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Kurzfassung

Die wachsenden technologischen Herausforderungen und steigenden Kosten führen zu
einem graduellen Ende der MOSFET-Skalierung. Demzufolge werden die fundamen-
talen physikalischen Grenzen bald erreicht werden, welche einen weiteren Fortschritt in
der Rechenkapazität durch ladungsbasierte Bauelemente verhindern. Die Spin-Eigen-
schaften des Elektrons sind von immensem Interesse aufgrund des Potenzials für
zukünftige Spin-basierte mikroelektronische Schaltungen. Moderne ladungsbasierte El-
ektronik wird hauptschlich mit dem Materialsystem Silizium gefertigt und es ist daher
das Verständnis der Details der Spin-Ausbreitung in Silizium-Strukturen und der Ma-
nipulation mit elektrischen Mitteln der Schlüssel zu neuen Spin-basierten Geräteappli-
kationen.

Die Spin-Relaxierung in modernen Silizium Feldeffekttransistoren wird durch das Wech-
selspiel zwischen Spin-Orbit-Interaktion und der Elektronenstreuung verursacht. Es
wurde zwar eine verstärkte Spin-Relaxation für dünne Silizium-Filme beobachtet, diese
kann jedoch durch uniaxialen Stress substanziell unterdrückt werden. Dies macht es
extrem vielversprechend für zukünftige Applikationen, da die selbe Stresskonfiguration
routinemäßig verwendet wird, um eine Ladungsträgermobilitätserhöhung in modernen
MOSFETs zu erzielen. Um die Spin-Flip-Raten zu evaluieren, werden die Wellen-
funktionen für die zugehörigen Spin-Up und Spin-Down-Projektionen in Bezug auf
die Spin-Injektionsrichtung benötigt. Der k · p Hamilton-Operator für zwei Bänder
mit der Spin-Orbit-Wechselwirkung, entwickelt nahe dem X-Punkt der Brilloun-Zone,
wird dazu verwendet um die Subbandenergien und die Wellenfunktionen in (001) Rich-
tung in ultra-dünnen Siliziumfilmen unter Scherverformung zu bestimmen. Die Sub-
bandwellenfunktion werden des Weiteren auch zur Evaluierung der zugehörigen Spin-
Relaxations-Matrixelmente verwendet. Es wird gezeigt, dass Spin-Flip-Streuprozesse
zwischen den zwei [001] Tälern für die Spin-Relaxation in dünnen (001) Siliziumfil-
men verantwortlich sind. Die Steigerung der Spin-Lebensdauer (Spin-Kohärenzzeit)
ist das Ergebnis der Unterdrückung der Intersubband-Streuung, verursacht durch
die scherungsinduzierte Aufspaltung der equivalenten [001] Täler. Es ist weiters zu
beobachten, dass die Spin-Relaxation sensitiv auf die Spin-Injektionsrichtung ist und
die Spin-Lebensdauer auf ihr Maximum steigt, wenn die Injektionsrichtung von senkre-
cht zur Ebene auf in die Ebene der Probe geändert wird.

Eines der Hauptkriterien, um die Spin-basierten Feldeffekttransistor (Spin-FET) zu
realisieren, ist es effiziente Spin-Injection in Silizium zu erzielen. Daher ist die Spin-
Injektion in Silizium aus einem Ferromagneten durch elektrische Mittel von großen

ii



Kurzfassung

Interesse. Eine umfassende Studie zur Spin-Drift und -Diffusion in Silizium für Spin-
Injektion von einem Ferromagneten einschließlich elektrischer Feldeffekte wird durchg-
eführt. Um das Widerstandsdiskrepanzproblem zu vermeiden, wird die Spin-Injektion-
squelle als ferromagnetischer Halbleiter betrachtet. Der Effekt der Grenzflächenladung-
sabschirmung auf die Spin-Injektionseffizienz wird sorgfältig geprüft. Es ist zu beobacht-
en, dass der Spin-Strom während der Injektion aus einer Ladungsverarmungsregion
ansteigt im Vergleich zu einer Injektion aus einer ladungsneutralen oder Akkumulations-
Region. Es ist ebenfalls zu beobachten, dass die Spin-Injektionseffizienz immer durch
die Spin-Polarisation des magnetischen Materials begrenzt wird. Diese Resultate ver-
langen nach einer weiteren Untersuchung des Spin-Transports in Silizium, wenn nur
durch eine ladungsneutrale und eine Raumladungs injeziert wird. Die substanziellen
Spin-Transportunterschiede zwischen dem Spin-Injektionsverhalten durch eine Akkum-
ulations und eine Verarmungsschicht werden untersucht, wobei in beiden Fällen die
Spin-Stromdichte nicht signifikant höher sein kann als die Spinstromdichte unter Ladu-
ngsneutralität. Daher, für eine fixierte Rand-Spin-Polarisation, ist der maximale Spin-
Strom immer durch seinen Wert unter der Ladungsneutralitätsbedingung bestimmt -
vorrausgesetzt der Ladungsstrom wird konstant gehalten.
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Abstract

The growing technological challenges and increasing costs are gradually guiding MOS-
FET scaling to an end. Hence the fundamental physical limitations will be reached
soon, thus preventing further improvements in computational capacity with charged-
based devices. The electron spin properties are of immense interest because of their
potential for future spin-driven microelectronic devices. Modern charge-based elec-
tronics is dominantly fabricated on the material system with silicon, and thus under-
standing the details of spin propagation in silicon structures and spin manipulation
by electrical means is the key for novel spin-based device applications.

The spin relaxation in modern silicon field effect transistors is caused by the interplay
between the spin-orbit interaction and the electron scattering. Spin relaxation has been
noticed to be stronger in thin films but can be substantially suppressed by uniaxial
stress. This makes it extremely promising for future applications as the same stress
configuration is routinely used to achieve a charge carrier mobility enhancement in
modern MOSFETs. To evaluate the spin-flip rates, the wave functions corresponding
to the spin-up and spin-down projections with respect to the spin injection direction
are needed. The two-band k · p Hamiltonian with the spin-orbit interaction developed
near the X-point of the Brillouin zone is used to determine the subband energies and
the wave functions in a (001) ultra-thin silicon film under shear strain. The subband
wave functions are further used to evaluate the corresponding spin relaxation matrix
elements. It is demonstrated that the spin-flip processes between the two [001] valleys
are responsible for spin relaxation in thin (001) silicon films. The enhancement of the
spin lifetime is the result of the suppression of intersubband scattering caused by the
shear strain induced equivalent [001] valley splitting. It is further observed that the
spin relaxation is sensitive to the spin injection direction, and that the spin lifetime
increases to its maximum, when the injection direction is changed from perpendicular-
to-plane to in-plane relative to the sample.

One of the major criteria to realize the spin-based field-effect transistors (Spin-FETs)
is to realize efficient spin injection in silicon. Therefore, the spin injection in silicon
from a ferromagnet by electrical means is of great interest. A comprehensive study
of the spin drift and spin diffusion in silicon for spin injection from a ferromagnet
including electric field effects is performed. In order to avoid the impedance mismatch
problem, the spin injecting source is considered to be a ferromagnetic semiconductor.
The effect of interface charge screening on spin injection efficiency is under scrutiny.
It is noted that the spin current increases while injected from a charge-depleted region
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Abstract

in the ferromagnet in comparison to when injected from a charge neutral or an ac-
cumulated region. Furthermore it is found that the spin injection efficiency is always
limited by the bulk spin polarization of the magnetic material. These results demand a
further investigation of the spin transport in silicon, when spin is injected through only
a charge neutral and a space-charge layer. The substantial spin transport differences
between the spin injection behavior through an accumulation and a depletion layer are
investigated, whereas in both cases the spin current density can not be significantly
higher than the spin current density at charge neutrality. Therefore, at a fixed bound-
ary spin polarization, the maximum spin current is always determined by its value at
the charge neutrality condition - provided the charge current is kept constant.
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Figure 5.4) is shown (P=50%). . . . . . . . . . . . . . . . . . . . . . . 84

xiv



List of Figures

5.6 A plot of Mup = VT ln

(

n↑

n
eql
↑

)

and Mdown = VT ln

(

n↓

n
eql
↓

)

through the

bar (P=10%, |qẼ|
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1 Introduction

”The mind is everything. What you
think you become.”

Gautam Buddha

Over the last several decades, Moore’s law has successfully predicted the persistent
miniaturization of semiconductor devices, such as the transistors in microprocessors [1].
Following that and owing to the continuous demand for cheap electronics with in-
creased performance, CMOS scaling became the key to stay competitive on the semi-
conductor market. The ITRS [2] offers a commonly accepted guideline for a collective
effort to the upcoming technology generations. Due to the struggle to keep control
over the channel in CMOS devices when scaling them down, new processes, materials,
and device structures were introduced [3], e.g., local and global strain techniques, high-
k/metal gates, and multi-gate three-dimensional transistors [4]. It is hereby mentioned
that while introducing the new technologies the speed, size, leakage [5], economic lim-
itations [6], and power consumption of the transistors have been kept in the mind.

The principle of MOSFET operation is based on the charge degree of freedom. The
charge of an electron interacts with the gate induced electrostatic field, which in turn
controls the electron flow in the channel by modulating the potential barrier. Attempts
to use another fundamental property of an electron, its spin, have given rise to a new
and rapidly evolving field known as spintronics. It is an acronym for spin transport
electronics that was first introduced in 1996 to designate a program of the U.S. De-
fense Advanced Research Projects Agency (DARPA) [7]. The electron spin state is
characterized by one of its two possible projections on a given axis, and thus could be
potentially used in digital information processing. Two major transport parameters
viz. spin lifetime and the spin diffusion length determine the scale of coherence in
spintronic devices [8]. Since these parameters are several orders of magnitude larger
in semiconductors than in metals [9, 10], semiconductors are promising materials for
the spintronics research. Utilizing the spin properties in semiconductors also opens
great opportunities to reduce the device power consumption for future electronic cir-
cuits, as it takes an amazingly small amount of energy to invert the spin orientation
which is necessary for low power applications [11]. In modern times, spintronic de-
vices [12, 13, 14, 15, 16]; particularly magneto-resistive devices [17] with a tunnel
barrier junction structure [18]; are strong candidates to be used in memory technology
due to their non-volatility and compatibility with CMOS technology [19, 20]. One
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has to mention that by using the inherent quantum mechanical nature of spin to con-
struct quantum computers for quantum information processing and efficient quantum
mechanical simulations is also under investigation [21, 22].

1.1 Spintronics: Historical Background

The electron was discovered way back in 1897 by J. J. Thomson, and the electron
charge was measured with perfection by R. Millikan. The presence of a magnetic mo-
ment for electrons was discovered in the year of 1922 [23], and later on it was also
established that the electron spin is quantized. Wolfgang Pauli formalized the theory
of spin in 1927 by using the basic foundations of quantum mechanics. He pioneered the
description of the spin state by introducing the so-called Pauli matrices. A study on
spin polarized tunneling on ferromagnetic/insulator/superconducting aluminum junc-
tions was made [24]. This showed the conservation of the spin in electron tunneling,
and gave rise to the possibility of spin sensitive tunneling between two ferromagnetic
films. Later Mikhail D’yakonov and Vladimir Perel’ predicted the spin Hall effect in
1971 - a spin flow perpendicular to the current flow direction [25]. Subsequently, the
first experimental confirmation of the prediction was made [26]. Julliere in 1975 discov-
ered an increase in resistance ( 10 % at 4.2 K), when the magnetic layers in a Fe/Ge/Co
stack were switched from the parallel to the anti parallel configuration (the first ex-
periment on tunnel magneto-resistance TMR) [27]. The proposal for the idea that the
spin-polarized current can be injected into a semiconductor when a current is passed
through a ferromagnet/semiconductor junction was made in 1976 [28]. However, it
took until the 1980’s for the process technology to be able to fabricate multi-layered
devices with each layer thickness in the range of nanometers. The Physics Nobel Prize
in 2007 was given to Peter Grünberg and Albert Fert for the discovery of the giant
magnetoresistance (GMR) in ferromagnetic thin film multi-layers [29], which showed
the general agreement on the importance of spintronics.

Currently, the advancements in TMR technology [30] led to a switch towards TMR-
based read heads. Exploiting the TMR effect for the magnetic field sensing is advan-
tageous due to the much higher resistance of the layer stack (KΩ instead of Ω) and
at least one order of magnitude bigger resistance modulation (∼300% in comparison
to ∼5%) [31]. The magnetic random access memory (MRAM) devices are a further
important and practical spintronic device class. The initial MRAM devices were based
upon the GMR effect, but due to the advances in TMR stacks the MRAM devices tran-
sitioned to TMR based structures [32], as produced by Freescale Semiconductor and
IBM. Recently, another technique known as spin transfer torque (STT) magnetization
switching has received great attention [33, 34, 35, 36]. STT-MRAM facilitates the
control of the magnetization by entirely eletrical means, thus featuring better scaling
capabilities, and requires less switcing energy. Another goal of spintronics has been to
envision spin-based logic devices to replace the charge-based logic devices. The STT-
MTJ technology has been reported to be attractive for building logic configurations,
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which combines non-volatile memories and the logic circuits (logic-in-memory architec-
ture [37]) in order to overcome the scaling obstacles of CMOS logics [38, 39, 11, 40].

The idea of a spin field-effect transistor, or SpinFET, is to control a spin signal analog
to the charge-based transistor via applied voltage instead of a magnetic field. They are
attractive candidates as basic for spin-driven integrated circuits. The first spin field
effect transistor (SpinFET) was proposed by Datta and Das [41] in 1990, which is com-
posed of two ferromagnetic terminals separated by a non-magnetic material. A good
elaboration of the device structure of a spin transistor, operating principle, and perfor-
mance can be found in [42]. The spin injection in semiconductors by different means is
a topic under intense research, and will be highlighted later. However, if one is able to
resolve the problem of spin injection into a semiconductor with sufficient accuracy, the
next challenge will be the manipulation and control of the spin transport through the
conducting channel. This is usually achieved by applying an external magnetic field to
rotate the spin, although in principle the presence of spin-orbit coupling (SOC) allows
to control spin electronically. Indeed, the SOC in the semiconductor heterostructures
can be tailored by voltage gates on the top of the heterostructures, hence allowing to
control the spin by voltage [41]. The practical realization of such structures is still
a research topic, and hence the proper understanding of the spin-orbit coupling in
semiconductors must be further developed.

1.2 Silicon Spintronics

As the SpinFET’s operation demands the presence of a rather strong spin-orbit cou-
pling SOC, the focus of the research has been concentrated on III-V materials which
have a strong SOC. Therefore, until recently, silicon, the main material used by modern
microelectronics, was kept aside from the main stream spin-related applications. On
the other hand, there also have been predictions on alternative channel materials with
a mobility higher than in silicon [43]. However, silicon possesses several properties at-
tractive for spintronics [44]: it is composed of nuclei with predominantly zero spin [45]
and it is characterized by a weak spin-orbit coupling [46, 47, 48]. Along with this,
the spatial inversion symmetry of the lattice results in the absence of the Dresselhaus
effective spin-orbit interaction [49] which results in a low relaxation rate accompanied
by a longer spin lifetime as compared to other semiconductors. In fact, silicon has the
longest spin lifetime of any inorganic bulk semiconductor at room temperature [48].
At the saturation drift velocity of silicon (≈107cms−1), this corresponds to a transport
length scale exceeding 1mm [50]. It is therefore an attractive material for propagat-
ing spin information over a long distance. The use of silicon for spin driven devices
would greatly facilitate their integration with MOSFETs on the same chip. These
characteristics have motivated a wide interest in silicon spintronics [51, 52, 53]. The
proposal of a spintronic device facilitating silicon that uses spin at every stage of its
operation [54] is very important on the transition from charge-based CMOS towards
a purely spin-based successor (i.e. an all-spin logic device) [11].
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1.3 Spin Relaxation in Silicon

Because of the paramount importance of silicon on insulator (SOI) and FinFET 3D
technology for the technology nodes from 22nm to 14nm and beyond in order to achieve
a tighter confinement and thus better electrostatic control to support miniaturization
as discussed earlier, it is expected that spin relaxation will further increase in the
conducting channels [55]. A systematic investigation of the electron spin relaxation
time in silicon was conducted a long time ago [56]. The estimate for the spin life-
time at room temperature obtained is of the order 0.1-10ns [44], which corresponds
to a spin diffusion length maximum of 2µm. A long spin transfer distance of con-
duction electrons through an undoped 350µm thick silicon wafer has been shown in
a ground breaking experiment [57], and hence the spin propagation up to such a dis-
tance combined with the possibility of injecting spin at room [58] or even at elevated
temperature [59] makes the fabrication of spin-based switching devices made of silicon
quite plausible in the near future. In contrast, a large experimentally observed spin
relaxation in electrically-gated silicon structures is an obstacle for a successful real-
ization of spin-driven devices [60, 61]. Therefore, more research on all of the different
spin relaxation mechanisms and also means to improve the spin lifetime in silicon films
is needed.

The spin lifetime is determined by the spin-flip processes, and several spin relaxation
mechanisms in a semiconductor can be attributed [62]. The two most significant
relaxation mechanisms in metals and in semiconductors are the Elliot-Yafet [63, 64]
(EY) mechanism and the D’yakonov-Perel’ [65] (DP) mechanism, and this will be
explained in detail in the following chapters.

It is well known that the conduction band in silicon consists of three pairs of equivalent
valleys, with their energy minima located close to the corresponding X-points of the
first Brillouin zone. The theory of spin relaxation in thin silicon films must account for
the most relevant scattering mechanisms which are due to the electron-phonon (Ph)
interaction and the surface roughness (SR) scattering [66, 63, 67, 68]. The surface
roughness at the two interfaces is assumed to be equal and statistically independent.
It is described by a mean and a correlation length [69]. The spin relaxation due to
the electron-phonon interaction is taken care of in the deformation potential approx-
imation [70]. The electron-phonon interaction can further be distinguished into two
sub-categories. The acoustic-phonon mediated relaxation, i.e. the longitudinal(LA)-
and the transversal(TA)-acoustic phonons, and the optical phonons. The most promi-
nent contribution to the spin relaxation in bulk silicon has been identified to be due
to the optical (Op) phonon scattering between the valleys residing at different crystal-
lographic axes [53, 71]. Nevertheless, in order to investigate the impact of the surface
roughness and the acoustic phonon mediated spin-flip, only the relevant [001] oriented
valley pair with spin degree included must be considered, as it produces the low en-
ergy unprimed subband ladder under the confinement potential [72]. The unprimed
subbands in the unstrained (001) film are degenerate, without spin-orbit effects in-
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cluded [72]. An accurate inclusion of the intrinsic spin-orbit interaction results in a
large mixing between the spin-up and spin-down states, resulting in spin hot spots
characterized by strong spin relaxation. To remove this spin mixing and thus increase
the spin lifetime one has to introduce mechanical stress into such structures.

The influence of stress on the carrier (both electron and hole) transport in semicon-
ductors [73] has been known for over half a century. That the application of stress may
influence the intrinsic electron mobility in silicon was predicted by Hall and Bardeen
in 1951 [74]. The development of the generalized deformation potential theory can
be accredited to [75, 76] explaining this effect. Nowadays, stress is regularly used in
industry to efficiently increase the transistor drive current by enhancing the mobility
of carriers in the channel [77, 78], as well as in non-classical CMOS structures [79, 80].
The strain εxy produced by an uniaxial tensile shear stress in [110] direction is known
to lift the degeneracy between the unprimed subbands in the [001] oriented valley
pair [72], thus it is predicted to decrease the mentioned spin mixing in such a way that
the intersubband spin relaxation rate is reduced and the spin lifetime gets enhanced.

Now in order to calculate the spin lifetime, one needs to know the spin relaxation
matrix elements. To estimate the matrix elements, the subband wave functions and
also the eigenenergies must be known [81, 72]. One way to calculate the subband wave
functions is to use the k · p method.

The k · p method was first introduced by Seitz [82] and later extended to study semi-
conductor band structures [83, 84, 85]. This method in combination with a Hamilto-
nian including strain [86] has been a reliable and computationally inexpensive method
to study the stress-induced valence band modification. An effective two-band k · p
based method for the relevant [001] oriented valley pair written at the vicinity of
the X-point suitable to describe the electron subband structure in the presence of
the shear strain εxy [72] is generalized to include the spin degree of freedom [71].
The height of the potential barrier corresponds to the potential energy barrier at the
semiconductor-oxide interface for a silicon-on-insulator (SOI) structure.

In this work the subband wave functions and the eigenenergies of the unprimed valley
pair are scrutinized, and the corresponding matrix elements are shown. The spin
lifetime calculation steps are explained. A giant enhancement of the spin lifetime
with all its components as a function of the shear strain is elucidated. The role of
inter- and intrasubband transitions in determining the spin lifetime is explained, and
the role of the former is observed to be dominant. In contrast and under the same
conditions, the momentum relaxation time is found to be solely determined by the
intrasubband transitions. The subband energies of the primed valley pair is taken into
account to incorporate the influence of the optical phonons. The increase of the optical
phonon mediated spin lifetime is not found to be as severe as the other mechanisms.
The unprimed subband splitting in a relaxed silicon structure [87] has also been a
prominent area of research for a long time, and this is incorporated to estimate the
splitting between the equivalent subbands, the matrix elements, and finally the spin
relaxation time.
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The spin injection direction sensitive spin lifetime model is investigated in detail.
It is observed that an arbitrary spin injection direction modifies the subband wave
functions, the intersubband spin relaxation matrix element, and henceforth all the
distinct spin relaxation mechanisms.

1.4 Spin Injection into Silicon

One of the major criteria to realize the SpinFET device is to realize efficient spin
injection in the conducting channel. The spin polarization can be achieved by optical
spin excitation with circularly polarized light [88, 89]. Unlike e.g. GaAs, silicon is
an indirect band gap semiconductor, so optical orientation or luminescence become
ineffective for spin polarization or spin detection [62]. This is why the spin injection
in silicon by optical means is a challenge. One of the straight forward methods of
spin injection is rather by electrical means from a ferromagnetic electrode. An early
exploration on spin injection through a ferromagnet/paramagnet interface and spin
accumulation in a paramagnet was made by Johnson and Silsbee [90, 91, 92]. There is
also some theoretical understanding regarding the transport of spin in silicon [93, 94].
However, due to a fundamental conductivity mismatch [95, 96, 97, 98] between a
ferromagnetic metal contact and the semiconductor, the realization of the injection of
a spin polarized current was not feasible. Even though there is a large spin imbalance
between the majority and minority spins in a metal ferromagnet, both channels with
up-spin and down-spin are equally populated in a semiconductor due to the relatively
small density of states as compared to that for the minority spins in a ferromagnet. On
the other hand, because of the comparatively larger resistance of the semiconductor in
comparison to the metal, the voltage applied between the ferromagnetic metal and the
semiconductor drops completely within the semiconductor. Henceforth, the properties
of the contact are dominated by the non-magnetic semiconductor (silicon), and thus
resulting in a current injection without spin polarization.

The use of a spin-dependent interface resistance between the ferromagnet and the
semiconductor in the form of a tunnel barrier, is supposed to provide a solution to the
above described conductivity mismatch problem [96, 97]. In this case, the influx of
carriers from the ferromagnet into the semiconductor is reduced to such an extent that
the majority spins supply just enough carriers to support the complete occupancy of
the corresponding states in the semiconductor. Under such conditions the minority
spin flow in semiconductors will be a fraction of that for the majority spins defined by
the spin polarization in the ferromagnet. This ensures the existence of a spin polarized
current and the spin injection into the semiconductor. However, in order to be able
to properly detect the spin signal, the width of the tunnel barrier has to be precisely
engineered [99]. Moreover, it drives the challenge to find an appropriate ferromag-
netic semiconductor to ensure high quality interfaces without the tunnel barrier. An
approach based on the use of hot electrons that do not suffer from the impedance
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mismatch problem, has been reported [8]. It was the first demonstration of the elec-
trical spin injection, transport, and detection in undoped silicon at low temperature.
The electrical spin injection into silicon from a ferromagnetic contact through an alu-
minium oxide tunnel barrier at low temperature has also been reported [100]. The
vacuum tunneling is reported to preserve the spin-polarization properties of the elec-
trons (92% spin polarized current) in GaAs at a temperature of around 100K [101].
Indeed, the introduction of a tunnel barrier, generally with defects, will cause charge
trapping and eventually degrade the performance of the device. The use of ferromag-
netic contacts made of semiconductors would be another possible solution. Unfor-
tunately, no semiconductor with ferromagnetic properties at room temperature were
known until recently. The existence of diluted magnetic semiconductor nanostruc-
tures having a Curie temperature above 400◦C provides a promissing solution to the
problem [102]. Another possibility to avoid the impedance mismatch problem is to
employ half-metallic ferromagnets [103]. A half-metallic ferromagnet shows metallic
properties with respect to one spin orientation, and acts like an insulator with respect
to the other spin orientation. Some Heusler alloys and some transition metal oxides
show this property [55]. Along with the above mentioned materials, the spin transport
at room temperature in a doped-silicon channel has also been studied [104].

Regardless of the indisputable advantage in realizing the spin injection, detection, and
transport in silicon at ambient temperature, several difficulties not explained within
the theories are pending. According to the theory as explained in [44], the value of
the voltage signal ∆V due to spin accumulation divided by the carrier current den-
sity (j) flowing through the injecting contact is proportional to ∆V

j
= P̃ 2ρS

√
Dcτs

with τs as the spin lifetime, and Dc as the diffusion coefficient. Because of the in-
jection and detection, the tunnel spin polarization P̃ enters squared, and the silicon
resistivity ρS multiplied with the spin diffusion length (Li =

√
Dcτs) determines the

additional area resistance of the contact due to spin accumulation under it. However,
there is a several orders of magnitude discrepancy between the signal measured and
the above mentioned theoretical value. The reasons for the discrepancies are heavily
debated [44, 105, 106]. A spin signal much larger than the expected has been reported
in germanium structures as well as for other semiconductors [107, 108, 109, 110]. Using
single-layer graphene as the tunnel barrier can circumvent the conductivity mismatch
issue, and the amplitude of the signal has been reported to be consistent with the
spin accumulation in silicon [111]. An explanation based on the assumption that the
resonant tunneling magneto-resistance effect and not the spin accumulation causes the
electrically dependent spin signal has been proposed [105, 112]. On the other hand,
an evidence that a proper account of space-charge effects at the interface may boost
the spin injection signal by an order of magnitude was also presented [113].

In this work the semi-classical model of spin drift-diffusion in silicon is employed,
when spin is injected in silicon from a ferromagnetic semiconductor. The effect of
interface charge screening on spin injection efficiency is under scrutiny. It is noted
that, the spin current increases while injected from a charge-depleted region in the
ferromagnet, in comparison to when injected from a charge neutral or even a charge
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accumulated region. However, the spin injection efficiency is always limited by the bulk
spin polarization of the magnetic material. This necessitates the further investigation
of spin diffusion in silicon, when spin is injected through a charge neutral and a space-
charge layer. However, in both cases, the spin current density can not be significantly
higher than the spin current density at charge neutrality. Thus at a fixed boundary
spin polarization, the maximum spin current in the bulk is always determined by its
value at the charge neutrality condition - provided the charge current is kept fixed.

1.5 Outline of the Thesis

Following the introduction and the motivation, the structure of the thesis is outlined
as follows.

The second chapter provides an introduction to the band structure calculations. The
principles of the empirical and the ab-initio approaches are described. Then the k · p
method and the mechanisms of the spin relaxation in semiconductors are presented.
Finally, the fundamental mechanisms of the spin relaxation in semiconductors are
explained.

In the third chapter a two-band k · p Hamiltonian with shear strain and the intrinsic
spin degree of freedom, developed near the X-point of the Brillouin zone, is explained.
The subband spin-wave functions and their eigenenergies are calculated. The shear
strain inflicted valley splitting is described.

The fourth chapter calculates the surface roughness induced spin relaxation matrix
elements. The methods to calculate the spin lifetime due to the surface roughness,
acoustic, and optical phonons are elaborated, and the calculated results are explained.
The direction sensitive spin relaxation model is also highlighted. The major differences
among the spin-flip and momentum scattering mechanisms are also investigated. Fur-
thermore, the influence of the valley splitting in unstrained silicon films is elaborated.

In the fifth chapter a comprehensive study of the spin diffusion in silicon in presence or
absence of the electric field, when spin is injected from a ferromagnetic semiconductor,
is performed. The spin injecting source is assumed to be charge neutral; accumulated;
and depleted. The major differences in the transport behavior are revealed. The spin
diffusion in silicon from only a space charge layer is also scrutinized.

The sixth chapter summarizes the work, and describes an outlook for future work.
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2 Electronic Band Structure

”As many views, as many ways.”

Ramakrishna Paramahamsa

In nano-scaled devices, several quantum effects must be taken into consideration. The
peculiarities of subband structures determine the carrier transport, and finally their
macroscopic behavior. Electrons in any semiconductor experience the periodic po-
tential of the crystal lattice. This periodic potential causes the formation of energy
bands. The electronic band structure of a semiconductor describes the energy states
that an electron and a hole are either allowed or forbidden to occupy. The anal-
ysis of the subband energies of an electron (En, n being the band index) with the
presented calculation methods, and their dependence on the wave vector (k) is thus
paramount.

2.1 Band Structure Calculation Methods in Semiconductors

As the study of semiconductor properties are a fundamental part of the solid-state
physics research, the investigation of the band structure via computational means are
of great importance. Modern methods to calculate the electronic band structure are
sophisticated enough to describe the subband behavior of semiconductors. However,
commonly used methods demand the implementation of complex algorithms and a
huge amount of computational power.

Both the empirical and ab-initio methods are utilized to evaluate the band structure of
solids. The empirical methods rely on using a small number of adjustable parameters
to obtain a fit to certain known features of the bulk band structure, whereas the ab-
initio methods determine the band structure from the first principles and do not need
any experimental input. Hence, a first principle approach typically involves heavy
amount of computational effort, whereas the empirical methods do not [114].

Methods to calculate the band structure of a solid by using first principles can be
divided into several groups. The density functional theory (DFT) is widely used
to investigate the electronic structures i.e. principally the ground state of many-
body systems, in particular atoms, molecules, and condensed phases [115]. The non-
equilibrium Greens function (NEGF) function provides a formalism for the description
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2 Electronic Band Structure

of transport phenomena of nanoscale devices [116]. Now-a-days, these are extensively
used to study the new materials [114]. The most popular empirical methods are based
on either pseudopotential or tight-binding methods. On the other hand, by using the
perturbative k · p method (also a semi-empirical method) one can obtain analytical
expressions for the band dispersion and the effective masses averting heavy numerical
analysis [72]. In the following section, several methods and their key properties are
described in brief.

2.1.1 Nearly-Free Electron Approximation

In the nearly-free electron approximation, interactions between electrons are com-
pletely ignored. This approximation allows the use of Bloch’s Theorem, which states
that electrons in a periodic potential have wave functions and energies which are peri-
odic in wave vector up to a constant phase shift between neighboring reciprocal lattice
vectors [117]

Ψn,k(r) = exp(ik.r) · un,k(r) , (2.1)

where the function un,k(r) is periodic over the crystal lattice

un,k(r) = un,k(r−R) , (2.2)

with R as the periodicity. These plane wave solutions have an energy of E(k) = ~2k2

2me

(me is the electron rest mass). The electron wave function can be approximated by
un,k(r) =

1√
Ωr

, where Ωr is the volume occupied by the electron. This over-simplified

method works well in the materials where the lattice constant is low (e.g. alkali
metals like Na, K, Al and those have one electron in the primitive cell), and the lattice
potential is only a small perturbation to the electron sea.

2.1.2 Tight-Binding Approximation

The tight-binding (TB) method uses the atomic orbitals as basis for the wave func-
tions [118]. The electrons are assumed to be tightly bound to their atoms and they
must have limited interaction with states and potentials of surrounding atoms of the
solid. The crystal potential is strong. As a result the wave function of the electron
will be rather similar to the atomic orbital of the bound atom to which it belongs.
Any correction from the initial system Hamiltonian to the atomic potential are as-
sumed small. Therefore, this can be considered as the opposite extreme to the nearly
free electron approximation. Generally this method is good at describing the inner
electronic shells of the atoms. Although the TB approximation neglects the electron-
electron interactions, one can still reproduce accurately the band structure of many
solids including metals by using this method.

10



2 Electronic Band Structure

The wave function is constructed from the valence orbitals of all of the atoms in a
primitive cell of the crystal. Thus, the single electron wave function can be represented
as a linear combination of the atomic orbitals

Ψk(r) =
∑

m

∑

ς

exp(ik.Tm)cς(k)ϕς(r−Tm) . (2.3)

Here, the atoms are characterized by the atomic orbitals ϕς(r) (ς refers to the atomic
energy level). This atomic orbital is the eigenfunctions of the Hamiltonian of a single
isolated atom. Tm specifies the position of the mth atom, and the function ϕς(r−Tm)
represents the atomic orbital centered around the mth atom. The coefficients cς(k)
are found from the Schrödinger equation. It can be shown that Ψk(r) in Equation 2.3
is a Bloch function which satisfies the necessary requirement,

Ψk(r+T) = exp(ik.T)Ψk(r) , (2.4)

where T is the real space crystal translation vector. Now by substituting this equation
into the Schrödinger equation, one can form a set of linear equations with respect to
the coefficient cς(k). The number of equations is equal to the number of considered
orbitals in an atom, thus the solution represents the respective energy bands. The
function Ψk(r) therefore satisfies both the requirement of the Bloch theorem and the
assumptions in the TB model. It can be used to calculate the energy of a band via
E(k) = 〈Ψk|H|Ψk〉 [118], where H is the Hamiltonian of the electron.

Several semi-empirical TB models are available in literature depending on different
number of orbitals and order of neighbors included [119, 120, 121, 122, 123]. This
method can also be easily adapted to strained nanostructures [123].

2.1.3 Cellular Method

The cellular method was the earliest method employed in the band structure calcu-
lations by Wigner and Seitz (WS) [124]. In this method, one divides the crystal into
several unit cells (WS cell), and each atom is supposed to center at the middle of its
cell. The electron, when in a particular cell, is assumed to be only influenced by the
ionic potential in that cell. In order to ensure that the function Ψk satisfies the Bloch
form as described earlier, uk is periodic, i.e. it is same on the opposite faces of the
cell under inspection. Since a WS cell usually has a complicated structure, the use
of boundary conditions in a direct way is almost impossible. To avoid this difficulty,
only the simplest approximation can be applied: the cell is replaced by a WS sphere
with the same volume as the WS cell. This simplifies the problem to such an extent
that a solution is possible, although such an approximation can only describe s-type
states.
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2 Electronic Band Structure

Figure 2.1: Schematic plot of a pseudopotential and the pseudo-wave function in the real
space (red), compared to the original ones (blue), is shown.

2.1.4 Augmented-Plane Wave Method

The augmented-plane wave method was developed by Slater in 1937 [125]. APW
begins with the assumption that the effective crystal potential is constant between the
cores (muffin-tin like potential). Outside the core the wave function is a plane wave
as the potential is constant, and inside the core the function is atom-like to be solved
by the free-atom Schrödinger equation.

2.1.5 Pseudopotential Method

The pseudo-potential method differs from the above discussed methods by the manner
in which the wave function is chosen [126]. The function which oscillates rapidly inside
the core, but runs smoothly as a plane wave in the remainder of the open space of the
WS cell, is sought for. This phenomenon is drawn in Figure 2.1.

One can write the expression for the wave function [127],

Ψk = ϕk −
∑

ς

cςϕς . (2.5)

where ϕk is a plane-wave like wave function (same as for the APW method), and
ϕς is an atomic wave function. In silicon which has an atomic number of fourteen
(1s22s22p63s23p2), the summation over ς in Equation 2.5 is a sum over the core states
1s22s22p6 (i.e. all the occupied atomic shells). ϕk is the wave function of any of
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2 Electronic Band Structure

the outer core electrons, and ϕς are the core wave functions. The coefficients cς are
chosen such that the function Ψk is orthogonal to the core wave function ϕς . By
this orthogonality requirement, one can ensure that the outer electrons do not occupy
the already filled atomic orbitals. Thus one can avoid violating the Pauli exclusion
principle. The formulation of the Schrödinger equation with the pseudo-wave functions
can be written as [127]

(

− ~
2

2m
∇2 + Vpseudo

)

ϕk(r) = Eϕk(r) . (2.6)

Here, Vpseudo represents the pseudo-potential which cancels the crystal potential near
the core region. The empirical pseudopotential method allows to reproduce all the
characteristics including the band gap, spin-orbit split-off, the effective masses, the
non-parabolicity parameters etc [72].

2.1.6 Perturbation Theory

Perturbation theory is widely used in mathematics to find an approximate solution to
a problem, by starting from a known solution at a known position [72]. This theory is
applicable when the problem can be formulated by adding a rather small term to the
mathematical description of the exactly solvable problem. Thus, one can start with
a system Hamiltonian associated with a known solution and then add an additional
’perturbing’ Hamiltonian which imposes a weak disturbance to the known system. On
the other hand, one can divide the Hamiltonian representing the quantum state of
a system into one bigger and one smaller part and apply the perturbation theory to
deduce the approximated solution.

The k · p method is based on the perturbative approach and allows to obtain the
analytical band structure close to a chosen point provided the eigenenergies and the
eigenfunctions at that point are known. The expressions for the band dispersion and
also the effective masses can be obtained by using this method [86, 128]. While the k · p
theory has been frequently used to model the valence band of semiconductors, it can
also be applied to model the impact of strain on the conduction band minimum [72].
One can write the one-electron Schrödinger equation as,

HkΨn,k(r) = En,kΨn,k(r) , (2.7)

where Hk is the system Hamiltonian

Hk =
p2

2me
+ V (r) , (2.8)

with n is the band index, k is the wave vector, me is the free electron mass, V is
the potential energy, p is the electron momentum operator (p = −i~∇ with ~ as the
reduced Planck constant), En,k corresponds to the eigenenergy of the electron wave
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2 Electronic Band Structure

function Ψn,k. Due to the periodicity of the lattice potential, the Bloch theorem can
be applied and the solution is of the form of Ψn,k = exp(ik.r)un,k.

If one now applies the Bloch wave function ansatz,

p(Ψn,k) = p(exp(ik.r)un,k) = (~k+ p)(exp(ik.r)un,k) . (2.9)

Again,

p2Ψn,k = p · p(Ψn,k) = (~2k2 + 2~(k · p) + p2)(exp(ik.r)un,k) . (2.10)

From these two identities, Equation 2.7 and Equation 2.8 involving the periodic func-
tion un,k rather than Ψn,k can be rewritten as

H ′
k =

~
2k2

2me
+

2~(k · p)
2me

+
p2

2me
+ V , (2.11a)

H ′
kun,k = En,kun,k . (2.11b)

In any case, one can write this Hamiltonian as the sum of two terms H ′
k = H ′

k0+H
′′
k,

where

H ′
k0 =

p2

2me
+ V , (2.12a)

H ′′
k =

~
2k2

2me
+

2~(k · p)
2me

. (2.12b)

Hence, the total Hamiltonian H ′
k can be divided into an unperturbed part H ′

k0 with
the eigenfunctions un,k0 at k = k0, and a perturbative part H ′′

k.

2.1.7 Effective Mass Approximation

The mass of a free electron or the electronic rest mass can be expressed as me. When
this electron is placed in a crystal lattice the situation changes, and the electron
effective mass is the mass that it seems to have when responding to atomic forces.
This effective mass must be interpreted as mass of the electron such that the classical

energy formula E = p2

2m holds. Considering the force acting on the electron is F,
the acceleration ã of the electron can be represented as ã = F

me
. The expression for

the velocity is v = dE
dp

where p represents the momentum of the electron. Since by

definition F = dp

dt̃
, ã = dv

dt̃
=
(
∂v
∂p

)(
∂p

∂t̃

)
=
(
∂2E
∂p2

)
F. By generalizing this equation for a

three-dimensional model, one can write [129]

ãx =
∂2E

∂p2x
Fx +

∂2E

∂px∂py
Fy +

∂2E

∂px∂pz
Fz , (2.13a)
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ãy =
∂2E

∂px∂py
Fx +

∂2E

∂p2y
Fy +

∂2E

∂py∂pz
Fz , (2.13b)

ãz =
∂2E

∂px∂pz
Fx +

∂2E

∂py∂pz
Fy +

∂2E

∂p2z
Fz . (2.13c)

The inverse of the position-dependent effective mass tensor m̃ can be expressed as
(the momentum operator and the wave vector k are related by p = ~k)

m̃−1 =
1

~2







∂2E
∂k2x

∂2E
∂kx∂ky

∂2E
∂kx∂kz

∂2E
∂kx∂ky

∂2E
∂k2y

∂2E
∂ky∂kz

∂2E
∂kx∂kz

∂2E
∂ky∂kz

∂2E
∂k2z







=





m−1
xx m−1

xy m−1
xz

m−1
yx m−1

yy m−1
yz

m−1
zx m−1

zy m−1
zz



 .

(2.14)

The time-independent Schrödinger equation including m̃ is then expressed as [130]

(

− ~
2

2
∇m̃−1∇+ V

)

Ψn,k(r) = EΨn,k(r) . (2.15)

2.2 Spin-Orbit Coupling

Classically electrons can be thought of a spinning ball of charge, and the correlated
angular momentum is called spin. The experiment from [23] confirmed the quanti-
zation of the electron spin into two orientations which paved the way of quantum
mechanics of spin. Theoretically, a two-state quantum system (e.g. electron spin)
is a system which can exist in any quantum superposition of two independent and
physically distinguishable states. The actual state of the electron spin can geometri-
cally be represented by any point in the Bloch sphere (Figure 2.2). Through several
experiments it has been shown that the electrons’ spin can have only two opposing
projections on a fixed axis, and hence only two independent measurable states. These
two orthonormal eigenstates (basis) are postulated as |↑〉 and |↓〉 where,

|↑〉 →
[
1
0

]

, (2.16)

|↓〉 →
[
0
1

]

. (2.17)

Any quantum state |χ〉 represented by a point on the Bloch sphere (defined through
the polar Θ and the azimuthal Φ angles) can always be expressed as a superposition
of the basis vectors |↑〉 and |↓〉, where the coefficient or amount of each basis vector is
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Figure 2.2: Bloch sphere with different qubit states corresponding to the axes is shown. The
position of an arbitrary state (χ) can be uniquely represented by the polar (Θ)
and the azimuthal angles (Φ).

a complex number. Since only the relative phase between the coefficients of the two
basis vectors has any physical meaning, one can take the coefficient of |↑〉 to be real
and non-negative. From postulates of quantum mechanics the total probability of the
system has to be one, and thus 〈χ|χ〉=1. Given this constraint, the quantum state |χ〉
can be expressed as [131]

|χ〉 = cos
(Θ

2

)

|↑〉+ exp(iΦ) · sin
(Θ

2

)

|↓〉 . (2.18)

where 0 ≤ Θ ≤ π and 0 ≤ Φ < 2π.

The interaction of the electron spin with the electric field (via the associated magnetic
field in the electrons rest frame) and hence the electron’s motion in a crystal is called
the spin-orbit interaction. This can be represented by the Hamiltonian [128],

HSO =
~

4m2
ec

2
[∇V × p] · σ . (2.19)

Here, c is the speed of light at vacuum, me is the electron rest mass, V is the periodic
potential, and σ = (σx, σy, σz) is the spin vector in the Pauli matrices basis.
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The k · p Method with Spin-Orbit Coupling

In order to include the spin-orbit coupling, one has to add Equation 2.19 to Equa-
tion 2.8 to obtain

Hk =
p2

2me
+ V +

~

4m2
ec

2
[∇V × p] · σ . (2.20)

Analog to the derivation shown in in the section 2.1.6, one has to apply a Bloch ansatz
to the Schrödinger equation with the modified Hamiltonian from Equation 2.20 [132]
to derive the equation for the k · p method analysis.

H ′
k =

p2

2me
+ V +

~
2k2

2me
+

2~k · p
2me

+
~

4m2
ec

2
(σ ×∇V ) · (~k+ p) , (2.21a)

H ′
kun,k = En,kun,k . (2.21b)

With the notation

Π = p+
~

4mec2
(σ ×∇V ) , (2.22)

the above equation turns out to be

H ′
k = Hk +

~
2k2

2me
+

~

me
(k ·Π) . (2.23)

2.3 Spin Relaxation in Semiconductors

The mechanisms of decay for a spin polarized population can be broadly classified as
spin-flip scattering (spin relaxation or spin-lattice relaxation) and spin dephasing (or
spin decoherence) [131]. The different mechanisms responsible for the spin relaxation
time is now discussed [131].

• Elliot-Yafet (EY) mechanism, for elemental metals and semiconductors (c.f. Fig-
ure 2.3).

• D’yakonov-Perel’ (DP) mechanism, for semiconductors without center of inver-
sion symmetry (c.f. Figure 2.3).

• Bir-Aronov-Pikus mechanism, for heavily p-doped semiconductors.

• Hyperfine interaction, for electrons bound on impurity sites or confined in a
quantum dot.

17



2 Electronic Band Structure

Figure 2.3: Schematic of the Elliot-Yafet and D’yakonov-Perel’ spin relaxation mechanisms.

The EY mechanism is important for small gap semiconductors with large spin-orbit
splitting [133]. In electronic band structures the up-spin and the down-spin states are
mixed by the spin-orbit interaction [63], which means the up(down)-spin state contains
the down(up)-spin state. The degenerate Bloch states corresponding to the lattice
wave vector k in the presence of the spin-orbit coupling can be expressed as [131]:

Ψk,n,↑(r) = (ak,n(r) |↑〉+ bk,n(r) |↓〉) · exp(ikr) , (2.24a)

Ψk,n,↓(r) = (a∗−k,n(r) |↓〉 − b∗−k,n(r) |↑〉) · exp(ikr) . (2.24b)

Here, n signifies the band index. As spin mixing is usually quite small, one can write
|bk,n| ≪ |ak,n|. In the presence of such mixing spin relaxation events can be caused by
any spin-independent scattering, and in the absence of scattering events the spin state
remains conserved. This process is called the Elliott process. However, the momentum
scattering time is generally of the order of picoseconds and the spin relaxation time
several nanoseconds. The Yafet process is due to a spin-orbit interaction in which the
spin-orbit coupling of the conduction electrons to the lattice potential can be mod-
ulated by lattice vibrations. This leads to an interaction in which the spin of the
electron is coupled to the quantum of the lattice vibrations (phonon). Nevertheless
when the EY is the dominant scattering mechanism, a direct proportionality corre-
lation between the momentum scattering time and the spin relaxation time can be
found [63, 134].

The DP mechanism arises from the effective magnetic fields. This effective field arise
from systems that lack inversion symmetry, and are classified as two types, Dressel-
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haus [135] and Bychkov-Rashba [136]. In the DP mechanism, the spin of moving elec-
trons precesses due to the effective magnetic field until a scattering occurs and after a
scattering event the precession angle changes. One of the major distinguishing features
is that in contrary to the EY mechanism, the spin scattering rate is inversely propor-
tional to the momentum scattering rate. There has been work on a unified theory of
spin relaxation including both EY and DP dominated scattering [137]. Nevertheless,
there has been promising experimental evidence that at room and elevated tempera-
tures, the EY relaxation mechanism is the most important in silicon [67, 138].
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3 k · p Hamiltonian and Subband Wave
Functions

”Arise! Awake! and stop not until
the goal is reached.”

Swami Vivekananda

In this chapter the effect of the shear strain εxy on the relaxed silicon band structure
is explained, and then the effective k · p Hamiltonian with εxy and properly included
spin-orbit interaction is introduced. The wave functions and the valley splitting are
investigated.

3.1 Silicon Lattice

The Miller indices, denoted as h, k, and l, are a symbolic vector representation for
the orientation of atomic planes and directions in a crystal lattice. Defining three
lattice vectors forming the lattice axes, any crystal plane would intersect the axes at
three distinct points. The Miller indices are obtained by taking the reciprocal of the
intercepted values. By convention, negative indices are written with a bar over the
indices. The adopted nomenclature is as described below [139].

• A direction is represented by [hkl],

• the equivalent directions are denoted by <hkl>,

• a plane with the normal vector [hkl] is represented by (hkl), and

• the equivalent planes are denoted by {hkl}.
The crystal structure of silicon is classified under the diamond structure [139], and thus
has two atoms in a primitive cell. Germanium, and carbon are further examples of a
diamond structure lattice. On the contrary, the III-V semiconductors (GaAs, AlAs,
InAs, InP etc.) are of zinc blende type. The crystal lattice of silicon can be represented
as two penetrating face centered cubic lattices (fcc) with the cube side a=0.543nm as
portrayed in Figure 3.1. The structure is visualized as a tetrahedron with four vertices
of the first fcc lattice at (0,0,0), (a/2,0,0), (0,a/2,0) and (0,0,a/2) and an additional
atom added to the center of this tetrahedron. The additional atom is displaced by
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Figure 3.1: Sketch of the diamond crystal lattice is portrayed. Colors gray and red repre-
sent A′ atoms and color blue represents A′′ atoms. For silicon, both atoms are
identical.

a(14 ,
1
4 ,

1
4) with respect to the original fcc lattice. One unit cell of silicon consists of eight

atoms, where their distribution with reference to Figure 3.1 is described as below.

• Each of the eight atoms (A′, pertaining to the first fcc lattice) on the corners are
shared among each cell, thus counting equivalent one atom inside the cell (gray
colored),

• each of the six atoms (A′) on the faces are shared among two cells, thus counting
three more atoms inside the shell (red colored), and

• four atoms (A′′, pertaining to the second fcc lattice) rest completely inside the
cell (blue colored).

3.2 Effect of Strain on Silicon Band Structure

3.2.1 Unstrained Silicon

The first Brillouin zone is defined as the primitive cell in the reciprocal lattice. In
silicon, the first Brillouin zone has a shape of a truncated octahedron (c.f. Figure 3.2),
and is characterized by eight hexagonal faces and six square faces. The conduction
band (CB) edge is located near the zone boundary X points along the ∆ symmetry
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kx

kz

ky

Γ

X

W

K

U

L

Λ

∑

∆

Figure 3.2: The first Brillouin zone of the relaxed silicon lattice is shown. The valley positions
and high symmetry points are shown as well.

Directions Coordinate Remark

Γ (0,0,0) Center of the Brillouin zone (k space origin)

X (0,0,1) Middle of square faces

L (12 ,-
1
2 ,

1
2) Middle of hexagonal faces

K (0,-34 ,
3
4) Middle of edge shared by two hexagons

U (14 ,-
1
4 ,1) Middle of edge shared by a hexagons and a square

W (0,-12 ,1) Middle of edge shared by two hexagons and a
square

∆ Directed from Γ to X

Λ Directed from Γ to L
∑

Directed from Γ to K

Table 3.1: The symmetry points of the first Brillouin zone in silicon are listed according to
Figure 3.2 are listed.
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Figure 3.3: The silicon band structure calculated by the pseudopotential method (CB is the
conduction band, and VB is the valence band) is described. The VB edges are
located exactly at the Γ-point and the minimum of the lowest CB lies on the
symmetry ∆ line close to the X-point. The lowest two CBs degenerate exactly
at the X-point.
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Figure 3.4: Left: constant energy surface of unstrained silicon (six-fold degeneracy) is shown,
right: conduction band splitting under shear tensile strain on (001) plane is
shown. The red (green) color-fill signifies high (low) electron concentration.
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lines. The corresponding symmetry points and directions are tabulated in Table 3.1.
The valence bands (VB) contain the last filled energy levels at T=0K, whereas the
conduction bands are empty. The band gap Egap separates the CB from the VB. The
band structure is usually visualized by plotting En(k) along symmetry lines.

The general band structure of unstrained silicon can be sketched as in Figure 3.3.
The principal conduction band CB minima are located along the [100], [010], and
[001] directions at a distance of about 85% from the Γ-point to the X-points (or
equivalently, 15% from the X-point to the Γ-point). The energy of the two lowest
CBs are degenerate at the X-points. Close to the CB edge, the band structure can
be approximated by constant ellipsoidal energy surfaces (c.f. Figure 3.4 left) and a
parabolic energy dispersion [140, 141]. The semi-axes of the ellipse show the direction
of the longitudinal ml and the transversal electron mass mt. The six-fold degeneracy
of the valleys arise due to the symmetry of the lattice along the [100], [010], and [001]
directions. The electrons occupy all of these 3 pairs equally, making the transport
isotropic.

3.2.2 Strained Silicon

The application of stress modifies the various symmetry properties, causes a change in
the band structure, and thus modifies the effective mass which leads to the mobility
enhancement [142]. Th values of ml and mt change under the influence of shear
strain [140]. The shear strain also induces a shift in the energy levels of the conduction
band and the valence band [72]. This energy shift can be calculated by using the
deformation potential theory [72]. The six-fold degenerate ∆6 valleys in silicon are
split into a two-fold degenerate ∆2 valley pair along [001] direction, and a four-fold
degenerate ∆4 valley pair located along the other two axes. Strain results in lowering
(increasing) energy of the ∆2 (∆4) valley pair(s) [72, 143, 141]. Under this condition,
the electron population of the ∆2 (∆4) valley pair(s) is increased (decreased), c.f.
Figure 3.4.

3.3 Two-Band k · p Hamiltonian of [001] Valley at the

X-Point

As the lowest two conduction bands ∆1 and ∆2′ (c.f. Figure 3.3) have their minima
just k0 (c.f. Table 3.2) away from the X-point in the Brillouin zone, a two-band
perturbation theory considering only these two bands developed near the X-point
describes the band dispersion and subband wave functions very well [72]. The two-
band k · p Hamiltonian accurately describes the bulk structure up to energies of 0.5-
0.8eV [72]. However, this approach is in contrast to [144, 145] where the model has
been developed around the Γ-symmetry point which is far away from the conduction
band minimum and therefore requires a significant increase in considered bands.
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The two-band k · p Hamiltonian of a [001] valley in the vicinity of the X-point of the
Brillouin zone along the quantization OZ-axis including the shear strain (εxy) must
be of the form [72, 146]

H =







~
2k2z
2ml

+
~
2(k2x + k2y)

2mt
+

~
2k0kz

ml
+ Ũ(z) Dεxy −

~
2kxky

M

Dεxy −
~
2kxky

M

~
2k2z
2ml

+
~
2(k2x + k2y)

2mt
− ~

2k0kz

ml
+ Ũ(z)






,

(3.1)

where ki with i ∈ x, y, z are the projections of the wave vector on the coordinate
axes, Ũ(z) is the confinement potential, and εxy is the shear strain in [110] direction.
Ũ(z) arises as the UTB silicon film is supposed to be sandwiched between two oxide
layers. The diagonal terms of the (2x2) Hamiltonian correspond to the Hamiltonian
of the individual bands, and the off-diagonal term signifies the coupling between those
two [72].

Hamiltonian including the Spin Degree of Freedom

The corresponding k · p Hamiltonian including the spin degree of freedom considering
only the relevant [001] oriented valleys written in the vicinity of the X-point along the
OZ-axis in the Brillouin zone can also be derived from Equation 3.1 by introducing
the intrinsic spin-orbit term △SO [71, 129]. △SO couples the states with opposite spin
projections to their respective opposite valleys. The basis is conveniently chosen as
[(X1, ↑) , (X1, ↓) , (X2′ , ↑) , (X2′ , ↓)], where ↑ and ↓ indicate the spin projection at
the quantization OZ-axis, X1 and X2′ are the basis functions corresponding to the
two valleys. Thus, the effective (4x4) Hamiltonian with the spin degree of freedom

Parameter Value

Silicon lattice constant a=0.5431nm

Spin-orbit term △SO=1.27meVnm [129]

Shear deformation potential D=14eV

Electron rest mass in silicon me=9.1093·10−31kg

Transversal effective mass mt=0.19·me

Longitudinal effective mass ml=0.91·me

Valley minimum position from X-point k0=0.15·2π
a

Valley minimum position from Γ-point k0Γ=0.85·2π
a

M−1 m−1
t −m−1

e

Table 3.2: The parameter list for the silicon lattice is shown.
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reads [129, 147]

H =

[
H1 H3

H
†
3 H2

]

, (3.2)

where H1, H2, and H3 are written as,

Hj=1,2 =

[
~
2k2z
2ml

+
~
2
(
k2x + k2y

)

2mt
+

(−1)j~2k0kz
ml

+ Ũ(z)

]

I (3.3)

H3 =






Dεxy −
~
2kxky

M
(ky − kxi)△SO

(−ky − kxi)△SO Dεxy −
~
2kxky

M




 . (3.4)

The spin-orbit field (SOF) acts along (kx, -ky) direction. For a zero value of the
confinement potential Ũ(z) the energy dispersion of the lowest conduction bands is
given by [129]

E(k) =
~
2k2z
2ml

+
~
2(k2x + k2y)

2mt
±

√
√
√
√

(

~2kzk0

ml

)2

+ δ2 , (3.5)

where

δ =

√
√
√
√

(

Dεxy −
~2kxky

M

)2

+△2
SO(k

2
x + k2y) . (3.6)

The ± sign signifies the two bands. This expression generalizes the corresponding
dispersion relation from [71] by including shear strain.

In order to evaluate the effective spin-orbit interaction △SO term one can use the dis-
persion relation Equation 3.5. If one evaluates the dispersion for kx 6=0 but ky=kz=0,
the gap between the lowest two conduction bands can be opened by △SO alone in an
unstrained sample. The band splitting along the OX-axis is then equal to 2|△SOkx|
and thus linearly related to kx. This splitting can also be evaluated numerically by the
empirical pseudopotential method, and thereby one can obtain the value for△SO using
the linear fitting technique as described in [129]. △SO is reported to be 1.27meVnm.

3.4 Wave Functions: Analytical Form

As △SO couples two opposite spin projections on two different valleys, one has to
use the unitary transformation as described below in order to decouple the spins with
opposite direction in those valleys. The four-component wave functions in the two-
valley two spin projection basis can thus be straightforwardly obtained as described
in [72, 148].
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The four basis functions X1↑, X1↓, X2′↑, and X2′↓ for the two [001] valleys with spin
up, spin down are transformed acccording to the steps in [129]. After these transfor-
mations, the spin quantization is oriented along the axis of the spin-orbit field. One
assumes

kxy =
√

k2x + k2y . (3.7)

ψ1 =
1

2

[

(X1↑ +X2′↑) + (X1↓ +X2′↓) ·
kx − iky

kxy

]

, (3.8a)

ψ2 =
1

2

[

(X1↑ +X2′↑)− (X1↓ +X2′↓) ·
kx − iky

kxy

]

, (3.8b)

ψ3 =
1

2

[

(X1↑ −X2′↑) + (X1↓ −X2′↓) ·
kx − iky

kxy

]

, (3.8c)

ψ4 =
1

2

[

(X1↑ −X2′↑)− (X1↓ −X2′↓) ·
kx − iky

kxy

]

. (3.8d)

X1 = ψ1 cos

(
γ

2

)

− iψ3 sin

(
γ

2

)

, (3.9a)

X2 = ψ2 cos

(
γ

2

)

+ iψ4 sin

(
γ

2

)

, (3.9b)

X3 = ψ3 cos

(
γ

2

)

− iψ1 sin

(
γ

2

)

, (3.9c)

X4 = ψ4 cos

(
γ

2

)

+ iψ2 sin

(
γ

2

)

. (3.9d)

Here, X1, X2, X3, and X4 are the new rotated basis, and the angle γ is given by,

tan(γ) =
△SO · kxy

Dεxy − ~2kxky
M

. (3.10)

Under these conditions, the new Hamiltonian can be written as

H =

[
H1 H3

H3 H2

]

, (3.11)

with

Hj=1,2 =

[
~
2k2z
2ml

+
~
2(k2x + k2y)

2mt
+ (−1)jδ + Ũ(z)

]

I , (3.12)
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Θ

Figure 3.5: Sketch showing the spin injection into a (001) thin silicon film of thickness t in
an arbitrary direction, described by the polar angle Θ.
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Figure 3.6: The large component of the wave function of the lowest unprimed subband in
an unstrained film located in the valley centered at k0 is shown. Θ = π

3
(c.f.

Figure 3.5) is maintained.

H3 =







~
2k0kz

ml
0

0
~
2k0kz

ml






. (3.13)

The wave functions corresponding to the Hamiltonian Equation 3.11 can be expressed
as Φ1↑, Φ1↓, Φ2↑, and Φ2↓.

Wave Functions with Arbitrary Spin Orientation

By considering Θ as the polar angle (c.f. Figure 3.5, and also the azimuthal angle by
Φ), a set of linear transformations can be performed to obtain the wave functions Ψ1↑,
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Figure 3.7: The absolute value of the large (small) component of the spin wave functions
reduces (increases), when the spin injection changes gradually from OZ- to OX-
direction. kx, ky, and εxy are set to be 0.4nm−1, 0.4nm−1, and 0.5% respectively.

Ψ1↓, Ψ2↑, and Ψ2↓ with spin along the injection orientation. This transformation is
described below [149].

Ψn↑ =

(

cos Θ
2√
2

+
sin Θ

2√
2

· exp(−i(φ1 − Φ))

)

· Φn↑

+

(

cos Θ
2√
2

− sin Θ
2√
2

· exp(−i(φ1 − Φ))

)

· Φn↓ .

(3.14)

Ψn↓ =

(

− sin Θ
2√

2
+

cos Θ
2√
2

· exp(−i(φ1 − Φ))

)

· Φn↑

+

(

− sin Θ
2√

2
− cos Θ

2√
2

· exp(−i(φ1 − Φ))

)

· Φn↓ .

(3.15)

Here, tanφ1 = −ky
kx
. Thus, when Θ=0 and the spin is orientated along the OZ-

axis and the up(down)-spin wave function in each subband consists of majority and
minority components [150] respectively. Their absolute values depend on εxy. The
small components of the wave functions are the result of the △SO term [150]. When
k=0, the up(down)-spin states become eigenstates, which means the small component
will be completely absent. Only when kx 6= 0 or ky 6= 0 the small component will be
non-vanishing. As depicted in Figure 3.6 and for Θ = π

3 , the large components of the
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Figure 3.8: Intersubband splitting is shown as a function of shear strain εxy for different
values of the sample thickness t, and for kx=0.25nm−1 and ky=0.25nm−1.

four-components’ wave functions (Ψ1,1) can be described by the envelope quantization
function

Ψ1,1 =
exp(ik0z) sin(

πz
t
)√

t
· sin(Θ) , (3.16)

where t signifies the sample thickness.

The small component is considerably suppressed by the application of the shear strain
εxy [150]. The vanishing values of the small components decrease the spin mixing
between the states with opposite spin projections, which causes the increment of the
spin lifetime with εxy. Indeed, the large components of the wave functions do not
change significantly with shear strain [150].

The spin injection orientation also has a strong effect on the components of the wave
functions. For a fixed in-plane wave vector (kx, ky) and at every stress point, the
absolute value of the majority (minority) component reduces (increases), when the
spin injection direction is changed gradually from perpendicular (OZ-axis) to in-plane
(say, OX-axis). This phenomenon is depicted in Figure 3.7, and has an impact on the
spin relaxation as will be explained later.
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3.5 Valley Splitting by Shear Strain

The presence of the [001] confinement combined with the off-diagonal valley coupling
results in the degeneracy lifting of the unprimed subband ladder, leading to the valley
splitting [72]. If the potential profile Ũ(z) is approximated by an infinite square well,
the expression for the valley splitting can be approximated by [72, 151]

△EC =
2y2δ

k0t
√

(1− y2 − η2)(1− y2)

∣
∣
∣
∣
∣
sin

(√

1− y2 − η2

1− y2
k0t

)∣
∣
∣
∣
∣
, (3.17)

where t describes the quantum well thickness, δ is given in Equation 3.6, the parameters
y and η are given by

y =
π

k0t
, (3.18)

η =
mlδ

~2k20
, (3.19)

and for the other parameters c.f. Table 3.2.

It is noted that the spin-orbit coupling △SO also impacts the valley splitting strength
△EC . △EC oscillates with t and is drastically increased by εxy. The degeneracy
between the subbands is exactly recovered, when the sinusoidal oscillating term in
Equation 3.17 is zero. However, this degeneracy is not so significant, as it does not
add any peculiar behavior to the spin relaxation matrix elements [151]. One has to
mention that the analytical expressions for the spin relaxation matrix elements can be
found in the following chapters. On the other hand, △EC can be minimized when δ
is at its minimum, owing to a very strong spin relaxation as will be described in the
following sections.

Figure 3.8 shows the variation of the valley splitting with the shear strain εxy when the
sample thickness t is used as a parameter. The first minimum of the valley splitting
is determined by the spin-orbit interaction term alone (i.e. when δ in Equation 3.17
is minimum), and appears to be independent of the quantum well width. The other
valley splitting minima (observed for t=4nm and 5nm in Figure 3.8) depend on the

film thickness and are caused by vanishing values of the

∣
∣
∣
∣
∣
sin

(
√

1−y2−η2

1−y2
k0t

)∣
∣
∣
∣
∣
term.
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”Give me blood and I will give you
freedom!”

Netaji Subhas C. Bose

Once the subband wave functions are evaluated, one can proceed further to calculate
the surface roughness SR induced spin relaxation matrix elements [129]. The UTB
silicon films under consideration consist of a very thin conducting layer sandwiched
between two oxide layers. Thus, significant parts of the spin transport are carried along
the oxide/silicon interfaces and the transport becomes very sensitive to the interface
roughness. Therefore, the SR induced scattering plays an important role in UTB films
and must be accounted for in spin relaxation calculations.

4.1 Spin Relaxation Matrix Elements

The surface roughness induced spin relaxation matrix elements, normalized to the
intrasubband scattering matrix elements at zero strain, are expressed between the
wave functions with opposite spin projections [129]

Ms,ij =

[
dΨi−σ(z)

dz

dΨjσ(z)
dz

(dΨiσ(z)
dz

dΨiσ(z)
dz

)εxy=0

]

z=± t
2

, (4.1)

where σ=±1 is the spin projection to the [001] axis.

The up-spin and the down-spin wave functions are orthogonal to each other in every
subband which makes the intrasubband relaxation matrix elements zero. The corre-
sponding normalized and squared surface roughness induced intersubband relaxation
matrix element (|MS |2) is depicted in Figure 4.1. One finds that, |MS |2 is characterized
by very sharp peaks when

Dεxy −
~
2kxky

M
= 0 (4.2)

condition is satisfied, which is also known as the spin hot spots. At this condition,
the value of δ in Equation 3.6 attains its minimum. The subband splitting is at its
minimum at the spin hot spots, which signifies a maximum mixing between up- and
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Figure 4.1: The normalized and squared intersubband spin relaxation matrix element (|MS |2)
is shown as function of the shear strain εxy, and for an arbitrary (kx, ky) pair
(sample thickness t=2nm). Spin is oriented along OZ-direction (Θ=0, c.f. Fig-
ure 3.5). The splitting of the lowest subbands (valley splitting) is also shown.
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for an unstrained sample is shown, with the Fermi distribution at 300K.
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Figure 4.3: The normalized intersubband spin relaxation matrix element for εxy=0.2% is
shown, with the Fermi distribution at 300K.

down-spin eigenstates. These hot spots should be contrasted with the spin hot spots
appearing in the bulk system along the same directions at the edge of the Brillouin
zone [71, 67]. The origin of the hot spots in thin films lies in the unprimed subband
degeneracy, which effectively projects the bulk spin hot spots from the edge of the Bril-
louin zone to the center of the 2D Brillouin zone. As soon as the intersubband splitting
becomes larger than the spin-orbit interaction strength, the mixing of states caused
by this spin-orbit interaction is reduced, signifying the reduction of spin relaxation.

Figure 4.2 shows |MS |2 for an unstrained film. The hot spots are along the [100] and
[010] directions. Figure 4.3 describes how the shear strain pushes the spin hot spots to
the higher energies outside of the states occupied by carriers. This leads to a reduction
of the surface roughness induced spin relaxation.

Influence of Arbitrary Spin Orientation

The position of the spin hot spots in the surface roughness induced normalized and
squared intersubband relaxation matrix element (|MS |2) with respect to the kinetic
energy of the conducting electrons is shown in Figure 4.4, which again shows that
increasing εxy pushes the scattering peak to higher energy states. It has already
been described how the spin injection orientation defined by the angle Θ influences
the subband wave functions in the section 3.4. Under the same conditions, |MS |2 is
observed to be decreasing with increasing Θ, reaching its minimum when Θ=π

2 (i.e.
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Figure 4.4: The variation of the normalized intersubband spin relaxation matrix elements
with the kinetic energy of the conduction electrons in [110] direction is depicted.
The influence of the spin injection direction is also shown (t=1.36nm).

when spin is injected along the OX-direction). The dependence of |MS |2 on Θ and
(kx, ky) is evaluated to be [149]

|MS |2 ∝ 1 +
(kx

ky

)2
· cos2Θ . (4.3)

Then one can proceed further to write,

|MS |2(Θ)

|MS |2(Θ = 0)
=

1 +
(
kx
ky

)2
· cos2Θ

1 +
(
kx
ky

)2 . (4.4)

Rewriting Equation 4.4 with tanφ1 = −ky
kx

leads to

|MS |2(Θ)

|MS |2(Θ = 0)
= sin2 φ1 + cos2 φ1 · cos2Θ . (4.5)

Figure 4.5 describes the variation of |MS |2 with Θ and tanφ1 = −ky
kx
. |MS |2 oscillates

with respect to φ1, but steadily decreases when the spin injection orientation is drawn
from perpendicular OZ-axis towards in-plane OX axis. This shows that the spin
scattering rate must decrease, when the spin injection orientation is drawn gradually
towards in-plane.
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Figure 4.5: The variation of the normalized intersubband spin relaxation matrix elements
with Θ (c.f. Figure 3.5) and φ1 (with tan(φ1) = −ky

kx
) is described. The domain

for Θ is choosen to be (0, π
2
) as it is repeated in the rest of the domain (π

2
, π).

4.2 Spin Hot Spots and Spin Precession

As the spin hot spot condition is characterized by a strong increase of the mixing of
the up- and down-spin states, the equivalent subband splitting at the spin hot spots
is purely determined by the effective spin-orbit term, which is in turn linear with

△SO

√

k2x + k2y, where kx and ky are the components of the in-plane electron wave

vector. This linear dependence of the splitting is similar to the Zeeman splitting in a
magnetic field [152]. Therefore, the spin-orbit interaction term △SOk̃ with k̃=(kx, -ky)
can be interpreted as an effective magnetic field known as spin-orbit field (SOF), while
the pairs of states (X1, ↑), (X2′ , ↓) and (X2′ , ↑), (X1, ↓) it couples have similarities
with the Zeeman up- and down-spin states split because of the effective field [152]. It
is now obvious that the angle φ1 defined in the section 3.4 represents the direction of
the SOF. The spin injection orientation impacts the spin precession at the spin hot
spots and some of the related effects are now studied.
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4.2.1 Spin Expectation Value

One can estimate the spin expectations which depend on the spin injection orientation.
The spin Pauli matrices for the two [001] valleys can be written as,

σx =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






, (4.6a)

σy =







0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0






, (4.6b)

σz =







1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1






. (4.6c)

Now one can express the expectation values of the spin projection on the coordinate
axes, denoted as 〈Sn,p〉 (n=1,2 and p ∈ x, y, z),

〈Sn,p〉 =
∫ t

0
Ψ†

nσpΨndz . (4.7)

The total spin expectation can be represented as,

〈Sn〉 =
√
∑

p

〈Sn,p〉2 . (4.8)

When spin is injected along OZ-axis (Θ=0), 〈Sn,x〉=〈Sn,y〉=0 but 〈Sn,z〉=1. It is
spotted that at spin hot spots, the 〈Sn,z〉 value also drops to zero. When spin is injected
along OX-axis (Θ = π

2 , Φ=0), 〈Sn,y〉=〈Sn,z〉=0 but 〈Sn,x〉=1. On the contrary at the
spin hot spots [153, 154],

〈Sn,x〉 = sin2
(
arctan

(kx

ky

))
, (4.9a)

〈Sn,y〉 = −0.5 sin
(
2 arctan

(kx

ky

))
, (4.9b)

〈Sn,z〉 = 0 , (4.9c)

thus making 〈Sn〉 = sin
(
arctan

(
kx
ky

))
. When spin is injected along an arbitrary

direction on the XZ-plane, one can obtain at the spin hot spots,

〈Sn,x〉 = sin2
(
arctan

(kx

ky

))
· sinΘ , (4.10a)
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Figure 4.6: The dependence of the total spin expectation (SOZ) over a certain (kx, ky) pair
is shown, when spin is injected along the OZ-direction (εxy=0.5%).

〈Sn,y〉 = −0.5 sin
(
2 arctan

(kx

ky

))
· sinΘ , (4.10b)

〈Sn,z〉 = 0 , (4.10c)

and hence

〈Sn〉 = sin
(
arctan

(kx

ky

))
· sinΘ . (4.11)

Figure 4.6 and Figure 4.7 portray the values for 〈Sn〉 over a range of (kx, ky) pairs,
when spin is injected along OZ- and OX-directions respectively. The value of 〈Sn〉
always remains to one, but its value drops to zero when the spin is injected along
OZ-direction and when the spin hot spot condition is reached. On the contrary when

the spin is injected along OX-direction, 〈Sn〉 = sin
(
arctan

(
kx
ky

))
at the spin hot

spots. When Θ is increased from zero to the maximum, 〈Sn〉 gradually increases at
the spin hot spots. This indicates that the spin relaxation rate (lifetime) is expected
to decrease (increase), when the injection orientation is drawn towards in-plane.

4.2.2 Spin Precession

The effective spin-orbit field SOF is given by △SOk̃ and lies on the XY -plane along the
(kx, -ky) direction. The electron spin starts precessing around the SOF when injected
along any direction. One can see that (c.f. Figure 4.8), when the spin is injected along
OZ-direction, the average spin projection on the OX- and the OY -axes will always
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Figure 4.7: The dependence of the total spin expectation (SOX) over a certain (kx, ky) pair
is shown, when spin is injected along the OX-direction (εxy=0.5%).
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Figure 4.8: The precession of the injected spin (along OX- and OZ-directions) around the

existing spin-orbit field (SOF) is portrayed (tanφ1 = −ky

kx
).
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be zero. On the contrary when the spin injection is gradually drawn towards the OX-
direction, the spin projection value gradually increases. This phenomenon is correlated
with the already obtained spin expectation values at the spin hot spots. Because of
the zero spin expectation value at any pair of (kx, ky) resulting in maximal spin
randomization, the spin relaxation rate (time) is predicted to be strongest (weakest)
for perpendicular-plane spin injection.

4.3 Calculation of the Spin Relaxation Rates

The spin relaxation times for all the individual components are evaluated by thermal
averaging [71, 53, 69] as

1

τm[τs]
=

∑

i

∫
1

τi(k1)
· f(E)(1− f(E))dk1

∑

i

∫
f(E)dk1

, (4.12)

where ∫

dk1 =

∫ 2π

0
dϕ ·

∫ ∞

E
(0)
i

|k1|
∣
∣
∣
∂E(k1)
∂k1

∣
∣
∣
k1

dE . (4.13)

k1 (E,ϕ)=(k1(E,ϕ) cos(ϕ), k1(E,ϕ) sin(ϕ)) is the in-plane subband wave vector of
the electron before scattering. The angle ϕ defines the k1 direction, thus the term∣
∣
∣
∂E(k1)
∂k1

∣
∣
∣
k1

is the derivative of the subband dispersion along k1 at the angle ϕ. The

Fermi distribution function is

f(E) =
1

[

1 + exp(E−EF

KBT
)
] . (4.14)

Here, KB is the Boltzmann constant, T is the temperature, EF is the Fermi level, and
E can be expressed as

E = E
(0)
i + Ei(k1) , (4.15a)

E
(0)
i = Ei(k1 = 0) , (4.15b)

where E
(0)
i is the energy of the bottom of the subband i. When the values of the

electron concentration and temperature are provided, EF is evaluated numerically by
following [69]. Nevertheless, when both the surface roughness and the phonon medi-
ated components are calculated, the total spin lifetime is calculated by the Matthiessen
rule [117].
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Figure 4.9: The four phonon modes are found in elemental semiconductors: (a) longitudinal
acoustic, (b) transversal acoustic, (c) longitudinal optical, and (d) transversal
optical modes.

4.3.1 Surface Roughness Limited Spin Relaxation Rates

The spin-flip rate can be written as [55]

1

τi,s,SR(k1)
=

4π

~(2π)2

∑

j=1,2

∫ 2π

0
dϕ · π△2L2 · 1

ǫ2ij |k2 − k1|
· ~

4

4m2
l

· |k2|
∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣

·
[(dΨik1σ

dz

)∗(dΨjk2−σ

dz

)]2

z=± t
2

· exp
(

−|k2 − k1|2L2

4

)

· θ(Ej(k2)− E
(0)
j ) .

(4.16)

Here, k1 (k2) is the in-plane wave vector of the electron before (after) scattering, ϕ
is the angle between k1 and k2 vectors, ǫi,j is the dielectric permittivity, L is the
autocorrelation length, and △ is the mean square value of the SR-fluctuations [129].
σ = ±1 is the spin projection to the [001] axis. θ(x) is the Heaviside function.

4.3.2 Phonons

Phonons are the lattice vibrations, but those can be imagined as particles which carry
vibrational energy in a similar manner to photons, i.e. they are discrete and quan-
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tized [117]. The energy of a phonon is characterized by its own intrinsic frequency. In
a lattice with a basis of more than one atom in the primitive cell (which may or may
not be different), the allowed frequencies of a propagating wave can be split into an
upper branch known as the optical branch, and a lower branch called the acoustical
branch. Acoustic phonons are coherent movements of atoms of the lattice out of their
equilibrium positions. In contrast for optic phonons, the center of mass of the cell
during oscillations does not move [117, 128, 155] (i.e. one atom moving to the left,
and its neighbour to the right). The nature of the vibrations are sketched in Figure 4.9.
The acoustic branch has its name because it gives rise to long wavelength vibrations,
and the speed of its propagation is the speed of a sound wave in the lattice. The
optical branch is a higher energy vibration, and one can excite these modes with the
electromagnetic radiation [117]. For both of acoustic and optical modes, the vibration
is restricted to the direction of propagation in the longitudinal mode, whereas in the
transversal mode the vibration occurs in the perpendicular planes.

In the three-dimensional lattice system the number of optical modes for the primitive
cell that contains p atoms is given by the expression 3(p-1), while the number of acous-
tic modes is always three. Each of the modes has three components: two transversal
(TA1, TA2, TO1, TO2) and one longitudinal (LA, LO).

In the analysis of intrasubband electron-phonon scattering, the explicit forms of the
polarization vectors of phonons are needed. Following [156, 53] the phonons polariza-
tion vectors can be written as

̺LA =
1

q





qx
qy
qz



 , (4.17)

̺TA1 =
1

√

q2x + q2y





qy
−qx
0



 , (4.18)

̺TA2 =
1

q
√

q2x + q2y





qxqz
qyqz

−(q2x + q2y)



 , (4.19)

where q =
√

q2x + q2y + q2z is related to the momentum transfer in the scattering [53].

The formulation for the transition rate from one energy eigenstate of a quantum system
into the other energy eigenstates in a continuum is given by Fermi’s golden rule [157].
The electron-phonon mediated momentum and the spin relaxation rates, where m is
the relaxation mechanism signifying contributions from the acoustic and the optical
phonon for transitions from band i to band j are calculated by using Fermi’s second
Golden Rule as described in [53, 157]

1

τi(ki)
=

2(4)π

~(2π)2

∫

d2kj |Mm,i,j(ki, kj)|2δ(Ej − Ei +△Em) , (4.20)
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where M represents the momentum scattering (spin relaxation) matrix element, and
the material volume is chosen as the unit volume. The value 4 (2) for spin (momentum)
relaxation accounts for the fact that the net number of spin polarized electrons changes
by two with each spin flip [53].

4.3.3 Intravalley and g-Intervalley Relaxation Processes Rates

The spin relaxation rate for the wave vector k1 in subband i can be written as [69]

1

τi,AC(k1)
=

4πKBT

~ρν2

∑

j

∫ 2π

0

dϕ

2π

∫ ∞

−∞

dqz

(2π)2
|k2|

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣

·
[

1−

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣f(E(k2))

∣
∣
∣
∂E(k1)
∂k1

∣
∣
∣f(E(k1))

]

·
∑

α1α2

∣
∣
∣
qα1

q
̺α2(q)Dα1α2

∫ t

0
dzΨ†

jk2−σ(z) exp(−iqzz)Ψik1σ(z)
∣
∣
∣

2

· θ(Ej(k2)− E
(0)
j ) .

(4.21)

Here, the momentum transfer vector q can be realized by q = (k2 − k1, qz), Dα1α2 is
the deformation potential, (α1, α2)=(x, y), ̺α2(q)=(̺LA(q), ̺TA1(q), ̺TA2(q)) is the
polarization vector.

By applying Fubini’s theorem the modulus in the above equation can be replaced by
a repeated integral,

1

τi,AC(k1)
=

4πKBT

~ρν2

∑

j

∫ 2π

0

dϕ

2π

∫ ∞

−∞

dqz

(2π)2
|k2|

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣

·
[

1−

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣f(E(k2))

∣
∣
∣
∂E(k1)
∂k1

∣
∣
∣f(E(k1))

]

·
∫ t

0
dz

∫ t

0
dz′
[

ψ
†
jk2−σ(z)M

ACψik1σ(z)
]∗

·
[

ψ
†
jk2−σ(z

′)MACψik1σ(z
′)
]

LAC exp(−iqz|z − z′|)

· θ(Ej(k2)− E
(0)
j ) .

(4.22)

MAC is the deformation potential matrix, the exact form of the matrix depends on
the phonon mode and is shown later. The LAC term depends on the spin-flip process
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and the phonon mode [53]. By replacing the order of the integration in Equation 4.22
the acoustic phonon mediated relaxation rate can be written as

1

τi,AC(k1)
=

4πKBT

~ρν2

∑

j

∫ 2π

0

dϕ

2π

1

(2π)2
|k2|

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣

·
[

1−

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣f(E(k2))

∣
∣
∣
∂E(k1)
∂k1

∣
∣
∣f(E(k1))

]

·
∫ t

0
dz

∫ t

0
dz′
[

ψ
†
jk2−σ(z)M

ACψik1σ(z)
]∗

·
[

ψ
†
jk2−σ(z

′)MACψik1σ(z
′)
] ∫ ∞

−∞
dqzLAC exp(−iqz|z − z′|)dz′

· θ(Ej(k2)− E
(0)
j ) .

(4.23)

Intervalley g-Process Spin Relaxation

The g-process describes the electron intervalley scattering between opposite valleys,
which includes only the [001] valley pair in the Brillouin zone. The f-process involves
scattering between valleys that reside on perpendicular axes, which will be treated
later. For intervalley scattering [53], LAC=1. By introducing the Dirac delta function,
2πδ(z − z′) =

∫∞
−∞ exp(−iqz|z − z′|)dqz. Again,

∫

dz′
[

ψ
†
jk2−σ(z

′)MACψik1σ(z
′)
]

δ(z − z′) =
[

ψ
†
jk2−σ(z)M

ACψik1σ(z)
]

. (4.24)

This simplifies Equation 4.23 to

1

τi,LA(k1)
=

4πKBT

~ρν2LA

∑

j

∫ 2π

0

dϕ

2π
· 1

(2π)2
|k2|

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣

·
[

1−

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣f(E(k2))

∣
∣
∣
∂E(k1)
∂k1

∣
∣
∣f(E(k1))

]

· 2π
∫ t

0
dz
[

ψ
†
jk2−σ(z)M

ACψik1σ(z)
]∗[

ψ
†
jk2−σ(z)M

ACψik1σ(z)
]

· θ(Ej(k2)− E
(0)
j ) .

(4.25)

Here, νLA=8700m
s
, MAC contains the Elliott and Yafet contributions [53], and can be

written as (M ′)

M ′ =

[
MZZ MSO

M
†
SO MZZ

]

, (4.26)
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MZZ =

[
Ξ 0
0 Ξ

]

, (4.27)

MSO =

[
0 DSO(ry − irx)

DSO(−ry − irx) 0

]

, (4.28)

where (ry, rx)=k1 + k2, DSO=15meV/k0, Ξ=12eV as the acoustic deformation po-
tential, and other parameters as in Table 3.2. Thus, the expression for M ′ can be
reformulated as

M ′ =







Ξ 0 0 DSO(ry − irx)
0 Ξ DSO(−ry − irx) 0
0 DSO(−ry + irx) Ξ 0

DSO(ry + irx) 0 0 Ξ







(4.29)

Intravalley Transversal Acoustic Phonons Spin Relaxation

Intrasubband transitions are important for the contributions determined by the shear
deformation potential. The term LAC due to transversal acoustic phonons is [53]

LAC =
(q2x − q2y)

2

q2x + q2y
+

4q2xq
2
yq

2
z

(q2x + q2y)|q|2
. (4.30)

Applying the theory of residues with Q2 = q2x + q2y , one can perform the following
integral,

∫ ∞

−∞
dqz

q2z exp(−iqz|z − z′|)
(Q2 + q2z)

2
=

∫ ∞

−∞
dqz

q2z exp(−iqz|z − z′|)
(iQ− qz)2(iQ+ qz)2

= −2πi
[( d

dqz

q2z exp(−iqz|z − z′|)
(iQ− qz)2

)

qz=−iQ

]

=
π

2

1−Q|z − z′|
Q

exp(−Q|z − z′|) .

(4.31)

The matrix MAC for the intrasubband transversal acoustic phonons (M) can be ex-
pressed like

M =







0 0 D
2 0

0 0 0 D
2

D
2 0 0 0

0 D
2 0 0






, (4.32)
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where D is the shear deformation potential as mentioned in Table 3.2. Indeed the
intrasubband transitions are important for the contributions determined by D.

Following Equation 4.23 the intrasubband transversal acoustic phonons is

1

τi,TA(k1)
=

4πKBT

~ρν2TA

∑

j

∫ 2π

0

dϕ

2π
· 1

(2π)2
|k2|

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣

·
[

1−

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣f(E(k2))

∣
∣
∣
∂E(k1)
∂k1

∣
∣
∣f(E(k1))

]

·
∫ t

0
dz

∫ t

0
dz′ exp(−

√

q2x + q2y |z − z′|) · π
2

·
[

Ψ†
jk2−σ(z)MΨik1σ(z)

]∗[
Ψ†

jk2−σ(z)MΨik1σ(z)
]

·
[
4q2xq

2
y(1− |z − z′|

√

q2x + q2y)

(
√

q2x + q2y)
3

]

· θ(Ej(k2)− E
(0)
j ) .

(4.33)

Here, νTA=5300m
s

is the transversal phonon velocity, and ρ=2329Kg
m3 is the silicon

density [158].

Intravalley Longitudinal Acoustic Phonon Spin Relaxation

The term LAC due to the longitudinal acoustic phonons is [53]

LAC =
4q2xq

2
y

|q|2 . (4.34)

Applying the theory of residues with Q2 = q2x + q2y , one can perform the following
integral,

∫ ∞

−∞
dqz

exp(−iqz|z − z′|)
(Q2 + q2z)

2
=

∫ ∞

−∞
dqz

exp(−iqz|z − z′|)
(iQ− qz)2(iQ+ qz)2

= −2πi
[( d

dqz

exp(−iqz|z − z′|)
(iQ− qz)2

)

qz=−iQ

]

=
π

2

Q|z − z′|+ 1

Q3
exp(−Q|z − z′|) .

(4.35)

The matrixMAC for the intrasubband longitudinal acoustic phonons is the same as in
Equation 4.32. Then, the intravalley spin relaxation rate due to longitudinal acoustic
phonons can be expressed as
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1

τi,LA(k1)
=

4πKBT

~ρν2LA

∑

j

∫ 2π

0

dϕ

2π
· 1

(2π)2
· |k2|
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∣
∣
∂E(k2)
∂k2
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∣
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[

1−

∣
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∣
∂E(k2)
∂k2

∣
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∣f(E(k2))
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∣
∂E(k1)
∂k1

∣
∣
∣f(E(k1))

]

·
∫ t

0
dz

∫ t

0
dz′ exp(−

√

q2x + q2y |z − z′|)π
2

·
[

Ψ†
jk2−σ(z)MΨik1σ(z)

]∗[
Ψ†

jk2−σ(z)MΨik1σ(z)
]

·
4q2xq

2
y

(q2x + q2y)
3
2

[√

q2x + q2y |z − z′|+ 1
]

θ(Ej(k2)− E
(0)
j ) .

(4.36)

When both the surface roughness and the acoustic phonon mediated components are
calculated, the total spin lifetime is calculated by the Matthiessen rule.

4.4 Spin Lifetime Simulations

The observed spin lifetime in unstrained thin films is much different compared to
bulk samples. Experiments show a dramatic reduction of the spin relaxation time in
Si/SiO2 interfaces [159]. Figure 4.10 describes how the total spin lifetime (τs) and its
surface roughness and phonon mediated components vary with the temperature in an
unstrained silicon thin-film, for different electron concentrations NS . With increasing
temperature, the number of hot spot points which lie in the energy range determined by
the term f(E)(1−f(E)) increases [160]. In combination with the Fermi level lowering
this results in the reduction of the spin lifetime. The opposite trend is observed when
NS increases. Increasing the electron concentration shifts the Fermi level upwards
and thus increases the spin lifetime. The surface roughness mediated component
of τs becomes prominent for a sample thickness of as low as t=1.36nm. Thus, τs
in unstrained silicon film is significantly affected by the electron concentration and
temperature. It is further noticed that with increasing temperature, the difference
between the spin lifetimes for different values of the electron concentration becomes
less pronounced.

4.4.1 Spin Lifetime Enhancement with Shear Strain

Figure 4.11 shows the contributions of the surface roughness (SR), longitudinal acous-
tic (LA), and transversal acoustic (TA) induced spin lifetime for a sample thickness of
t=2.5nm at room temperature. The spin injection orientation is perpendicular (Θ=0)
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Figure 4.10: The dependence of the spin lifetime including the surface roughness (SR), the
longitudinal acoustic (LA) phonon, and the transversal acoustic (TA) phonon
mediated components on the temperature and for different values of the electron
concentration (εxy=0, t=1.36nm) is shown.
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Figure 4.11: The dependence of the spin lifetime and its surface roughness and acoustic
phonon induced components over a wide range of εxy is shown. The film thick-
ness is t=2.5nm, T=300K, and the electron concentration is NS=1012cm−2.
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Figure 4.12: The dependence of the spin lifetime on the shear strain εxy is depicted for a
film thickness of t=1.36nm, and an electron concentration of NS=1012cm−2.

to the (001) surface (c.f. Figure 3.5). Several orders of magnitude enhancement is
noticed with increasing shear strain εxy for the total spin lifetime τs and its all indi-
vidual components. The variation of τs with εxy at different temperatures is shown
in Figure 4.12. An orders of magnitude increase of τs is noticed for all four evaluated
temperatures, and τs is highly sensitive to the operating temperature at each stress
point. One can confirm that, at higher temperatures the electron-phonon scattering
rate significantly increases causing the reduction of τs.

4.4.2 Inter- and Intrasubband Components

In order to elucidate the spin relaxation mechanism, the spin-flip caused by the intra-
and intersubband scattering must be analyzed. The corresponding components of the
spin lifetime at the room temperature (RT) for a sample thickness of t=2.1nm is shown
in Figure 4.13. It is revealed that the major contribution to the spin relaxation time
τs comes from the intersubband processes. This dependence of τs on intersubband
transition is attributed to the presence of the spin hot spots. It is further noted that,
for a thickness t=2.1nm when εxy > 1.4%, the intrasubband component also turns out
to be non-negligible.

Figure 4.14 delineates the surface roughness induced spin relaxation time with its inter-
and intrasubband components at two distinct temperatures and at a very low sample
thickness. One can see that, when the temperature decreases the Fermi level energy
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Figure 4.13: The variation of the spin lifetime with its inter- and intrasubband components
with εxy is shown. The film thickness is t=2.1nm, T=300K, and the electron
concentration is NS=1012cm−2.

increases (c.f. Figure 4.14 inset), the intersubband scattering becomes less efficient
already at lower values of the shear strain component εxy, and the total intrasubband
component of the spin relaxation time starts playing the significant role at higher εxy.
It is also revealed that at higher εxy, the surface roughness scattering intrasubband
components become close to each other for different temperatures [161]. Therefore, the
increase of the total spin lifetime (τs) is a consequence of the fact that εxy introduces
a splitting between the usually degenerate unprimed subbands. This lifting of the de-
generacy is the crucial factor for the spin lifetime enhancement, as the splitting pushes
out the regions of large mixing between the spin-up and spin-down states to higher
energies outside of the occupied states (c.f. Figure 4.4). The degeneracy between
equivalent valleys has been a longstanding problem in silicon spintronics [55].

4.4.3 Effect of Spin Injection Orientation

Figure 4.15 shows how the surface roughness and the phonon mediated components
of the total spin lifetime (denoted as τs) depend on the spin injection direction over
a wide range of shear strain εxy. They increase with the spin injection polar angle
Θ with equal proportionally factor. This happens as the inter- and intrasubband
components of τs are equivalently sensitive to Θ, as those increase with increasing
Θ. This phenomenon is described in Figure 4.16. Accordingly, τs increases with Θ
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Figure 4.14: The variation of the surface roughness mediated spin lifetime with its inter- and
intrasubband components as a function of εxy at two distinct values of tempera-
ture is depicted. The film thickness is t=1.36nm, and the elctron concentration
is NS=1012cm−2. The variation of the Fermi levels and the minimum energies
(kx=ky=0) of the lowest unprimed subbands with εxy is shown (inset).

for all values of the shear strain εxy. τs attains the maximum value for an in-plane
spin injection. This result can be correlated with the earlier findings that the spin
randomization decreases with increasing Θ at the spin hot spots, and accordingly the
spin relaxation rate decreases and the spin lifetime increases (c.f. the section 4.2).

Now, one needs to investigate the dependence of the total spin lifetime τs (and the
inter- and intrasubband components) on Θ at a fixed stress point. Figure 4.17 high-
lights the ratio of τs for an arbitrary Θ value compared to a perpendicular-plane
injection. An analytical expression describing this dependence can be deduced by
averaging |MS |2 (c.f. Equation 4.3) over the in-plane momentum vector and can be
expressed as

1

τs(Θ)
∝ 1 + cos2Θ . (4.37)

In such a condition,
τs(Θ)

τs(Θ = 0)
=

2

1 + cos2Θ
, (4.38)

and therefore,

τs

(

Θ =
π

2

)

= 2 · τs(Θ = 0) . (4.39)
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Figure 4.15: The variation of the surface roughness and the phonon mediated components of
the spin lifetime with εxy is shown, when the spin injection orientation (repre-
sented by the angle Θ) is used as a parameter. The film thickness is t=1.36nm,
T=300K, and the electron concentration is NS=1012cm−2.
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Figure 4.17: The variation of the spin lifetime with the spin injection orientation angle Θ
at any fixed value for εxy is shown. The analytical expression can be found at
Equation 4.37.

So, the total spin lifetime τs is increased by a factor of two when injected in-plane
(OX-direction) compared to the perpendicular-plane (OZ-direction). It is mentioned
here that this increase of spin lifetime by the factor of two for an in-plane injection
has also been mentioned for bulk silicon [67, 162].

4.5 Momentum Relaxation Time Simulations

In the previous sections one has seen how intersubband transition predominantly de-
termines the total spin lifetime τs. The shear strain εxy can remove the degeneracy
between the equivalent valleys to cause the reduction of intersubband spin-flip and
hence the giant increment in τs. As the momentum scattering times for all the indi-
vidual components can also be calculated by the thermal averaging as as described in
Equation 4.12, one must calculate the total momentum scattering time τm as a function
of εxy to investigate how the inter- and intrasubband transitions impact τm.

4.5.1 Momentum Scattering Matrix Elements

The simplified expression for the surface roughness SR induced momentum scattering
matrix elements, normalized to the intrasubband scattering matrix elements at zero
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Figure 4.18: The normalized and squared intersubband scattering matrix element is shown
as function of εxy and for several pairs of (kx, ky). The film thickness is set to
t=2nm.

strain, is calculated as [129]

Mm,ij =

[
dΨiσ(z)

dz

dΨjσ(z)
dz

(dΨiσ(z)
dz

dΨiσ(z)
dz

)εxy=0

]

z=± t
2

, (4.40)

where Ψi,j are the subband eigenfunctions as obtained earlier. i, j=1, 2 are the
subband indices, and σ=± 1 is the spin projection to the [001] axis.

Figure 4.18 shows the variation of the normalized and squared intersubband scattering
matrix elements with εxy, for an arbitrary in-plane projection of the k vector. In
contrast to Figure 4.1 no peak is noticed in this case. The intersubband scattering
attains its minimum when Equation 4.2 is met [163]. In each case, the intersubband
scattering is noticed to be vanishing after a certain strain point. To explain this be-
havior, the variation of the corresponding energies of the first lowest subband with
εxy, and the minimum energy of the second subband are shown in Figure 4.19. When
former goes below the latter, no intersubband scattering would be possible as because
the kinetic energy is not sufficient to occupy the states after scattering in the sec-
ond subband. Figure 4.20 shows the respective normalized and squared intrasubband
scattering matrix elements, for a certain (kx, ky) pair. The stress-induced unprimed
subband splitting is illustrated (c.f. right hand side). The valley splitting minimum is
observed to be around εxy=0.145% in agreement with Equation 4.2.
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Figure 4.20: The normalized and squared intrasubband scattering matrix elements are shown
as function of εxy (kx=ky=0.25nm−1, and t=2.7nm).
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4.5.2 Calculation of the Momentum Relaxation Rates

Analogous to Equation 4.16, the surface roughness SR induced momentum relaxation
rate is

1

τi,SR(k1)
=

2π

~(2π)2

∑

j=1,2

∫ 2π

0
dϕ · π△2L2 · 1

ǫ2ij |k2 − k1|
· ~

4

4m2
l

· |k2|
∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣

·
[(dΨik1σ

dz

)∗(dΨjk2σ

dz

)]2

z=± t
2

· exp
(

−|k2 − k1|2L2

4

)

· θ(Ej(k2)− E
(0)
j ) .

(4.41)

k2 is the in-plane wave vector after scattering, ϕ is the angle between the k1 and k2

vectors, ǫi,j is the dielectric permittivity, L is the autocorrelation length, and △ is
the mean square value of the surface roughness fluctuations [164]. σ = ±1 is the spin
projection to the [001] axis. This scattering rate is modeled according to [81], who
adapted the original approach of [87] for scattering at two interfaces.

Analogous to the calculation of the spin-flip rate, the phonon induced momentum
scattering rate can be written as [69]

1

τi,PH(k1)
=

2πKBT

~ρν2PH

∑

j

∫ 2π

0

dϕ

2π
· 1

(2π)2
|k2|

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣

·
[

1−

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣f(E(k2))

∣
∣
∣
∂E(k1)
∂k1

∣
∣
∣f(E(k1))

]

· 2π
∫ t

0
dz
[

ψ
†
jk2σ

(z)MPHψik1σ(z)
]∗[

ψ
†
jk2σ

(z)MPHψik1σ(z)
]

· θ(Ej(k2)− E
(0)
j ) .

(4.42)

Here,

νPH =
2νTA + νLA

3
, (4.43)

where νTA=5300m
s
is the transversal phonon velocity, νLA=8700m

s
is the longitudinal

phonon velocity, ρ=2329Kg
m3 is the silicon density [158], t is the film thickness, and

MPH can be described as

MPH =







Ξ 0 0 0
0 Ξ 0 0
0 0 Ξ 0
0 0 0 Ξ






, (4.44)

with Ξ=12eV [165] as the acoustic deformation potential.
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Figure 4.21: The variation of the momentum relaxation time with εxy is shown with its
surface roughness (SR) and phonon (Ph) mediated components at two distinct
temperatures. The film thickness is t=1.36nm, and the electron concentration
is NS=1012cm−2.
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Figure 4.22: The variation of the momentum relaxation time with εxy is shown with its inter-
and intrasubband components corresponding to Figure 4.21.
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The dependence of the total momentum relaxation time (τm) and its surface roughness
and phonon mediated components on the applied shear stress strength εxy is shown
in Figure 4.21 for two different temperatures. It is clear that for a film thickness of
t=1.36nm the surface roughness scattering effect dominates the total momentum re-
laxation time. This can be seen in Figure 4.21 for T=300K as well as T=153K. While
the surface roughness component is not much affected by temperature, the phonon me-
diated momentum relaxation rate (time) increases (decreases) strongly with increasing
temperature. For this reason, τm drops with increasing temperature. Within the εxy
range of 0 to 1.8%, the increment of τm is around 130% at T=300K, and 150% at
T=153K for the film thickness of t=1.36nm.

In order to explain the observed behavior, the inter- and intrasubband components
of the calculated momentum relaxation time is shown in Figure 4.22. It is revealed
that intrasubband scattering solely determines the momentum relaxation time over a
wide range of shear strain and at any temperature range. This is in agreement with
the selection rule that the elastic processes result in strong intrasubband momentum
relaxation [166, 129].

4.6 Valley Splitting in Unstrained Films

The [001] equivalent valley coupling through the Γ-point results in a subband splitting
in confined electron structures [87]. This subband splitting is not limited to strained
structures and thus must be taken properly into account for the calculation of the spin
lifetimes in relaxed structures as well. The valley splitting in a silicon quantum well at
zero strain as a function of the quantum well width has been studied for a long time.
The expression for the valley splitting can be written as [55]

ΛΓ =
2π2∆Γ

(k0Γ · t)3 · | sin(k0Γt)| . (4.45)

where ∆Γ is the splitting at Γ-point, t is the film thickness, and the other parameters
are listed in Table 3.2.

The values of the valley splitting obtained from a 30-band k · p model can be found
in [167]. This method was developed around the Γ-symmetry point of the Brillouin
zone for strained silicon, germanium, and SiGe alloys [145]. On the other hand, a
theory based on the localized-orbital approaches has been developed to describe the
valley splitting observed in silicon quantum wells in the limit of low electron density
by using a sp3d5s∗ spin-orbit coupled tight-binding model [168]. The use of sp3s∗

tight binding model has also been investigated [169]. Nevertheless, the values of the
valley splitting obtained from a 30-band k · p model and the tight binding models are
summarized and analyzed in [170]. By using the simplified analytical expressions,

• ∆Γ=2eV for the 30-band k · p model, and
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Figure 4.23: The variation of the normalized and squared intersubband spin relaxation ma-
trix elements as function of εxy is depicted, where kx=0.3nm−1, ky=1nm−1,
and for different values of ∆Γ (t=2.72nm).

• ∆Γ=5.5eV for the tight-binding model,

one can reproduce the corresponding data. Both methods reproduce the features of
the conduction and valence band equally well, but require additional experimental
verification at higher energies where discrepancies appear.

Once ΛΓ is known, one can modify the dispersion equation Equation 3.5 as shown
below.

E(k) =
~
2k2z
2ml

+
~
2(k2x + k2y)

2mt
±

√
√
√
√

(

~2kzk0

ml

)2

+ δ2c , (4.46)

with

δc =

√

δ2 +
( k0

k0Γ

)6
∆2

Γ , (4.47)

where δ is given as in Equation 3.6.

4.6.1 Spin Relaxation Matrix Elements

The surface roughness induced normalized and squared intersubband spin relaxation
matrix element |MS |2, with and without the ∆Γ term, are compared in Figure 4.23.
It is noted that the spin relaxation hot spot peaks are greatly diminished to become
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Figure 4.24: The variation of the normalized and squared intersubband spin relaxation ma-
trix elements with εxy is shown, when the spin injection direction is taken as a
parameter (∆Γ=5.5eV, t=1.36nm).

smoother with increasing values of ∆Γ. It has also been mentioned that the difference
in the matrix elements’ values calculated with and without the ∆Γ term can reach
two orders of magnitude [150]. As like before, the peaks can be correlated with the
unprimed subband splitting minima. However, the peaks remain well pronounced,
and still attain the maximum at the spin hot spots. Figure 4.23 also depicts how the
minimum of the valley splitting increases when the ∆Γ term increases.

Figure 4.24 describes how |MS |2 is reduced with increasing spin injection angle Θ, for
any pair of (kx, ky). This behavior is consistent with Equation 4.4, indicating that this
equation is general and it is applied in both bulk silicon and thin silicon films (with or
without presence of the unstrained subband splitting term ∆Γ). Therefore, the spin
relaxation rate can be suppressed with increasing Θ.

4.6.2 Spin Lifetime Calculations

The variation of the surface roughness (SR) and the phonon (Ph) mediated spin re-
laxation components of the total spin lifetime τs with the shear strain εxy, for different
∆Γ is shown in Figure 4.25. One can observe that the increase of τs is less pronounced,
when the value of ∆Γ increases. However, even when ∆Γ is taken to be 5.5eV, the
value of τs increases by two orders of magnitude. It can also be seen that at high εxy,
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Figure 4.25: The variation of the surface roughness (SR) and the phonon (Ph) mediated spin
lifetime with εxy is shown, when all possible values for ∆Γ (c.f. Equation 4.45)
are considered. The sample thickness is t=2.72nm, T=300K, and the electron
concentration is NS=1012cm−2.

the total spin lifetime and its components converge to the same value independent of
∆Γ [171].

In order to understand this behavior, the spin-flip caused by the intra- and intervalley
transitions needs to be analyzed. Figure 4.26 shows the energy levels of the two lowest
unprimed subbands, which are primarily responsible for the spin relaxation at the dif-
ferent ∆Γ values. The unprimed subbands are degenerate at zero strain without the
∆Γ term. The ∆Γ term lifts the degeneracy even at zero strain. The figure also shows
how the increasing εxy inflicts the subband splitting between the unprimed valley pair.
With increasing εxy, the influence of ∆Γ vanishes as is obvious from Equation 4.46.
Figure 4.27 depicts the inter- and intrasubband scattering components of τs at two
distinct temperatures. The intersubband spin-flip process remains dominant in deter-
mining the total spin lifetime τs. However, with increasing strain its influence becomes
weaker, in accordance with Figure 4.26. At high valley splitting, the spin relaxation is
determined by intrasubband scattering which does not depend on ∆Γ.
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Figure 4.26: The energies of the two lowest unprimed subbands with εxy at two distinct ∆Γ

values are shown. The sample thickness is t=2.72nm, T=300K, and the electron
concentration is NS=1012cm−2.
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Figure 4.27: The variation of the spin lifetime and its inter- and intrasubband compo-
nents with εxy are depicted, when t=2.72nm, the electron concentration
NS=1012cm−2, and ∆Γ=5.5eV.
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4.7 Primed Subbands and f-Processes

4.7.1 Primed k · p Hamiltonian

A shear strain component in the [110] direction does not affect the primed valleys along
[100] and [010] directions. If a quantization along OX-axis is assumed, the following
Hamiltonian governing the primed subbands can be written as [72, 146],

H ′ =

[
H ′

1 H ′
3

H ′
3 H ′

2

]

, (4.48)

where the individual components are represented as,

H ′
j=1,2 =

[
~
2k2z
2ml

+
~
2(k2x + k2y)

2mt
+ (−1)j

~
2kxky

M
+ Ũ(z)

]

I , (4.49)

and

H ′
3 =







~
2kzk0

ml
0

0
~
2kzk0

ml






. (4.50)

4.7.2 Optical Phonon Limited Spin Relaxation Rate

The intervalley f-processes are responsible for spin relaxation in bulk silicon which
involves the primed subbands [53]. The spin relaxation rate is calculated by [69]

1

τi,(fp)(k1)
=

4π3d20
~ρa2ωop

∑

j

∫ 2π

0

dϕ

2π

∫ ∞

−∞

dqz

(2π)2
· |k2|
∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣

·
[

1−

∣
∣
∣
∂E(k2)
∂k2

∣
∣
∣f(E(k2))

∣
∣
∣
∂E(k1)
∂k1

∣
∣
∣f(E(k1))

]
(

nop +
1

2
± 1

2

)

·
∑

α1

∣
∣
∣̺opα1

(q)
∑

Dα1α2

∫ t

0
dzΨ∗

jk2−σ(z) exp(−iqzz)Ψik1σ(z)
∣
∣
∣

2

· θ(Ej(k2)− E
(0)
j ± ~ωop) ,

(4.51)

where d0 is the optical deformation potential, a is the silicon lattice constant, ωop

denotes the frequency of the optical phonons, and nop describes the Bose occupation
factor

nop =
1

exp
(

~ωop

KBT

)

− 1
. (4.52)

The +(-) sign refers to phonon emission (absorption). The relaxation rate for the
transition between primed and unprimed subbands is given by [69]
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Figure 4.28: The variation of the spin lifetime and its surface roughness (SR), the longitudi-
nal (LA) and the transversal (TA) acoustic phonon mediated components with
εxy is shown. ∆Γ=5.5eV (c.f. Equation 4.45), the sample thickness t=1.36nm,
T=300K, and the electron concentration NS=1012cm−2 are used.

1

τi,OP (k1)
=

2π

ρωop

∑

j

ρj(Ei ∓ ~ωop)

∫ t

0

∣
∣
∣ψ

†
jk2

(z)MOPψik1
(z)
∣
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∣

2
dz

· 1− f(Ei ∓ ~ωop)

1− f(Ej)

(

nop +
1

2
± 1

2

)

,

(4.53)

where ρj(E) is the density of states for subband j, and MOP is given by

MOP =







0 DOP 0 DOP

DOP 0 DOP 0
0 DOP 0 DOP

DOP 0 DOP 0







(4.54)

with DOP=6.5meV2π
a

[53].

4.7.3 Optical Phonons in Spin Lifetime

Figure 4.28 describes the total spin lifetime τs and its components for a film thickness
of t=1.36nm. It is observed that the surface roughness SR induced component plays
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Figure 4.29: The variation of the spin lifetime and its components (along with the optical
phonon Op mediated component) with εxy is shown when t=2.72nm and the
other parameters are as given in Figure 4.28.
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Figure 4.30: The variation of the spin lifetime and its components with εxy is shown when
t=4.34nm and the other parameters are as given in Figure 4.28.
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Figure 4.31: The dependence of the minimum energies for primed and unprimed subbands
as well as the Fermi energy on strain is shown for Figure 4.30.

the major role in determining τs for such a thin film, although the longitudinal acoustic
LA phonon mediated part becomes non-negligible when εxy>1.3%. The transversal
acoustic TA phonon mediated component remains non-significant throughout a wide
stress range. One has to mention that for such a low thickness, the lowest unprimed
subbands are solely responsible for determining τs due to their low quantization en-
ergy [149].

Figure 4.29 describes the variation of the total spin lifetime τs and its components on
εxy for a thickness of t=2.72nm. The longitudinal acoustic LA phonon induced part of
the spin lifetime turns out to be prominent over a wide range of stress at the increased
film thickness. For this case the spin-flip rate due to the surface roughness SR is
not as pronounced as before whereas the transversal acoustic TA phonon mediated
component has no significant effect as found earlier. For the sake of completeness the
optical phonon Op induced part is shown as well, even though it does not impact τs.
The Op phonon mediated spin flip, which occurs between non-equivalent valleys, does
not show high orders of magnitude enhancement with εxy [172]. Due to the rather
high energies of the primed subbands in relation to the unprimed subbands, the Op
phonon transitions are rare, which is reflected in their non-significant contribution in
τs. However, their influence gradually becomes prominent when sample thickness is
increased (i.e. Figure 4.30), especially at higher strain. This behavior is explained
in Figure 4.31 where the dependence of minimum energies for primed and unprimed
subbands on strain with the parameters as in Figure 4.30 together with the Fermi en-
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Figure 4.32: The prediction of the spin lifetime with the valley splitting results (c.f. Fig-
ure 4.26) is highlighted.

ergy is described. The minimum energy of the primed subband is located at the point
kz=k0, and ky=0, and the unprimed subband is at kx=0, and ky=0 [172]. Energy 1
and Energy 2 stand for the lowest subbands of the two opposite valleys along [001]
direction. Energy 3 and Energy 4 stand for the second unprimed subbands. The in-
creasing importance of the f-process comes from the fact that the distance between the
Fermi energy and the lowest energy in the primed subband decreases with increasing
thickness. Moreover at the film thickness of t=4.34nm, the LA phonon induced part
still remains pivotal in determining the total spin lifetime τs.

Thus, one can conclude in the following way.

• The total spin lifetime is highly sensitive to the film thickness.

• The surface roughness mediated component completely loses its significance for
a film thickness of more than 3nm.

• The longitudinal acoustic phonon induced part is the dominant mechanism for
a film thickness of more than 2nm.

• The effect of a several orders of magnitude increase of the spin lifetime in strained
films is mitigated for thicker films (thickness larger than 7nm).
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Figure 4.33: The variation of the spin lifetime with the valley splitting is described, when
∆Γ=5.5eV. The sample thickness is t=1.36nm, T=300K, and the electron con-
centration is NS=1012cm−2. The spin injection orientation is used as a param-
eter.

Spin Lifetime with Valley Splitting

In Figure 4.32 the enhancement of the total spin lifetime τs considering the total valley
splitting (c.f. Figure 4.26) is calculated for a film thickness of t=2.72nm. One observes
the strong dependence of τs on the ∆Γ, particularly at the lower range of the valley
splitting. This behavior can be correlated with the suppression of the spin hot spots
with increasing ∆Γ as explained earlier (c.f. Figure 4.23). However, for all cases the
spin lifetime is boosted by several orders of magnitude.

Effect of Spin Injection Orientation

The spin relaxation time τs increases when the spin injection orientation is drawn
towards in-plane, if one incorporates the ∆Γ value into the calculations. The enhance-
ment of τs including the valley splitting for different spin injection angles Θ is shown in
Figure 4.33. Consistent with the analysis from the section 4.4.3, one observes that τs
is increased by a factor of two once injected in-plane compared to the perpendicular-
plane, even though one includes the ∆Γ term. Therefore, one can conclude that the
result Equation 4.38 is more general as it is applied in both bulk silicon and thin silicon
films.
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5 Spin Diffusion in Silicon

”I keep six honest serving men, They
taught me all I knew: Their names
are What and Why and When and
How and Where and Who.”

Rudyard Kipling

In order to design and fabricate high-performance silicon-based spintronic devices,
a comprehensive understanding of the spin transport properties of a semiconducting
channel (∼ µm) is needed. In this chapter, the spin injection in silicon from a ferromag-
netic semiconductor (FMS) by electrical means is investigated, when spin is injected
from a charge neutral source. Even though a sufficient analysis of the spin transport
under charge neutrality is available in literature [173, 174, 175], the attention there
has been on the magnetoresistance. Thus, it becomes mandatory to also investigate
the spin signal when the charge neutrality condition is violated. In such a case, one
has to solve the spin drift-diffusion equations coupled with the Poisson equation. This
is done because from the Poisson equation one can derive the electric potential (and
hence the electric field) in the conducting channel, which prominently influences the
spin diffusion [173]. In fact, experiments have shown that electric fields can severely
affect spin diffusion in semiconductors [176, 177].

At first the fundamental charge transport equations [178] will be discussed. Afterwards
it will be shown how to extend those equations for spin transport.

5.1 Semi-Classical Model of Charge Transport

5.1.1 Poisson’s Equation

The Poisson equation correlates the electrostatic potential V to a given charge dis-
tribution ρ̂. If the permittivity tensor is expressed as ǫ̃, one can write the Poisson
equation as

∇ · ǫ̃ · ∇V = −ρ̂ . (5.1)

The charge distribution can be expressed as ρ̂ = q(p− n+C), where n (p) represents
the electron (hole) concentration per unit volume, q is the fundamental charge unit,
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and the concentrations of ionized impurities and the dopant are added up as the fixed
charge concentration C. These fixed charges can originate from charged impurities of
donor (ND) and acceptor (NA) type and from trapped electrons (C1) and holes (C2)

C = ND −NA − C1 + C2 . (5.2)

The electric field (Ẽ) is related to V by

Ẽ = −∇V . (5.3)

5.1.2 Continuity Equations

The charge transport model is derived from the continuity equation which takes care
of mass conservation (time is represented by t̃)

∇ · J+ q
∂ρ̂

∂t̃
= 0 . (5.4)

The total current density is J. One can decompose the contributions of the current
J = Jn + Jp, where Jn (Jp) denotes the electron (hole) current density. Assuming

all immobile charges as fixed with respect to time, ∂ρ̂

∂t̃
= q

∂(p−n)

∂t̃
as ∂C

∂t̃
= 0. Then,

the continuity equation (Equation 5.4) can be separated into an electron and a hole
related parts,

∇ · (Jn + Jp) + q
∂(p− n)

∂t̃
= 0 . (5.5)

This step enables to write the electron and hole related contributions as two indepen-
dent equations,

∇ · Jn − q
∂n

∂t̃
= qR , (5.6a)

∇ · Jp + q
∂p

∂t̃
= −qR . (5.6b)

where the net generation-recombination rate is represented as R.

5.1.3 Drift-Diffusion Equations

As the Poisson equation (Equation 5.1) and the two continuity equations (Equation 5.6a
and Equation 5.6b) involve five unknown quantities (viz. V , n, p, Jn, and Jp), one
needs two more conditions to make the equation system complete. Now, there are two
major effects which lead to current flow in semiconductors (e.g. silicon). First, the
drift of charged carriers due to the influence of an electric field, and second, the dif-
fusion current due to a concentration gradient of the carriers. It is hereby mentioned
that the drift-diffusion model considers the temperature to be constant throughout
the device [179], both for the charge carriers and the lattice.
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The charged carriers in a semiconductor subjected to an electric field are accelerated
and acquire a certain drift velocity. The orientation depends on the charge state,
holes are accelerated in direction of the electric field and electrons in the opposite
direction. The magnitude of the drift velocity depends on the probability of scattering
events. At low impurity concentration, the carriers mainly collide with the crystal
lattice. When the impurity concentration is increased the collision probability with
the charged dopants through Coulomb interaction becomes more and more likely, thus
reducing the drift velocity with increasing doping concentration [180].

The drift component is expressed using the concept of carrier mobility, which is the
proportionality factor between the electric field strength (Ẽ) and the average carrier
velocity. If one denotes µn (µp) as the electron (hole) mobilities (assumed isotropic
in the channel under investigation), in the low electric field range one can write the
corresponding average carrier velocities as vn = −µnẼ and vp = µpẼ. Then the drift
current density for the electrons and the holes can be expressed as JDrift

n = −qnvn =
qnµnẼ and JDrift

p = qpvp = qpµpẼ. The signs are justified as electrons (holes) move
against (with) the field direction. One can express the conductivities as σn = qnµn
for the electrons and σp = qpµp for the holes, then JDrift

n = σnẼ and JDrift
p = σpẼ.

A concentration gradient of carriers leads to carrier diffusion. This is because of
their random thermal motion which is more probable in the direction of the lower
concentration. The electron current contribution due to the concentration gradient is
written as JDiffusion

n = qDn∇n and the hole current as JDiffusion
p = −qDp∇p, where

Dn andDp are the diffusion coefficients for electrons and holes. For the non-degenerate
semiconductors and in thermal equilibrium, one can relate the diffusion coefficient with
the mobility by using Einstein’s relation

Dn =
(KBT

q

)

µn , (5.7a)

Dp =
(KBT

q

)

µp , (5.7b)

whereKB is the Boltzmann’s constant, and T is the temperature. The thermal voltage
(VT ) is described as

VT =
KBT

q
. (5.8)

Thus, the diffusion coefficient can be written as Dn = µnVT . Here, the non-degenerate
semiconductors are defined as semiconductors for which the Fermi energy is at least
3KBT away from both the conduction and the valence band edges [117, 179]. One can
assume the considered semiconductor to be lightly doped and thus non-degenerate,
as it is the case in spintronic applications [173]. However, when the doping becomes
very high, the Fermi level rises more and more towards the conduction band and
the transport becomes degenerate. In such a case, the transport equations must be
expressed in the language of chemical potentials of the carriers instead of their con-
centrations [173, 181].
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Combining the current contributions of the drift and the diffusion effect one gets

Jn = qnµnẼ+ qDn∇n , (5.9a)

Jp = qpµpẼ− qDp∇p . (5.9b)

By inserting Equation 5.9a into Equation 5.6a and Equation 5.9b into Equation 5.6b
one obtains

∇ · (µnn∇V − µnVT∇n) +
∂n

∂t̃
= −R , (5.10a)

∇ · (µpp∇V + µpVT∇p)−
∂p

∂t̃
= R . (5.10b)

From the equations Equation 5.1, Equation 5.10a, and Equation 5.10b, one can obtain
the unknown parameters n, p, and V . Despite the clear limitations for the descrip-
tion of state-of-the-art devices, these set of equations are still widely used in TCAD
applications due to their least qualitative results and their computational inexpensive-
ness.

5.1.4 Quasi-Fermi Levels

The thermal equilibrium does not demand a position-independent potential. For in-
stance

EC(r) = EC,0(r)− qV (r) , (5.11a)

EV (r) = EV,0(r)− qV (r) , (5.11b)

Ei(r) = Ei,0(r)− qV (r) , (5.11c)

denoting the conduction band edge energy EC , the valence band edge energy EV , and
the intrinsic Fermi level energy Ei, respectively. Treating the situation away from
thermal equilibrium complicates the matter. One can reformulate Equation 5.9a with
Equation 5.3 as

Jn = qµnVT∇n− qnµn∇V

= qµnn
(

VT
(ni

n

)
∇
( n

ni

)
−∇V

)

= qµnn∇
(

VT ln
( n

ni

)
− V

)

︸ ︷︷ ︸

-φn

,
(5.12)

where ni is the intrinsic carrier concentration. This shows that the drift and the
diffusive contribution can be merged into one quantity. This quantity can be related
to the quasi-Fermi level as follows [182] −qφn = EF,n − Ei,0. Therefore, the current
depends on the gradient of the quasi-Fermi levels

Jn = nµn∇EF,n , (5.13a)
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Jp = nµp∇EF,p , (5.13b)

The drift-diffusion current relations consider position dependent band edge energies,
EC(r) for the conduction band and EV (r) for the valence band, and position depen-
dent effective masses, which are included in the effective density of states NC for the
electrons and NV for the holes, can be expressed as [183, 184]

Jn = qnµn

(

∇
(EC

q
− V

)

+ VT

(NC

n

)

∇
( n

NV

))

, (5.14a)

Jp = qpµp

(

∇
(EV

q
− V

)

− VT

(Nv

p

)

∇
( p

NV

))

. (5.14b)

5.2 Spin Transport Equations

If the spin degree of freedom of the electrons and the holes is considered, one can
write the same set of transport equations (as was mentioned in the section 5.1) for the
corresponding up(down)-spin in silicon [173, 174, 134]. In this work the analysis for
only the electron spin is discussed, as the analysis for the holes can be perfromed in
an analogous way. Thus, the acceptor doping is neglected and the Poisson equation
Equation 5.1 can be rewritten as

∇ · ǫ̃ · ∇V = q(n↑ + n↓ −ND) , (5.15)

where the up(down)-spin concentration is expressed as n↑(n↓). The electron concen-
tration n and the spin density s can be expressed as

n = n↑ + n↓ , (5.16a)

s = n↑ − n↓ . (5.16b)

5.2.1 Spin Continuity Equation

The continuity equations for the up(down)-spin electrons in the channel including the
spin-flip term [173] is revealed below. An additional electron generation-recombination
process can be neglected because the considered system is n-doped only (unipolar).

1

q
∇ · J↑ −

δn↑
τ↑↓

+
δn↓
τ↓↑

=
∂δn↑
∂t̃

, (5.17a)

1

q
∇ · J↓ −

δn↓
τ↓↑

+
δn↑
τ↑↓

=
∂δn↓
∂t̃

. (5.17b)

Here, J↑(J↓) represents the up(down)-spin current density, τ−1
↑↓ is the rate at which

up-spin flips to down-spin, and τ−1
↓↑ is the rate at which down-spin flips to up-spin.
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δn↑ (δn↓) represents the up(down)-spin density deviation from its thermal equilibrium

value, denoted by neql↑ (neql↓ ).

The structure under scrutiny consists of a ferromagnetic semiconductor (FMS), which
inherently has an effective spin polarization, sharing a junction with silicon which does
not. Therefore, one must introduce a non-zero bulk spin polarization P in the FMS.
The total electron concentration at the thermal equilibrium is n = ND by considering
all the dopants to be ionized. The equilibrium up(down)-spin concentration can thus

be expressed as neql↑(↓) = 0.5(1 + (−)P )ND in the FMS, and neql↑(↓) = 0.5ND in Si. Then

the up(down)-spin and the total spin density deviation (δs) can be expressed as

δn↑ = n↑ − n
eql
↑ , (5.18a)

δn↓ = n↓ − n
eql
↓ , (5.18b)

δs = δn↑ − δn↓ . (5.18c)

The expressions for the electron (carrier) current density (Jn) and the spin current
density (Js) are given by [173]

Jn = J↑ + J↓ , (5.19a)

Js = J↑ − J↓ , (5.19b)

One can relate the spin-flip rates τ−1
↑↓ and τ−1

↓↑ with the total spin relaxation time by
using the Matthiessen rule

τ−1
s = τ−1

↑↓ + τ−1
↓↑ . (5.20)

The continuity equation for the spin current density is obtained by subtracting Equa-
tion 5.17b from Equation 5.17a and can be expressed as

1

q
∇ · Js −

δs

τs
=
∂δs

∂t̃
. (5.21)

5.2.2 Spin Drift-Diffusion

In accordance with Equation 5.14a, the up(down)-spin current density can be expressed
as

J↑ = qn↑µ↑∇
(EC,↑

q
− V

)

+ qD↑NC∇
(δn↑
NC

)

, (5.22a)

J↓ = qn↓µ↓∇
(EC,↓

q
− V

)

+ qD↓NC∇
(δn↓
NC

)

. (5.22b)

Here, the up(down)-spin diffusion coefficient is D↑ (D↓), and the corresponding mobil-
ity is µ↑ (µ↓). These are related by D↑ = VTµ↑ (D↓ = VTµ↓). EC,↑ (EC,↓) represents
the conduction band edge for the up(down)-spin.

74



5 Spin Diffusion in Silicon

5.2.3 Discretized Form

In order to discretize the in general multi-dimensional transport equations the following
steps are used.

Poisson Equation

To solve the partial differential equations numerically, they must be discretized. For
that reason, the domain V where the equations are posed has to be partitioned into
a finite number of sub-domains Vi, which are usually obtained by a Voronoi tessella-
tion. In order to obtain the solution with a desired accuracy, the equation system is
approximated in each of these sub-domains by algebraic equations. The unknowns of
this system are approximations of the continuous solutions at the discrete grid points
in the domain [182]. It has been found to be advantageous to apply the finite boxes
discretization scheme for semiconductor device simulation [182] [185]. This method
considers the integral form of the equation for each sub-domain, which is the so-called
control volume Vi associated with the node the point i.

One can rewrite the Poisson equation (c.f. Equation 5.15) by using the Gauss’ integral
theorem.

∫

V
∇ · (ǫ̃∇V )dṼ =

∫

V
q(n−ND)dṼ ,

∫

∂V
(ǫ̃∇V ) · n̂dÃ =

∫

V
q(n−ND)dṼ .

(5.23)

where n̂ is the outward pointing local normal vector of the enclosing surface Ã.

Finally, the discretized equation for point i with neighbor points j can be written
implicitly as

∑

j∈Ni

−ǫij
(Vj − Vi

di,j

)

Ai,j = q(ni −ND,i)Ṽi , (5.24)

where Vi(Vj) is the potential at the ith(jth) node, ND,i is the doping at the ith node,
di,j is the distance between ith and jth node points, and Ai,j is the interface area
between the domains Vi and Vj . Ṽi is the volume of the domain Vi. For a position

dependent permittivity, one can use an average, e.g. ǫij =
ǫ̃i+ǫ̃j

2 , where ǫ̃i (ǫ̃j) is the
permittivity at the node point i (j).

A two-dimensional realization of the above mentioned box integration process can be
found in Figure 5.1. In this case, Ṽi representes the area surrounding the ith node, di,j
represents the distance between ith and an adjacent jth node point, and Ai,j is the
interface length as shown.
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Figure 5.1: The two-dimensional representation of the Voronoi box is shown. The domain Ṽi
contains the mesh point i and is surrounded by six adjacent mesh points. Ai,j

represents the boundary between the box around the ith node and its neighbor
j. di,j implies the distance between the ith and the jth nodes.

Spin Continuity Equation

One can also apply the Gauss’ integral theorem to rewrite the continuity equations
Equation 5.17a and Equation 5.17b. If steady-state analysis is under investigation,
∂n↑(↓)

∂t̃
= 0. Again, in order to derive a rather simplified analytical solution for the

spin density later in this chapter to make comparisons with the simulated results,
τ↑↓ = τ↓↑ = 2τs is considered (c.f. Equation 5.20). Because each spin flip contributes
to relaxation of both up- and down-spin, the spin relaxation becomes twice as fast.

∫

V
(∇ · J↑)dṼ = q

∫

V

(δn↑ − δn↓
2τs

)

dṼ ,

∫

∂V
(J↑ · n̂)dÃ = q

∫

V

(δn↑ − δn↓
2τs

)

dṼ .

(5.25a)

∫

V
(∇ · J↓)dṼ = q

∫

V

(δn↓ − δn↑
2τs

)

dṼ ,

∫

∂V
(J↓ · n̂)dÃ = q

∫

V

(δn↓ − δn↑
2τs

)

dṼ .

(5.25b)

Then, considering the same Voronoi box around the ith node,

∑

j∈Ni

J↑,i,jAi,j = q
(δn↑,i − δn↓,i

2τs

)

Ṽi , (5.26a)
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∑

j∈Ni

J↓,i,jAi,j = −q
(δn↑,i − δn↓,i

2τs

)

Ṽi . (5.26b)

Here, J↑,i,j (J↓,i,j) represents the up(down)-spin current density flowing from ith to jth

node. δn↑,i (δn↓,i) represents the up(down)-spin density deviation at the ith node.

Spin Drift-Diffusion

The Scharfetter-Gummel (SG) discretization scheme for the carrier current density
provides an optimum way to discretize the drift-diffusion equation for particle trans-
port [186]. This discretization scheme can be applied as well to rewrite the expression
for the up(down)-spin current densities (c.f. Equation 5.22a and Equation 5.22b) into
their discretized form. One can discretize the spin drift-diffusion equations by following
the steps as explained in [187, 183]. In the non-degenerate transport regime, the diffu-
sion constant, the mobility, and the conduction band edge are spin-independent [174].
Therefore, D↑ = D↓, µ↑ = µ↓, and EC,↑ = EC,↓. For simplicity one can assume a
homogeneous position-independent electronic conduction band edge in the channel.
Again, the bulk spin polarization P term can be inserted in the SG discretization
scheme via the expressions of neql↑ and neql↓ .

J↑,i,j =
qµn,i,jVT

di,j

(
n↑,jB(△(1)

i,j )− n↑,iB(−△(1)
i,j )
)

−
(qµn,i,jVT

di,j

)

(0.5ND,i,j)(Pj − Pi) ,

(5.27a)

J↓,i,j =
qµn,i,jVT

di,j

(
n↓,jB(△(1)

i,j )− n↓,iB(−△(1)
i,j )
)

−
(qµn,i,jVT

di,j

)

(0.5ND,i,j)(Pj − Pi) ,

(5.27b)

with

△(1)
i,j = △i,j + ln

(Nc,i

Nc,j

)

, (5.28a)

△i,j =
Vj − Vi

VT
. (5.28b)

Here, Pi is the bulk spin polarization at the ith node (=P for the FMS, =0 for sil-
icon), µn,i,j represents the average mobility between ith and jth node, and a good

approximation is µn,i,j =
µn,i+µn,j

2 . The effective density of states of electrons (NC)

in ith (jth) node is represented as Nc,i (Nc,j). The average equilibrium electron con-
centration (i.e. the donor concentration) between two neighboring points i and j is
represented by ND,i,j , and thus the average equilibrium up(down)-spin concentration
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V1=0 V2=Uc•
x=0x=-W2 x=W

2

FMS Si

Figure 5.2: The schematic shows the simulation set up for the spin injection in Si from a
ferromagnetic semiconductor (FMS). The left boundary (x = −W

2
) is grounded,

and the right boundary (x = W
2
) is under the voltage bias (Uc). The interface is

shown as a dotted line. The doping (effective density of states) in the Si side is
ND (NC), and in the FMS is K1ND (K2NC).

can be considered as 0.5ND,i,j . The expression for the term ND,i,j is described in the
next section. B denotes the Bernoulli function

B(x) =
x

exp(x)− 1
. (5.29)

When spin transport only in a silicon bar is considered, the electron density of states

NC becomes position-independent, and thus △(1)
i,j = △i,j .

5.2.4 Transport Channel

In order to predict the impact of a space-charge layer on the spin transport in silicon,
a one-dimensional transport channel is assumed. However, the same predictions will
be valid for a multi-dimensional structure as well. The semiconducting channel of
length W contains a semiconductor ferromagnet (FMS, −W

2 <x<0) and silicon (Si,
0<x<W

2 ), sharing a junction at x=0 (c.f. Figure 5.2). Now, to enable a violated or
restored charge neutral source of spin injection in silicon, the following two assumptions
are under consideration in this work.

• The ferromagnetic semiconductor FMS can be considered to be doped to a con-
centration, which is a factor K1 of the value in Si. Thus, when K1>1 (K1<1),
one can introduce a charge accumulated (depleted) source of spin injection into
Si (c.f. text in Figure 5.2). Indeed when K1=1, the charge neutrality condition
is restored.

• One can consider a homogeneous electronic density of states in the FMS, which
is a factor K2 of the homogeneous density of states in Si. Thus, when K2>1
(K2<1), one can introduce a charge depleted (accumulated) source of spin in-
jection into Si.

For a one-dimensional channel Ṽi =
di,i−1+di,i+1

2 , where di,j is the distance between ith

and jth nodes, and Ai,j=1. As the space-charge effect on the spin transport is under
scrutiny the charge screening length, also known as the Debye length (λD), puts a
strict limitation on the choice of the mesh size near the interface in both the ferro-
magnetic and silicon sides [188]. The Debye length relates to the measure of a charge
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carrier’s net electrostatic effect, and it is the length over which the carrier density in
a semiconductor changes by a factor 1

q
[189]. λD in an n-doped semiconductor can be

expressed as

λD =

√

ǫSiVT

qND
, (5.30)

where ǫSi is the silicon permittivity. The value of λD is 40nm for the parameters listed
in Table 5.1. Thus, a good approximation is to use a step value (i.e. di,j) of 10nm
near the interface in this particular simulation set up. In such a case, the node points
i and j are close enough and ND,i,j =

ND,i+ND,j

2 can be considered. The mobility is
assumed to be homogeneous in the channel.

5.3 Solution

5.3.1 Solution with Charge Neutrality Constraint

Analytical Approach

When the charge current flows through the interface, the spin accumulation in the
semiconductor appears. When K1=K2=1 (c.f. Table 5.1), the charge neutrality is
restored. To solve the spin transport equations analytically for the structure shown in
Figure 5.2, the general solution for the spin density deviation δs in both the FMS and
the Si sides must be assumed according to [173, 190]

δsFMS = a1ND exp
(−x− W

2

Ld

)

+ a2ND exp
(x+ W

2

Lu

)

, (5.31a)

δsSi = b1ND exp
(−x− W

2

Ld

)

+ b2ND exp
(x+ W

2

Lu

)

, (5.31b)

Parameters Values

Electron mobility in Si µn=1400cm−2V−1s−1 [50]

Donor doping in Si ND=1016cm−3

Intrinsic spin diffusion length Li=1µm [181]

Temperature T=300K

Doping ratio between the ferromagnetic semiconduc-
tor and Si

K1

Ratio between the electronic density of states among
the ferromagnetic semiconductor and Si

K2

Table 5.1: The simulation parameters for the spin drift-diffusion equations are listed.
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where a1(a2) and b1(b2) are the constants. The spin density can be expressed as s =

δs+ (neql↑ − n
eql
↓ ) (c.f. Equation 5.18a to Equation 5.18c). The electron concentration

is n = ND. Based on these two, one can derive the up- and down-spin concentrations
and the spin current density (Js) as well from Equation 5.22a and Equation 5.22b.

The external electric field (Ẽ) modifies the intrinsic spin diffusion length Li in any
semiconductor [173]. Two distinct spin diffusion lengths (Lu is the up-stream, and Ld

is the down-stream) characterize the spin motion, and those strongly depend on Ẽ

Lu =
1

q|Ẽ|
2KBT

+

√
√
√
√

(

q|Ẽ|
2KBT

)2

+
1

L2
i

, (5.32a)

Ld =
1

− q|Ẽ|
2KBT

+

√
√
√
√

(

q|Ẽ|
2KBT

)2

+
1

L2
i

, (5.32b)

which is related to the intrinsic spin diffusion length Li by

L2
i = LuLd . (5.33)

Li is related to the spin relaxation time via [173]

Li =
√

Dnτs . (5.34)

In order to solve the transport equations, one can formulate the boundary conditions
as elucidated below.

• In a doped semiconductor with homogeneous carrier concentration the up(down)-
spin chemical potential [173, 174, 181], represented by M↑ (M↓), is related to its
concentration. The spin chemical potential remains continuous at the interface,
hence [173]

ln
( n0−↑
0.5(1 + P )ND

)

︸ ︷︷ ︸

Chem. pot. (FMS)

= ln
( n0+↑
0.5ND

)

− G

VT
︸ ︷︷ ︸

Chem. pot. (Si)

, (5.35a)

ln
( n0−↓
0.5(1− P )ND

)

︸ ︷︷ ︸

Chem. pot. (FMS)

= ln
( n0+↓
0.5ND

)

− G

VT
︸ ︷︷ ︸

Chem. pot. (Si)

. (5.35b)

Here, G is a constant describing as the spin chemical potential drop at the
interface, and is responsible for spin injection from the FMS to the Si side.
Therefore, G must depend on both the bulk spin polarization P and the electric
field Ẽ.
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• In the language of chemical potentials, the expression for the up(down)-spin
current density can be reformulated as [173, 190]

J↑ = qµnn↑
dM↑
dx

, (5.36a)

J↓ = qµnn↓
dM↓
dx

. (5.36b)

As the up(down)-spin current density J↑ (J↓) is continuous at the interface, the
above equations yield to

qµnn
0−
↑
dM0−

↑
dx

= qµnn
0+
↑
dM0+

↑
dx

, (5.37a)

qµnn
0−
↓
dM0−

↓
dx

= qµnn
0+
↓
dM0+

↓
dx

. (5.37b)

• The spin density deviation δs is zero at the left and the right boundary, main-
taining the thermal equilibrium. Hence,

δs
(

x = −W
2

)

= δs
(

x =
W

2

)

= 0 . (5.38)

In order to derive the solution for the spin deviation and the spin current density, one
must solve for 5 unknown parameters viz. a1, a2, b1, b2, and G. The spin injection ef-
ficiency can be formulated from two different approaches [173], one by the polarization
of the spin current density (α) and the other by the polarization of the spin density
(β)

α =
Js

Jn
, (5.39)

β =
s

n
. (5.40)

Therefore, at the junction, α0 =
Js(0+)

Jn
and β0 =

s(0+)
n(0+) .

The analytical expressions for α0 and β0 are cumbersome. The simplified expressions,
valid for lower values of the bulk spin polarization P are [190]

α0 = P
Ld

Ld + (1− P 2)Lu
, (5.41)

β0 =
(

1− Lu

Ld

)

α0 . (5.42)

The expression for constant G is

G = VT ln(1 + β0P ) . (5.43)
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Figure 5.3: The analytically calculated spin densities in the channel are shown, when the
applied voltage (Uc) is used as a parameter. The bulk spin polarization in the
ferromagnetic semiconductor (FMS) is P=20%.

Equation 5.42 indicates that α0 is always larger than β0 irrespective of the value of the
applied field. If the electric field is very small, both the up- and down-spin diffusion
lengths Lu and Ld tend to the intrinsic value and hence from Equation 5.41, α0 →

P
2−P 2 . This also means β0=0 and from Equation 5.43 G=0. At the strong field limit,
the electrons move with the drift velocity and so does the spin polarization [173]. Ld

is simply the distance over which the carriers move within the spin lifetime. Thus,

when the electric field increases, Ld →
( q|Ẽ|
KBT

)
L2
i , Lu →

(
KBT

q|Ẽ|
)
[173]. This makes the

ratio
(
Lu

Ld

)
→0 as Ẽ → ∞, and both α0 and β0 tend to reach a saturation value fixed

by the bulk spin polarization P at the ferromagnetic semiconductor. The maximum
and minimum values of the mentioned parameters are listed in Table 5.2. Therefore,
for small values of P , the spin injection efficiency in Si can be predicted analytically.

Parameters Minimum value Maximum value

α0
P

2−P 2 P

β0 0 P

G 0 VT (1 + P 2)

Table 5.2: The spin injection parameters with their optimum values are shown.
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Figure 5.4: The spin current density (α0) and spin density (β0) injection efficiencies at the Si
interface are shown as a function of the applied electric field Ẽ. Lines→ theory
and dots→ simulation (P=10%).

Comparison between Analytical and Simulated Results

Figure 5.3 shows how spin piles up at the junction with the applied voltage Uc, when
K1 = K2=1 (c.f. Table 5.1), and the bulk polarization P value is low (P = 20%). The
figure depicts how the applied bias improves the spin injection efficiency.

Even though for low values of bulk polarization P the analytical model for the spin cur-
rent density (spin density) injection efficiency α0 (β0) is quite precise (c.f. Figure 5.4),
as soon as the value of P increases the analytical solution is no longer accurate enough
and the error increases significantly (c.f. Figure 5.5). Therefore, it is also important to
solve the drift-diffusion equation set numerically to lift the restriction to high values
of P . It is noted in Figure 5.5 that the α0 and β0 values remain upper limited by
P . Nevertheless, once up(down)-spin concentration is calculated from the simulations,
the spin chemical potential drop G (c.f. Equation 5.35a and Equation 5.35b) can be
obtained as described in Figure 5.6.

5.3.2 Solutions without Charge Neutrality Constraint

By varying K1, K2 (c.f. Table 5.1), one can remove the charge neutrality constraint.
Charge injection to silicon or charge release always cause a non-zero current (hence the
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Figure 5.5: The spin current density (α0) and spin density (β0) injection efficiencies at the
Si interface as a function of the applied electric field Ẽ (c.f. Figure 5.4) is shown
(P=50%).

flow of charge) through the junction, even at the absence of an external electric field.
This flow of charge causes spin accumulation/depletion at the junction. Therefore,
using current as the external control parameter, rather than the applied voltage, is
more convenient, because the current is always constant throughout the channel. On
the other hand, if one uses voltage as the control parameter, one has to consider the
potential profile in different parts of the conducting channel.

A constant current can be maintained in the channel by tuning the applied voltage Uc

at certain values for K1, K2. At a constant current the distribution for the spin density
deviation, the spin current density, and also the potential profile are now analyzed.
Strong nonlinear effects due to the conductivity variation in the space-charge layer
close to the interface cause deviations of the compensating voltage, which has to be
properly considered.

It is noticed that the spin density deviation δs behaves differently at the interface and
in the bulk of silicon, c.f. Figure 5.7. When K1>1, δs gradually piles up in the bulk
FMS and drops down in the bulk silicon, compared to the charge neutrality condition.
On the other hand when K1<1, δs gradually drops down in the FMS bulk and piles
up in the Si bulk. This phenomenon happens due to the differences in the material
conductivities (proportional to the doping concentration) and the electric field Ẽ at the
bulk, which eventually alters the spin diffusion lengths both in the FMS and Si part of
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)

and Mdown = VT ln

(

n↓

n
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)

through the bar

(P=10%, |qẼ|
KBT

=2µm−1 where Ẽ is the applied electric field) is depicted, showing
a discontinuity at the junction, which gives the term G (c.f. Equation 5.35a and

Equation 5.35b). neql↑ (neql↓ ) is the up(down)-spin concentration at the thermal
equilibrium.

the channel. However, the behavior at the interface is noted to be completely different.
WhenK1>1 (K1<1), δs develops a dip (peak) at the FMS interface followed by a sharp
peak (dip) at Si interface. These features can be correlated with the presence of charge
depletion (accumulation) at the ferromagnetic/nonmagnetic interface, which results in
the formation of a potential profile with a barrier for electrons (c.f. Figure 5.8). Indeed,
these interface effects give rise to a very small alteration in the spin current density
Js (particularly for K1=5) as observed in Figure 5.9. Nonetheless, the interface effects
only persist up to the classical charge screening length λD (c.f. Equation 5.30), and
completely vanish beyond that limit.

In order to investigate if the alteration of K2 has an additional effect on the observed
results, one can look into Figure 5.10. It is observed that under the constraint K1=K2

the charge neutrality condition is restored. This is the reason why the additional
interface effects on the spin density deviation δs is noted to be absent compared to
Figure 5.7. When K1 6= K2, the charge neutrality condition is violated at the interface.
It is noted that when K2<1 (K2>1), δs develops a sharp dip (peak) in the FMS side
and sharp peak (dip) in the silicon side for K1=1. However, Figure 5.10 also depicts
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Figure 5.7: The spin density accumulation near the junction over a channel of 4µm is shown,
when the current density (Jn) is fixed to 23.4MA/m2 with P=20%. K1 is used as
a parameter (c.f. Table 5.1). λD represents the Debye length (c.f. Equation 5.30).
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Figure 5.8: The variation of the electric potential through the channel is described, related
to Figure 5.7.
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Figure 5.9: The spin current density through the channel is shown, with the same condi-
tions as in Figure 5.7. With the notations as described in Equation 5.16b and
Equation 5.19b, the direction of the spin current is from the ferromagnetic semi-
conductor FMS towards Si.

how the spin signal remains unaltered in the silicon bulk if the value of K1 is kept
fixed and the value of K2 is varied. This confirms that the tuning of the parameter
K2 does not impact the bulk spin signal in silicon.

The estimated values of αD and βD, which are corresponding α and β at a distance
λD away from the interface in silicon, are shown in Figure 5.11. It is revealted that αD

remains greater than βD, and both are enhanced when spin is injected from a charge
depleted ferromagnetic semiconductor compared to the charge neutral one. However,
both αD and βD are always upper limited by the bulk spin polarization P .

5.4 Spin Diffusion from a Space-Charge Layer

Since the spin injection efficiency’s upper limit is the polarization in the ferromagnetic
semiconductor, one needs to further investigate the peculiarities of the spin signal
in silicon if the spin is injected through only a charge neutral or space-charge layer.
One can solve the same set of spin transport equations either by adjusting the up-
and down-spin concentrations or up- and down-spin current densities at one of the
boundaries (i.e. left boundary), to impose a charge-neutral; a charge-accumulated;
and a charge depleted source. The schematic is shown in Figure 5.12.
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Figure 5.10: The spin density accumulation through the channel is depicted, with the same
conditions as in Figure 5.7. Both K1 and K2 are used as parameters (c.f. Ta-
ble 5.1).

5.4.1 Solution with Charge Neutrality Constraint

The general solution for the spin density in the bar (c.f. Figure 5.12) can be considered
to be in the form [173]

s = A1 exp

(−x
Ld

)

+A2 exp

(
x

Lu

)

. (5.44)

Here, the constants A1 and A2 are defined by the boundary conditions. One can fix
the up(down)-spin concentrations n↑(x = 0) = n↑0, and n↓(x = 0) = n↓0 at the spin
injection boundary. Then the corresponding electron concentration, the spin density,
and the spin current density can be written as

n(x = 0) = n0 = n↑0 + n↓0 , (5.45a)

s(x = 0) = s0 = n↑0 − n↓0 . (5.45b)

Js(x = 0) = Js0 = J↑0 − J↓0 . (5.45c)

The polarizations for the spin current density and the spin density at the injection
boundary are α0 =

Js0
Jn

and β0 =
s0
n0

respectively. The channel length W is assumed to
be several times larger than the intrinsic spin diffusion length Li, thus one can suppose
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Figure 5.11: The spin density and the spin current density injection efficiencies (βD and
αD respectively) are shown, taken at a Debye length away from the interface
towards Si, with the same conditions as in Figure 5.7.
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Figure 5.12: The schematic portrays the simulation set up for the spin injection in a Si bar.
The left boundary (x=0) is grounded, and the right boundary (x =W ) is under
a voltage bias (Uc).

that the up(down)-spin is in thermodynamic equilibrium at the right boundary of the
channel (i.e. n↑(x =W ) = n↓(x =W ) = 0.5ND, s(x =W ) = 0).

The expression for the spin current density can be obtained from Equation 5.22a and
Equation 5.22b

Js = qsµnẼ
︸ ︷︷ ︸

spin drift

+ qDn
ds

dx
︸ ︷︷ ︸

spin diffusion

. (5.46)

Thus, by using Equation 5.44 one can write

Js = qµnẼ

[(

1 +
VT

ẼLu

)

A2 exp

(
x

Lu

)

+

(

1− VT

ẼLd

)

A1 exp

(−x
Ld

)]

. (5.47)

The spin density distribution s in the channel is shown in Figure 5.13, with the param-
eters as listed in Table 5.1. When the applied bias is positive (negative), the electric
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Figure 5.13: The analytically (c.f. Equation 5.44) calculated spin densities through the chan-
nel are shown. The boundary spin density polarization β0=50%. The channel
length is 3µm.
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Figure 5.14: The analytically (c.f. Equation 5.47) calculated spin current densities are shown,
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Figure 5.15: The variation of the spin current density in the channel with the boundary spin
density polarization β0 is shown, when no voltage is applied.

field increases (decreases) the effective spin diffusion length [173]. This is why the
signal s is high in the channel when Uc>0. For the same conditions, the spin cur-
rent density Js through the channel is shown in Figure 5.14. With the notations as
described in Equation 5.16b and Equation 5.19b, the direction of the spin current is
towards the positive x-axis (c.f. Figure 5.12). The figure also depicts the direction of
the drift and diffusion components of Js, and it is observed that Js is higher when
the spin flow is in the direction of the electron (charge) flow (i.e. Uc>0). In contrast
to Figure 5.3 one observes the non-vanishing value of s (and hence Js) in the channel
even when Uc=0. This signifies that the spin flow due to its diffusive component is
still possible in this structure, even when Ẽ is absent.

Figure 5.15 examines the variation of the spin current density Js for different values of
the spin density polarization at the injecting point (β0), when no voltage is applied (i.e.
Uc=0, and thus the carrier current is absent). Js through the channel increases with
β0 proportionally, reaching its maximum when β0 is maximum (i.e. β0=1). Thus from
the above discussions it is confirmed that the spin behavior is completely decoupled
from charge, and the spin diffusion lengths (Lu and Ld) are solely determined by the
intrinsic spin diffusion length Li and the electric field Ẽ.
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V1=0 V2=Uc

Spin extraction

x=0 x=W ′
Ẽ →

Figure 5.16: The schematic depicts the spin extraction phenomenon from the Si bar towards
the left boundary (x=0). The left boundary is under zero-bias, and the right
boundary (x = W ′, where W ′ ≫ Li with Li as the intrinsic spin diffusion
length) is under a negative bias (Uc<0). The direction of the electric field is
also shown.

Spin Extraction and Critical Current Density

A functional spintronic device also involves the reverse process of spin injection, i.e.
the extraction of spin-polarized electrons from the semiconductor to a ferromagnetic
structure. One can investigate spin extraction from a non-magnetic semiconductor
like silicon into the ferromagnet in the regime where the degree of spin polarization is
very high. For the analysis of the spin extraction phenomenon, the detailed structure
of the interface is not very important, and one can solve the spin transport equations
for the semiconductor region instead [191]. The electrons, flowing from the silicon side
and entering in the magnet, are supposed to be unpolarized. Now, if the structure is a
ferromagnetic half-metal [103], then it accepts only one spin orientation (e.g. up-spin
electrons). In such a case, a cloud of down-spin electrons is formed in silicon near
the relevant boundary, as those can not enter in the ferromagnet unless undergoing
a spin flip. The current in the bar increases the cloud, and eventually reaches its
maximum, when the silicon region near the junction becomes completely depleted of
the electrons with the same direction of spins (i.e. up-spins) as in the ferromagnet.
This phenomenon is known as spin-blockade [191]. This signifies that a further increase
of the steady-state current through the junction will not be possible.

In order to estimate this critical current density represented as Jc,cr, one can use the
general solution of the spin density from Equation 5.44. The spin extraction scheme is
portrayed in Figure 5.16. For the simplicity of analytical calculations one can assume
the bar to be long enough to negate the impact of the right boundary. In such a case
and for the structure as depicted in Figure 5.16, the up-stream diffusion length given
by L′ = 2VT

Ẽ+
√

Ẽ2+
4VT
µnτs

solely determines the transport [191]. Then, one can assume

the spin density for the spin extraction model in the form of [191] s = −A1 exp
(−x
L′

)
,

where A1 is a positive quantity. Then from Equation 5.46,

Js = qµnẼ
[(

1− VT

ẼL′

)

(−A1) exp
(−x
L′

)]

. (5.48)

Henceforth at the spin extraction boundary,

Js0 = −qµnẼ
[(

1− VT

ẼL′

)

A1

]

. (5.49)
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The spin current density and the charge current density are related by

Js0 = α0 · Jn
= α0qµnẼND .

(5.50)

Because the electric field Ẽ is homogeneous and linearly coupled to the total current
density, it can be assumed that, the polarization for the spin current density α0 is
fixed by the ferromagnet and thus does not depend on the channel current. Then,

− qµnẼ
[(

1− VT

ẼL′

)

A1

]

= α0qµnẼND , (5.51)

which eventually yields to

[( VT

ẼL′ − 1
)

A1

]

= α0ND , (5.52)

and therefore,

A1 =
α0ẼND

VT

L′ − Ẽ
. (5.53)

If the expression for the up-stream diffusion length is put in Equation 5.53, A1 can be
estimated as A1 = 2α0ND

√

1+
4VT

µnτsẼ2−1
. Since the maximum possible spin polarization can

only be 100%, the maximum possible value for A1 is the doping concentration ND,
and one can write

Ẽ2 =
VT

α0 · (α0 + 1)µnτs
. (5.54)

Finally, one can write the expression for the critical current density

Jc,cr = qND

√

µnVT

α0 · (α0 + 1)τs

= qND ·
(Dn

Li

)

· (α2
0 + α0)

−0.5 .

(5.55)

A fully polarized (unpolarized) spin current pertains to α0=1 (0). In this range, Jc,cr
decreases with increasing α0. Equation 5.55 also reveals that spin-blockade of the
current is more important in materials with long spin relaxation times (particularly
Si), hence this phenomenon must be considered in order to design efficient silicon-based
spintronic devices.

Figure 5.17 depicts the critical current density at the spin-blockade. Jc,cr increases
slowly by decreasing α0 from 1 to around 0.3. Therefore, the spin-blockade phe-
nomenon is also important in junctions with ordinary ferromagnets.
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Figure 5.17: The normalized critical current density is shown for spin-blockade as a function
of the boundary current density spin polarization.

5.4.2 Solution without Charge Neutrality Constraint

In order to lift the charge neutrality constraint, one can adjust the up(down)-spin
concentrations n↑0 and n↓0 in such a manner that the net electron concentration at
the left boundary n0 6= ND. It is hereby mentioned that by tuning up- and down-spin
current densities J↑0 and J↓0 one can lift the charge neutrality constraint as well. For
simplicity of analysis the former method is adopted. One can fix the charge density
with the single parameter MCh (this term can be attributed to the charge chemical
potential) as given below.

MCh = VT ln
( n0

ND

)

. (5.56)

Now, if the maximum value for the spin density polarization β0=1 (i.e. n0=s0) is
considered [

n↑0
n↓0

]

= ND

[
exp

(
MCh

VT

)

0

]

, (5.57)

and thus making

MCh = VT ln
( s0

ND

)

. (5.58)

Therefore, one can inject (release) up-spin and hence charge at the same time. This
way it is possible to describe
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Figure 5.18: The variation of the electron current density withMCh (c.f. Equation 5.57) and
the bias voltage Uc is depicted, when the channel length is 4µm.

• spin injection from a charge accumulated source (MCh>0),

• spin injection from a charge depleted source (MCh<0),

• restore charge neutrality (MCh=0).

Via Equation 5.57 a considerable spin and charge accumulation (depletion) at the
interface can be introduced and spin will diffuse out of this region. Non-zero values
of MCh always cause a flow of charge even though the applied voltage is zero. The
carrier current density Jn, the spin density s, and the spin current density Js in the
channel can be tuned by varying both MCh and the applied voltage Uc. One can set
any non-zero value for MCh and adjust Uc to keep a fixed charge flow (Jn=constant)
in the channel as described in Figure 5.18.

Figure 5.19 depicts how the charge accumulation (depletion) causes the pile up (re-
duction) of the carriers near the left boundary and through the channel. As found
previosuly, this pile up persists only up to the screening region characterized by the
Debye length λD (c.f. Equation 5.30). The spin carriers follow a similar profile, which
is shown in Figure 5.20 and illustrates that an abundance of spin carriers during the
accumulation enhances the spin current density Js only close to the interface, while
in contrast a lack of spin carriers in depletion causes a very strong diminution of the
same, both at the interface and the bulk. In order to complete the comparison, the
charge neutrality condition is also shown. Figure 5.20 reveals that under charge accu-
mulation Js shows an upper threshold [181]. The amount of Js which leaks from the
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Figure 5.19: The electron concentration is shown near the charge injection boundary (c.f.
Equation 5.57). The current density is 11.9MAm−2, and the channel length
4µm. λD represents the Debye length.
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as in Figure 5.19.
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Figure 5.21: The spin current density is shown for up to 5 times the Debye length λD from
the left boundary, when spin is injected from a charge neutral and charge accu-
mulated source. The carrier current is absent. The left boundary for (1) is set
with n↑0=900ND and n↓0=100ND, and for (2) c.f. Equation 5.57.

accumulation region almost does not change in high accumulation, regardless of the
high values of the spin density s and Js near the interface. This means that an effort
to boost Js by increasing the boundary spin density s0 to inject more spin polarized
electrons does not result in a substantial increment of Js in the bulk [192].

To scrutinize any further enhancement in the spin current density Js at the injection
boundary or in the bulk due to a charge accumulation, the variation of Js for different
values of spin density polarization β0 at the injection boundary is shown in Figure 5.21.
Indeed for β0=1, Js close to the spin injection interface is significantly higher at charge
accumulation compared to charge neutrality. In contrast, at a distance of about one
Debye length from the interface, Js becomes the same to that at the interface under
the charge neutrality conditions. Now, one must check the behavior of Js near the
boundary and the bulk, when β0<1. Figure 5.21 also shows if β0=0.8, it is not possible
to obtain a value for Js in the bulk as high as for β0=1, even under higher charge
accumulation at the left interface and the current is close to that under the charge
neutrality condition [192].
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Figure 5.22: The charge and the spin distribution over the channel are shown under
the charge accumulation and with the boundary condition Equation 5.57
(MCh=100mV, Uc=-300mV). The inset figure shows the spin density polar-
ization β near the spin injecting interface. The current density 11.9MAm−2 is
maintained over a 4µm channel.
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Figure 5.23: The spin and spin current densities in depletion (MCh=-100mV, Uc=-140mV)
and for charge neutrality (Uc=-204mV) with the boundary as in Equation 5.57
are shown. The inset figure shows the spin density polarization β. The current
density 11.9MAm−2 is maintained over a 4µm channel.
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Figure 5.24: The spin current densities with their up(down)-spin components are depicted,
when the channel is in depletion (MCh=-100mV) with the boundary as in Equa-
tion 5.57. The current density 7.9MAm−2 is maintained.
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Behavior of the Spin Density Polarization

Up to now it has been predicted that at a fixed boundary spin density polarization
β0 and at a fixed charge current, the spin density s and the spin current density Js
show an increment at the spin injection interface by injecting more charge, but the
bulk signals are determined by the charge neutrality condition. On the contrary, the
spin signals are diminished dramatically both at the interface and the bulk when spin
is injected from a charge depleted source. One must examine the peculiarities of the
spin density polarization β, the electron concentration n, and the spin density s close
to the left boundary in order to explain this behavior.

• Figure 5.22 shows both n and s in the same scale to allow a comparison. One can
notice that β remains approximately constant through the accumulation layer,
while the charge decrease from its high value at the interface to the equilibrium
value determined by the donor concentration ND. Therefore, s also decreases
substantially within the accumulation region. Thus, Js in the bulk is determined
by the value of s at the end of the accumulation layer, where the charge neutrality
condition is restored, and is thus determined by Js at the charge neutrality
condition with the same spin density polarization at the injection boundary β0.

• Figure 5.23 highlights s and Js in the same plot in order to make a comparison,
when spin is injected from a charge depleted source. When the spin diffusion is
along the current like in Figure 5.23, a substantial decrease of s and hence Js is
noticed, both at the interface and the bulk as compared to their values at the
charge neutrality condition. This behavior can be correlated with a significant
increase of the minority (down-spin) spin current density (J↓) in the depletion
layer (c.f. Figure 5.24). This current is due to two contributions, drift and diffu-
sion, which add constructively in this case and cause β to decrease substantially
over a very short distance close to the interface. At the same time, Js is noticed
to be nearly constant through the depletion layer. Indeed, in this case the spin
diffusion length is increased due to the high value of the electric field Ẽ at the
depletion region. At the end of the space-charge layer β is thus significantly
smaller than at the interface [193], explaining the degradation of Js in the bulk
as compared to the charge neutrality condition. The sharp decrease of β is due
to the high spin minority current close to the interface. Should this current be
reduced, for instance by applying a voltage of opposite polarity and inverting
the current (c.f. Figure 5.24), Js in the bulk is enhanced, but still remains below
the level determined by the charge neutrality condition (c.f. Figure 5.25).
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”Try not to become a man of
success, but rather try to become a
man of value.”

Albert Einstein

The k · p model is a powerful tool which allows to obtain the subband wave functions
and the eigenenergies of stationary states in confined electron systems. The spin degree
of freedom is incorporated in a two-band k · p model which is in turn developed at
the vicinity of the X-point in the Brillouin zone including the uniaxial shear tensile
stress in [110] direction. This allows to find the electron subband energies and the
corresponding spin-wave functions in thin silicon films under strain. The expressions
of the wave functions are then obtained analytically, when their spin is parallel to the
injection orientation.

In (001) oriented silicon films the degeneracy of the unprimed subbands is lifted by
strain, which leads to a transport effective mass dependence on strain. The momentum
relaxation time is observed to be increasing with strain but not significantly. The un-
primed subbands degeneracy lifting turns out to be the most important effect for spin
transport properties in silicon, because intervalley processes between equivalent valleys
(g-processes) are dominant for spin relaxation. This is in contrast to the momentum
relaxation time which is solely determined by the intravalley scattering. The mini-
mum value of the unprimed subbands splitting, or the valley splitting, is determined
by the strength of the spin-orbit interaction alone. The strongest mixing between the
up-spin and down-spin states from the two unprimed subbands is observed, when the
valley splitting reaches its minimum, which in turn results in the formation of the spin
hot spots characterized by strong spin relaxation. For higher strain values the hot
spots are pushed to higher energies away from the subband minima, causing a strong
increase of the spin lifetime. The calculations are performed by considering surface
roughness and electron-phonon interaction mediated spin relaxation. The transversal
and longitudinal acoustic phonons are included. It turns out that strain routinely used
to enhance mobility can also be used to boost the spin lifetime.

Including the primed subband into consideration, the evaluation of the spin life-
time due to the optical phonon induced scattering between non-equivalent valleys
(f-processes) has been investigated. In thin films of less than 4nm the contributions
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from the optical phonons can be neglected, whereas the spin lifetime in bulk is pri-
marily determined by them. In addition, the [001] equivalent valley coupling through
the Γ-point results in a subband splitting even in the absence of strain, which in
turn softens the spin hot spots. This eventually results in the less pronounced nature
of the spin lifetime dependence on strain, although almost two orders of magnitude
enhancement is predicted.

The spin relaxation is also sensitive to the spin injection orientation, and its inter-
and intrasubband components are equally sensitive to it. The surface roughness, the
acoustic, and the optical phonon mediated spin lifetimes increase, when the injection
direction is drawn from the perpendicular-plane ([001] direction) towards the in-plane
(i.e. [100] direction) of the sample, by a factor of two. The long lifetime in such a
film is essential to build spin interconnects for all-spin logic devices and the developed
direction sensitive model can be used as an extra degree of freedom for designing such
circuits.

The spin drift-diffusion model is widely used to describe the classical transport of
charge carriers and their spins in a semiconductor. The spin injection from a semicon-
ductor ferromagnet into silicon is analyzed for charge neutrality and means to improve
the injection efficiency by an electric field. When the charge neutrality condition is
violated, the additional interface charge screening is noted to impact the spin density
near the interface. The bulk spin injection efficiency is increased (decreased), when in-
jected from a charge-depleted (accumulated) source. However, the injection efficiency
is always limited by the bulk spin polarization in the ferromagnetic side.

By investigating spin injection in silicon from only a space-charge layer, one finds
substantial differences in the spin signals. At a fixed interface spin polarization and
fixed charge current, the interface spin current is enhanced through injecting more
charge, but the bulk spin current is almost unchanged from that obtained at the
charge neutrality condition. In contrast, the spin current (and the spin density) in
both interface and the bulk is reduced, when spin is injected from a charge depletion
region. This is an important phenomenon which implies that the observation of a spin
current reduction serves as a signature of the injection of spins from a charge and spin
depleted layer. In a broader perspective, these results will have consequences in the
spin control in the mesoscopic devices.
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Physics Letters, 99:082502, 2011.

[163] D. Osintsev, V. Sverdlov, and S. Selberherr. Influence of the Valley Degeneracy
on Spin Relaxation in Thin Silicon Films. In Proceedings of the 14th International
Conference on Ultimate Integration on Silicon (ULIS), pages 221–224, 2013.

[164] E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina, and S. Selber-
herr. The Effect of General Strain on the Band Structure and Electron Mobility
of Silicon. IEEE Transactions on Electron Devices, 54:2183–2190, 2007.

[165] M. V. Fischetti and S. E. Laux. Band Structure, Deformation Potentials, and
Carrier Mobility in Strained Si, Ge, and SiGe Alloys. Journal of Applied Physics,
80(4):2234–2252, 1996.

[166] J. Shah. Hot Carriers in Semiconductor Nanostructures: Physics and Applica-
tions. Academic Press, 1992.

[167] D. Rideau, M. Feraille, M. Michaillat, Y. M. Niquet, C. Tavernier, and H. Jaouen.
On the Validity of the Effective Mass Approximation and the Luttinger k · p
Model in Fully Depleted SOI MOSFETs. Solid-State Electronics, 53:452–461,
2009.

[168] T. B. Boykin, G. Klimeck, M. A. Eriksson, M. Friesen, S. N. Coppersmith, P. von
Allmen, F. Oyafuso, and S. Lee. Valley Splitting in Strained Silicon Quantum
wells. Applied Physics Letters, 84:115–117, 2004.

[169] M. O. Nestoklon, L. E. Golub, and E. L. Ivchenko. Spin and Valley-Orbit
Splittings in SiGe/Si Heterostructures. Physical Review B, 73:235334, 2006.

[170] D. Osintsev, V. Sverdlov, N. Neophytou, and S. Selberherr. Valley Splitting and
Spin Lifetime Enhancement in Strained Silicon Heterostructures. Proceedings
of the International Winterschool on New Developments in Solid State Physics,
pages 88–89, 2014.

[171] J. Ghosh, D. Osintsev, V. Sverdlov, and S. Selberherr. Spin Lifetime Dependence
on Valley Splitting in Thin Silicon Films. In Book of Abstracts of the 18th

International Workshop on Computational Electronics (IWCE), pages 35–36,
2015.

115



Bibliography

[172] D. Osintsev, V. Sverdlov, T. Windbacher, and S. Selberherr. Increasing Mobility
and Spin Lifetime with Shear Strain in Thin Silicon Films. In Proceedings of the
International Conference on Simulation of Semiconductor Processes and Devices
(SISPAD), pages 193–196, 2014.
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