much lower than the speed of CPU (∼400 Gflop/s)
to process data itself. This is known as a von-Neumann bottleneck, as the throughput
is the computing limitation. With no improvement in data transfer rates, the high-speed
processor spends more time idle, waiting for data to be fetched from memory. Thus, the
efficiency of current computer is slowing down, setting up a digital efficiency wall.

1.3.2 Quantum Computing

Quantum computing works on the principle of superposition and entanglement of quan-
tum bits (qubits), as illustrated in Fig. 1.3(b). A qubit state can be in a superposition
of 0- and 1-states at the same time. Furthermore, entangled qubits are correlated as
they cannot be described independently from each other. These two properties allow
quantum computers to attract significant attention because of their capability to solve
some computationally-hard problems for classical computers, such as factorization of
1024-bit number using Shor’s algorithm [16]. There are several physical systems that
can create platforms for a quantum computer, such as superconducting, trapped ion,
nitrogen-vacancy (NV) centre, and topological qubits [17]. However, most platforms
need temperatures close to absolute zero. Furthermore, the qubits need to be shielded
from experimental environments to avoid dissipation and decoherence, as these effects
would result in a loss of quantum state population and destruction of state correlations.
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1.3.3 Neuromorphic Computing
Neuromorphic computation attempts to mimic the way the human brain works, cre-
ating a device that can learn, retain information, and make logical deductions. In a
neuromorphic-based computer, both processing and memory are governed by neurons
and synapses, as depicted in Fig. 1.3(c). It is different from von-Neumann architecture,
since the neurons and synapses can operate simultaneously (parallel processing) [18].
Furthermore, neuromorphic computer receives spikes as input, where the occurring
time, their magnitude, and shape are used to encode information. In contrast to quan-
tum computing, the neuromorphic computing architecture is not excessively demanding
with respect to its technical implementation, as it can easily work under room temper-
ature conditions. This increases its practicality and potential to be integrated in a wide
range of platforms. Furthermore, it requires a much lower power consumption. Thanks
to its parallelism principle, the data processing will in general not show a large latency.

Figure 1.4: Prediction of research and development (R&D) of computing technology
over years. Figure is reprinted from [19].

1.3.4 Comparison among the Compute Architectures
In line with Section 1.1, the von-Neumann architecture is bounded by latency obsta-
cle. Quantum and neuromorphic processing machines become favourable candidates as
a next-generation computation technology. Figure 1.4 shows the research and devel-
opment R&D landscape concerning computing technology with respect to a tentative
timeline (in year), based on prediction [19]. It can be seen that quantum computers are
anticipated to be an efficient technology on a long-term goal (over 10 years). However,
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in reality, it is difficult to achieve a system free of decoherence, which is the main chal-
lenge of quantum computers. Therefore, it will take a long journey to acquire “real”
and universal quantum computers. In fact, they will work in a hybrid architecture with
classical computing in most cases, or more likely to be specialized machines applied to
specific types of problems they are uniquely suited to solve. On the other hand, it is
noticeable from Fig. 1.4 that neuromorphic computing is undoubtedly having a promis-
ing computing performance that is apparently achievable as a medium-term goal (over
5 years). It is worth to mention that the R&D in neuromorphic computing has been
actively developed over years and its state-of-the-art will be discussed in the following
section.

1.4 State-of-the-Art in Neuromorphic Computing: Elec-
tronics vs. Photonics

The origin of neuromorphic engineering started in the 1980s, when Carver Mead pub-
lished his research on an analogy between properties of transistors and a neural net-
work [20]. Since then, neuromorphic computing implementations based on digital cir-
cuits have grown due to a reliable complementary metal-oxide semiconductor (CMOS)
technology. However, some challenges cannot be addressed through this approach, as
will be discussed in the following. Note that optical computing has turned into an upris-
ing star, when initial investigations on photonics neural networks were conducted [21]-
[22]. The strong points of photonics as neuromorphic computing platform will be re-
ported in this section.

Figure 1.5: Illustration of state-of-the-art of neuromorphic electronics from (a)
TrueNorth from IBM, (b) Neurogrid from Stanford University, and (c) HiCANN dies as
building block of BrainScalesS wafer from University of Heidelberg.

1.4.1 Neuromorphic Electronics
There are a number of large-scale neuromorphic electronic systems that have been
demonstrated over the past 14 years. TrueNorth from IBM [23] features a 28 nm CMOS
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chip that confines 5.4 million transistors and incorporates 256 neurons, as illustrated in
Fig. 1.5(a). Each neuron is connected to 256 synaptic inputs giving out 4,096 neu-
rosynaptic cores. The TrueNorth chip consumes only 20 mW/cm2. Such low-power
neuromorphic chip has been demonstrated as sensor, aiming a real-time cognitive appli-
cation [24].

Figure 1.6: Theoretical power dissipation (pJ/bit) of electronic interconnects over dis-
tance (mm). Data is taken from [25].

The second example is Neurogrid from Stanford University, with a hardware that
comprises 16 chips where each chip has 65,536 neurons with 375,000 synapses [26]
(Fig. 1.5(b)). The Neurogrid demonstrator has been tested to simulate the biological
brain which has potential for autonomous robots in the future.

Another example is coming from the University of Heidelberg, where they have
developed the BrainScaleS neuromorphic system. It uses the wafer-scale integration
to have a large number of interconnected neurons. A BrainScaleS wafer has 48 ret-
icles, each of them holding eight High-Count Analogue Neural Network (HiCANN)
dies [27]. Each die consists of 512 neurons, including 144,688 synapses, as shown in
Fig. 1.5(c). The BrainScaleS has been demonstrated to run a complex modelling task
with 104 faster than on a classical computer, which is promising for emulating long-time
learning application[28].

By integrating a large number of transistor, these examples have shown the pos-
sibility to dramatically shrink neuromorphic hardware to chip-scaled size. However,
the signal processing on this platform relies on slow-timescale operation to accomplish
dense interconnection. On the contrary, a large number of interconnections is inherently
required by a neuromorphic processor.

Figure 1.6 shows the theoretical energy dissipation of electronic interconnects over
signal transmission length [25]. It can be seen that as the distance increases, power con-
sumption grows linearly. However, to realize high-bandwidth communications, a lower
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energy consumption can only be realized at a smaller distance, which confines signal
transmission to the adjacent chip neighborhood [29]. Beyond this range, conventional
electronic links operating at high frequency face difficulties in maintaining a sub pJ/bit
efficiency due to various effects that lead to higher losses and excitation of higher-order
parasitic modes. This corresponds to the discussion in Sections 1.1 and 1.3.1 about the
digital efficiency wall. Therefore, the development of neuromorphic computing cannot
rely solely on an electronics platform in the long term.

1.4.2 Neuromorphic Photonics
Photonics is a suitable building block to turn the notion of neuromorphic computing
into reality [30]-[31]. It drives ANN processing, thanks to its inherent abilities to effi-
ciently multiplex signals and further due to its low power consumption in view of large
electro-optic bandwidths [32]. Optical neural network (ONN) has been conceptually
proven to offer low latency and fast signal processing in the GHz range for a wide range
of applications [33]-[34]. Neuromorphic photonics represents a broad domain of appli-
cations where low-latency, highly parallel, and robust systems become a necessity. The
state-of-the-art of ONN demonstrations to realize the linear and nonlinear operations in
the photonic domain will be discussed in the following.

1.4.2.1 Linear Operation in an Optical Neural Network

Linearity is at the heart of optics; therefore, such weighted summation has been demon-
strated for a plethora of approaches and can be divided into three categories [35]:

Figure 1.7: State-of-the-art of linear weighting summation function in optical neu-
ral network: (a) reconfigurable circuit with Mach-Zehnder interferometer (MZI), (b)
broadcast-and-weight neural network, (c) cross-connect-based neural network, and (d)
photoelectric-multiplier-based summation.

1. Space-division multiplexing (SDM):

In this architecture, the neural nodes, including the weighted synapses, are mapped
onto the spatial division. The weighting process is done by manipulating the
optical fields of the neural data signal. The sum operation is achieved through
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constructive or destructive interference. Some examples are described in the fol-
lowing.

• MZI-based ONN:
One example of the SDM-ONN is a programmable integrated photonic based
on Mach-Zehnder interferometer (MZI) mesh [36]-[37], as illustrated in
Fig. 1.7(a). With a mature photonic integration technology, especially in
the field of silicon photonics, the photonic integrated circuit (PIC) offers a
high flexibility to scale a complex network. However, the network is con-
ceived for operation at a single wavelength and the control of the phase is
usually limited to kHz to MHz range.
• ONN based on grating coupler:

This work mainly proposes the linear weighted sum based on array of grat-
ing couplers integrated on a PIC [38]. An array of 5×6 pixel of grating cou-
plers are distributed as input nodes and used to capture the target images.
The weighting process is performed by tuning the input voltage of the PIN
attenuators, which are used to alter the optical power of each input. How-
ever, the speed of the ONN is still limited by the bandwidth of modulator,
amplifier, and photodiode elements on the chip.

2. Wavelength-division multiplexing (WDM):

Here, the ONN can be demonstrated by employing wavelength–sensitive elements
such as micro-ring resonator (MRR) [39] and semiconductor optical amplifier
(SOA). The examples are described in the following.

• Broadcast-and-weight networks:
Multi-wavelength operation has been applied by dedicating different wave-
lengths to different input signals while using the wavelength-specific trans-
fer function of MRRs to yield a compact weight bank [40], as shown in
Fig. 1.7(b). Apart from its compatibility with WDM, however, the summa-
tion of positive and negative weights necessitates the use of both, the drop
and the pass-through ports of the resonator, in combination with a balanced
photodetector. Therefore, the complexity of this approach is impractical for
a large-scale integration.
• SOA cross-connect:

SOAs can be exploited in combination with the arrayed waveguide gratings
(AWGs). The SOA is used as a pre-amplifier to set the weight (Fig. 1.7(c)),
while the AWGs are used to filter out the noise after the cascaded SOAs.
However, the SOA-based weight elements are limited by the saturable and
noisy non-linear transfer function, accompanied by increased levels of cross-
talk due to cascading multiple stages of SOAs [41].



Chapter 1. The Role of Optics in Computing 11

3. Time-division multiplexing (TDM):

Another approach of ONN is by sequentially map the input data into the time
domain. There are some works presented in this area described in the following.

• ONN for a large-scale fan-in/-out:
The work [42] is done by encoding both the input vector matrix Ei and the
weight matrix wi j onto optical signals by using free-space optical compo-
nents (Fig. 1.7(d)). The MAC of synaptic connections is realized by the
quantum photoelectric multiplication process in the homodyne detectors.
This allows a large-scale ONN implementation, where the neural network
can be trained and reprogrammed at a high speed. However, such an ANN
implementation experiences scaling problems arising from phase instability
and aberration of free-space optics.

• RC-based ONN:
In the reservoir computing (RC), there are input, reservoir and output lay-
ers. The reservoir is built from the recurrent neural network (RNN) model
and known as an efficient algorithm. Inputs are mapped into the reservoir
with a high-dimension state. The weight connections between the input and
the reservoir are randomly generated and remain the same during training.
However, the synaptic weights in the output layer are trained. Combining
the memory and spatio-temporal processing of RNNs, RC offers the ability
to process temporal information. The recent optical RC hardware have been
developed based on time delay feedback loops, using vertical-cavity surface-
emitting laser (VCSEL) [43] and a silicon MRR [44]. The advantage of this
architecture is that the dimensions that facilitates classifications can be in-
creased allowing parallel tasks processing, hence higher speed. However, it
is commonly used for a single wavelength only.

1.4.2.2 Nonlinear Activation Function in an Optical Neural Network

Figure 1.8: State-of-the-art of nonlinear activation functions in optical neural networks:
(a) electro-optical modulator, (b) MZI-based electro-optical activation function, (c)
SOA-based MZI, and (d) MRR-assisted MZI.
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The activation element in a NN plays an important role of discriminating data using
a decision boundary, involving functions such as the rectified linear unit (ReLU), the
sigmoid or hyperbolic tangent functions – each of these elements can be characterized
through different advantages, rendering them as well-suited for a specific set of appli-
cations [45]. However, the nonlinear operation of either of those functions is rather
challenging to be accomplished in the realm of photonics.

In the past few years, research efforts have demonstrated the feasibility to practically
realize optoelectronic or purely optical representations of activation functions [46], as
described below:

1. Electro-optical activation functions

• EAM: One proposal relies on the use of electroabsorption modulator (EAM)
[47], as the transfer function of the EAM mimics the sigmoid function (Fig.
1.8(a)) [48]-[49]. The weighted sum (Σ) is converted to a voltage with a
photodiode and the voltage is amplified by a transimpedance amplifier (TIA)
to drive the EAM. A similar demonstration has been also done by replacing
EAM with MRR modulator [50]. By applying different bias conditions,
the photodetector-MRR modulator system exhibits a variety of nonlinear
activation functions such as sigmoid, ReLU, and quadratic functions.

• MZI: Furthermore, another study has shown that a MZI-based electro-optical
activation function can also introduce nonlinearity function, by modulating
the phase and amplitude of the original optical signal (Fig. 1.8(b)), which
reveals ReLU and clipped functions [51], [52]. Specifically, in this case, the
proposed idea is introduced in the integrated circuit which opens the possi-
bility to scale the complexity of NN.
A similar proposal can be obtained by different combinations of MRR and
MZI on-chip [53], or its combination with optoelectronic detectors [54]. The
applied phase shift during modulation is the parameter that modifies the pro-
file of the activation function, including the ReLU-like function.

However, since all aforementioned nonlinear functions are implemented with a
combination of a photodiode and a modulator, these schemes require preceding
opto-electronic conversion circuits, which are not energy-efficient.

2. All-optical activation functions

• SOA-based MZI: An alternative all-optical approach relies on an MZI-like
integrated SOA configuration (Fig. 1.8(c)), which is operated in the deeply
saturated differentially biased regime, followed by another SOA that acts
as a cross-gain modulation-based wavelength converter [55]. However, the
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device occupies a relatively large footprint, which hinders the scaling for
larger scale NN integration.
Similar approaches have been shown by implementing SOA-based wave-
length converters in which the synaptic weight is governed by the variation
of SOA gain and also realizing a sigmoid function [56], or by employing a
self-induced polarization rotation effect in a single SOA [57]. By tuning the
initial state of polarization of input signal, the arbitrary activation functions
such as ReLU or Softplus can be achieved.

• MRR-assisted MZI: It is possible to employ a plasma effect (Fig. 1.8(d)) by
changing the free- carrier concentration in a waveguide to vary the coupling
ratio of a Mach-Zehnder coupler to eventually detune the spectral alloca-
tion between the MRR resonance and the input signal [58]. Although this
scheme enables arbitrary nonlinear activation functions, it is presently bound
to latency and a large energy consumption.

• MRR-based activation functions: Another approach of activation function
has been realized via silicon MRR loaded with phase change materials [59]
or in a Germanium/Silicon (Ge/Si) hybrid structure [60], showing different
types of ReLU. However, these approaches necessitate very specific fabrica-
tion processes.

• Semiconductor lasers: Further studies have shown that an integrated III-V
semiconductor membrane laser can be used to generate a ReLU-like func-
tion [61]. By increasing the optical input intensity and the bias current ex-
ceeding the threshold value, the light-current (L−I) characteristic presenting
as the optical output, responds linearly to the input light.
Another example is to use the bistability of an injection-locked Fabry–Perot
semiconductor laser [62]. Nonetheless, these schemes still require external
modulation, which complicate their overall integration.

• Periodically-poled waveguide: Compelling results have been shown when
exploiting second harmonic generation and degenerate optical parametric
amplification as resources, using a nonlinear periodically-poled thin-film
Lithium-Niobate waveguide [63]. A linear rectification has been achieved
by choosing the length of the waveguide and the bias pulse power. However,
the use of a rather exotic material and optical pumps might likely make it
difficult to scale up this NN concept.

1.4.3 Electronic vs. Photonic NN Approaches
Neuromorphic electronics is the pioneer of the realization of neuromorphic comput-
ing due to the ingenious NN. Figure 1.9 shows that neuromorphic electronics has ∼104
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higher computational efficiency than digital electronics. However, dense and long elec-
tronic interconnects lead to a limited signal bandwidth, heat dissipation and high energy
consumption. Furthermore, the information bandwidth is limited to the kHz-MHz range
due to the latency response inherent to electronic circuits. This could only be matched
to applications with a slow information flow, such as real-time voice recognition.

To go beyond the computing speed-wall and digital efficiency brick-wall (Fig. 1.9),
neuromorphic photonics is considered as an emerging enabler that combines bio-inspired
NNs and photonic integration technology. By capitalizing on the high speed, the high
bandwidth and the potentially high parallelism of photonics devices, ONNs offer the
possibility to break the limitation of conventional microelectronics when executing
MAC operations in complex systems with low latency and a fast GHz signal rates.

Figure 1.9: Diagram of computational efficiency vs. computational speed for different
platforms. Data is taken from [30], [31], [64], [65].

1.5 Challenges for Present-Day Photonic Neural Networks
Until now, the concept of a bio-inspired neural network has been introduced and its
marriage with optics is believed to yield a promising future computing architecture.
However, there are still two main challenges when it comes to realizing their union.

1. Information bandwidth: The ANN has been initially realized for the field of AI,
which has been applied in various applications, such as natural language pro-
cessing, face recognition, and autonomous vehicles. However, the information
bandwidth of AI is limited to the Hz to kHz range, which is not suitable for fast
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signal processing applications. In comparison to the electronic-based hardware
neural network, the bandwidth spans from kHz to MHz. On the other hand, this
bandwidth range is not enough for real-time applications that require fast sig-
nal processing up to GHz such as nonlinear optimization, ultrafast control, and
quantum tomography. This problem can be tackled by optics because of its vast
bandwidth. This enables the use of multiple colors (wavelengths) to send data
over the same transmission medium. However, some demonstrations of ONN are
still limited to MHz [36], [37]. It is also important to mention that a faster NN
response needs to go along with a reasonable energy efficiency. Therefore, a new
photonic neural network architecture is necessary to be investigated, finding the
middle ground between these demands.

2. Scalability and a flexible synaptic interconnect: High interconnect density is re-
quired in neuromorphic computing to perform complex computation. Relying
on the electronic-based interconnect is not a feasible solution as its bandwidth is
limited and it demands higher power consumption. However, photonics offers a
possibility to scale the system to the chip level as fabrication technology becomes
more mature. Furthermore, as in a biological neural network, the synaptic inter-
connect should be compatible with a high fan-in and fan-out, in order to ensure a
high degree of connectivity between neurons. In addition, it should also accom-
modate MAC operation and summation. Thus, a set of analogue operations in the
optical domain equivalent to neural network functions need to be investigated to
accomplish adequate ONN processing.

1.6 Scope of Research
The focus of research in the thesis is defined as follows, and illustrated in Fig. 1.10

• Flexible synaptic interconnect: The study will focus on realizing colorless synap-
tic receptor to realize high fan-in of signals, such as required in neural systems.
The synaptic interconnect should provide an array of multiplication, where the
neurons are being weighted and linearly summed. A combination of suitable and
functional photonic components that equate multiplication and addition of high
frequency signals is investigated.

• Hybrid opto-electronic and photonic neural network: Besides linear weighted
summation, the study will also focus on the realization of the nonlinear activation
function in the optical domain. As the next step, the neurons shall be integrated
with the activation function to perform the basic NN. Owing to the purpose, the
demonstration can leverage on the combination of electronic and optical systems.
On top of that, a photonic neuron will be the main focus of the investigation, by
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Figure 1.10: Main research topics under investigation in this thesis.

combining the analog weighted summation and the proposed photonic activation
function.

• Demonstration of photonic neurons in a use-case problem: To evaluate the perfor-
mance of the hybrid opto-electronic and all-optical neural network, a benchmark
in terms of digital neural network is required. The well-known Iris flower clas-
sification problem will be used as a benchmark, given that its NN architecture is
convenient for the investigation.

• Integration of multi-purpose photonic processing network: The growth of ONN
implementations has triggered the emerge of photonic processing unit research,
in contrast to electronic-based graphic processing units (GPUs). Not only the
neuromorphic processing can be performed, but also other optical communica-
tion network applications can be demonstrated through a flexible layout of the
photonic processing unit.

1.7 Outline and Contribution

The outline of this dissertation is presented as following.
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Chapter 2 introduces the concept of matrix multiplication in optics via frequency
coding. This includes the realization of weighting assignment and the summation. Some
potential optical systems that have the equivalent linear operation functions as required
for ANN are presented. Finally, the newly discovered colorless synaptic interconnect is
demonstrated and its reception performance is reported.

Chapter 3 discusses the optical activation function. Here, the concept focuses on a
ReLU and the similar transfer function is offered by an optical bandpass filter in combi-
nation with sensitivity clipping, realizing the optical activation operation. Comparison
is further made with an electro-optical ReLU function and demonstrated using the use-
case of Iris flower classification.

Chapter 4 aims at a hybrid integration of analog linear weighted summation and
optical activation function. Here, a new concept of an energy-efficient opto-electronic
interconnection between weighted summation and nonlinear activation functions is pre-
sented. This contributes to the demonstration of a translucent ONN.

Chapter 5 describes the concept of a flexible photonic processing unit that hosts the
ONN. Here, the research emphasizes on the implementation of a photonic processing
unit (ΦPU) that includes multiple functions of optical communication networks inter-
connected in a switch-space architecture such as penalty-free format decoding and neu-
romorphic functions. In addition, the neuromorphic processing in the switch-space is
compared with the one using the wavelength-routed architecture.

The contribution of the thesis is substantiated by the following papers published at
scientific conferences and peer-reviewed journals.

[MVS1] M. V. Stephanie, M. Waltl, T. Grasser, and B. Schrenk, “WDM-Conscious
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San Diego, United States, Mar. 2022, M1G.2.

[MVS2] M. V. Stephanie, F. Honz, N. Vokić, W. Boxleitner, M. Waltl, T. Grasser, and
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Comm. (ECOC) Conf. 2022, Basel, Switzerland, Sep. 2022, Tu5.20.

[MVS3] M. V. Stephanie, F. Honz, N. Vokić, W. Boxleitner, M. Waltl, T. Grasser, and
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Chapter 2

Linear Operation for Photonic Neural
Network

This chapter will explore the topic of an analog linear weighted summation as one of the
building blocks in ONN. The discussion starts with the concept of matrix multiplication
of neural inputs and weights in the optical realm. Since processing with optics requires
a set of operations equivalent to the NN function, the discussion continues with describ-
ing some potential optical systems as building blocks to perform ONN. Furthermore,
a wideband monolithic integrated synaptic receptor will be introduced as a promising
photonic MAC function. The simulation and the performance of the proposed synaptic
receptor are eventually reported.

2.1 Concept of Matrix-Vector Multiplication for the Op-
tically Weighted Summation

As mentioned in Section 1.4.2, there are various ways to perform the optical linear
weighted sum of NN since the linear operation is basically at the center of the opti-
cal realm. Another scheme that is proposed in this work is employing a frequency-
coded signal in the synaptic interconnect, to realize weighting and summation func-
tions. Therefore, the discussion will start with frequency-to-intensity conversion, which
plays an important role in weight assignment. Afterwards, various optical transmitters
generating frequency-modulated (FM) signals and different optical filters as FM demod-
ulators will be discussed. Finally, the idea of the synaptic receptor with an integrated
detector will be introduced.

19
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2.1.1 Frequency-to-Intensity Conversion
Optical fiber technology has revolutionized communication systems by utilizing the op-
tical frequency of light to carry vast amounts of information. This can be done by
encoding the digital data into optical signals via modulation. When a laser is modu-
lated, the injected current will vary dynamically and cause the spectral linewidth to be
broadened. This signal modulation induces wavelength variation of laser or is known as
frequency chirping. Its frequency deviation Δν is given as follows [66]

Δν(t) =
α

4π


1

P(t)
dP(t)

dt
+ κP(t)

�
(2.1)

where P(t) is the optical power of the laser, α is a linewidth enhancement factor and κ is
an adiabatic chirp coefficient.

Figure 2.1: Optical spectra of adiabatic chirp-dominated laser (red line) with a Gaussian
filter transfer function (black dashed-line). Figure is reprinted from [67].

The first term in Eq. 2.1 is a transient chirp, which is a derivative of the output
power resulting in an abrupt change of the refractive index with carrier density. The
second part is an adiabatic chirp, which is related to the static power dependence of the
cavity refractive index. If the transient chirp is dominant, then the output power will
exhibit ringing and overshoot. Conversely, if the adiabatic chirp is dominant, there will
be damped oscillations and large frequency deviation [68].

The adiabatic term is the main contributor to frequency modulation of optical signals
and causes bit 1 to blueshift relative to bit 0, as illustrated Fig. 2.1. The chirp property
of a laser is the foundation to build a frequency-coded signal, as bit 1 and 0 are in
two different spectral locations. As an application in ONN, the frequency signal can be
encoded such that the mark (1) bit is an active synapse (the spike is emitted) at frequency
ν1, while the space (0) bit represents an inactive synapse at frequency ν0 (no spike being
emitted).

Next, the FM signal can be decoded by employing an optical discriminator to con-
vert the FM signal to an intensity-modulated (IM) signal. FM discriminators have been
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Figure 2.2: (a) A periodic transfer function of an interferometric optical filter. (b) A
constant-power FM signal with the lower and upper sidebands are centered at ν0 and
ν1, respectively. (c) The rising slope filter suppresses the lower sideband (ν0) of the FM
signal and increases the amplitude of the upper sideband (ν1) after the FM demodula-
tion. (d) On the contrary, the falling slope filter suppresses the upper sideband (ν1) and
increases the amplitude of the lower sideband (ν0) of the resulting IM signal. (e) The
scenario of FM demodulation via the optical filter can be employed for weights assign-
ments to the frequency-coded neural signals [MVS1].

demonstrated theoretically and experimentally by using interferometers [69]-[70]. Ad-
ditionally, an optical filter can be used as an FM demodulator and typically has a peri-
odic transmission T , as shown in Fig. 2.2(a).

Consider a constant-power FM signal depicted in Fig. 2.2(b), originating from opti-
cal carriers centered at ν0 and ν1. The lower (ν0) and upper (ν1) sidebands represent the
space (0) and mark (1) bits, respectively. The FM-to-IM conversion can be performed
via the periodic transfer function of the filter, where the ascending or descending slope
is centered between the tributaries of the FM signal. Fig. 2.2(c) shows the magnitude
response of the ascending slope filter has a positive value. The rising slope is placed be-
tween the FM signal and it suppresses the amplitude lower sideband of the FM signal.
Therefore, the resulting IM signal amplifies only the upper sideband signal at frequency
ν1. On the other hand, the descending filter slope has a magnitude response of a negative
value. Therefore, the falling slope increases the amplitude of the lower sideband of the
FM signal and suppresses the resulting IM amplitude of the upper sideband (Fig. 2.2(d)).

This FM-to-IM conversion scheme can be used in ONN to assign the polarity and
magnitude neural weight, as shown in Fig. 2.2(e). The filter can be tuned to pass only
the mark- or only the space-frequency-coded signal and the IM converted signal is allo-
cated to one sign of the weight, which is eventually sent to the detector. As an example,
by suppressing the space (ν0) component, the resulted IM signal is assigned to posi-
tive polarity. On the contrary, by suppressing the mark FM sideband component (ν1),
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a negative response is accomplished for the detected signal. Additionally, ν0 and ν1

sidebands can be suppressed by the same amount, giving rise to the same transmission
during FM demodulation, which can be allocated to a zero magnitude of weight. To
apply this scheme effectively, it is necessary to spectrally align the FM signal sidebands
to the transmission peak of the periodical transfer function.

Figure 2.3: (a) Schematic of a Fabry-Perot resonator and (b) its transmission function.

In order to understand the characteristics of a periodic transfer function as in the FM
demodulator described above, a mathematical description of the function is provided
in the following. For that purpose, a Fabry-Perot etalon (resonator) can be considered.
The resonator is built from two-mirror planar as the light wave is reflecting back and
forth within the etalon, as illustrated in Fig. 2.3(a). The time-independent wavefunction
U propagating inside the etalon can be defined as

U(r) = Asin(kz) (2.2)

where A is an amplitude constant, z is a propagation direction, and k = 2πν/c is a
wavenumber constant [71]. It is relevant to note that this equation satisfies the Helmholtz
equation.

∇2U + k2U = 0 (2.3)

Boundary conditions at the surface of etalon are defined such that U(z = 0) = 0 and
U(z = d) = 0. As a consequence, k = qπ/d is determined to satisfy the conditions,
where q is an integer of the mode number and d is the length of the resonator. In the
lossless-resonator condition, the light propagates back and forth infinitely.

However, if the loss is included on the interfaces, there will be some transmitted
light. The light still propagates within the resonator, as shown in the Fig. 2.3, and addi-
tionally, the reflection constant r is defined here. After one round-trip, the wavefunction
will be multiplied with the loss factor h such that U1 = hU0, where U0 is the initial
amplitude, h = re− jφ and φ = 2kd is the phase round trip due to reflection in the mirrors.
The superposition of an infinite number of waves becomes

U = U0 +U1 +U2 + ... = U0 + hU0 + h2U0 + ... = U0(1 + h + h2 + ...) =
U0

(1 − h)
(2.4)
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Therefore, the intensity in the resonator would be

I = |U |2 = |U0|2
|1 − re− jφ|2 =

I0

(1 − r)2 + 4rsin2(φ/2)
(2.5)

where I0 = |U0|2 is the intensity of the initial wave. In general, the intensity can be
defined with a parameter finesse F = π

√
r/(1 − r) as

I =
Imax

1 + (2F
π

)2sin2(φ/2)
(2.6)

where Imax = I0/(1 − r)2. F physically describes the relation of the linewidth and the
frequency spacing between the peaks. If r is large, then the F is high, meaning that the
transfer function has sharp resonances. Figure 2.3(b) displays an example of the linear
transfer function of Fabry-Perot etalon for which the parameters of d = 100 µm and
r = 0.8 have been chosen.

Figure 2.4: (a) Architectural overview of the proposed synaptic interconnect and (b)
principal operation of weight assignment through a periodic transfer function for achiev-
ing positive and negative signs, including the possibility of setting the magnitude of the
weight of having zero magnitude [MVS3].

For the ONN application, the periodic transmission characteristic in Fig. 2.3(b) can
facilitate a matrix multiplication between the neural inputs and the weights. The neural
inputs (si) are translated to FM signals via FM emitters (such as lasers) at different wave-
lengths λi, which are subsequently sent to the FM demodulator, as shown in Fig. 2.4(a).
Figure 2.4(b) illustrates the spectra of the FM signal are aligned to the periodic trans-
fer function. Afterwards, the weight assignment (wi) occurs during the frequency-to-
intensity demodulation. The IM signal after demodulation can be assigned to a positive
(+) or negative (-) weight, by allocating the spectral position of the mark (ν2, ν4, ν6) and
space (ν1, ν3, ν5) bit of the FM signal.

By maximally suppressing one of the tributaries and passing the other, the largest
magnitude can be obtained, as illustrated in Fig. 2.4(b) for the positive (ν1 suppressed,
ν2 passes) and negative (ν3 passes, ν4 suppressed) cases. The zero magnitude of weight
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can be achieved when both FM tributaries experience the same transmission during FM-
to-IM conversion, as depicted for ν5 and ν6 denoted as N for the result in Fig. 2.4(b).
Finally, the received signals at the photodetector after FM demodulation will be straight-
forwardly summed, eventually yielding the linear weighted addition of neural signals
Σwisi (Fig. 2.4(a)).

It is important to mention that the spectral alignment can be performed from the
FM emitter side by shifting the wavelength. Practically, the magnitude and polarity of
the weight can be set by detuning the periodic transfer function via various parameters,
depending on the characteristic of each optical FM demodulator. The next sub-section
will discuss some potential FM emitters and FM demodulators as ingredients to perform
the linear weighted summation in the optical domain.

2.1.2 Optical FM Transmitters and Optical Resonators

As described in the beginning, the FM signal can be generated by modulating the laser
via current injection. In the following, examples of FM transmitters considered in this
thesis (directly modulated laser (DML), chirp-managed modulated laser (CML), and
distributed Bragg reflector (DBR) laser) will be discussed. It is worth mentioning that
the use of these FM emitters will become more significant when the demonstration
of optical nonlinear activation function and hybrid digital/optical NN are presented in
the subsequent chapters. This chapter is mainly focused on finding a suitable synaptic
receptor, performing the optical linear weighted summation. Therefore, various FM-
demodulator-assisted optical filters under investigation in this study (delay interferom-
eter (DI), micro-ring resonator (MRR), and optical tunable filter (OTF)) are discussed
afterwards.

Figure 2.5: Illustration of variety FM emitters: (a) directly modulated laser (DML),
(b) chirp-managed directly modulated laser (CML), and (c) distributed Bragg reflector
(DBR) laser.
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2.1.2.1 Directly Modulated Laser (DML)

As the name itself suggests, an external modulator is no longer required in this laser as
the laser diode acts as a light source as well as a modulator. As the light source, the DML
is forward-biased by applying electrical bias current Ibias and when the Ibias exceeds a
certain threshold, the laser starts to emit a coherent light. In direct modulation, the
input data signal, which is a high radio frequency (RF) signal as the digital data to be
transmitted, is superimposed upon the Ibias, as depicted in Fig. 2.5(a). This RF signal
modulates the Ibias, which the variation in the Ibias inherently modulates the intensity
of the emitted light. The injected current changes according to the input data signal,
the output signal varies correspondingly generating an optical signal that carries the
encoded data.

The external modulation technique is usually used in optical communication with a
longer distance link (>10 km), while the direct modulation is convenient for short-range
optical links. The DML is based on the frequency chirping principle, as explained at the
beginning of this chapter, where the change of the carrier density via bias current influ-
ences the intensity modulation. The DML has a positive chirp characteristic, resulting
in a broader laser spectrum that could limit the transmission distance to a maximum of
∼20 km for 10 Gb/s and ∼2 km for 40 Gb/s signal data rate [68]. However, the issue can
be resolved by using a negative dispersion compensation fiber. In spite of that, DML
offers a smaller and compact size, low cost, and high output characteristics [72]. It is
therefore a well-adopted component in optical communication networks.

Figure 2.6: Illustration of an eye diagram showing the two power levels of bit 1 and bit
0 of the digital drive signal [MVS3].

The intensity modulation extinction ratio (ER) is an essential performance charac-
teristic for an optical transmitter. The ER describes the ratio of the two optical power
levels that represents 1 (higher power level) and 0 (lower power level) bits of a digital
drive signal, as illustrated in Fig. 2.6. The ER can be mathematically expressed as

ER =
P1

P0
(2.7)
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where P1 and P0 are the power levels of bit 1 and 0, respectively. In an ideal transmitter,
the ER would be an infinite number as P0 is zero. However, a semiconductor laser
is typically biased above the laser threshold (P0 > 0) to sustain lasing conditions and
thus a high electro-optic bandwidth. Therefore ER would be a finite number (Fig. 2.6).
The quality of the ER can be graphically represented by a so-called eye diagram, as
shown in Fig. 2.6. If the eye is widely open, such that the 1 bit at the top can be fairly
distinguished from the 0 bit at the bottom, then the quality of the signal in terms of
modulation index is good. The DML is commonly biased near the threshold to acquire
a good ER between 1 and 0 bits, along with a large current swing to modulate the laser.

2.1.2.2 Chirp-Managed Directly Modulated Laser (CML)

Even though the DML has been demonstrated to have a good performance at a lower
cost than external modulation techniques, it has some drawbacks such as a limited trans-
mission reach and waveform distortion due to the chirp effect [72]. Such dispersion ef-
fect can be tackled through CML, which is a DML incorporated with an optical spectrum
reshaper (OSR) filter, as illustrated in Fig. 2.5(b). By aligning the laser wavelength on
the transmission edge of the OSR filter, the red-shifted 0 bits are attenuated and the blue-
shifted 1 bits are passed, resulting in an increased extinction ratio (ER) >10 dB [73].

Figure 2.7: Spectrum of CML: (a) Intensity and frequency, (b) intensity and phase
before the OSR filter, (c) intensity and frequency, (d) intensity and phase after the OSR
filter (taken from [74]).

The OSR filter converts the adiabatic chirp to a flat-top chirp with an abrupt phase
shift at the transition of bits, as illustrated in Fig. 2.7 (a) and (c), where the 1 bits are
blue-shifted relative to 0 bits. Additionally, there is a continuous π phase shift for each 0
bit sequence (Fig. 2.7 (b) and (d)), meaning that the second 1 bit is π out of phase from
the first 1 bit [74]. Thus, it keeps the optical eye diagram open for a long transmission
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(>200 km). Furthermore, any remaining transient chirp (amplitude ringing) at high
frequency is filtered out, since the bandwidth of the OSR is limited.

Even though the OSR filter increases the dispersion tolerance, it is in fact opposing
the goal of generating FM signal since it intrinsically converts the FM to IM signal.
Therefore, to generate a FM signal with CML, the OSR filter of CML has to be tuned to
a neutral position to avoid frequency-to-intensity conversion in the experimental demon-
stration.

2.1.2.3 Distributed Bragg Reflector (DBR) Laser

A DBR laser is based on Bragg reflection, where the active medium is embedded be-
tween Bragg mirrors. The common three-sections-DBR laser, as illustrated in Fig. 2.5(c),
includes a semiconductor optical amplifier (SOA) for optical gain, a front DBR (FDBR)
and a rear DBR (RDBR) gratings to form as selective mirrors. A DBR laser offers
wide-tunability for WDM applications [75].

Figure 2.8: Schematic of a DBR grating.

The Ibias is injected into SOA to produce a single spatial lasing mode. However,
the wavelength shifting can be done by electrically tuning the current injection of both
gratings, where the FDBR offers a broad band spectral response with partial reflec-
tion and RDBR nearly gives total reflection [76]. It has been demonstrated that a
DBR laser can be integrated with an electroabsorption modulator (EAM) into a tun-
able electroabsorption-modulated laser (EML) [77]-[78]. The SOA and EAM elements
will be discussed in detail in the next sub-section of this chapter.

Figure 2.8 shows the scheme of uniform Bragg gratings as the fundamental structure
in DBR filter. The Bragg grating consists of a periodic alternating sequence of layers
with two different refractive indices. The light reflection occurs between the low (nL)
and high (nH) refractive indices. Therefore, in the forward direction of light propagation,
multiple reflections occur. The grating period Λ determines the relative phase of all the
reflected signals. The Λ is proportional to the Bragg wavelength λB, defined as

λB = 2neffΛ (2.8)

where neff is the effective refractive index of the waveguide. Therefore, modulation
of the grating can be designed through period Λ and by varying the refractive index



28

of alternating materials so that at the wavelength λB, all reflected signals are added
constructively (in phase) [79]. At other wavelengths, the reflected light is cancelled
out and fully transmitted. The Bragg gratings are governed by the following coupled
equations [80]

dR
dz
= iδR(z) + iκS(z) (2.9a)

dS
dz
= −iδS(z) − iκ∗R(z) (2.9b)

where κ and κ∗ are coupling coefficients for forward R(z) and backward S(z) travelling
modes, respectively, which can be written as

R(z) = A(z)eiδz (2.10a)

S(z) = −B(z)e−iδz (2.10b)

where A(z) and B(z) are the mode amplitude of forward and backward travelling mode,
respectively, and δ is a detuning factor

δ = β − βB = 2πneff


1
λ
− 1
λB

�
(2.11)

By setting the boundary condition of R(z = 0) = 1 and S(z = L) = 0 for a grating of
length L, the reflectivity will then be

R =
�

S(0)
R(0)

	2
=

sinh2(L
√
κ2 − δ2)

cosh2(L
√
κ2 − δ2) − δ2

κ2

(2.12)

and the maximum reflectivity Rmax of DBR grating can be achieved when

Rmax = tanh(κL) (2.13)

The DBR lasing occurs at the wavelength of the maximum reflectivity. The wavelength
tuning can be done through the injection current of the gain element or the Bragg grating
elements. In the case of an InP-based integrated DBR laser, increasing Ibias causes a red
shift of the λB. On the other hand, increasing the injection current to the RDBR gives
results in a blue-shifted of λB [79].

2.1.2.4 Delay Interferometer (DI)

A DI has been used for a wide-range of applications, such as quantum key distribu-
tion [81], optical sensing [82], modulation format conversion [83], and optical logic
functions [84]. Figure 2.9(a) shows the general schematic of DI, which is similar to a
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Figure 2.9: Illustration of variety FM demodulators: (a) delay interferometer (DI), (b)
micro-ring resonator (MRR), and (c) optical tunable filter (OTF).

MZI. It consists of two 3-dB couplers (50/50 couplers) and they are connected via two
optical paths with different lengths. The upper arm has a delay ϕ which can be altered
to tune the output splitting ratio. The periodical transfer function of DI is defined as

TDI =
1
2
· (1 ∓ cos(2πνΔT )) (2.14)

where ν is an optical frequency and ΔT is the time delay in the longer arm [85].

2.1.2.5 Micro-Ring Resonator (MRR)

The MRR is an element realized on a PIC that is fabricated on a waveguide platform.
Figure 2.9(b) shows the basic configuration of a MRR, which consists of a ring with
radius R and two near waveguides adjacent to it. The ring resonator couples a portion of
the light to the adjacent straight waveguide. If the light is sent to the lower waveguide
(IN), a portion of the light will propagate along the waveguide and exit via through port.
The other portion of light is coupled to the ring and passes to the drop port. The splitting
ratio between the through and drop ports depends on the material and geometry of the
ring (such as the radius and width of the waveguide) and the optical frequency of the
light. The transfer function of MRR from through port can be defined as similar to the
Fabry-Perot resonator transmission as following [86]

Tthrough(ν) = 1 − 1

1 + 4F2

π2 sin2
�

2π2nRν
c

� (2.15)

where n is the refractive index, c is the vacuum speed of light, and ν is the optical
frequency. On the contrary, the transmission in the drop port would be Tdrop = 1 −
Tthrough. The finesse is defined as F = FSR

FWHM , where the free spectral range (FSR) defines
the spacing between two peaks in transmission and the full width at half maximum
(FWHM) denotes the width of a line shape at half of its maximum intensity. These
parameters are defined as follows [87]

FSR =
λ2

ngL
(2.16)
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FWHM =
(1 − ra)λ2

res

πngL
√

ra
(2.17)

where λres is a resonance wavelength, ng is a group index, r and a are self-coupling and
round-trip loss coefficients, respectively.

2.1.2.6 Optical Tunable Filter (OTF)

OTF has been employed for a variety of WDM applications and there are several types
depending on the use-cases such as an acousto-optic tunable filter (AOTF), a thin film
filter (TFF), a fiber bragg grating filter (FBGF), and a micro electro mechanical systems
(MEMS) filter. All of these types are commercially available. However, AOTF, TFF, and
FBGF have some limitations such as a narrow tuning range or crosstalk [88], and do not
have the freedom of independent control [89]-[90]. On the other hand, an optical MEMS
filter is more favourable than others. It has an internal grating and collimating lens, as
illustrated in Fig. 2.9(c). The light from the input fiber is collimated and dispersed by the
grating which will be focused by lens. A set of wavelengths is reflected from the mirror
and couples back to the output fiber. By shifting the position of the moving mirror, the
bandwidth and the center wavelength of the filter can be tuned. The optical MEMS filter
is attractive because it can be controlled independently and has a negligible chromatic
dispersion due to its internal grating [91].

2.1.2.7 Summary

Different types of lasers have been discussed and their function as FM emitters will be
explored in the following chapters. The comparisons between DML, CML, and DBR
laser are presented in the Table 2.1 [92]. Specifically, the DBR laser here is considered
to be integrated with a modulator, as in a tunable EML configuration.

Property DML CML EML
Dispersion limit 5 km > 200 km 80 km

at 10 Gb/s
Maximal launching 21 dBm 20 dBm 14 dBm [93]

power
Chirp Positive Reduced transient & Negative [94]

transient reshaped adiabatic transient
ER 1-2 dB 10-12 dB > 20 dB [77]

Cost Low Low High

Table 2.1: Comparison performance between DML, CML and DBR laser with an inte-
grated modulator EAM (EML).
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Furthermore, various optical filters have been presented with similar transmission
characteristics, even though they are based on different schemes. The comparison be-
tween them is presented in Table 2.2. Particularly in this study, the DI characteristics
refer to DI from Kylia (MINT product line) with a FSR of 10 GHz [95], the MRR
implies a silicon-on-insulator (SoI) MRR [39], and the OTF focuses specifically on a
commercial product (Santec OTF-350 [96]) used during later experimentation.

Property DI MRR OTF
Size Medium Small Large

Insertion Loss 2 dB 3 dB < 7 dB
Tuning range 1.5 × FSR ∼ 1 × FSR 80 nm
Tuning speed ps to nm µm -

Tuning mechanism electro-optic temperature manually
Table 2.2: Comparison FM demodulator characteristics between DI, MRR, and OTF

It is worth noting that the frequency-to-intensity conversion does not necessarily
have to be accomplished through the FM demodulators presented above. It is possi-
ble to perform the MAC operation via alternative optical device solutions which offer
a periodic transfer function. Nonetheless, in the next sub-section, a potential synaptic
interconnect to perform the optical linear weighted summation is introduced and dis-
cussed.

2.1.3 Synaptic Receptor with Integrated Detector
A compact synaptic interconnect is desired to perform the synaptic weighting and sum-
mation. One of the prospective candidates is based on the monolithic integration of a
SOA and a reflective EAM, yielding an integrated device as referred to a SOA-REAM.
This device bears the potential to serve as a colorless demodulator and detector. Each
component will be discussed here and their integration as a potential synaptic receptor
will be explained.

2.1.3.1 Semiconductor Optical Amplifier (SOA)

Optical amplifiers have been an integral part in the development of optical networks.
Due to mature semiconductor fabrication technologies, the SOA has been adopted swiftly
as an optical switching element [97], as wavelength converter [55], and for optical phase
conjugation [98]. SOA has a basic structure similar to a laser diode, as illustrated in
Fig. 2.10. The population inversion between a conduction and a valence band can be
achieved through an electrical pumping, creating optical gain [99]. However, besides
being operated below the lasing threshold, the most significant difference between a
SOA and a laser diode lies in the mirror reflectivity R. The SOA is usually coated
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with an antireflection mirror, ideally resulting in R = 0, to prevent internal feedback.
However, there is a residual facet reflectivity as small as R = 10−4 practically [100].
Therefore, the SOA gain transmission has a ripple characteristic due to loss (Fig. 2.10)
and the resonant spacing depends on its cavity length. Furthermore, a SOA can have a
large 3-dB bandwidth gain up to 40 nm [100] and the gain spectrum can be tailored to
flexibly center it at arbitrary spectral regions. Due to that, it provides a unique advantage
to fiber-based amplifiers that are dedicated to a relatively narrow spectral slice.

Figure 2.10: Basic structure of an SOA

Theoretically, the gain of an SOA is related to its material gain coefficient per unit
length gm (cm−1), which is proportional to the carrier density (n) and has a parabolic
wavelength dependence, defined as [100]

gm = a(n − n0) − a2(λ − λp)2 (2.18)

where a and a2 are gain constants, n0 is a transparency density. λp is a peak of wave-
length, which is proportional to n as following

λp = λ0 + a3(n − n0) (2.19)

where a3 is a gain constant. In addition, a net gain per unit length g can be defined in
terms of gm as

g = Γgm − α (2.20)

where Γ is an optical confinement factor and α is an effective loss coefficient per unit
length. Equation 2.20 is further related to single pass gain Gs

Gs = egL (2.21)

where L is an amplifier length. In general, amplifier gain G is related to Gs and can be
defined as a ratio between output and input signal power

G =
(1 − R1)(1 − R2)Gs

(1 +
√

R1R2Gs)2 + 4
√

R1R2Gssin2φ
(2.22)
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with φ = 2πneqL/λ and neq is the equivalent refractive index at zero carrier density. It is
noticeable that Eq. 2.22 is very similar to Fabry-Perot etalon transmission function. The
ripple along the gain spectrum resembles a comb-like transmission function, as illus-
trated in Fig. 2.10. Therefore, the gain transmission of the SOA can feature a periodic
transfer function provided operation at high gain and with residual reflectivity.

2.1.3.2 Electroabsorption Modulator (EAM)

The EAM plays an important role as an optical transmitter and receiver based on the
electroabsorption (EA) effect [47], where the presence of electric field in materials
changes the optical absorption coefficient. Therefore, the EA effect offers a dual pur-
pose, namely as an optical intensity modulator with moderate absoption and as an opti-
cal photodetector at strong absorption [101].

Figure 2.11: Schematic principle of electroabsorption effect in an EAM (a) without and
(b) with the presence of electric field.

The EAM waveguide is usually a p − i − n semiconductor stack, consisting of p-
type and n-type doped layers, as well as the intrinsic active layer with higher optical
refractive index in between to provide a light confinement [102]. The EA effect is
based on a Franz–Keldysh effect in the bulk active layer and a quantum-confined stark
effect (QCSE) with a multi-quantum well (MQW) in the active region. Figure 2.11(a)
illustrates a band diagram of a bulk semiconductor layer without an electric field. When
the incoming light is smaller than the energy bandgap (ℏω < Eg), an electron in the
valence band (Ev) can not make a transition to the conduction band (Ec) since the photon
absorption does not provide enough energy. However, when the electric field is applied,
the energy bands are tilted, as shown in Fig. 2.11(b). As a consequence, the electron in
the Ev at position A can make a transition to Ec at position B because the photon energy
ℏω meets the energy difference between the two levels. This scheme is also known as
a photo-assisted interband tunneling [102]. The absorption coefficient increases with
the applied electric field. The similar principle is also applied to QCSE, where the EA
effect occurs in the quantum well [103].
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The transfer function τ of the EAM is a function of an exponential of EAM voltage
bias as described as [104], [105]

τ =
P(V)
Pmax

= (1 − ϵmax)e−(V/Va)a
+ ϵmin (2.23)

where P(V) is the output power as a function of voltage V, Pmax is the output power
when zero bias voltage is applied, Va and a are fitting parameters and ϵmin is a minimum
extinction parameter. Another important parameter in the EAM is a static ER, which is
a ratio between the output power at different applied bias and at zero bias (V = 0). The
static ER is related to the change of absorption coefficient with the applied bias [103]. It
is worth mentioning that a static ER up to 9 dB can be achieved by applying a low driv-
ing voltage 1 Vpp swing [47], which is beneficial for optical modulation or broadband
photodetection. Even a low driving voltage below 400 mVpp has been reported that it
could at least reach a 6 dB of ER [106].

Besides its superiority in data transmission, the EAMs are able to translate the sig-
nal from the optical to the electrical domain by harnessing the absorption property in a
photodetection. As a photodetector, the EAM converts the incoming optical signal that
passes through the modulator, providing that it is reverse-biased at absorption. The in-
cident photons are absorbed and generate electron-hole pairs within EAM. The applied
electric field accross the EAM causes the electrons to move towards the positively bi-
ased electrode while the holes move towards the negatively biased electrode, generating
the photocurrent. The magnitude of the photocurrent is proportional to the intensity of
the incident light, allowing the EAM to detect and quantify the optical signal.

The photodetection reception ρ has a dependence on a voltage bias VEAM as follows

ρ(VEAM) = 1 − τ(VEAM) (2.24)

where τ has been defined in Eq. 2.23. It has been showed that a high photocurrent of
∼20 mA can be achieved with a low bias of −1.37 V, therefore EAM has a potential
as a low-biased photodetector [47]. Additionally, recent work has demonstrated the
wide-bandwidth and high responsivity of EAM as a photodetector in the C + L band
wavelengths [107].

2.1.3.3 Monolithic Integration of SOA-REAM and its Role in an Optical Neural
Network

As described above, the SOA can provide a large spectral bandwidth for its optical gain
and the EAM serves as a fast detector when reverse biased. Therefore, the integration
of both is promising as an FM demodulator and detector as a so-called SOA-REAM
(Fig. 2.12(a)) [108].

The configuration of the SOA-REAM synaptic receptor is shown in Fig. 2.12(b).
The front facet of the SOA is partially reflective, while the end facet of the REAM is
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Figure 2.12: (a) Schematic of SOA-REAM and (b) the monolithic integrated SOA-
REAM which intentionally features a residual reflection at its input facet [MVS1].

highly reflective. Therefore, round-trip reflections from both facets form a gain ripple,
as illustrated in Fig. 2.10. This comb-like gain transmission can be employed for the
synaptic weight assignment through the FM-to-IM conversion described in section 2.1.1
(Fig. 2.4(b)). Furthermore, its periodicity can be utilized for weighting multiple input
signals simultaneously. In addition, the EAM will directly receive the weighted addition
of neural signals. Therefore, the optical linear weighted summation can be performed
via the monolithic integrated SOA-REAM.

The wavelength-selective gain spectrum of SOA-SOAM can be expressed in the
following as a function the optical frequency of the input signal ν

Trx =
1

1 − R

������ (1 − R)2Gsoaaeam

(1 + RGsoaaeam)2 + 4RGsoaaeamsin2
�

2πν
FSR

������� (2.25)

where R is the front facet reflectivity, Gsoa and aeam are the SOA gain and the EAM loss,
respectively.

The demodulation of frequency-coded synapses via the SOA-REAM fits the archi-
tecture illustrated in Fig. 2.4(a). The SOA represents the FM demodulator, providing a
weight setting wi for a given wavelength channel λi. This setting depends on the spectral
alignment of λi relative to the comb-like transfer function Trx. The alignment is gov-
erned by tuning either the comb or the wavelength of the input signal si. Because the
SOA gain ripple enables operation across a broad optical bandwidth, accommodating
multiple wavelength channels, the photodetector receives a weighted sum of all synaptic
emitters. This is possible through the wide optical bandwidth of the EAM photodiode.
Consequently, the SOA-REAM cavity serves as a colorless demodulator, where “color-
less” denotes the ability to process multiple channels that are spectrally using the same
transfer function Trx, due to its periodic transmission property. It is important to men-
tion that the “colorless” does not refer to the wavelength-agnostic behaviour in terms of
transmission, but rather to its capability to process multiple wavelength channels.
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The following section compares and discusses the transfer functions of the optical
filters and SOA-REAM in more detail.

2.2 Simulation of Some Potential FM Demodulators
The simulations are performed by using MATLAB. This sub-section focuses on the
transmission of DI, MRR, and SOA based on their mathematical representation de-
scribed in the previous sub-section. Afterwards, the comparison between the FM de-
modulators based on the numerical simulation is presented.

Figure 2.13: Transmission of DI for time delay ΔT of 1 ps (dashed line) and 5 ps (line).

The transmission of the DI depends on the time delay ΔT , as denoted by Eq. 2.14.
Figure 2.13 shows the transfer function of DI for different ΔT . If the delay time gets
smaller, the spacing between transmission peaks becomes larger, ΔT of 1 ps (dashed
line) and 5 ps (line) are inversely proportional to FSR (1 THz and 0.2 THz, respectively).

For integrated waveguide MRR devices, the FSR of the transmission depends on
the geometry and the material of the ring resonator. Figure 2.14 presents the linear
transmission of MRR for radius R of 10 µm (dashed line) and 30 µm (line), based on
Eq. 2.15. A SoI ring resonator with parameters of ng = 4.3 , r = 1, and a = 0.9 is
considered here. It can be noticed that the smaller the radius R, the wider the spacing in
the transfer function.

In the case of SOA, the transmission characteristic is shown in Fig. 2.15. The simu-
lation is based on Eq. 2.22 and using parameters in Table 2.3. The parameters are taken
from [100]. It can be seen that the SOA gain has a comb-like characteristic with a peak
extinction of 2.3 dB. In this simulation, a SOA length of 400 µm has been considered,
resulting in a FSR of 0.99 nm.

Based on the simulations presented above, the DI, MRR, and SOA can be used as
FM demodulators, taking advantage of their periodic transfer functions. Particularly,
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Figure 2.14: Transmission of MRR from through port for ring radius R of 10 µm (dashed
line) and 30 µm (line).

Figure 2.15: Gain spectrum of SOA and its zooming around the ripple

the SOA-REAM is compact and has a small size comparable to the MRR. However,
the SOA-REAM has a broader gain spectrum and more ripples between 1515 nm and
1590 nm, as shown in Fig. 2.15. On the contrary, the MRR has about three and seven
transmission peaks for the radius R of 10 µm (dashed line) and 30 µm (line) as shown
in Fig. 2.14, respectively, between the range of 1515 nm and 1590 nm. Additionally,
the transmission range of MRR is limited in practice due to the wavelength dependence
grating coupler in the input and output of waveguide to extract the response. Due to that
reason, the SOA-REAM will be more compatible for WDM application in ONN, con-
sidering that multiple inputs at different wavelengths can be simultaneously weighted.

The next section will discuss the elements for evaluating the performance of the
SOA-REAM.
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symbol parameter value
a gain constant 2.7 × 10−16 cm2

a2 gain constant 0.15 cm−1 nm−2

a3 gain constant 2.7 × 10−17 nm cm−3

n0 transparency density 1.1 × 1018 cm−3

n carrier density of the gain material 1.2 × 1018 cm−3

Γ confinement factor 0.3 [109]
α effective loss coefficient per unit length 50 cm−1

neq equivalent refractive index at zero carrier density 3.257
L amplifier length 400 µm

R1&R2 facet reflectivity 0.5
λ0 center of wavelength 1550 nm

Table 2.3: Parameters considered for simulation of SOA gain transmission.

2.3 Methodology

In order to demonstrate the capability of SOA-REAM as a synaptic receptor, two ele-
ments in the experimental setup are required. The first is a synaptic emitter to generate
the FM signal and the second is a reception technique to analyze the performance of the
synaptic receptor. Each technique will be floored in the following.

2.3.1 FM Signal Generation

Figure 2.16: (a) The carrier signal spectra and (b) the resulting spectral lines after
carrier-suppressed double sideband modulation separated by the modulation bandwidth
2 fΔ = 2νc.

To generate the FM signal at two different spectral position, a carrier-suppressed
double sideband (CS-DSB) modulation method can be employed, where the frequencies
generated by IM are symmetrically positioned above and below the carrier frequency,
with the carrier signal ideally being entirely suppressed.
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Given the message signal m(t) and carrier signal c(t) = cos(2πνct) in time domain,
the modulation of signal s(t) can be done by multiplying the message and carrier signals,
resulting to

s(t) = m(t)cos(2πνct) (2.26)

where νc is the frequency of the carrier signal. Assuming the message signal m(t) has a
Fourier transform M(ν), the Fourier transform of s(t) is

S (ν) =
1
2
�
M(ν − νc) + M(ν + νc)



(2.27)

The equation above shows that the resulting signal S (ν) contains two spectral compo-
nents, where the first part is in the lower sideband frequency (−νc) and the second part
is the upper sideband frequency (νc). Figure 2.16 illustrates the carrier signal spectra
before (a) and after the CS-DSB modulation (b). The carrier signal in the middle is
suppressed, while two new lines are formed, which are separated by the modulation
bandwidth of 2 fΔ = 2νc. Afterwards, both spectral lines can be modulated with a MZM
to produce a constant-power FM signal, and the resulting FM signal will play an impor-
tant role for the weight assignment, as depicted in Fig. 2.2.

2.3.2 Reception Technique
The reception performance of the synaptic receptor can be evaluated in terms of bit
error ratio (BER) measurements. The BER measurements are performed to quantify
the reception quality of a system by comparing the number of bits received to the total
number of transmitted bits, thus counting the number of errors. This can be done by
characterizing the reception sensitivity of the receiver, which is the minimum power
level that an optical receiver can detect the input signal. This criterion is used to identify
the limit of the interfered system. The lower the received signal power, the weaker the
signal that the receiver can demodulate to retrieve the information.

Furthermore, imperfections in an optical communication system, such as noise, dis-
persion, or moderate ER can influence the reception of the receiver and can be compen-
sated by increasing the power. The extra amount of optical power needed to overcome
the problem or to obtain the same BER as would be given for an infinite extinction, is
defined as reception penalty. The penalty ξ can be defined in terms of ER as follow-
ing [110]

ξ(ER) = 10 log
����1 + 1

ER

1 − 1
ER

���� (2.28)

The next section will explore the demonstration of a SOA-REAM as a wideband
demodulator and detector. Subsequently, its FM demodulation performance will be
compared to the integrated MRR and bulk OTF.
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2.4 Experimental Evaluation
This section presents two experiments. The first part demonstrates the SOA-REAM
based on a demodulation function of a frequency-coded signal. Here, the characteriza-
tion of SOA-REAM is presented, and the reception penalty is discussed. The second
part evaluates the SOA-REAM as a synaptic receptor with an integrated detector func-
tion. In addition, its capability as a synaptic receptor is compared with that of other FM
demodulators.

2.4.1 Experimental Setup to Demonstrate SOA-REAM-Based FM
Demodulation

Figure 2.17 shows the experimental setup to evaluate the SOA-REAM based demodu-
lation of a frequency-coded signal. Two upstream spike emitters are connected to the
downstream synaptic receptor. The spike emitters are based on distributed feedback
(DFB) lasers operating at wavelengths of 1576 nm and 1599 nm. Each emitter is con-
nected to a pair of MZM to generate an FM signal through complementary intensity
modulation of the two optical seed carriers at λ and λ+Δλ, respectively, corresponding
to ν2 and ν1 in Fig. 2.4(b), yielding an FM signal due to the wavelength switching that
is further characterised by a constant optical power.

Figure 2.17: Experimental setup to evaluate the demodulation performance of the
synaptic receptor and to perform simultaneous weighing and summation of the signals
from two different spike emitters [MVS1], [MVS3].

The difference Δλ between the two optical sources for the same wavelength channel
is fine-tuned to the comb function so that Δλ = FSR/2. The complementary outputs are
then combined with a 50/50 combiner and sent to the synaptic receptor. The resulting
intensity ER for the generated FM signals (ideally 0 dB) is 0.72 dB for the given trans-
mitter configuration and the constant power output is −1 dBm, as shown in the insets of
U and L in Fig. 2.17. It is important to note that the apparently complex MZM-centric
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FM emitter configuration described here is used instead of simpler DML / CML based
emitters as the focus is solely on the performance evaluation of SOA-REAM as the
synaptic receptor.

Next, an arbitrary waveform generator (AWG) is used to drive the MZM modulators
with two kinds of waveforms. The first set is a spike train with 100 ps width and a duty-
cycle of 1/16. The timing parameter of this spike train is arranged to accommodate
the time-interleaving of a second spike train, which is spectrally allocated along the
demodulating comb function of the SOA-REAM. The second waveform is a 10 Gb/s
pseudo-random bit sequence for BER measurements.

The synaptic receptor comprises the SOA-REAM and a polarization controller (PC)
compensate the polarization-dependent response of the EAM (Fig. 2.17). In this exper-
iment, a PIN receiver is employed as an external photodetector due to the unfortunate
loss of RF response for the EAM. The demodulated synapses are then digitized using
a real-time oscilloscope. To facilitate BER measurements, a variable optical attenuator
(VOA) is introduced to adjust the received optical power (ROP) for the receptor.

2.4.2 Weight Tuning and Simultaneous Summation of Signals

The SOA-REAM had a length of 470 µm, resulting in a FSR of 0.55 nm (Fig. 2.12(b)).
The transfer function of the L-band SOA-REAM is depicted in Fig. 2.18 against the
wavelength. It has an optical 3-dB bandwidth of 23.75 nm with a peak extinction of
4.73 dB for its demodulating comb function. If the spacing of the receptor is determined
by FSR of 0.55 nm, the SOA-REAM can accommodate 43 synapses along its spectral
bandwidth.

Figure 2.18: Transfer function of SOA-REAM with FSR = 0.55 nm [MVS2].

The relative spectral alignment of the input signal to the periodic transfer function
of the SOA-REAM determines the sign and magnitude of the weight of the proposed
receptor. The characterization of the spectral tuning of the comb function is reported
in Fig. 2.19 by considering several parameters that induce a variation in the optical
density of the SOA-REAM cavity. This includes SOA and EAM biases (Fig. 2.19(a)),
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temperature, and input signal power (Fig. 2.19(b)). The characterization results are
shown as the spectral detuning of a local comb resonance around 1585 nm, which is in
the middle of the gain spectrum (Fig. 2.18). In the case of SOA bias current variation,
the local resonance is blue-shifted until the threshold limit of ∼95 mA is reached. For
accomplishing a sufficiently high cavity gain, the bias current is linearly red-shifted at a
response of 1.34 GHz/mA (� in Fig. 2.19(a)). For the EAM bias, the local resonance has
a linear dependence on the bias voltage at a detuning of 9.94 GHz/V (� in Fig. 2.19(a)).

Figure 2.19: Spectral detuning of the SOA-REAM transfer function related to (a) SOA
and EAM biases, and (b) temperature and optical input power [MVS1], [MVS3].

In terms of the temperature, the detuning shows a relatively large sensitivity with a
response of 22.5 GHz/°C (■ in Fig. 2.19(b)). On the other hand, the optical input power
influences the resonance by a spectral shift of −155.6 GHz/mW (▲ in Fig. 2.19(b)),
particularly in the range between −13.6 dBm (∼0.04 mW) and −3.7 dBm (∼0.4 mW).
Considering such a small fluctuation in optical input power for synaptic connections
with a given optical budget, calibrating the initial receptor can compensate this detuning.

Figure 2.20: Spectra of signal and spike train reception of SOA-REAM with dif-
ferent weighing processes (a) positive sign, (b) zero magnitude, and (c) negative
sign [MVS1], [MVS3].
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Figure 2.20 shows the optical signal spectra at the output of the SOA-REAM after
FM-to-IM conversion for the demodulated FM signal at 1599 nm. The spectra are pre-
sented for various weight settings and the corresponding detuning of the comb function.
It is worth noting that independent spectral alignment was necessary for at least one of
the two spike emitters due to the presence of two emitters in the upstream neuron and
one synaptic receptor in the downstream neuron (Fig. 2.17). Therefore, this involves
adjustment of the current or temperature of the FM emitter laser.

The insets in Fig. 2.20 show the received spike trains for each weight setting. By
suppressing the optical FM sideband at λ + Δλ or at a λ, a positive (Φ) or a negative
(Ψ) sign can be obtained for the detected spike train, respectively. Particularly, when
no FM demodulation occurs, the received signal has a constant amplitude (Ξ), which is
proportional to a zero magnitude of the weight. It shall be pointed out that the magnitude
of the weight can be changed by detuning the comb function, as shown for a positive (ζ)
and a negative sign (ξ) in Fig. 2.20 for the detected spike trains with reduced amplitude.

Figure 2.21: Simultaneous reception of weighted spike trains summed by the synaptic
receptor (B) where the constituent wavelength channels at 1576 nm and 1599 nm are
weighted negatively (N) and positively (P), respectively [MVS1], [MVS3].

In addition, two synaptic emitters have been jointly delivered to the SOA-REAM
(Fig. 2.21). In this scenario, the 1599-nm signal has been weighted positively (P) and
the signal at 1576 nm is chosen with a negative sign (N). By sending the signals simulta-
neously from both synaptic emitters at the input of SOA-REAM, the received spike train
shows a correct summation (B). This result emphasizes that the gain ripple of the SOA
can be used as FM demodulation for performing the weighting function. Furthermore,
it is evident that the synaptic receptor can execute larger MAC operations involving
multiple synapses at different wavelengths by leveraging the WDM dimension.
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2.4.3 Reception Penalty

The reception penalty of SOA-REAM performance is investigated as the next step. Fig-
ure 2.22 describes the BER for the two wavelength channels as a function of the ROP
at SOA-REAM. For each of the two wavelength channels, the results are presented for
a positive (suppressed λ + Δλ) and a negative (suppressed λ) weight. A comparison is
made with the reception of an IM signal, which is equivalent to the ideal case of an
infinite ER for FM-to-IM conversion. The IM reception means only the FM tributary at
λ is modulated at the spike emitter.

Figure 2.22: BER performance of the SOA-REAM serving as a colorless demodulator
for frequency-coded synapses [MVS1], [MVS3].

Despite the moderate FM demodulation extinction of SOA-REAM, as mentioned in
the Section 2.4.2, Fig. 2.22 shows that in principle, a low BER can be achieved. In the
case of the first channel at 1576 nm (Fig. 2.22), a reception sensitivity of −10.4 dBm
is obtained at a BER of 10−6 after FM demodulation, with a small deviation of 0.1 dB
between the positive and negative weight settings (■, ▲). A reception penalty of 3.2 dB
is found with respect to the IM signal (�). This comes from the high intensity ER of the
MZM transmitter, as it does not require FM demodulation.

Next, for the second channel at 1599 nm (Fig. 2.22) the reception sensitivities are
−14.1 dBm and −9.6 dBm for the positive (□) and the negative (△) weight, respectively.
On the other hand, the reception sensitivity for IM input is −15.3 dBm (�). These cor-
respond to reception penalties of 1.2 dB and 5.7 dB for positive (□) and the negative
(△) weight, respectively. Nonetheless, the inset in Fig. 2.22 shows that there is no BER
floor, and the eye diagram is clearly open. The improved sensitivity for the IM signals
compared to the reception of the FM signals is due to the reduced intensity of the ER af-
ter FM-to-IM conversion, which results from the moderate contrast in the SOA-REAM
comb function. This penalty could be reduced when the functional photodetection is
integrated, which will be discussed in the following sub-section.
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2.4.4 Synaptic Receptor with Integrated Detector Function
The potential of the SOA-REAM to integrate photodetection functionality is evaluated
in the second experimental study, where the device is depicted in Fig. 2.23(a). In this
study, its function as a synaptic receptor is compared with FM demodulators assisted by
a SoI MRR (Fig. 2.23(b)) and an OTF (Fig. 2.23(c)). For that purpose, the experimental
setup is shown in Fig. 2.24.

Figure 2.23: FM demodulator devices: (a) SOA-REAM, (b) MRR and (c) OTF [MVS2].

The FM signal is generated at λ = 1585.57 nm by creating two optical carriers with
the first MZM biased for carrier-suppressed double-sideband (CS-DSB) modulation.
The two resulting spectral lines at ν1 and ν2 are spaced by twice its modulation frequency
or 2 fΔ = 30 GHz (C). A second 1×2 MZM with complementary output ports modulates
both lines with the same pseudo-random bit sequence at a data rate of 2.5 GHz. Both
outputs are combined through an optical 25/50 GHz interleaver (IL) to pass only one of
the IM lines from each MZM output branch.

Figure 2.24: Experimental setup for evaluating the SOA-REAM, MRR, and OTF as FM
demodulators [MVS2].

Figure 2.25(a) shows a good suppression of 20.4 dB and 19.6 dB between neigh-
bouring odd and even channels of the IL transfer function. This ensures a low crosstalk
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between the FM tributaries at ν1 and ν2. Furthermore, a good optical carrier suppression
of 16.8 dB is shown in Fig. 2.25(b)) after CS-DSB modulation. As a result, Fig. 2.25(c)
shows a constant-power FM signal, which is obtained with only the tributary at ν2(o)
and ν1(ε) being found in the lower and upper sideband of the suppressed optical carrier
λ, respectively.

Figure 2.25: (a) Optical interleaver (IL) spectra for odd and even channels, (b) FM signal
spectrum, and (c) optical carrier suppression after carrier-suppressed double-sideband
(CS-DSB) modulation [MVS2], [MVS3].

It is worth mentioning that the spacing |ν2− ν1| = 2 fΔ is slightly smaller than FSR/2.
This is because the spectral configuration of the FM signal, in particular |ν2 − ν1|, is
adjusted to the FSR/2 parameter of the demodulating comb function and in order to
achieve a good suppression through the even/odd transmission windows of the IL. The
particular FM emitter implementation was aimed for a simplified handling of the FM
configuration, but it is not a requirement for the proposed synaptic receptor.

The residual IM pattern in the transmitted FM signal has a low ER of 0.26 dB (D in
Fig. 2.24). Additionally, the state-of-polarisation at each of the single-mode fiber ports
of the IL is aligned with a PC to ensure co-polarized FM tributaries at its output. Sub-
sequently, the signal is amplified with an L-band erbium-doped fiber amplifier (EDFA).
Moreover, amplifier spontaneous emission (ASE) peak of the amplifier is filtered with
a 1591-nm coarse-wavelength division multiplexing (CWDM) filter.

In the second SOA-REAM based synaptic receptor configuration, the EAM now
serves as a photodiode. The detected photocurrent of the EAM is post-amplified with
a 50Ω low-noise amplifier (LNA) due to the incompatible EAM interface for low-
capacitance co-integration with a transimpedance amplifier (TIA).

For comparison, the SOA-REAM synaptic receptor is replaced with two types of
frequency-modulating receivers (Fig. 2.24). The first is a single-polarization MRR, as
depicted in Fig. 2.24, followed by an APD/TIA receiver that compensates for the fiber-
to-fiber coupling loss of 8.4 dB when passing light through the MRR (ρ). The MRR had
been fabricated on a SoI platform with a 220 × 500 nm2 waveguide cross section and
had a FWHM bandwidth of 14.6 GHz and a FSR of 0.95 nm for its drop response. The
second FM receiver implementation is an OTF (Santec OTF-350) with a steep filter edge
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Figure 2.26: Signal spectra for SOA-REAM receptor [MVS2].

of 23.8 dB/0.1 nm and an insertion loss of 2.8 dB, combined with a PIN/TIA receiver (τ
in Fig. 2.24).

Figure 2.27: Signal spectra for MRR receptor [MVS2].

Figure 2.26 presents the optical signal spectra after FM demodulation through the
synaptic receptors for the SOA-REAM, along with the transfer functions of the respec-
tive optical elements. The demodulation function of the SOA-REAM (δ) is observed
from its reflected (i.e. power-complementary) signal, as shown in Fig. 2.26. It exhibits
an extinction of 4.9 dB and can be tuned through the SOA current, the EAM bias or
the temperature (Section 2.4.2) to suppress either tributary at ν1 or ν2. This results in
a positive or negative polarity for the received signal, for which the upper (+) or lower
(-) sideband is emphasized, respectively. An extinction of 5.4 dB can be achieved for
FM-to-IM demodulation, as it is evident from the difference in peak powers in the upper
and lower sidebands of the suppressed optical carrier λ. This extinction has been found
to be dependent on the SOA-REAM cavity loss and thus on the EAM bias.

A similar weight setting can be made for the MRR, as depicted in Fig. 2.27. The
spectral notch of its pass-through port (µ) is spectrally tuned to reject the corresponding
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Figure 2.28: Signal spectra for OTF receptor [MVS2].

FM tributary (ν1, ν2), leading to an extinction of 15.9 dB for FM demodulation. In the
case of the OTF, the filter is tuned to pass either the lower (ι) or upper (u) sideband
(Fig. 2.28). The FM demodulation features a high extinction of >32 dB by virtue of the
sharp filter roll-off within 2 fΔ.

Figure 2.29: Received signal patterns with different synaptic receptors: (a) SOA-
REAM, (b) MRR, and (c) OTF [MVS2].

Figure 2.29 reports the detected signals of the frequency-demodulating receivers. A
weighting function that is continuous in sign and magnitude is accomplished by shifting
the SOA-REAM transmission (a), for which the zero magnitude of weight is shown
in the middle. The two insets at the bottom define the positive weight with different
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magnitudes and the negative signs are depicted at the top. The positive and negative
weight can be set in the same manner for the OTF (Fig. 2.29(b)). Similarly, the weight
for MRR transmission can be tuned via temperature (Fig. 2.29(c)). Here, the received
signal after FM demodulation (–) is compared against the case of having an IM input
signal (I). The IM signal represents only one FM tributary (ν2) at the input of the FM
demodulator, while the FM demodulation requires to reject the other FM tributary (ν1).

Figure 2.30: BER performances for SOA-REAM receptor [MVS2], [MVS3].

The reception performance of all three synaptic receptors has been evaluated in
terms of BER for a pseudo-random data input as function of the ROP. Figure 2.30 shows
the BER performance for the SOA-REAM receptor. The reception sensitivity for the
FM demodulated signals at a BER of 10−10 is −0.9 dBm and shows a small difference
of 0.2 dB between positive (▲) and negative (�) weights. The penalty with respect to
an IM input signal (■) is 7.1 dB, of which 3 dB account for the paired FM spectrum
consisting of ν1 and ν2 rather than of a single line (ν2). Another 2.9 dB are attributed
to the sensitivity penalty due to a finite demodulation ER (δ) in Fig. 2.26. The rather
high ROPs required for the SOA-REAM receptor are attributed to (i) the mode-field
mismatch between the asymmetric InP waveguide and the tapered single-mode fiber,
and (ii) the EAM-LNA detector, which performs worse than an EAM-TIA receiver.

For the MRR-assisted receptor with APD/TIA detector (Fig. 2.31), the reception
sensitivity is −14.7 dBm (△,�) and the penalty to an IM input (□) is 3.9 dB. Similar as
above, the 3 dB is from the suppressed FM sidebands and the 0.9 dB penalty is attributed
to the high extinction of the MRR notch used for FM-to-IM demodulation. The high
ROP level in combination with the APD receiver are explained by the high fiber-to-fiber
coupling loss.

In case of the OTF-based demodulator (Fig. 2.32) with PIN/TIA receiver, a sensitiv-
ity of −10.1 dBm (+,×) is obtained, whereas the penalty with respect to an IM input (�)
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Figure 2.31: BER performances for MRR receptor [MVS2], [MVS3].

is 3.1 dB. This agrees well with the expected 3 dB penalty for an excellent suppression
of an FM tributary.

Figure 2.32: BER performances for OTF receptor [MVS2], [MVS3].

2.5 Summary
A new approach of optical linear weighted summation via frequency coding has been
presented in this chapter and the results have been published in [MVS1], [MVS2],
and [MVS3]. The FM demodulation through a periodic transfer function can facilitate
the matrix multiplication between the neural signals and the weights.
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The experimental demonstration has confirmed the possibility of frequency coding
of neural signals within SOA-REAM synaptic interconnections. Utilizing monolithic
integration, the combination of SOA and REAM serves as a colorless synaptic receptor,
facilitating the adjustment of both sign and magnitude for linear MAC operations, while
simplifying the detector. WDM operation has been validated through the simultaneous
demodulation and detection of two spike trains, exhibiting a spectral detuning of 23 nm,
consequently enabling a significantly parallel synaptic interconnect.

Additionally, it has been confirmed that a low BER can be observed by integrat-
ing the detection functionality with the FM demodulator SOA. A comparison has been
done with an MRR- and OTF-assisted FM discriminator, revealing a significant con-
trast in their transfer functions, suggesting potential improvements in demodulation ef-
ficiency for the SOA-REAM receptor. The intensity ER after FM-to-IM conversion was
measured at 5.4 dB. Further improvement can be achieved by integrating EAM pho-
toreceiver with an optimized amplifier to TIA to boost the sensitivity of the synaptic
receiver.

Integrating the optical elements in ONN can increase the complexity architecture
of the NN. The work here confirms that SOA-REAM is practically able to scale up the
optical MAC operation. Furthermore, with its colorless feature, the SOA can process
multiple synaptic signals with different wavelengths and perform the weighting simul-
taneously. Therefore, the SOA-REAM offers a breakthrough in the further development
of ONN.

Since the linear weighted operation aspect in the optical domain has been demon-
strated, the second operation in the ONN requires further investigation. The following
chapter will dive into the concept and implementation of an optical nonlinear activation
function.





Chapter 3

Nonlinear Activation Function in
Photonic Neural Network

The nonlinear activation function is an essential operation after a linear weighted sum-
mation in NNs to define a decision boundary in a prediction or a classification problem.
Chapter 1 presented some demonstrations of the photonic activation unit with different
approaches for various nonlinear functions. In this chapter, another proposal of activa-
tion function via frequency coding is introduced. Afterwards, the discussion will con-
tinue with the demonstration of photonic ReLU functions by comparing two schemes
and their results are reported.

3.1 Concept of Photonic ReLU

Figure 3.1(a) illustrates a photonic neuron within a NN architecture. The first operation
is the weight (wi) multiplication with the neural signal (xi), resulting in a sum (Σ) in the
neuron of the subsequent layer. This linear part has been discussed in Chapter 2, includ-
ing its demonstration in the optical domain. The second part is the nonlinear operation
to perform an activation of the neural summation. Specifically, the study here is devoted
to realize a photonic rectified linear unit or ReLU, where the function is illustrated in
Fig. 3.1(b). The ReLU function returns to zero if the input has a negative value, but
any positive value will pass through, resulting in a linear gradient of 1 (Fig. 3.1(b)).
Therefore, the ReLU unit f (x) can be mathematically expressed as

f (x) =

����x, x > 0,
0, x ≤ 0.

(3.1)

where x is the input. This function can be realized in two photonic approaches. Each
scheme is discussed in the following.

53
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Figure 3.1: Neural network architecture based on multilayer perceptron (MLP) scheme.
(a) Functional diagram of a photonic neuron and (b) the schematic of ReLU func-
tion [MVS4].

3.1.1 Electro-Optic Slope Filtering
An electro-optic approach refers to a scheme where an electrical-to-optical conversion
is required. Here, the DML can be employed to generate the ReLU function, which
has been introduced as an FM emitter in Section 2.1.2. Like other semiconductor light
sources, stimulated emission can simultaneously occur when a bias current is injected
into the DML. However, coherent light is not emitted subsequently, except when the
current exceeds a critical value known as a threshold current Ith. If the optical input
intensity increases and the light excitation is biased above the threshold, the optical
output intensity responds linearly to the optical input and is eventually in the lasing
state. Therefore, the DML has a light-current (L − I) characteristic, as presented in
Fig. 3.2(a), which resembles the ReLU function (Fig. 3.1(b)).

To determine how much power (P) is obtained by applying a certain amount of bias
current (I), the emission feature of the DML can be characterized via the L − I curve,
which is governed by the following equation

P = η
hν
e

(I − Ith) (3.2)

where η is the quantum efficiency of the laser, h = 6.626 × 10−34 J·s is a Plank constant,
ν is the laser operating frequency, and e = 1.6 × 10−19 C is the electron charge.
The direct electro-optic modulation property of DML is utilized to perform the photonic
ReLU activation function. The neural weighted sum signal is sent via a RF signal gener-
ator to the DML (Σel), as depicted in Fig. 3.2(b). Afterwards, a bias current (I) is added
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Figure 3.2: (a) The light-current (L − I) characteristic of DML, (b) the electro-optic
ReLU scheme using DML, and (c) the alignment of the RF weighted sum data (Σel) to
the light-current curve of DML to perform ReLU operation can be controlled via the
bias current [MVS4], [MVS5], [MVS6].

to Σel to align the neural signal to the L − I curve of DML, as illustrated in Fig. 3.2(c).
The sub-threshold bias current (I < Ith) is required, as the Σel below the threshold will
be rectified. Therefore, by tuning the bias current of the RF signal, the photonic ReLU
function f (Σ) can be configured.

3.1.2 Photonic Slope Filtering of Frequency-Coded Synapses

Figure 3.3: (a) Illustration of a linear transfer function of an interferometric filter with
the noise floor n of a photodetector, (b) a photonic ReLU scheme, and (c) the concept
of photonic ReLU by using a combination of CML+IL and the subsequent PIN photo-
diode [MVS5], [MVS6].

The second approach passes a frequency-domain representation of the optical signal
to the quadrature point of an interferometric filter, where the linear transmission function
is illustrated in Fig. 3.3(a). It can be noticed that the transmission is similar to the
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ReLU function. However, it has a curvilinear feature, which can be inappropriate for
performing rectification because the cut-off threshold for negative input value is not well
defined. Nonetheless, the output signal will eventually be received by a photodetector
and the proper rectification can be done through its inherent clipping feature deriving
from its finite sensitivity.

This comes from the fact that a photodetector is subject to noise that limits the
sensitivity of the receivers due to several effects [111]. Through its load resistance, the
photodetector contributes with so-called thermal noise. This thermal noise results from
the temperature fluctuation of the charged carriers. Additionally, current fluctuation is
present in course of the so-called shot noise, which results from the discrete nature of
photons that follow a Poissonian statistic. The received photocurrent on the detector is
likely prone to typical thermal and shot noise [112], thus giving rise to a noise floor (red;
n), as depicted in Fig. 3.3(a). The n provides a cut-off point to realize the rectification
operation. Thus, the combination of the interferometric filter and the photodetector
provides the transfer function analogous to the ReLU function (Fig. 3.1(b)).

To quantify the sensitivity of a photodetector due to the noise, a noise equivalent
power (NEP) can be measured, which defines the incident power on the detector that
results in a signal-to-noise ratio (SNR) of one at the outputs at a given data signal rate
and noise bandwidth [111]. The NEP is expressed in the W/

√
Hz unit. Since NEP

defines the lowest optical signal that can be detected, it is beneficial to have a detector
with a small NEP value, which directly corresponds to a lower noise floor, meaning a
higher sensitivity.

In order to perform the activation function via the interferometric filter, the neural
information is coded to the frequency domain. The neural data s(t) is translated to the
optical frequency ν, according to the following mathematical expression

sν(ν) = νλ + Δν · s(t) (3.3)

where νλ is the optical carrier frequency of the frequency-coded signal and Δν the peak-
to-peak frequency deviation, which is applied during information coding. The signal sν
is delivered through the quadrature point of the interferometric filter, which is illustrated
in Fig. 3.3(b).

An optical interleaver (IL) has a similar transfer function as the interferometric filter.
It has been used widely in optical communication applications to combine two sets of
WDM signals from odd and even channels and interleave them into a composite signal.
The transmission of IL from the even channel can be defined through a periodic function
as

T (ν) =
1
2

[1 − cos (2πδT (ν − νo))] (3.4)

where δT is the delay parameter that defines the FSR and νo is the offset of the transfer
function to the FSR.
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Therefore, photonic ReLU via IL and photodetector can be performed by feeding in
an FM signal, meaning that a FM transmitter is required precedingly. The superiority
of a CML as a FM emitter has been discussed in Section 2.1.2.2 and can be used as a
good companion with the IL and the noisy photodetector. Therefore, the FM signal of
the weighted sum ΣFM can be generated via the CML and is further sent to the transfer
function of the IL, in combination with the subsequent photodetector, to process ReLU
f (Σ) (Fig. 3.3(c)). The rectification can be achieved by tuning the wavelength of the
CML relative to the IL slope function. In the next section, the analytical model of these
approaches are reported.

It is important to mention that even though a photonic approach involves optoelec-
tronics, the next chapter will show that a translation between the optical and electrical
domains between the layers of the ONN does not require complex interfaces.

Figure 3.4: Iris flower as classification problem example [113].

One of the well-known classification problems is an Iris flower data set, introduced
by a statistician and simultaneously biologist, Ronald Fisher, in 1936 to analyze a linear
discriminant function [114]. The Iris dataset includes data from 150 flowers. It is dis-
tributed from three classes of the flower: Iris setosa, Iris versicolor, and Iris virginica,
as shown in Fig. 3.4. Each flower sample has four features, consisting of sepal (length
and width) and petal (length and width), where all are defined in centimeter (cm) and
collected by Edgar Anderson [115].

For that purpose, Fig. 3.1 introduces a multilayer perceptron (MLP) architecture
with three hidden layers besides the input and output layers. In each hidden layer, there
are four nodes, except layer 3, which has only three nodes, same amount as the classes
of the Iris flower. On the other hand, the four nodes in the input layer are as many as
the features of the flower, where each node (xi) in the input layer represents one flower
feature.

As a benchmark, the Iris flower prediction problem has been trained offline with
100 epochs using the Adam optimization [116] by Pham [117]. There are 55 trainable
parameters comprising 20, 20, and 15 parameters for hidden layers 1, 2, and 3, respec-
tively. It should be pointed out that the activation function does not occupy the parame-
ters. Additionally, a standard partition of 80% for training and 20% for testing has been
implemented in the training. In addition, a learning rate of 10−3 and a batch size of 20
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have been used in the training optimization. The results of the training becomes the
digital NN (DNN) and is used as a benchmark for the photonic neuron demonstration.

Therefore, each neuron in NN is weighted with an integer (wi) as the result of the
training. Afterwards, MAC operation is performed, and bias (b) is applied to their sum
(Σ). Then, the nonlinear activation function ( f ) is utilized, and the output is sent to the
subsequent layer. A Softmax function (zi) is applied at the output layer to determine
the prediction probability. For performance evaluation, the outcome of photonic ReLU
demonstrations will be compared to the ideal DNN.

3.2 Analytical Model
Figure 3.5(a) shows the transmission model T (dashed-line) based on Eq. (3.4) and
the 25/50 GHz IL transmission (line). As can be seen, the model fits to the measured
transmission. In order to perform the rectification operation, the linear function can be
estimated at its quadrature point, at T = −3 dB. Therefore, the model in Eq. (3.4) can
be approximated to the following function

L(ν) = α + β[ν − ν(T = 0)], (3.5)

where

α = T (ν(T = 0)) =
1
2
, (3.6)

and

β =
d
dν

T (ν(T = 0)) = πδT (3.7)

Figure 3.5(b) presents the approximation based on Eq. (3.5)-(3.7), including the trans-
mission model T (dashed-line). This IL function selectively passes the spectral com-
ponents of the neural signal sν. In the scenario illustrated in Fig. 3.3(b), the filter sup-
presses lower frequencies without rectification. To achieve rectification, the subsequent
photodetector after IL introduces a noise background n, which is effectively responsible
as the drop window (D in Fig. 3.5(b)) for the linear function L. This clips the neural
signal, as defined by the bias bν for the spectral alignment of sν. Therefore, the neural
signal in the higher frequencies and above D will pass through. Eventually, this scheme
provides the ReLU function for photonic neuron implementation.

As mentioned earlier, the ROP to the photodetector will determine the threshold
point n. In order to explain the influence, two cases are shown in Fig. 3.5(c), where two
schemes of ROP are defined. If the ROP is too large, meaning that the sensitivity of the
photodetector is high, then the threshold n′ will be low. As the consequence, a nonlinear
characteristic is shown below −3 dB transmission of the IL, as pointed out by eIL. It will
be eventually lead to an incorrect ReLU operation due to the nonlinearity above n′.
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Figure 3.5: (a) The model T (dashed-line) and measured (line) transmission of an op-
tical 25/50 GHz interleaver as a function of a relative optical frequency. (b) A linear
approximation Lν (line) is around the quadrature point of the model (dashed-line). The
noise background n from a photodetector is clipping the signal, which separates the pass
and drop regions of the IL. (c) Sub-optimal noise thresholds where nonlinear distortion
for the neural signal appears at the extinction eIL and maximum transmission mIL of
the IL. (d) Optimal threshold n∗ yielding a rectified photocurrent i∗ defined by the fre-
quency deviation Δν, the ReLU bias bν, and the frequency-to-intensity conversion kIL of
the IL [MVS6].

On the contrary, if the ROP is too low, then the sensitivity of the photodetector is
moderate. As a result, the threshold n" will be too high and the neural data signal will
end up above the −3 dB value of the IL slope. At the maximum of the IL transmission, a
nonlinear response as indicated by mIL will affect the performance of the ReLU function
as well.

Therefore, there is a trade-off that requires an optimization to avoid these nonlinear
responses. In order to minimize the error ξ in the ReLU function due to the two sub-
optimal cases above, the ROP has to be optimized, which is given by the deviation from
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its linear slope according to the following equation

ξ =

� νλ+Δν

νλ

|T (ν) − L(ν)| dν (3.8)

and as indicated by the red areas at eIL and mIL in Fig. 3.5(c).
The ideal threshold condition n∗ is sketched in Fig. 3.5(d), which is neither not too

low nor too high as in Fig. 3.5(c). The photocurrent of the processed neural data i∗ (after
frequency-to-intensity conversion kIL at its linear slope), is correctly rectified without
additional error. In addition, it requires a careful match of the frequency deviation Δν
to the FSR of the IL to preserve the neural signal sν within the linear region L(ν). It is
also important to appropriately scale Δν as it cannot be made arbitrarily small to ensure
linear operation because this would result in a degraded signal-to-noise ratio. Therefore,
a trade-off between non-linear distortion and excess noise must be made.

The experimental demonstration of photonic ReLU will be presented in the next
section and their results are discussed afterwards.

3.3 Experimental Evaluation

3.3.1 Response Characterisation of the ReLU Function
Two characterisations of photonic ReLU are presented, which are based on the electro-
optic of DML and the frequency coding using IL and photodetector. Figure 3.6 shows
the laser characteristic of a DML (Yuopto YDBK) exhibiting the output power against
the applied bias current. The model (dashed line) is illustrated based on Eq. (3.2) and
fits to the measured DML laser (solid line) at 1554 nm with η = 0.218 and Ith = 6.5 mA.
For the demonstration of the ReLU function, the rectification can be applied at the sub-
threshold current regime by tuning the bias current accordingly.

Based on the analytical model in Section 3.2, characterization is performed to ex-
perimentally identify the ReLU function response in the case of the frequency coding
approach. Figure 3.7 shows the experimental setup to perform this characterization. A
vector network analyzer (VNA) drives an optical inphase/quadrature modulator (IQM)
through a wideband RF 90° hybrid to generate an optical single-sideband frequency
sweep. A 25/50 GHz IL (Optoplex IL-C0SBFAS004) with a slope of kIL = 5.43 dB/GHz
is then inserted between IQM and PIN photoreceiver (HP 11982A) with a NEP of 30
pW/
√

Hz.

Figure 3.7 presents the corresponding transfer function when spectrally allocating
the optical source at the beginning of IL transmission window. At the same time, the
launch power is adjusted with an attenuator (VOA) to accomplish clipping of the filtered
response. For an average ROP below −10.5 dB, a suppression towards lower frequencies
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Figure 3.6: The model (dashed line) and measured (solid line) L − I curve of a DML
(Yuopto YDBK).

Figure 3.7: Characterisation demonstration of ReLU response [MVS6].

f < fK can be seen, with fK = 0 GHz. A linear slope is obtained above fK, which
together with the suppressed region resembles a ReLU function. Therefore, the IL and
photodetector will be used in the demonstration below to perform the photonic ReLU
function.

3.3.2 Demonstration of ReLU Function for Photonic Neural Net-
work

Figure 3.8 shows the experimental setup to evaluate the performance of the photonic
ReLU function. The evaluation is conducted based on a neuron in layer 2, node 0, as
denoted in the MLP architecture of Fig. 3.1. The weighted sum data Σwisi(t) is sent
through an AWG at 1 Gb/s data rate, which drives a CML operating at 1600.6 nm.
It is important to mention that the sum Σwisi(t) data has been selected without being
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Figure 3.8: Experimental setup to evaluate the performance of ReLU unit based on (i)
an optical interleaver (IL) and a PIN photodetector, in combination with a CML, and
(ii) an electro-optic approach by employing a DML [MVS4], [MVS5], [MVS6].

Figure 3.9: (a) Optical spectra of CML+IL based on ReLU implementation before (α)
and after (β) the IL, including the IL transmission (γ). (b) DML output spectrum for bias
points above (ζ) and below (δ) the threshold current Ith [MVS4], [MVS5], [MVS6].

processed by the activation function in DNN. The CML is used as a synaptic emitter
to generate the FM signal of weighted sum data ΣFM, where its OSR filter has been
adjusted to a neutral position to prevent FM demodulation (Section 2.1.2.2). The inset
in Fig. 3.8 depicts the output of the CML with an intensity ER of 0.3 dB. The FM signal
is processed by the 25/50 GHz optical IL (Fig. 3.8(i)) and the subsequent photodetector
to perform the ReLU activation function, which inherently converts the frequency-to-
intensity modulated signal.

Figure 3.9(a) displays the optical spectra of CML before (α) and after (β) the IL,
when the wavelength λ of CML is aligned to the IL linear slope, along with the transfer
function of the even IL channel (γ). Afterwards, the optical signal output after the
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ReLU is received by a PIN photodetector and digitized through a real-time oscilloscope
(Fig. 3.8). As performance comparison, the combination of CML+IL is replaced by a
DML operating at 1554 nm, performing the electro-optic ReLU with a threshold current
Ith of 6.5 mA (Fig. 3.8(ii)). In this investigation, two distinct bias currents are used,
where Fig. 3.9(b) shows the optical spectra of DML with the sub-threshold current of
5.5 mA (δ) and above Ith of 11.2 mA (ζ), which is in the linear regime of the L− I curve
(Fig. 3.6).

Figure 3.10: Normalized optical signal at the output of ReLU for digitally computed
NN (◦) and photonic ReLU implementations based on (a) CML+IL (•) and (b) a DML
(▲). The eye diagrams at the bottom are presented as the output ReLU for the case of (c)
all-DNN, and photonic ReLU using (d) CML+IL and (e) DML with bias current below
and (f) above the threshold current [MVS4], [MVS5], [MVS6].

Figure 3.10(a) describes the normalized optical signal with CML+IL (•) at the out-
put of the ReLU for 150 Iris flower data samples, being compared to all-digital NN
(◦). It is visible that the photonic ReLU process with the CML+IL is in a good agree-
ment with the digitally-computed NN. This can also be observed from the equivalent
eye diagrams (Fig. 3.10) at the output ReLU between the reference DNN (c) and the
CML+IL (d).
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On the other hand, the ReLU operation with the DML (▲) reveals a more significant
error compared to the DNN-based ReLU (◦), as reported in Fig. 3.10(b), by applying
a sub-threshold current to the DML to rectify the neural signal. The error arises from
a gain switching effect, as the eye diagram (e) shows that the DML emission is pulsed.
This also corresponds to the broadened optical spectrum δwith the biased current below
the Ith in Fig. 3.9(b). To mitigate this effect, the bias is increased above Ith, where the
ReLU occurs in the linear region of L − I. However, the subsequent eye diagram (f)
exposes an inaccurate rectification, as the eye is shifted to the top. This indicates the
unsuitability of the DML to perform a ReLU operation.

The error when performing the photonic ReLU by an implementation based on
CML+IL and DML are summarized in the histogram of Fig. 3.11. Here, the error ε
is introduced as an absolute difference between the normalized optical output signal
and the all-digital NN. The histogram shows that the error by implementing a CML+IL
based ReLU (κ) is small with an average error ε̄ = 0.14 (3σ = 0.36). In contrast, the
error is larger by using the DML, which is distributed in a range of 0 < ε < 0.7. The
results assure that the CML+IL combination can be used to perform photonic ReLU
with a low error.

Figure 3.11: Error histogram of photonic ReLU operation based on CML+IL (κ), which
is lower than using DML implementations (ς) [MVS4], [MVS5], [MVS6].

In addition, the output of the photonic ReLU is fed back to the DNN. This corre-
sponds to propagating the measured optical neural signal to the output layer of the MLP
architecture (Fig. 3.1), aiming to calculate the accuracy of Iris flower prediction. The
accuracy of 90% and 62% is achieved for the CML+IL and DML implementations, re-
spectively. It is noteworthy that the accuracy is achieved by sending one flower every
nanosecond. In the case of offline training, the DNN reveals 93% accuracy for the Iris
flower prediction. This highlights the potential of CML+IL and the subsequent photode-
tector scheme as the favourable photonic ReLU, leaving just a 3% penalty of accuracy
compared to the digitally-computed NN.

It is worth noting that the DNN did not consider any hardware or optical component
imperfections when making its training considerations. The DNN training is directly
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transferred and applied to the optical layer without taking into account the actual sub-
component implementations in the demonstrated photonic neuron.

3.4 Summary
It has been demonstrated that photonic ReLU can be achieved based on frequency-
domain processing involving combination of CML+IL with a subsequent photodetector.
The results have been published in [MVS4], [MVS5], and [MVS6]. Furthermore, the
results show that a lower error is achievable with CML+IL rather than a DML imple-
mentation, which is prone to undersired lasing artifacts in the operation regime required
to perform non-linear electro-optic signal processing. Using the CML+IL tandem with
noise background of a photodiode shows that a non-linear electro-optic conversion can
be avoided when performing the ReLU function. In addition, a small penalty of 3% can
be accomplished by using this scheme, compared to the offline training of the DNN.

The full implementation of a photonic ReLU including an analog linear weighted
summation is the next step. This frequency coding based on CML+IL and the noise-
clipped photodetector will be employed for further investigation in developing a func-
tionally complete photonic neuron, which will be discussed in the next chapter.

It is important to mention that even though a photonic approach involves optoelec-
tronics, the next chapter will show as well that a translation between the optical and
electrical domains between the layers of the ONN does not necessarily require complex
interfaces. The next chapter will therefore further introduce a translucent concatenation
between the linear and nonlinear operations in photonic domain, where no electrical
amplification is required.





Chapter 4

Photonic Neural Network

Two essential ingredients in ONNs, the analog linear weighted summation and the pho-
tonic activation function based on frequency coding, have been introduced and demon-
strated in Chapters 2 and 3, respectively. Therefore, the next step is to combine all the
functions to realize a functional photonic neuron. This chapter will show that multiple
neural sub-circuits can be collapsed on the same photonic ReLU hardware. This sig-
nifies the prospect of integrating the weighting functionality within the photonic ReLU
for a simplified ONN scheme. Afterwards, the possibility of simultaneously perform-
ing the weighting function and ReLU unit will be investigated. This work reveals that
combining the linear and nonlinear functions is challenging because it requires an in-
termediate optical-to-electrical-to-optical (o/e/o) conversion. Therefore, a direct-drive
approach will be presented, which eliminates an electrical amplification in this o/e/o
process. This will open a new path towards an efficient interface in ONNs. At the end
of this chapter, the possibility of integrating the proposed photonic neuron scheme on a
chip-scale implementation will be discussed.

4.1 Methodology: Heterodyne Optical Detection

In order to analyze the possibility of weight polarity assignment via the photonic ReLU
and to characterize the FM signal at the DBR laser output in the following experimental
demonstration, a coherent optical detection will be employed to restore the full infor-
mation on the optical complex amplitude. Optical coherent detection is a technique to
measure the phase and the amplitude of a transmitted signal at the receiver [118]. Co-
herent detection retrieves the phase information of the signal which cannot be recovered
by a direct detection technique. Figure 4.1(a) illustrates the schematic of heterodyne co-
herent detection where the incoming signal at frequency ωS is combined with a locally
generated signal from a laser oscillator (LO) laser at frequency ωL. Balanced photode-
tectors is used to suppress the direct current (DC) component and maximize the beat
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between the two signals [119]. The total current at the photodetectors can be defined as

I(t) = R|ASe−iωSt + ALe−iωLt|2 (4.1)

where R is the photodetector responsivity, AS = aSeiφS and AL = aLeiφL are the complex
amplitude of the transmitted signal and the LO signal laser, respectively. By defining
PS = |AS|2 and PL = |AL|2 as the signal power and LO power, respectively, the total
current can be written as

I(t) = R
�
PS + PL + 2

�
PSPLcos (ωIFt + φS − φL)

�
(4.2)

where ωIF = |ωS − ωL| is an intermediate frequency (IF), φS and φL are the phase of the
signal and LO laser, respectively. Equation 4.2 describes that the signal phase φS can be
retrieved as long as φL is constant. Additionally, Fig. 4.1(b) shows the initial position of
the LO frequency ωLO and the signal frequency ωS. By setting the LO frequency close
to the signal frequency, the IF spectrum can be achieved, as illustrated in Fig. 4.1(c).
This term is known as down-conversion, where the IF signal accurately represents the
original signal, meaning that the amplitude and phase of the signal is preserved. The
phase and the amplitude of the signal are recovered electronically at an IF ∼1 GHz [118].
When ωIF = 0, then it corresponds to a so-called homodyne detection [119].

Figure 4.1: (a) Illustration of a coherent detection and spectra of (b) the optical signal
and (b) the down-converted signal.

In the following, the experimental demonstration of the photonic neuron will be
reported and the results will be discussed.

4.2 Photonic Neuron with Weighting and Nonlinear Ac-
tivation Functions

This section will demonstrate a photonic neuron consisted of the analog linear weighted
summation and the photonic ReLU for two approaches. The first involves collapsing
multiple neural sub-circuits on the proposed ReLU to set the polarity of the synaptic
weights. This scheme explores the potential for utilizing a shared photonic hardware
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across multiple neuromorphic sub-circuits. The second approach is a simultaneous op-
eration of weighting summation and the ReLU unit. This task will investigate whether
the two operations can be performed in parallel.

4.2.1 Collapsing Multiple Neural Sub-Circuits onto a Shared Pho-
tonic ReLU

Figure 4.2: Neural network architecture based on the multilayer perceptron scheme
of a photonic neuron, comprising the linear weighted summation (Σ) and the photonic
ReLU [MVS6].

Figure 4.2 shows the NN architecture to evaluate a photonic neuron with a shared IL.
Two neurons under consideration are denoted in layer 2, nodes D and E. The weights
applied to the neurons are based on the offline training or the digital NN (DNN) and can
have different polarities and magnitudes, depending on the neuron under investigation in
the subsequent layer. Based on the DNN, the weighted sum of nodes D and E, including
the activation function afterwards, will result in layer 3, nodes F and G, as illustrated in
Fig. 4.2, with alternating signs (w+,w−) for the weight.

Figure 4.3 reports the experimental setup, where the IL is the shared ReLU for
two neural sub-circuits. All synaptic emitters utilize the same IL. In this evaluation,
four CMLs are used as FM synaptic emitters; two of them are allocated in the C-band
(1535.2 and 1535.55 nm), and the other two are in the L-Band (1599.65 and 1600.5
nm). Both C-band CMLs define the synaptic emission of two nodes in layer 2 (D and
E in Fig. 3.1). The corresponding wideband PIN photodetector (sub-circuit 1; Fig. 4.3)
receives the output representing the neuron in layer 3, node 2 (G) after the ReLU activa-
tion. Likewise, both L-band CMLs define the same emitters (D and E), and the output
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Figure 4.3: Experimental setup to evaluate an ONN based on frequency-domain ReLU
with multiple neural sub-circuits using a common ReLU [MVS5], [MVS6].

result at the L-band PIN receiver (sub-circuit 2) is devoted to the neuron at layer 3, node
0 (F).

Figure 4.4: Optical spectra of four CMLs in the C- and L-band after shared IL. The
insets highlight the spectral allocation of the CMLs to the even and odd channels of the
IL for assigning the weight polarity [MVS5], [MVS6].

The data si(t) of the corresponding neurons in layer 2 from DNN (without being
weighted digitally) are sent to the AWG to drive the CMLs at a signal rate of 1 Gb/s
(Fig. 4.3). The weight assignment, sgn(wi), is accomplished through a spectral align-
ment of the frequency-coded signals of CMLs output to the periodic transfer function
of the IL with respect to its positive or negative slopes (Section 2.1.1). Figure 4.4 de-
scribes the optical spectra of all CMLs after the shared IL, including the insets showing
the transmission function of IL from the even and odd channels. The insets indicate the
CMLs spectral allocation to the interferometric IL slopes (rising or falling) following
the corresponding synaptic weight assignment (positive or negative).

Moreover, Fig. 4.2 shows that a VOA is positioned in each output of the CML for
setting the weight magnitude |wi|, taking advantage of its frequency-agnostic feature.
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The |wi| is configured based on the following formula

|wi| = 10 log10 |wDNN|2 = 20 log10 |wDNN| (4.3)

where wDNN is the weight value based on the DNN training, a rational number in the
range between [-1,1]. Equation 4.3 comes from the fact that the wDNN is comparable
to power in the electrical domain (wDNN ∼ Pelectrical). On the other hand, the power in
optical domain is proportional to the square of the Pelectrical (Poptical ∼ P2

electrical) and
|wi| = 10 log10 Poptical. Therefore, the |wi| yields to the Eq. 4.3 in the optical space.

It is worth mentioning that the |wi| does not necessarily need to be modified through
the VOA. Section 5.4 will explain that |wi| can be adjusted through the drive of the FM
emitter, which is more practical.

Next, 1×2 splitters are utilized to facilitate the necessary weight combinations and
connections toward the even (+) and odd (-) inputs of the shared IL (Fig. 4.3). C/L
waveband splitters are used afterwards to separate the two ONN sub-circuits. The signal
is then received by the PIN photodetector in either waveband, and the output is digitized
through a real-time oscilloscope to calculate the accuracy of the Iris flower classification
case.

Figure 4.5: Heterodyned spectra for (a) negatively and (b) positively weighted neural
signal [MVS5], [MVS6].

Figure 4.5 shows the synaptic weight setting using the photonic ReLU, and the
frequency-coded ReLU operation, employing a CML with a chirp parameter of 2.9.
The spectra present the continuous-wave beat notes (π, τ) for the unmodulated C-band
CML and a reference lasers, resulting in an IF of ∼6.6 GHz. In addition, the RF spectra
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depict the heterodyned neural signals before (σ, χ) and after (ρ, φ) passing the signal to
the shared IL for a negative (Fig. 4.5(a)) and a positive (Fig. 4.5(b)) polarity assignment.
In the case of a negative sign, proper rectification occurs as the falling slope of the IL
(ρ) suppresses the higher frequencies of the optical frequency-coded signal, as shown in
Fig. 4.5(a). In contrast, for the positive sign setting, the rising slope of the IL suppresses
the lower frequencies of the neural signal (φ in Fig. 4.5(b)).

Figure 4.6 presents the error results for the two ReLU sub-circuits with the shared
IL in a histogram, visualized similarly to Fig. 3.11. The average error ε remains consis-
tently low at 0.1 for both neurons in layer 3, node 0 (µ, L-band) and node 2 (ν, C-band).
The accuracy prediction is performed by feeding back the optical signal output data to
be processed by the remaining layers of the DNN.

Figure 4.6: Error histogram for the photonic NN output of node 0 (µ) and node 2 (ν) in
layer 3, after performing optically weighted sum and ReLU function [MVS5], [MVS6].

Figure 4.7 summarizes the accuracy of both neurons as a function of ε. For both neu-
rons at layer 3, an accuracy of 92% is achieved at the 1 Gb/s data rate of the experiment.
This result closely matches the accuracy of 93% achieved by the DNN. As mentioned
in Chapter 3, the result is obtained without adjusting the NN training procedure to the
involved optical elements under investigation.

Afterwards, the influence of the error on the accuracy is investigated. For that pur-
pose, noise is added to the experimental data to simulate the degradation of the neural
signal. With an increase in ε due to an artificial noise degradation, a significant drop in
accuracy for node 2 (▲) is observed. In contradiction, the accuracy for node 0 (•) de-
creases only slightly. This discrepancy can be attributed to the varying noise tolerance
levels of the involved neurons, suggesting the need for precise optical implementations
for particularly noise-sensitive neurons.

Furthermore, Fig. 4.8 illustrates the relationship between ε and the neural data rates
for the noise-sensitive node 2 at layer 3. The error is evaluated for experiments at
different data rates (1, 2.5, and 5 Gb/s). It can be seen that between the data rates of 1
and 5 Gb/s, the ε increases slightly from 0.10 to 0.12. The increased error leads to a
drop in accuracy to 90% at 5 Gb/s.
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Figure 4.7: The NN accuracy for Iris flower classification at 1 Gb/s of node 0 and node
2 in layer 3, after performing optically weighted sum and ReLU function.

Figure 4.8: Average error ϵ as a function of the data rate for node 2 in layer
3 [MVS5], [MVS6].

The following sub-section will discuss a different approach of a simultaneous scaling
of the linear weighted summation and the photonic ReLU function.

4.2.2 Concurrent Linear Weighted Summation and ReLU

The second implementation scenario focuses on evaluating the possibility of jointly per-
forming the ReLU function and the weight setting. The experimental setup is presented
in Fig. 4.9 and involves a single neural circuit with three synaptic emitters. The weights
are assigned to the outputs of the neurons in layer 1 (A, B, C in Fig. 4.2) and then
summed up. After the ReLU activation operation, the output results in the neuron of
node 0, layer 2 (D). Two CMLs in the L-band represent the emitters of the two nodes in
layer 1 (A and C), while one CML in the C-band is used for the node B.

Similar to the first scenario, the si(t) data is sent to the CMLs of the corresponding
neurons in layer 1 at 1 Gb/s through the AWG. The signal in the C-band (node B)
has a positive polarity (w+), with the weight wDNN is 0.484. In contrast, the other two
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Figure 4.9: Experimental setup to evaluate an ONN based on frequency-domain ReLU
with simultaneous weighting and ReLU activation function when scaling up the number
of neural inputs [MVS6].

neural data streams in the L-band (A and C) have a negative sign (w−), as illustrated in
Fig. 4.9, with the wDNN of −0.574 and −0.145. The three synaptic signals are combined
with a colorless 4×1 splitter and then sent to the IL to execute the ReLU activation
function. Finally, the signal is detected by a PIN receiver, and the accuracy of the ONN
is determined again after digitizing the neural signal output.

An average error ε of 0.2 is obtained in this demonstration, which is higher than
the result in the first scenario (Fig. 4.6). Despite the moderate error, the optical output
signal is fed back to the DNN architecture. An accuracy of 91% is still achievable for the
Iris flower classification case. However, this could be attributed to a noise-insensitive
neuron configuration, given the relatively high ε value.

The discrepancy can be explained by the fact that integrating the weight polarity
setting with the ReLU function does not accurately mimic the original function of the
neuron, as the ReLU is not applied to the weighted sum. Therefore, an accurate neural
signal processing in a scaled-up ONN would necessitate a clear separation between the
linear and the nonlinear sub-circuits within the photonic neuron, which is evident from
the demonstration of the first scenario in Section 4.2.1.

Nevertheless, the other reason of the high error can come from the fact that one of
the wDNN is smaller compared to the other two. The sum is then more or less similar to
the large weight that dominates the linear weighted summation. Therefore, if there is a
dominating weight, the entire linear and nonlinear circuits can be simplified at the cost
of a small additional error.

In the next section, it will be demonstrated that a complex separation between the
linear and nonlinear operations is not necessary.
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4.3 Synthesizing Neural Network Layers with Linear and
Nonlinear Functions

As discussed above, the linear and nonlinear operations can not be integrated easily in
the photonic neuron because it is typically involving o/e/o conversion at the demarcation
point. This section will discuss the idea towards all-optical end-to-end processing in the
ONN.

4.3.1 Concatenating Linear and Nonlinear Functions

The frequency coding of neural signals is the main concept proposed in this thesis for the
analog weighted addition and the photonic activation ReLU. In the linear operation, the
summation takes place in a wideband photodetector, taking advantage of its wavelength-
agnostic characteristic (Chapter 2), which converts the received optical weighted sum
signal into a photocurrent representation. On the other hand, an optical FM transmitter
is required for the ReLU activation circuit. The transmitter sends the frequency-coded
weighted sum signal, which is subsequently processed by the photonic ReLU unit. This
indicates that the o/e/o process is necessary at the demarcation point between

�
and

ReLU in the photonic neuron (Fig. 4.2), in order to translate the photocurrent of the
weighted sum into a frequency domain representation for the subsequent activation op-
eration. On the other hand, the o/e/o conversion can become a challenge when scaling
up the ONN. Especially, it can lead to a power consumption overhead when an electrical
amplifier is involved for this purpose.

In certain scenarios, the laser such a DBR laser can be directly driven by the pho-
tocurrent from the detector, eliminating the need for an additional RF amplifier. This
comes from the fact that the DBR laser can provide a large conversion efficiency for
translating the signal from the amplitude to the frequency space. It has been demon-
strated that a DBR laser can have a broad tuning range of 40 nm [120]. Furthermore,
it has been reported recently that a DBR laser can have a translation efficiency up to
47.6 GHz/mA [MVS7]. As a result, the output of the photodetector is sufficient to
drive the DBR laser. The transmitter optical sub-assemblies (TOSAs)-packaged DBR
lasers facilitate the translation of electrical signals s(t) into optical frequency-domain
representations sν(t), as defined in Eq. 3.3. Therefore, the combination of a PIN photo-
diode and a DBR laser forms a transparent intensity-to-frequency converter, where the
detected photocurrent is translated into an optical signal based on the frequency coding.

Figure 4.10 shows the tuning characteristics of the DBR lasers. When the Bragg
section of the DBR laser is injected by current, the effective refractive index neff is
getting smaller which subsequently decreases the Bragg wavelength (Eq. 2.8), shifted
by ΔλB. Therefore, the reflectivity peak will shift to a lower wavelength. On the other
hand, the wavelengths that meet the requirement of the phase condition shifts to lower



76

wavelength with the displacement of Δλ. If the ΔλB > Δλ, which is usually the case,
the mode jumps to the adjacent lower wavelength that satisfies the phase condition,
resulting to mode hopping [121], as presented in solid line of Fig. 4.10.

Figure 4.10: Characterisation of a DBR laser [MVS8].

Apart from the discrete jumps due to the DBR modes, the tuning slope is governed
as in the following

λ = λ0 + λS · exp(−IDBR/Iτ) (4.4)

where λ0 is the baseline wavelength, λS is the peak-to-peak swing for tuning, λDBR is the
bias current, and Iτ is the FM efficiency current for tuning. The dotted line in Fig. 4.10
is the tuning slope of the DBR laser used in the experiment, fitted according to Eq. 4.4
by choosing λ0 = 1539.9 nm, λS = 6.7 nm, λDBR = 1.5 mA, and Iτ = 5.8 mA.

It shall be noted that a low signal rate of 100 Mbaud will be chosen in this demonstra-
tion because the electro-optic modulation response of the DBR laser in this work (3-dB
bandwidth) rolls off at 270 MHz [MVS7]. The following sub-section will demonstrate
the feasibility of the direct-drive scheme in the photonic neuron.

4.3.2 Translucent Concatenation of Weighted Sum and Nonlinear
Activation

Figure 4.11 shows the experimental setup to demonstrate the possibility of omitting the
electrical amplifier in the o/e/o conversion between the linear and nonlinear operations
in the photonic neuron. Here, a direct-drive scheme is introduced where a DBR laser is
directly driven by the photocurrent, which is generated by a preceding photodiode.

In this demonstration, the neuron in node 0, layer 2 (D) in the DNN is considered
again, based on the MLP architecture in Fig. 4.2. The weighted sum signal Σwisi(t)
of the node (without being processed by the activation function digitally) is sent with
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Figure 4.11: Concept and experimental setup for an o/e/o conversion between the linear
and the nonlinear part of the photonic neuron, employing a DBR laser directly driven
by a PIN photodiode current. The same photonic ReLU scheme is used to evaluate the
translucent concatenation scheme [MVS6].

100 Mb/s information rate to a MZM modulator, which modulates an optical signal at
1550 nm, as depicted in Fig. 4.11. This optical weighted sum ΣFM is received by a PIN
photodetector, which subsequently drives the DBR laser in the ReLU circuit to perform
the activation operation.

The DBR laser in the ReLU circuit translates the photocurrent to the optical fre-
quency coded weighted sum ΣFM as mathematically described in Eq. 3.3. Next, similar
to the experiment in Chapter 3, the wavelength of the DBR laser is aligned to the IL
transmission by tuning the bias current of the gain section of the DBR laser. Then,
the ReLU function is performed by the IL and the subsequent PIN photodetector. The
output signal is eventually captured by the scope for further offline evaluation.

The efficiency of the DBR laser for the frequency translation process of a neural
input is characterized and reported in Fig. 4.12 with a 100 Mbaud signal rate. For
this purpose, the output of the DBR laser was directly captured using a high-resolution
optical spectrum analyzer. Additionally, it was heterodyned with a reference laser to
acquire its FM spectrum at a down-conversion frequency of ∼5.5 GHz. Figure 4.12
shows a ROP of −7 dBm to the PIN photodetector, which subsequently drives the DBR
section, results in an optical frequency-translated neural signal with a deviation at the
DBR laser output of Δν = 4 GHz. This provides large spectral expansion by translating
from the amplitude to the frequency space without requiring an electronic amplifier.
The outstanding spectral tuning efficiency of the DBR laser drives this prominent ratio
between the frequency deviation and the data symbol rate.

Additionally, Fig. 4.12 demonstrates the spectral alignment of the DBR laser with
respect to the IL transmission function. The spectrogram shows that the FM signal at
the DBR laser output exhibits a deviation sufficiently wide to perform the rectification.
This effect corresponds to the (partial) suppression of levels 2 and 3 of the neural data
(as a reference, see Fig. 3.10(c)) after passing the ReLU optical function.
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Figure 4.12: Spectrogram of the DBR laser output and spectral alignment of the DBR
laser to the IL transfer function to realize a photonic ReLU function [MVS6].

Figure 4.13 compares an optical output signal performed by ReLU (red trace) and
a digitally performed ReLU (yellow). The optical signal and the digital computation
reference are in a good agreement, even though a bandwidth limitation in the optical
signal is apparent. As mentioned previously, the restricted electro-optic 3 dB bandwidth
of the DBR section is responsible for this bandwidth limitation in the optical signal.
Nonetheless, the levels of neural signal align well with the digital levels at the optimal
decision sampling point. This is evident from the error histogram in Fig. 4.13, which
reveals an average error ε of 0.1 using the proposed direct-drive DBR scheme as the
FM transmitter. The ε is marginally lower than the one obtained with CML+IL based
scheme, which was evaluated in Section 3.3.

Moreover, the optical ReLU output signal of node 0, layer 2 is fed back to the MLP
architecture in the digital domain and propagated forwardly to the output layer, aiming
to determine the accuracy of the Iris flower problem. The accuracy of 92% is obtained,
thus resulting in a 1% penalty in comparison to the DNN. This result demonstrates that
an efficient o/e/o conversion between two photonic signal processing circuits can be
realized, as the electrical signal conditioning can be avoided.
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Figure 4.13: ReLU output from the optical and all-digital NN implementation, and
corresponding error histogram for the optically implemented ReLU function [MVS6].

4.4 Chip-Scale Integration

Integrated photonics technology has developed over a decade since 2008 and matured
rapidly [122]. The opportunity is now broadly open to integrate the optical elements
for neuromorphic photonic purposes on-chip because it can significantly scale down the
space occupied by the neurons. This will drive a fast photonic neural network field
development for wide-range applications.

Silicon photonics is the forefront technology and has become the foundation for
neuromorphic computing research. Some efforts have been made to realize silicon neu-
romorphic photonic circuits [36], [50], and [123]. It has been demonstrated that an
SoI-based ONN can reach information rates of tens of GHz [124].

However, it has been known that silicon cannot facilitate light emission purely due
to its indirect semiconductor bandgap. Over the years, this has become the bottleneck
in combining active and passive components on a single silicon-based PIC. Therefore,
most applications have been performed on a hybrid integration approach with external
optical power supply. Many have worked on external lasers based on III-V semiconduc-
tors with high-quality performances [125]. However, the coupling loss can be a factor
that degrades the performance of the integrated ONN since it requires a precise align-
ment between the SoI waveguide PIC and the laser, which further incurs cost due to
complex chip-to-chip or chip-to-die assembly. On the other hand, it is possible to facil-
itate hybrid integration on-chip, employing a hetero-integration approach [126], [127].
However, a unique fabrication process is necessary, while massive batch production is
difficult and expensive.

Besides silicon, Indium Phosphite (InP) is a promising PIC platform since it fea-
tures a direct bandgap that permits a monolithic integration of optical source, signal
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manipulation and detection. It has been demonstrated that InP-based emitters have out-
standing features [79], [128]. Moreover, it is possible to fabricate other main optical
building blocks with InP [129], such as amplifier [130], modulator [131], and detec-
tor [132], [133]. Therefore, it is feasible to integrate all the active and passive optical
components on a single InP-based circuit. Several demonstrations of InP-based PIC
have been evaluated for different applications, such as quantum key distribution [134],
light detection and ranging (LIDAR) [135], [136], and photonic neural network [56].
Therefore, an InP-based integrated ONN is a promising solution and likely to yield
favourable results.

In order to implement the presented frequency-domain based photonic neural net-
work in this thesis, it is necessary to find the equivalent building blocks in the PIC.
From the light emitter side, directly modulated lasers such as CML and DBR lasers
have been employed here as FM transmitters. On the other hand, integrated InP DBR
laser has been theoretically studied and experimentally demonstrated [79], [137]. Fur-
thermore, the InP DBR laser has been available as a design file so-called a process
design kit (PDK) for fabrication in some foundries [138], including also the PIN pho-
todiode. The PDK includes foundry-specific data files for component and chip design,
which is owned by foundries [139], and it is usually used as a basic design in a mass
production, known as a multi project wafer (MPW) run [140].

Even though the aformentioned InP DBR laser requires an additional modulator to
generate FM signal, a recent study on directly modulated laser (DML) on InP membrane
platform has been proposed, allowing a possibility to be fabricated in the future [141].
The FM-to-IM conversion for the weight assignment and activation function, the equiv-
alent interferometric filters, such as delay interferometer or optical interleaver, are not
easily fabricated. The most common fabricated filter is a DBR grating and now is avail-
able on MPW run too [142].

Nonetheless, some efforts are being made to fabricate an integrated InP delay inter-
ferometer [84] and an AWG-based integrated optical interleaver [143]. Even though the
layouts are complex, monolithic integrated ONN architectures have been developed and
are continually progressing to address the challenges. Eventually, the photonic neuron
proposed in this study will be feasible to be implemented on-chip to support further
scaling of the number of neurons that will functionally power the ONN.

4.5 Summary
It has been demonstrated that the function of a photonic neuron can be performed with
a low error by combining linear weighted summation and the ReLU in the optical do-
main. These demonstrations have been reported in [MVS5] and [MVS6]. The simul-
taneous weight assignment can be done using the interferometric filter IL, which addi-
tionally features a photonic ReLU unit. Sharing the photonic ReLU hardware facilitates
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a simplified and cost-optimized layout for the ONN. A low penalty of 1% in accuracy
compared to the DNN for Iris flower classification supports the practicability of imple-
menting the scheme in a larger neural network computation.

In addition, it has been evaluated that the scalable solution of the simultaneous
weighting and ReLU operation shows a moderate error. These results show the necessity
of a clear separation between the linear and nonlinear activation functions. Therefore,
the translucent concatenation concept has been introduced to solve the typically ineffi-
cient o/e/o process between optical circuits. This translucent scheme is accomplished
through a tandem of PIN photoreceiver and DBR laser, where the detected photocurrent
drives the DBR laser directly, without necessitating RF circuits for signal conditioning.
The low penalty of 1% compared to the DNN convinces that the scheme can enable an
energy-efficient interface in ONN implementations where multiple neural sub-circuits
are to be concatenated.

A future refinement can be made by replacing the DBR laser under investigation
with one featuring a larger electro-optic modulation bandwidth. Another research has
proven that DBR lasers can be compatible with modulation up to 10 GHz [144]. Fur-
thermore, the on-chip scaling of the proposed ONN architecture is feasible when con-
sidering compact integrated optical elements, as they are available through state-of-play
photonic integration platforms.

In the next chapter, a photonic processing unit will be presented, which performs
neuromorphic processing and other signal processing applications. Furthermore, the
photonic neuron based on switch-spaced architecture be compared with the one using
wavelength-routed architecture, which is potential for the scaling of ONN in the future
advancement.





Chapter 5

Photonic Processing Unit for Photonic
Signal Processing

Digital signal processing (DSP) plays an important role in optical communication net-
works for a wide range of applications, such as dispersion compensation, signal modu-
lation, fiber transmission, and signal detection. However, most of them are performed
in the digital domain to carry out signal modulation, signal shaping, and signal recov-
ery. On the other hand, recent advancements in components and integrated circuits in
the field of photonics allow signal processing to be performed directly at the optical
layer. This chapter presents a multi-purpose photonic processing unit, the so-called
ΦPU, which performs functions in optical communication networks, such as modula-
tion format decoding and neuromorphic processing. The motivation for an ΦPU will
be floored at the beginning of this chapter. Afterwards, the concept of each of those
functions will be introduced. Next, the experimental demonstration of ΦPU based on
space-switched architecture will be presented and the results will be reported. Addi-
tionally, a photonic neuron is demonstrated and discussed in a wavelength-routed neural
interconnect that adopts the direct-drive scheme as a comparison to the space-switched
approach.

5.1 Motivation

Chapter 1 has described the explosion of the internet and its effect on global energy con-
sumption. On the other hand, the current core network capacity is reaching a bottleneck
since it cannot sustain the demand anymore in the future, resulting in the so-called ca-
pacity crunch [145]. This pushes some improvements in the systems, including the use
of DSP in the optical communication network to expand the transmission capacity [146].
The role of the DSP is especially essential in employing higher-order modulations us-
ing four degrees of freedom in the optical domain [phase, amplitude, optical frequency,
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and polarization] to encode and access information [147]. This paves the way for a
high-capacity transmission and enhanced spectral efficiency. However, since the DSP
has been implemented in an optical network, it involves optical-to-electrical (o/e) and
electrical-to-optical (e/o) translations between the photonic and digital domains [148].
As a result, this adds to inefficient energy consumption, which can be avoided if all
processes are executed in one domain only.

On the contrary, advancements in photonic technology have allowed optical sig-
nal processing to be performed efficiently without the need for electronic sampling and
opto-electronic conversions, owing to the vast photonic bandwidth and low energy con-
sumption [149]. Some demonstrations have shown signal processing directly performed
at the optical layer, such as optical beamforming networks for remote radio heads [150],
a reconfigurable photonic signal processor [151], or neuromorphic circuits in receivers
serving fiber non-linearity compensation [152], and radio source separation [34]. Nev-
ertheless, each modulation or processing technique is conventionally underpinned by
a particular system dedicated to a specific objective. On the other hand, if all the sig-
nal processing functions are collapsed in a single system, the optical elements can be
re-used or shared for a simplified infrastructure.

Towards the purpose of the general optical processing node, this chapter presents a
photonic processing unit (ΦPU) to solve optical communication challenges directly at
the optical domain without o/e or e/o conversions. The typical processing challenges
covered in this thesis involve signal decoding (duobinary and PAM4) and neuromorphic
processing. The following section will discuss the concept of each signal processing
task in the optical domain.

5.2 Concept of Reconfigurable Photonic Architecture

The proposed ΦPU is shown in Fig. 5.1, which is set up from an 8 × 8 space-switch.
It includes transmitters (Tx) and receivers (Rx) on the left- and right-hand side, respec-
tively. The main components of theΦPU are built on a set of opto-electronics converters
and passive optical elements. This includes a set of DBR lasers as an efficient FM trans-
lator of the input signals on the transmitter side. The receiver side consists of optical
photodetectors that convert the signals back to the electrical domain. The switch is addi-
tionally supported by the colorless splitter for signal distribution or combination within
the ΦPU and a set of periodic filters to process the signal, such as decoding or rectifi-
cation operation. The input signal is supplied by a waveform generator, and the output
signal is digitized for performance evaluation.

The ΦPU configuration is flexible, allowing multiple processing circuits to be col-
lapsed over the same optical switch matrix. Furthermore, it is reconfigurable because
the components within theΦPU core can be re-used for different signal processing chal-
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Figure 5.1: The concept of a photonic processing unit (ΦPU) which includes transmit-
ters, receivers, and periodic filters for signal processing.

lenges. The following section will explain the concept of each optical signal processing
task under consideration.

5.3 Concept of Photonic Signal Processing
In this section, the concepts of several signal processings are described and their imple-
mentations in the optical domain are explained.

5.3.1 Duobinary Decoding
The duobinary format has been widely used in optical communication networks to in-
crease channel capacity over a narrow-bandwidth channel [153]. Besides high spectral
efficiency, the duobinary signal is more resilient to chromatic dispersion at higher bit
rates than non-return-to-zero (NRZ) signals [154]. Duobinary code represents symbols
–1, 0, and +1, as depicted in Fig. 5.2. In terms of intensity, the symbols –1 and +1
correspond to an “on” level, while the symbol 0 correlates to an “off” stage.

In the conventional analog duobinary system, the transceiver corresponds to a duobi-
nary signal generator, while the receiver acts as a full-wave rectifier to convert the
duobinary to binary signal, as introduced in [155]. However, the recent applications
with a high Gbaud data rate signal processing demand a broadband full-wave recti-
fier with a flat response over the entire data bandwidth, which is challenging to prac-
tically realize [156]. Some digital duobinary decoding alternatives have been pro-
posed [157], [158]. However, e/o and o/e converters are required in those schemes,
together with costly and energy-hungry analog-to-digital converters.
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Figure 5.2: Concept of photonic duobinary decoding in the ΦPU using a delay interfer-
ometer (DI).

To perform full-wave rectification in the optical domain, the duobinary decoding can
be performed in the frequency domain by utilizing the cosine-shaped transfer function of
an interferometric filter, as shown in Fig. 5.2. Given its wide FSR, full-wave rectification
can occur around the quadrature points of the filter.

The frequency-coded representation of the duobinary signal is essential to employ
this optical scheme. Therefore, the electrical duobinary data signal is precedingly con-
verted to its optical frequency domain representation via an efficient DBR laser, which
has been discussed in Section 4.3.1. One of the interferometric filters that has a cosine-
shaped transfer function is a delay interferometer (DI), which has been introduced in
Section 2.1.2.4. Around the notch, the transfer function can be approximated as a square
function, resulting to

Tnotch(ν) ∼ cos(2πνΔT ) ∼ (2πνΔT )2 (5.1)

where ν is the signal frequency and ΔT is a delay time. Based on the equation above,
the optical DI performs an optical squaring function for the FM-translated duobinary
signal around the notch. By allocating the 0-level of the FM duobinary bit sequence in
the notch, the rectification of the bipolar duobinary signal can be performed as the –1
and +1 levels overlap on the quadrature point of DI transmission (Fig. 5.2). Eventually,
the original 2-level on-off-keying (OOK) signal can be retrieved.

5.3.2 PAM4 Decoding
Another commonly adopted modulation format is a pulse amplitude modulation with
four levels (PAM4). The four levels are represented by the bit combinations 00, 01, 10,
and 11, as shown in Fig. 5.3 [159]. The PAM4 signal waveform originates from the
least significant bit (LSB) signal, which is then divided into half. Afterwards, the 1

2LSB
is added to the most significant bit (MSB) signal. The result is four signal levels instead
of two, with each signal level corresponding to a two-bit symbol. Due to that, PAM4
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Figure 5.3: Illustration of four levels in PAM4, which is originated from a least signifi-
cant bit (LSB) and a most significant bit (MSB) [159].

only requires half of the bandwidth of a given data rate by mapping every two bits into
one symbol. Therefore, it supports high-speed transmission data.

In the conventional decoder, the MSB of the PAM4 signal can be recovered with one
comparator in the electrical circuit with a zero threshold, while the LSB is decoded by
two comparators by setting one voltage threshold to logical 1 and the other to logical
0, followed by an logic AND gate [160]-[161]. However, comparators can quickly
contribute to a large power consumption [160].

In the optical domain, the decoding of the PAM4 signal can be done through a
multi-level symbol slicer in the frequency domain. The idea for the decoding procedure
is similar to the photonic duobinary decoding method presented above, using the inter-
ferometric filter. However, the four levels will be divided into a pair of two-bit symbols,
which are LSB and MSB. Therefore, two interferometric filters are employed in this
case.

Two interferometric filters with binary-staked FSR are used to slice the four levels
of the PAM4 signal, as illustrated in Fig. 5.4. It is important to mention that a larger
frequency deviation νΔ is required to cover multiple FSRs, compared to the duobinary
decoding case. Therefore, the output of two filters can be directly assigned to the LSB
and MSB symbols.

5.4 Concept of Neuromorphic Processing
Two neural sub-circuits are performed over the same ΦPU to demonstrate a functional
photonic neuron. The neurons in the NN configuration under investigation are the same
as considered in Section 4.2.2 (nodes A, B, and C in layer 1 as inputs and output D
in layer 2; Fig. 4.2). Figure 5.5 shows the concept of the neuromorphic processing at
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Figure 5.4: Concept of PAM4 decoding in the ΦPU using multi-level symbol slicers of
interferometric filters.

the ΦPU. In the first operation, three DBR lasers are used in the linear part to send
the synaptic neural signals si(t). The magnitude of the weight |wi| is optically defined
through the drive of the DBR laser, where the maximum drive current of each DBR
laser is multiplied by the corresponding |wDNN|. Here, the |wi| corresponds to the Δν of
the peak-to-peak frequency deviation for translating the signal s(t) to frequency domain
sν(ν) (Eq. 3.3). The polarity of weight sgn(wi) is tuned during frequency-to-intensity
translation at the positive or negative interferometric slope of DI (Chapter 2). Af-
terwards, the summation of weighted neurons is accomplished through the wideband
APD+TIA photoreceiver.

Figure 5.5: Concept of neuromorphic processing in the ΦPU consisting of two neural
sub-circuits.

For the second operation, the photocurrent of the weighted sum is translated to the
FM signal by directly driving the DBR laser in the nonlinear activation sub-circuit.
The ReLU activation unit is achieved along the linear transfer characteristic around
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the quadrature point of interferometric filter IL, with the amplitude clipping due to the
sensitivity n of the photodetector PIN (Chapter 3).

The following section will discuss the experimental demonstration of each signal
processing task in the ΦPU architecture.

5.5 Demonstration of Photonic Processing Unit Based
on Space Switch Architecture

Figure 5.6: General schematic of ΦPU, with all components can be interconnected
within the space switch for optical signal decoding and neuromorphic processing
demonstration [MVS7].

Figure 5.6 shows the general experimental layout of the ΦPU for modulation for-
mat decoding and neuromorphic processing. The ΦPU has an 8×8 switch matrix, four
DBR lasers operating at arbitrary wavelengths independent of the received optical sig-
nal, three photodetectors (PIN and APD receivers), a 2×2 splitter for signal distribution
and combination, two interferometric filters, which include 10-GHz DI and 25/50 GHz
IL.

The switch matrix is from DiCon MEMS 3D matrix module which is compatible
for operation wavelength of 1310 nm and 1550 nm. It allows any input to be connected
to any output without blocking. The insertion loss histogram of the switch module is
presented in Fig. 5.7. The figure shows a considerably moderate insertion loss in the
range between 0.40 and 0.63 for all input-output combinations, which is allowing an
efficient all-optical cross-connect configuration.

The efficient translation of the DBR laser has been discussed in the previous chapter,
and the lasers are used in the ΦPU as FM transmitters. The tuning characteristics of the
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Figure 5.7: Insertion loss histogram of an 8×8 switch matrix module

four DBR lasers are presented in Fig. 5.8, following Eq. 4.4. For the neuromorphic pro-
cessing, three lasers are used for weighted summation and one laser is dedicated to the
activation function. The characteristic tuning parameters λS and Iτ for the peak-to-peak
deviation in emission wavelength and concerning the FM efficiency for the DBR bias
current, respectively, are in a range of 6.7 ≤ λS ≤ 7.5 nm and 5.8 ≤ Iτ ≤ 7.2 mA. The
slope of −7.35 GHz/mA is achievable around 1542 nm, allowing spectral processing
from the electrical amplitude to the optical frequency space while ensuring a low DBR
drive.

Figure 5.8: Characterisation of DBR lasers in ΦPU [MVS8].

It is important to mention that the TOSA-packaged DBR lasers have an electro-optic
3-dB bandwidth of 270 MHz for its DBR section, which is presently the main limita-
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tion since it restricts the data symbol rate Rsym, as mentioned in Chapter 4. Therefore,
similar to the demonstration in Section 4.3.1, Rsym = 100 Mbaud is employed for the
demonstration of the ΦPU functions.

Figure 5.9: Experimental setup and ΦPU setting for (A) duobinary and (B) PAM4 de-
coding [MVS7].

The components in the space switch can be reconfigured for various functions. The
following sub-sections presents each configuration and demonstration for a dedicated
function, and eventually, their results are discussed.

5.5.1 Duobinary Reception (A)

Figure 5.9 shows the setting of ΦPU for decoding of modulation formats duobinary (A)
and PAM4 (B). Generally, the ΦPU is directly fed by the optical receiver of the optical
transmission link, which is an APD+TIA. In this case, it is an intensity modulation with
direct detection (IM/DD) either duobinary or PAM4 transmission. The transmitted data
signal is generated by an AWG that is further employed for symbol shaping and coding,
and intensity-modulated on an optical carrier at 1550 nm by a MZM (Fig. 5.9(a)). The
data is transmitted over 14.3 km of single-mode fiber (SMF), followed by a VOA to set
the ROP.

The photocurrent of the received duobinary signal drives the DBR laser (Fig. 5.9).
The frequency-translated duobinary signal is subsequently processed by the DI, which
performs the optical squaring function to decode the duobinary signal in the frequency
domain. Afterwards, the rectified signal is detected by a PIN photodetector and digitized
through an oscilloscope to evaluate the original 2-level OOK.

Figure 5.10(a) shows the frequency-domain representation of the duobinary signal
at the DBR laser output. After heterodyning with a reference laser, the three-level
(−1, 0,+1) duobinary pattern is clearly discernible from its heterodyned RF spectrum,
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Figure 5.10: Results of duobinary reception evaluated in the ΦPU: (a) frequency-coded
duobinary DBR output and (b) its BER during reception [MVS7].

where the 0-level is located at an intermediate frequency (IF) of fIF = 7.6 GHz. This IF
intersects with the notch of DI, which resembles the optical duobinary decoder.

The frequency swing νΔ spans from the –1 to the +1 level of the duobinary signal. It
can be seen from Fig. 5.10(a) that νΔ is getting smaller as the ROP into the photodetector
decreases, meaning that the RF drive of the DBR laser (fed by APD+TIA) is reduced.
It is necessary to find an optimal νΔ to ensure the duobinary rectification through the
DI occurs between its quadrature points. To find an optimal νΔ, which is not too low
or too high, the RF drive of the DBR laser is required to be adjusted. Figure 5.10(a)
shows that the adjustment is optimal at a ROP −34 dBm for a fixed-gain TIA (ZT =

2.5kΩ), corresponding to an optimal νΔ of ∼5 GHz or equivalent to a DBR drive of
about 300 µApp.

Next, the BER performance of the photonic duobinary decoding (•) is depicted in
Fig. 5.10(b), including the digitally performed (DSP) duobinary decoding (◦) for com-
parison. The reception sensitivity is −33.7 dBm at a BER of 10−6 when using ΦPU
architecture (•). Meanwhile, the DSP-based decoding (◦) does not lead to any improve-
ment, providing that ΦPU is penalty-free.

5.5.2 PAM4 Reception (B)

Figure 5.9(b) presents the setting of theΦPU for the application as PAM4 decoder. Sim-
ilar to the case of duobinary decoding, the PAM4 signal is transmitted and received by
the APD+TIA. The subsequent DBR laser translates the detected PAM4 signal to the
frequency domain. Afterwards, the signal is sent to the colorless splitter for distributing
the frequency-translated PAM4 signal to the multi-level slicers, consisting of DI and
IL. The output of the interferometric filters are directly detected by PIN and APD at re-
ceivers, which will be digitized through the oscilloscope as LSB and MSB, respectively.

Figure 5.11(a) shows the optical spectrum where the ΦPU distributes the frequency-
translated four-level signal to the 10G DI and the 25G IL using the splitter, including
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Figure 5.11: Results of photonic PAM4 decoding reception evaluated in the ΦPU: (a)
PAM4 slicing and (b) its BER reception [MVS7].

the optical transmission of the filters. It can be seen that the DI and IL transfer functions
build on a binary-stacked FSR. The binary filter set slices the 4-level waveform of the
PAM4 signal with its symbol value [0,1,2,3] in the frequency domain.

Additionally, Fig. 5.11(b) presents the BER for the decoded MSB and LSB bit
streams, showing a sensitivity of −31.2 dBm at a BER of 10−6 (▲). In comparison,
the DSP-based multi-level symbol slicing at the APD+TIA output (△) does not show an
improvement in terms of BER. Therefore, it can be confirmed again that no penalty is
incurred by the ΦPU architecture.

It shall be noted that due to the smaller FSR of the 10G DI and the various transi-
tions between the four PAM levels, the decoded LSB signal is subject to some ringing
at the symbol edges as the instantaneous PAM4 frequency can swing over 1.5 FRSs
(Fig. 5.11(a)). This results in a narrower eye diagram, as depicted in the inset of
Fig. 5.11(b).

5.5.3 Neuromorphic Processing (C)

Figure 5.12 shows the experimental setup to evaluate the neuromorphic processing
within the ΦPU. Two operations over the same ΦPU are collapsed to synthesize a neu-
ron with three inputs in the optical domain: one dedicated to a weighted summation
(solid arrows in Fig. 5.12) and another for an activation operation (dashed arrows).

The neural inputs si(t) are sent to AWG at 100 Mbaud to drive the DBR lasers with
an ultra-low drive of 130 µApp for |wi| = 1. It is further translated to the frequency
domain under deviation νΔ denoting the magnitude weight |wi|. The inputs with identi-
cal polarity of weights (–) are combined via a passive combiner. Afterwards, positive
and negative weights are obtained through a frequency-to-intensity conversion of the
DI linear transmission slope. The weighted sum Σwisi(t) is received by the wideband
APD+TIA photodetector. This detector is part of the APD-DBR tandem serving as an
intensity-to-frequency converter for the summed input, which is subsequently processed
in the activation circuit. The photonic ReLU is performed in the frequency domain by
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Figure 5.12: Experimental setup and ΦPU setting for neuromorphic processing func-
tion [MVS7].

using the optical IL, and the output is detected by the PIN+TIA photodetector, which
additionally performs signal clipping for the rectification through the detector noise
background. Finally, the output of neuromorphic processing is digitized through a real-
time oscilloscope.

Figure 5.13: Result of neuromorphic processing evaluated in the ΦPU: normalized op-
tical output signal compared to all-digital signal as performance benchmark [MVS8].

Figure 5.13 reports the normalized optical signal output for 150 Iris flower samples
denoted by magnitude V by performing optically (•) the weighted sum and with addi-
tional the activation unit. They have an excellent agreement with the digital processing
(◦), as the overlap between the optical and digital signal output is noticeable.

Additionally, Fig. 5.14(a) shows the neural signal after neuromorphic processing by
computing the digital linear weighted sum and performing just the ReLU function op-
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Figure 5.14: Results of neuromorphic processing evaluated in the ΦPU: neural signal
comparison between optical and digital implementations, including the accuracy of Iris
flower classification for multiple scenarios [162].

tically. The result shows that the optical ReLU output (red) is in good agreement with
the purely digital implementation (blue). When performing both NN operations opti-
cally within ΦPU, the bandwidth limitation becomes distinguishable due to cascaded
DBR lasers (Fig. 5.14(b)). However, even small pedestals in neural data are still distin-
guishable at the optical decision sampling points indicated by the arrows. The optical
signal output of switch matrix ΦPU is fed back to NN architecture and is forwardly
propagated to the output layer of the DNN to determine accuracy for the Iris flower
classification. Figure 5.14(c) reports the accuracy by implementing multiple cases of
neurons. The accuracies for an optical weighted sum + digital ReLU (91.3%), digital
weighted sum + optical ReLU (92%), and the all-optical neuron (92.7%) are found very
close to that of the all-digital neural network (93.3%). The accuracy performance in
the space-switched-based ΦPU provides a benchmark for a further simplification of the
neural interconnect.

The following section will describe the demonstration of the direct-drive scheme in
a functional photonic neuron by employing a different neural interconnect architecture
and its results.

5.6 Demonstration of Wavelength-Routed Interconnect

Other than the space-switched architecture, neuromorphic processing can also be ex-
plored in other architecture based on the wavelength-routed scheme. A wavelength-
routing arrayed waveguide gratings (AWGs) is considered as a building block in this
demonstration. The AWGs were first proposed by Smit [163] and are commonly used
in WDM networks to multiplex/demultiplex signals. Figure 5.15 shows the schematic
of an AWG. It comprises arrays of waveguides, apertures (input and output), transmit-
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ter and receiver waveguides. They can be used as wavelength routers [164], add-drop
multiplexers [165], and optical cross-connect [41].

Figure 5.15: Schematic of an arrayed waveguide grating (AWG). Figure is reprinted
from [166].

The working principle of AWG is based on the imaging and dispersive proper-
ties [166]. The light beam propagates to the input aperture after the input beams enter
via a transmitter waveguide. It should be noted that the light in the aperture is not con-
fined anymore; thus, it is divergent. The beams are coupled into the waveguide array
and propagate towards the output aperture. The length of the array is designed where
the optical path length difference between adjacent waveguides equals an integer multi-
ple of center wavelength [166]. All the fields from the waveguides arrive at the output
aperture with equal amplitude phase. Therefore, this convergence output field is trans-
formed from the divergent beam at the input aperture. It is essential to mention that the
separation to different wavelengths using AWG can be obtained by gradually increasing
the lengths of the array waveguides and tilting the outgoing beam [166].

Figure 5.16: Schematic of a wavelength routing AWG. Figure is reprinted from [166].

For the wavelength routing purpose, the AWG can be designed with N×N waveguide
channels, with FSR equals to N× channel spacing. Therefore, the device operates in a
cyclical manner. The signal from input 1 can be designed to appear in output 1 or N,
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depending on the setting of frequency. For instance, a signal that vanishes from output
N can reappear at output 1 if the frequency is added by an amount equal to the channel
spacing [166]. Furthermore, each channel in the input AWG ports can inherently carry
a number of different frequencies.

Figure 5.16 shows the illustration of the working principle of 4×4 wavelength-routed
AWG. Four frequencies of signals are fed to input channel 1, denoted by signals a1 − a4

and the signal are distributed within output channels, such that output channel 4 carries
the first frequency of signal a1 and channel 1 carries the fourth frequency of signal a4.
The four frequencies from input 2 (signals b1 − b4) are distributed similarly among the
outputs, but shifted in cyclic by one channel, as shown in Fig. 5.16. This cyclic behavior
is the key property for multi-wavelength add-drop multiplexers [166].

Figure 5.17: Experimental setup to evaluate a photonic neuron in the wavelength-routed
architecture [MVS8].

Figure 5.17 shows the experimental setup using a cyclic 8×8 AWG with a channel
spacing of 100 GHz channel according to the ITU-T G.694.1 Dense-WDM grid and
a FSR of 800 GHz. The cyclic waveband behaviour for input port 1 of the AWG is
depicted in Fig. 5.18. Given the eight outputs with a periodic transmission, the AWG
can support many wavelengths. Furthermore, the intrinsic tunability of the DBR lasers
can support the scaling of the ONN. Recent research has demonstrated an integrated
AWG on a compact footprint [167]. This renders the flexibility to synthesize neural
circuits by sharing the synaptic interconnect. Furthermore, a comparison will be made
between employing a TIA and omitting the TIA within the tandem of the PIN+DBR
laser for translating the weighted sum into the optical frequency domain. The multi-
channel operation is supported via a periodic filter and a wideband photodetector, which
is the demarcation point within the neuron.

Two operations over the same neural interconnect architecture are collapsed to syn-
thesize a neuron with three inputs in the optical domain: the first is dedicated to the
weighted summation (solid arrows in Fig. 5.17) and the second is for the activation op-
eration (dashed arrow), as in the space-switch architecture. Routing within the AWG is
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determined by the wavelength choice for several FM transmitters. The neurons in the
NN configuration under investigation are the same as considered in the space-switch
architecture (Fig. 4.2).

Figure 5.18: The wideband behaviour and cyclic operation of the 8×8 arrayed waveg-
uide grating with incoming signal from the input port 1.

The signal data si(t) (without being weighted digitally) is sent to the correspond-
ing DBR lasers (λi; Fig. 5.17) at a 100 Mbaud signal rate. Three DBR lasers for linear
weighted sum (solid arrows) are allocated between 1539 nm and 1543 nm. The neural
inputs are frequency-modulated by the DBR laser under frequency deviation νΔ, reflect-
ing the magnitude |wi| of the weight.

The weighted sum (Σ) is then received by the PIN(+TIA) receiver, which transfers
the Σ according to the direct-drive scheme to the DBR laser at λ4 = 1545.7 nm. The
frequency-modulated of the Σ feeds the rectification circuit hosting the same IL (dashed
arrow). Afterwards, the output ReLU is received by the second PIN+TIA photoreceiver
(R). This photoreceiver is separated from the linear neural sub-circuit through use of
a red/blue wavelength allocation scheme. Figure 5.17 shows a R/B (red/blue) splitter,
which is utilized to separate the linear weighted sum and the nonlinear function sub-
circuit in the architecture, taking advantage of its complementary odd/even inputs. This
will ensure no interference between the two operations. Therefore, the common IL
output (Ω) is demultiplexed with the R/B splitter as the weighted sum (Σ) detected in
PIN(+TIA) photodiode in the blue waveband is re-translated via the translucent con-
catenation approach in the optical frequency domain and the output ReLU in the red
waveband is detected (R) via scope afterwards.

Figure 5.19 highlights the corresponding red/blue waveband split (Ψ) in the C-band,
which is centered at 1543.8 nm. Principally, the wavelength tunable neural inputs λi

are routed to the corresponding AWG outputs Λi, which are dedicated to either the
linear weighted summation (blue) or the ReLU function (red). For the purpose of cost-
optimization, the IL is used as the shared optical hardware (Fig. 5.19) to assign the



Chapter 5. Photonic Processing Unit for Photonic Signal Processing 99

Figure 5.19: Optical spectra and relative transmission of the AWG channels for the
wavelength-routed ONN at pointΩ (Fig. 5.17) and the spectral allocation of DBR lasers
to the IL transmission for assigning the polarity of weights [MVS8].

polarity of the weights sgn(wi) through its interferometric slope in the blue waveband
and to perform ReLU operation (Section 4.2.1) in the red waveband. The neural signals
are weighted with different polarity, involving one positive and two negative weights
(Fig. 4.2). Figure 5.19 depicts the spectral allocation of DBR lasers to the IL trans-
mission (even and odd channels) for weight polarity assignment and ReLU activation
function.

The assignment of blue and red wavebands is motivated by the translucent concate-
nations scheme, since the photocurrent that drives the DBR laser (λ4) is limited by the
ROP and the responsivity (0.88 A/W) of the PIN photodiode. Therefore, the large slope
efficiency k4 = -24.7 GHz/mA at low IDBR bias is preferred, as presented in Fig. 5.8.

In this demonstration, two implementations are employed for the direct-drive DBR
translation of an electrical time-domain signal into an optical frequency-domain repre-
sentation. A PIN+TIA photodetector is used in the first scheme after the summation
(Σ, in Fig. 5.17). This means that an electrical amplification via TIA (ZT = 2.5 kΩ)
is employed when translating the detected weighted sum photocurrent into the optical
frequency-coded representation. The second scheme is the direct-drive approach, where
the TIA is omitted for the sake of simplicity when translating the intermediate result Σ
back to the optical domain.

Figure 5.20 shows the neural signal comparison between the optical and digital sub-
circuit implementations. The first scenario (a) considers only performing the weighted
sum in the optical domain (Σ). The neural optical output (yellow) fits well with the
all-digital NN result (blue), with an average error ε of 0.09. The same good result is
accomplished in (b) when comparing the photonic ReLU activation only (red, while the
weighted sum is performed digitally) with the digital ReLU (ε = 0.20). Additionally, the
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Figure 5.20: The results of neural signal comparison for optical and digital sub-
circuit implementations in wavelength-routed neural architecture with different scenar-
ios [MVS8].

optical weighted sum and photonic ReLU are performed (c), where the o/e/o process in
between is amplified by the TIA. The optical output signal resembles the all-digital NN
with ε = 0.18. Eventually, the result of the optical output signal with the direct-drive
scheme (d) in the photonic neuron is in a good agreement with the all-digital NN (ε =
0.18).

Figure 5.21: The accuracy results in wavelength-routed neural architecture with differ-
ent scenarios [MVS8].

Figure 5.21 reports the accuracy of Iris flower determination for the different scenar-
ios. The results for the optically weighed sum + digital ReLU (92%), digitally weighted
sum + photonic ReLU (91.3%), and fully photonic neuron (92%) with PIN+TIA con-
catenation scheme are very close to the all-digital NN (93.3%). Additionally, using the
direct scheme in the complete photonic neuron reaches an accuracy of 92.7%, which is a
0.6% penalty compared to the DNN. These results strongly validate of the efficiency and
feasibility of using translucent concatenation scheme in the ONN. A low error can be
achieved using the efficient DBR laser; therefore, the RF amplification can be omitted.
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5.7 Summary
A robust photonic processor based on space switch has been demonstrated perform-
ing signal decoding and neuromorphic functions through signal translation in the fre-
quency domain for subsequent (multi-layer) spectral processing. This has been reported
in [MVS7]. The photonic circuit has been shown to operate without penalty. Further-
more, a penalty < 2% in terms of Iris flower classification accuracy has been achieved
for multiple optical/digital combination of neural sub-circuits.

Additionally, the neuromorphic function in the space-switched architecture is com-
pared with the wavelength-routed scheme based on an AWG. The cyclic and wideband
properties of AWG is advantageous for performing a flexible neural interconnect. Fur-
thermore, the good conversion efficiency of the inputs to the spectral domain permits
an omission of RF electronics. The results has been published in [MVS8]. It has been
demonstrated that a penalty < 2% in terms of accuracy can be accomplished too with this
scheme. Especially, a minor penalty of 0.6% can be realized by performing a translucent
concatenation (without TIA) between the neural sub-circuits.

An extension in electro-optic bandwidth for frequency modulation through opti-
mized DBR lasers and an expansion of the application space is left for future work.
Particularly, the AWG-based switch can be extended for other signal processing appli-
cation. Some demonstrations have been shown that the space-switched and AWG-based
architectures can be integrated on chip [167], [168], [169]. This allowing the possibility
to scale the photonic processing in a smaller device footprint.





Chapter 6

Conclusions

Neuromorphic photonics is a burgeoning field, which holding the key to overcome the
current limitations of digital electronic computing architecture, as introduced in Chapter
1. By marrying brain-inspired neural networks with photonics, the analog MAC oper-
ations can be executed at fast GHz signal rates with low latency, leveraging a massive
parallelism and a vast bandwidth of photonics. This thesis makes a unique contribu-
tion to this field by investigating the potential of performing photonic neurons in the
frequency domain and proposing an efficient ONN for future research directions.

This thesis has investigated the possibility of finding a set of operations in the pho-
tonics domain that are equivalent to biological neural networks, where the architec-
ture is represented by multiple inputs of neurons that are being weighted and linearly
summed and then experiencing a nonlinear activation operation for a decision boundary.
The work presented here takes part in developing the weighting via frequency demod-
ulation, as presented in Chapter 2. The first step is to realize a synaptic receptor to
perform MAC through a monolithic integrated semiconductor optical amplifier (SOA)
and reflective electroabsorption modulator (REAM). The periodic transfer function of
the SOA-REAM device supports a wide optical bandwidth that can carry multiple wave-
length channels during this frequency-to-intensity conversion process. Hence, this gives
the proposed synaptic receptor an advantage for being a “colorless” demodulator. The
weighting process is carried out by spectrally aligning the FM signal to the comb trans-
fer function of the synaptic receptor. By suppressing either the mark- or space-sideband
of the FM signal, a negative or positive response is accomplished for the detected signal.

The received signals at the detector, with all the weights defined during the FM de-
modulation of the particular wavelength channels, will be straightforwardly summed by
virtue of the wide optical bandwidth of the photodetector. WDM operation has been
proven through the joint demodulation and detection of two spike trains with a spectral
detuning of 23 nm, thus enabling a highly parallel synaptic interconnect. Moreover,
the integration of detection functionality with the weight-tunable FM demodulator has
been experimentally demonstrated and confirmed through a low BER for weighted sig-

103



104

nal acquisition. It has been shown that the proposed synaptic receptor based on SOA-
REAM offers an integrated solution to perform MAC functionality. A comparison is
made with alternative frequency-demodulating receivers based on MRR or OTF, which
reveals the possible options of FM demodulators due to a significant contrast in their
transfer functions. This suggests a potential improvement in the demodulation effi-
ciency of the SOA-REAM receptor. Further improvement can be made by integrating
the EAM photodetector with an optimized amplifier such as TIA to boost the sensitivity
of the synaptic receiver.

After the analog linear weighted sum is investigated, the photonic activation func-
tion has been proposed in Chapter 3. The study focuses mainly on the case of the ReLU
function. The photonic ReLU is implemented through the frequency coding of neural
signals using a combination of a CML laser and an interferometric IL, which is sub-
sequently followed by a PIN photodetector. This can be done by taking advantage of
the linear transmission slope of IL that mimics ReLU, supported by the natural noise
floor provided by the PIN. Additionally, a comparison is demonstrated by replacing the
CML+IL with the electro-optic approach of DML. Based on the evaluation, the DML
approach is incompatible to perform the desired ReLU function. The photonic ReLU
using CML+IL introduces an error penalty of 3% compared to DNN, which is achiev-
able in terms of accuracy when transferring the Iris flower classification case from the
digital to the optical domain. This renders the proposed CML+IL tandem suitable for a
functionally complete optical neuron.

After the recipes of linear weighted summation and ReLU activation function in
the photonics realm have been explored, the photonic neuron is reported based on the
frequency coding scheme in Chapter 4. Multiple neural sub-circuits are collapsed over
the proposed photonic ReLU function. The demonstration shows that it is possible to
integrate the weighting functionality with the photonic ReLU, which can simplify the
ONN implementation on a larger scale. A low penalty of 1% is achieved for this demon-
stration compared to the DNN. Afterwards, another scheme of the photonic neuron is
demonstrated by scaling simultaneous weighting and the ReLU operation. The result
shows a moderate error of 2% in accuracy, which explains the need for separation be-
tween linear and nonlinear functions.

Therefore, the efficient translucent interface scheme between the linear and nonlin-
ear circuits in the photonic neuron is introduced and demonstrated. This can be done by
employing an efficient DBR laser with a large spectral expansion to transform the signal
from the amplitude to the frequency domain. This would be sufficient for the photocur-
rent of a preceding photodetector to drive the efficient DBR laser without the need for
electrical amplification. By directly driving the DBR laser in the ReLU circuit, the ac-
curacy of 92% for Iris flower classification is achieved. The 1% penalty compared to
DNN proves that the efficient e/o/e between neural sub-circuits can be realized without
a particular electrical signal conditioning.
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In the last part of the thesis, Chapter 5 introduces a multi-functional photonic pro-
cessing unit (ΦPU) which is implemented through a space-switched architecture. The
ΦPU is penalty-free to perform signal processing such as duobinary and PAM4 de-
coding. Furthermore, the neuromorphic processing based on the space-switch is com-
pared with the wavelength-routed neural interconnect using arrayed waveguide grating
(AWG). The result shows that <2% of accuracy penalty is achieved for multiple com-
binations of optical/digital neural sub-circuits. Furthermore, a minor 0.6% penalty can
be achieved as the direct drive scheme without TIA between neural sub-circuits is per-
formed. The result supports the possibility of reducing device footprint when scaling up
the translucent NN. Furthermore, the AWG-based interconnect can be further explored
for multiple signal processing, such as in the ΦPU.

This thesis, dedicated to advancing the field of neuromorphic photonics, demon-
strates the promise of frequency-coded photonic neurons and their potential for imple-
mentation. Looking ahead, the use of a DBR laser with a larger bandwidth could enable
even higher signal processing, up to GHz implementation. Furthermore, the integration
of all components on the PIC, as discussed in Chapter 4 could significantly scale up the
ONN using more photonic neurons, opening up exciting possibilities for future research
and development.
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