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Abstract

In this thesis a Monte Carlo (MC) simulator is implemented in Python that focuses
on electron-electron scattering (EES). Simulating the EES events is an exciting chal-
lenge because two electrons are affected simultaneously. In case of EES the Boltzmann
transport equation (BTE), which is the mathematical model that describes the time
evolution of the momentum and real space distribution of electrons in a semiconduc-
tor becomes non linear. Therefore the two-particle kinetic equation is used instead
of the BTE. It is linear for the two-particle distribution function. Earlier attempts
were made to solve the non-linear BTE where only one particle was simulated and the
partner electron’s momentum distribution was assumed. Contrary to this approach
in this thesis the trajectory of both involved electrons are sampled and no assump-
tions about the distribution function need to be made. The derivation of the phonon
scattering rates and the EES rates used in the algorithm is shown. It is based on
quantum mechanics and its entry point is Fermi’s golden rule. The MC algorithm
with its adoptions for including EES is explained. Sampling and selection of scatter
mechanisms is discussed. The algorithm is used to do stationary and transient simu-
lations in bulk silicon. The stationary ones show the velocity and energy distributions
as well as the mean velocity and energy as a function of the electric field. Regardless
of whether EES is taken into account or not, stationary simulations bring identical
results. In the transient case step response functions and relaxation processes are
simulated. The relaxation process is the only simulation case where the consideration
of EES shows an significant effect. Due to EES hot electrons entering a cold domain
relax much faster.

Thesis Supervisor: Hans Kosina
Title: Ao.Univ.Prof. Dipl.-Ing. Dr.techn.
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Kurzfassung

In dieser Diplomarbeit wird ein Monte Carlo (MC) Simulator in Python implemen-
tiert, der speziell zur Untersuchung von Elektron-Elektron-Streuung (EES) konzip-
iert worden ist. Es ist eine Herausforderung EES zu simulieren, da immer zwei
Elektronen gleichzeitig von der Streuung betroffen sind. Die zeitliche Entwicklung
der Orts-und Impulsverteilung der Elektronen in einem Halbleiter wird mittels der
Boltzmann-Transportgleichung (BTE) beschrieben. Durch die Berücksichtigung von
EES in der Gleichung, wird die BTE nichtlinear. Daher wird anstelle der BTE die
kinetische Zwei-Teilchen-Gleichung verwendet. Diese ist linear in der Zweiteilchen-
Verteilungsfunktion. Es gab bereits Versuche, die nichtlineare BTE zu lösen, indem
nur ein Teilchen simuliert und die Impulsverteilung des Partnerelektrons angenom-
men wurde. Im Gegensatz dazu wird in dieser Arbeit die Flugbahn beider beteiligter
Elektronen abgetastet, und es müssen keine Annahmen über die Verteilungsfunktion
getroffen werden. Die Herleitung der Phononenstreuraten und EES-Raten basiert
auf der Quantenmechanik. Ausgangspunkt dafür ist die goldenen Regel von Fermi.
Die einzelnen Teilschritte des Algorithmus, wie die Wahl der Abtastpunkte oder
die Wahl des Streumechanismus werden dargelegt. Auch die Erweiterungen vom
Einteilchen-MC-Algorithmus zum Zweiteilchen-MC-Algorithmus, die nötig sind um
EES zu simulieren, werden erklärt. Anschließend wird der Algorithmus verwen-
det, um stationäre und transiente Simulationen in Bulk-Silizium durchzuführen. Die
Ergebnisse der stationären Simulationen zeigen die Geschwindigkeits- und Energiev-
erteilungen sowie die mittlere Geschwindigkeit und Energie als Funktion des elek-
trischen Feldes. In den Ergebnissen der stationären Simulationen ist kein Einfluss
durch EES zu erkennen. Im transienten Fall wurden Sprungantwortfunktionen und
Relaxationsvorgänge simuliert. Der Relaxationsprozess ist der einzige Simulations-
fall, bei dem die Berücksichtigung von EES einen signifikanten Effekt zeigt. Durch
EES relaxieren Elektronen, die von einem heißeren in ein kälteres Gebiet kommen,
deutlich schneller.
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Chapter 1

Introduction

MC methods solve complex problems with the help of statistics. In semiconductor

physics they are used to simulate the movement of charge carriers. A physical model

that describes the carrier transport is the BTE. It is remarkable that an algorithm

based on statistics leads to a solution for the BTE, a integro-differential equation

[4][5].

1.1 Motivation

Most of the MC algorithms have been designed to study the interactions of an electron

ensemble with the environment such as crystal vibrations, dopants and impurity

atoms. They neglect interactions between the individual carriers. The interaction

between two electrons results in physical phenomena like EES. In order to study

these phenomena, modifications to the standard one-particle MC algorithm have to

be made. This thesis focuses on charge transport in the presence of EES. Since

this type of scattering involves two electrons, the approach used calculates a pair of

two electron trajectories simultaneously instead of just one. Also the probability of

scattering depends on the momenta of two electrons.
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1.2 Transport model

The path of the electron is calculated by solving the classical equations of motion

∂r

∂t
= v,

∂v

∂t
=

F

m
, F(t) = E(t)𝑒 (1.1)

and gets interrupted by scattering events. Those scattering events happen at ran-

dom times and instantaneously. The probability of scattering is calculated quantum

mechanically. The transport model is termed semi-classical [3].

1.3 Algorithms

MC algorithms for the solution of the BTE can be divided into stationary and tran-

sient ones.

Stationary algorithms are useful to predict physical quantities of an electron ensem-

ble under time-independent conditions. An example would be an ensemble in a bulk

material accelerated by a constant electric field. It is sufficient to calculate only the

trajectory of one electron of the ensemble, since the time mean values of one electron

are equal to the ensemble mean values. The difference between sample mean and time

mean can be seen in Figure 1-1. Trajectory calculation continues until the desired

precision is achieved. Finally, the sample values will be averaged, to determine the

mean values.

In order to investigate the time dependence of the physical quantities of an electron

ensemble, transient algorithms are used. The trajectories of many ensemble electrons

will be sampled during a given simulation time with equidistant time steps. Then

at each sampling point in time the physical quantities of the ensemble electrons will

be averaged. In this way the time evolution of the ensemble’s physical quantities

can be found. An example would be to study the behavior of an electron ensemble

responding to an electric field step in time.
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Figure 1-1: Sample mean versus time mean

Approximations

In this thesis two approximations will be considered. The parabolic band approx-

imation, 𝐸(k) = ℎ̄2|k|2/(2m) approximates the full band dispersion relation at its

minimum by a parabola. The second assumption concerns the distribution function

𝑓(k), which is the probability that an electron occupies a state with a certain wave

vector k. The Pauli blocking factor (1− 𝑓(k)) will be neglected, (1− 𝑓(k)) ≈ 1 since

the occupation of the conduction band states is small enough if the electron density

is not too high. For a energy range close to the conduction band edge and moderate

electron density both approximations are valid.

1.4 Outline

In Chapter 2 the transport equations will be discussed. The BTE is the fundamental

equation that describes the time evolution of the particle distribution in momentum

and real space. In the case of EES the equation becomes nonlinear. To avoid this

nonlinearity the two particle kinetic equation will be introduced, which is linear in

the two particle distribution.

In Chapter 3 the scattering rates used in the MC algorithm will be derived. The

calculation of the electron state after scattering as well as the used parameter values

13



are given.

Chapter 4 describes the implementation of the MC algorithm. Different topics like

the flight time evaluation, calculation of state after the flight, sampling techniques

and scattering type selection will be explained. Also the adaptions needed to include

EES are described.

Chapter 5 shows some results from the simulator implemented in this work.
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Chapter 2

Transport equations

2.1 Boltzmann transport equation

The Boltzmann equation (2.1) is an integro-differential equation which describes the

carrier distribution in semiconductors [5, chapter 3], [7, chapter 1], [3, chapter 1],

[10, chapter 4]. If a function 𝑓(k, r, t) can be found that solves the equation, one

knows how many gas particles are at a certain place with a certain momentum at

a certain time. Electrons in semiconductor materials can also be modeled as gases

(electron-gases). By knowing the distribution function and how it evolves in time,

many physical quantities can be found and studied, such as electron density, current

density, mean energy, mean velocities and the like.(︃
∂

∂t
+

3∑︁
n=1

(︂
vn

∂

∂rn
+

𝐹n

ℎ̄

∂

∂kn

)︂)︃
𝑓(r,k, t) = �̂�𝑓(r,k, t) (2.1)

Newton’s law F = ṗ and the relation p = ℎ̄k lead to 𝑑k/𝑑t = F/ℎ̄, whereas 𝑑r/𝑑t = v

is the particle velocity. The left hand side of the equation (2.1) represents the total

derivative of 𝑓 with respect to time. In this case every variable is time dependent

and therefore the derivative is also called a convective derivative.

∂𝑓(k(t), r(t), t)

∂t
=

3∑︁
n=1

(︂
∂𝑓

∂kn

∂kn
∂t

+
∂𝑓

∂rn

∂rn
∂t

)︂
+

∂𝑓

∂t
(2.2)
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If the right hand side of the BTE is set to zero, Liouville’s equation is obtained.

It describes a collisionless system of particles. In the BTE the scattering operator

�̂� describes collisions and is responsible for discontinuities in time of the electron

momentum p(t).

2.1.1 Scattering operator

An operator �̂� is a mathematical object similar to a function. Unlike functions

that transfer input values into output values, operators transform functions. If the

operator �̂� acts on a certain function 𝑓1, another function is received: 𝑓2 = �̂�𝑓1.

The scattering operator �̂� is an integral operator �̂� of the form

�̂�[𝑓 ](𝜉) =

∫︁
𝐾(𝜉, 𝜉′)𝑓(𝜉′)𝑑𝜉′ (2.3)

The function 𝐾(𝜉, 𝜉′) is called the kernel of the integral operator. The operator (2.3)

is linear: �̂�[𝛼𝑓 + 𝛽𝑔] = 𝛼�̂�[𝑓 ] + 𝛽�̂�[𝑔]. In case of the BTE the scattering operator

acts on the momentum distribution function 𝑓(r,k, t), and its kernel is the transition

rate. The operator can be split in a gain and a loss term:

• The gain term increases the occupation of a given electron state,

• The loss term decreases the occupation of an electron state.

�̂�[𝑓 ](ki) = �̂�𝑔𝑎in − �̂�loss =

∫︁
𝑃 (ki,k𝑓 )𝑓(k𝑓 )𝑑k𝑓 −

∫︁
𝑃 (k𝑓 ,ki)𝑓(ki)𝑑k𝑓 (2.4)

Since 𝑓(ki) is a constant regarding the integration over k𝑓 , the loss term can be

written as Γ(ki)𝑓(ki) with Γ(ki) =
∫︀
𝑃 (ki,k𝑓 )𝑑k𝑓 being the total scattering rate.

The Boltzmann equation then becomes

𝑑𝑓(ki(t))

𝑑t
+ Γ(ki(t))𝑓(ki(t)) = 𝑄𝑔𝑎in[𝑓 ](ki(t)) (2.5)

A formal way to solve this equation is recursive integration.

16



Scattering Operator for EES

In contrast to an electron-phonon scattering event, where only one electron changes

its state, in an EES event two electrons change their states simultaneously. The initial

and final k-vectors of electron 1 and electron 2 will be denoted by k1
i ,k

2
i ,k

1
𝑓 ,k

2
𝑓 . In

this case gain and loss terms become

�̂�𝑔𝑎in[𝑓 ](k
1
i ) =

∫︁ (︂∫︁ ∫︁
𝑃 (k1

i ,k
2
i ,k

1
𝑓 ,k

2
𝑓 )𝑓(k

2
𝑓 )𝑑k

2
i 𝑑k

2
𝑓

)︂
⏟  ⏞  

𝐾(k1
i ,k

1
𝑓 )

𝑓(k1
𝑓 )𝑑k

1
𝑓

�̂�loss[𝑓 ](k
1
i ) =

∫︁ (︂∫︁ ∫︁
𝑃 (k1

i ,k
2
i ,k

1
𝑓 ,k

2
𝑓 )𝑓(k

2
i )𝑑k

2
i 𝑑k

2
𝑓

)︂
⏟  ⏞  

𝐾(k1
i ,k

1
𝑓 )

𝑓(k1
i )𝑑k

1
𝑓

(2.6)

The kernel is no longer constant, but depends on the solution 𝑓 . Therefore, the

scattering operator is nonlinear which complicates the numerical solution of the BTE.

2.2 Two particle kinetic equation

In order to receive a linear operator for EES, both single electron momentum distri-

butions need to be combined 𝑓(k1)𝑓2(k2) −→ 𝑔(k1,k2) [2].

�̂�𝑒𝑒[𝑔](k
1
i ,k

2
i ) =

∫︁ ∫︁
𝑃 (k1

i ,k
2
i ,k

1
𝑓 ,k

2
𝑓 )[𝑔(k

1
𝑓 ,k

2
𝑓 )− 𝑔(k1

i ,k
2
i )]𝑑k

1
𝑓𝑑k

2
𝑓 (2.7)

A kinetic equation for the two electron distribution can be derived as(︃
∂

∂t
+

3∑︁
n=1

𝐹n

(︂
∂

∂k1
n

+
∂

∂k2
n

)︂)︃
𝑔(k1,k2, t) =

(︁
�̂�pℎ + �̂�𝑒𝑒

)︁
[𝑔](k1,k2, t) (2.8)
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Chapter 3

Scattering

In a semiconductor crystal, electrons experience different scattering mechanisms. In

this work the focus is put on electron-phonon scattering, which is most dominant,

and the interaction between two electrons (EES).

The likelihood that an electron changes its state from an initial state |ki⟩ to a final

state |k𝑓⟩ is described by Fermi’s golden rule.

𝑃 (ki,k𝑓 ) =
2𝜋

ℎ̄
| ⟨k𝑓 |𝑉 |ki⟩ |2𝛿(𝜖k𝑓

− 𝜖ki
± ℎ̄𝜔0) (3.1)

The matrix-element ⟨k𝑓 |𝑉 |ki⟩ quantifies how similar an initial state |ki⟩ on which

the potential 𝑉 acts is compared to a specific final state |k𝑓⟩. It gets evaluated

by the scalar product, which becomes one for parallel state vectors and zero for

orthogonal state vectors. If the scattering potential is time-dependent, there will be

an energy transfer of the magnitude ℎ̄𝜔0, where 𝜔0 is the oscillation frequency of the

potential. For stationary potentials there is no energy transfer. The rate that one

electron leaves its state is given by the sum over all transition rates to other states,

Γ(ki) =
∑︀

k𝑓
𝑃 (ki,k𝑓 )(1− 𝑓(k𝑓 )). By using the density of states this can be written

as an integral.

Γ(ki) =
Ω

(2𝜋)3

∫︁
𝑃 (ki,k𝑓 )(1− 𝑓(k𝑓 ))𝑑k𝑓 (3.2)
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Normalization volume and density of states

The volume of the crystal is arbitrary and denoted by Ω. The probability of finding an

the electron or phonon inside the crystal is given by the integral over the probability

density |Ψ(r)|2 and is set to one
∫︀
Ω
|Ψ(r)|2𝑑r = 1. To achieve this the plane wave

functions exp(k · r) representing the particles need to be scaled by the square root of

the volume Ψ(r) = exp(k · r)/√Ω.

The density of states 𝑔 is an expression for the available states in an infinitesimal

energy or wave number range around a specific energy or wave number. It is used to

calculate how many states n are in an certain energy or wave number range

n =

∫︁ k𝑒n𝑑

kst𝑎rt

𝑔(k)𝑑k =

∫︁ 𝜖𝑒n𝑑

𝜖st𝑎rt

𝑔(𝜖)𝑑𝜖. (3.3)

To fullfill Schrödinger’s equation with its boundary conditions in a finite crystal

only discrete k values are allowed. In a three dimensional crystal wave numbers are

equally spaced. One state takes up the volume (2𝜋)3/Ω. The density of states 𝑔

therefore writes as

𝑔(k) = Ω/(2𝜋)3 (3.4)

To find the density of states as a function of energy, one starts by calculating how

many states can fit in a sphere with the radius k and the volume 4𝜋k3/3.

n =
4𝜋k3

3

Ω

(2𝜋)3
(3.5)

Then one needs to insert the dispersion relation k =
√
2m𝜖/ℎ̄ to make the expression

depending on the energy instead of the wave number.

n =
Ω(2m𝜖)3/2

6ℎ̄3𝜋2
(3.6)

The derivative ∂n/∂𝜖 then gives the density of states

𝑔(𝜖) =
(2m*)3/2

√
𝜖

4𝜋2ℎ̄3 (3.7)
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3.1 Electron-phonon scattering

Phonons are quantized lattice vibrations. There exist acoustic and optical phonon

modes. They differ in their dispersion relation. In order to calculate the allowed

oscillations, the connections of the atoms in the crystal are modeled as linear springs.

The balance of forces is expressed by a difference equation, which has plane wave

solutions of the form 𝑒jk·r. It turns out that only plane waves with certain k-values

can exist in the crystal [1].

The displacement R of an atom at place r in the crystal is expressed by the sum over

all eigenmodes.

R(r, t) =
∑︁
q

√︃
ℎ̄

2𝜌Ω𝜔q

(︁
�̂�q + �̂�†−q

)︁
𝑒jq·r (3.8)

In this equation the quantum mechanical operators of creation and annihilation of a

phonon are denoted by �̂�† and �̂�. The mass density of the crystal is denoted by 𝜌 and

the phonon frequency by 𝜔q.

Acoustic phonon scattering

The Hamiltonian �̂� is proportional to lattice strain 𝛻 ·R(r, t) and the phenomeno-

logical deformation potential 𝐷𝐴.

�̂� = 𝐷𝐴𝛻 ·R(r, t), �̂� =
∑︁
q

jq𝐷𝐴

√︃
ℎ̄

2𝜌Ω𝜔q

(𝑎q + 𝑎†−q)𝑒
jq·r (3.9)

The matrix element of the combined system [9] considers the change of the phonon

state as well as the electron state. The initial, the final and the momentum transfer

wave vectors are denoted by ki,k𝑓 and q respectively.

⟨k𝑓 , nq ± 1| �̂� |ki, nq⟩ = jq𝐷𝐴

√︃
ℎ̄

2𝜌Ω𝜔q

√︂
nq +

1

2
± 1

2
𝛿(k𝑓 − ki ± q) (3.10)
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Inserting the matrix element (3.10) into the golden rule (3.1) gives

𝑃 (ki,k𝑓 ) =
2𝜋

ℎ̄
q2𝐷2

𝐴

ℎ̄

2𝜌Ω𝜔q

(︂
nq +

1

2
± 1

2

)︂
𝛿(k𝑓 − ki ± q)𝛿(𝜖k𝑓

− 𝜖ki
∓ 𝜔q) (3.11)

The average number nq of phonons with a certain energy ℎ̄𝜔q is given by the Bose-

Einstein statistics

nq =
1

exp
{︁

ℎ̄𝜔q

k𝐵𝑇
− 1

}︁ (3.12)

The delta functions represent momentum and energy conservation.

k𝑓 = ki ± q, 𝜖k𝑓
= 𝜖ki

∓ ℎ̄𝜔q (3.13)

The two cases of phonon emission and absorption are considered by the upper and

lower sign respectively. The delta functions can be substituted into one equation by

using the dispersion relation 𝐸(k) = k2ℎ̄2/2m

k2
𝑓 ℎ̄

2

2m
=

(q2 ± 2q · ki + k2
i )ℎ̄

2

2m
,

k2
𝑓 ℎ̄

2

2m
=

k2
i ℎ̄

2

2m
± ℎ̄𝜔q, (3.14)

𝛿

(︂
ℎ̄2q2

2m
± ℎ̄2qki cos𝜗

m
± ℎ̄𝜔q

)︂
(3.15)

At this point two approximations are made:

• ℎ̄𝜔q ≪ k𝐵𝑇 makes the transition an elastic one, which means ℎ̄𝜔q can be

neglected in (3.14).

• nq ≫ 1 hence nq ≈ nq + 1 this allows to express (nq + 1/2± 1/2) ≈ k𝐵𝑇/ℎ̄𝜔q

in (3.14). nq ≈ k𝐵𝑇/ℎ̄𝜔q follows from the linearization of (3.12)

With these approximations the delta functions in (3.15) can be written as

ki
q𝐸(ki)

𝛿

(︂
q

2ki
± cos𝜗

)︂
(3.16)
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The transition rate (3.1) becomes then

𝑃 (ki,k𝑓 ) =
𝜋𝐷2

𝐴q
2

𝜌Ω𝜔q

k𝐵𝑇

ℎ̄𝜔q

k

q𝐸(ki)
𝛿

(︂
q

2ki
± cos𝜗

)︂
(3.17)

The scattering rate is found according to (3.2), with the speed of sound u𝐿 = 𝜔q/q.

The integration is done in spherical coordinates.

Γ(ki) =
𝜋𝐷2

𝐴k𝐵𝑇

ℎ̄Ωu2
𝐿𝜌

k

𝐸(k)

Ω

(2𝜋)3

∫︁ ∞

0

∫︁ 𝜋

0

∫︁ 2𝜋

0

1

q
𝛿
(︁ q

2k
± cos𝜗

)︁
𝑑𝜙𝑑𝜗𝑑q (3.18)

The scattering rate is finally attained by

Γ(ki) =
2𝜋𝐷2

𝐴k𝐵𝑇

ℎ̄u2
𝐿𝜌

(2m*)3/2
√
𝜖ki

4𝜋2ℎ̄3 (3.19)

The scattering rate contains the expression for the density of states (3.7) and is

proportional to it

Γ(ki) =
2𝜋𝐷2

𝐴k𝐵𝑇

ℎ̄u2
𝐿𝜌

𝑔(𝜖) (3.20)

Intervalley phonon scattering

Electrons that scatter into other valleys involve phonons with wavenumbers close to

the edge of the Brillouin zone, where the dispersion relation 𝜔q is independent of q.

The scattering potential is proportional to the lattice displacement �̂� = D ·R(r, t).

This scattering type is called non-polar optical phonon scattering [9].

�̂� =
∑︁
q

(𝐷t𝐾)

√︃
ℎ̄

2𝜌Ω𝜔q

(�̂�q + �̂�†−q)𝑒
jq·r (3.21)

By performing similar operations as done for the acoustic phonons the golden rule

evaluates as

𝑃 (ki,k𝑓 ) =
2𝜋

ℎ̄
(𝐷t𝐾)2

ℎ̄

2𝜌Ω𝜔0

(︂
n0 +

1

2
± 1

2

)︂
𝛿

(︂
ℎ̄2

2m
± ℎ̄2qk cos𝜗

m
± ℎ̄𝜔0

)︂
(3.22)
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In contrast to the acoustic phonons, in this case ℎ̄𝜔q can not be neglected. The

parameters nq and 𝜔q are assumed to be independent of q and therefore will be

denoted as n0 and 𝜔0. The scattering rate is found according to (3.2). The integration

is done in spherical coordinates

Γ(ki) =
(𝐷t𝐾)2

8𝜋2𝜌𝜔0

∫︁ ∞

0

∫︁ 𝜋

0

∫︁ 2𝜋

0

𝛿

(︂
ℎ̄2

2m
± ℎ̄2qk cos𝜗

m
± ℎ̄𝜔0

)︂
𝑑𝜙𝑑𝜗𝑑q (3.23)

The scattering rate is finally attained by

Γ(ki) =
𝜋(𝐷t𝐾)2

𝜌𝜔0

(︂
n0 +

1

2
± 1

2

)︂
(2m*)3/2

√︀
𝜖ki

± ℎ̄𝜔0

4𝜋2ℎ̄3 (3.24)

The scattering rate contains the expression for the density of states (3.7) and is

proportional to it

Γ(ki) =
𝜋(𝐷t𝐾)2

𝜌𝜔0

(︂
n0 +

1

2
± 1

2

)︂
𝑔(𝜖ki

± ℎ̄𝜔0). (3.25)
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Implemented equations and parameters

Equation (3.26) shows the implemented scattering rate for electron-acoustic phonon

scattering and equation (3.27) for electron-intervalley scattering. The parameters in

Table 3.1 are taken from [4].

Γ𝑒,𝑎𝑐 =
21/2m3/2𝐾𝐵𝑇0𝐷

2
𝐴

𝜋ℎ̄4u2
𝐿𝜌

√
𝜖 (3.26)

The energy gained or lost by intervalley scattering is given by ℎ̄𝜔i, the related pa-

rameter is given by the temperature 𝜃i. The number of phonons is given by the

Bose-Einstein statistics 𝑁i = (𝑒𝜃i/𝑇 − 1)−1.

By looking at the conduction band energy as a function of the wave vector direc-

tion, one can identify three valleys, with different deformation potentials for g- and

f-processes. Scattering processes which happen along the axis of motion are called g-

processes, perpendicular to it, f-processes. For f-processes there exist four equivalent

final valleys, 𝑍𝑓 = 4, for g-processes only one, 𝑍𝑓 = 1.

⎡⎣Γ𝑒,𝑎𝑏s

Γ𝑒,𝑒ms

⎤⎦ =
(𝐷t𝐾)2im

3/2𝑍𝑓

21/2𝜋ℎ̄3𝜌𝜔i

⎡⎣ 𝑁i

𝑁i + 1

⎤⎦√︀
𝜖± ℎ̄𝜔i (3.27)

Parameter value Parameter value

(𝐷t𝐾)𝑔1 0.5× 108 eV cm−1 𝜃𝑔1 140K
(𝐷t𝐾)𝑔2 0.8× 108 eV cm−1 𝜃𝑔2 215K
(𝐷t𝐾)𝑔3 11× 108 eV cm−1 𝜃𝑔3 720K
(𝐷t𝐾)𝑓1 0.3× 108 eV cm−1 𝜃𝑓1 220K
(𝐷t𝐾)𝑓2 2× 108 eV cm−1 𝜃𝑓2 550K
(𝐷t𝐾)𝑓3 2× 108 eV cm−1 𝜃𝑓3 685K

𝑍𝑓 for g-process 1 u𝐿 9× 105 cm s−1

𝑍𝑓 for f-process 4 𝐷𝐴 9 eV
m 0.3 m0 m0 9.109 383 701 5× 10−28 g
𝜌 2.33 g/cm3

Table 3.1: Parameter for silicon [4]
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State after scattering

For acoustic phonons, where the electron does not gain or loose energy during the

scattering event, only the direction of the momentum changes. The new direction is

the result of the uniformly distributed random numbers 𝜙 ∈ [0, 2𝜋] and cos𝜗 ∈ [−1, 1]

kx = |k| sin𝜗 cos𝜙 (3.28a)

ky = |k| sin𝜗 sin𝜙 (3.28b)

kz = |k| cos𝜗 (3.28c)

For intervalley phonons, where the electron does gain or loose energy during the

scattering event, first energy and the related wavenumber k after scattering need to

be calculated. Afterwards the new direction of the k vector is found again by (3.28).
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Plot of phonon scattering rates

In Figure 3-1 the rates of the different scattering mechanisms can be seen. In the last

subplot the rates of all mechanisms are superimposed.

Figure 3-1: Electron-phonon scattering rates
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3.2 Electron-electron scattering

The electrons repel each other according to Coulomb’s law. Since the interaction

takes place in the vicinity of many other electrons, a screened Coulomb potential 𝑈s

is used [6]. The distance between the electrons is denoted by u, the magnitude of u.

𝑈𝑆(u) =
𝑒

4𝜋𝜖

exp(−u/l𝑐)

u
, u = r1 − r2, l𝑐 =

√︂
𝜖sk𝐵𝑇

𝑒2n
(3.29)

The characteristic length l𝑐 is the Debye length. In order to calculate the scattering

rate, the transition probability according to Fermi’s golden rule must be evaluated

first. Since two electrons are involved, it is a combined system and its states can be

written as a product of plane waves. The initial and final wave vectors of electron 1

and 2 are denoted by k1
i , k2

i , k1
𝑓 , k2

𝑓 .

|ki⟩ = |k1
i ⟩ |k2

i ⟩ =
1

Ω
𝑒j(k

1
i ·r1+k2

i ·r2), |k𝑓⟩ = |k1
𝑓⟩ |k2

𝑓⟩ =
1

Ω
𝑒j(k

1
𝑓 ·r1+k2

𝑓 ·r2) (3.30)

Transition rate

The matrix element needs to be calculated first.

⟨k𝑓 |𝑈 |ki⟩ = 𝑒2

𝜖sΩ2

∫︁
Ω

∫︁
Ω

𝑒−j(k1
𝑓 ·r1+k2

𝑓 ·r2) exp(−u/l𝑐)

4𝜋u
𝑒j(k

1
i ·r1+k2

i ·r2)𝑑r2𝑑r1 (3.31)

The exponential of the inner integral can be written as

𝑒−j(k1
𝑓 ·r1+k2

𝑓 ·r2)+j(k1
i ·r1+k2

i ·r2) = 𝑒j(k
1
i−k1

𝑓 )·u𝑒j(k
1
i+k2

i−k1
𝑓−k2

𝑓 )·r2 (3.32)
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By substituting u = r1−r2 the functional determinant becomes ∂(x1, y1, z1)/∂(ux, uy, uz) =

1. The integral of (3.31) can be split in a product of two integrals

∫︁
Ω

∫︁
Ω

exp(−u/l𝑐)

4𝜋u
𝑒−j(k1

i+k1
𝑓 )·u𝑒j(k

1
i+k2

i−k1
𝑓−k2

𝑓 )·r2𝑑r2𝑑u

=

∫︁
Ω

exp(−u/l𝑐)

4𝜋u
𝑒−j(k1

i+k1
𝑓 )·u

∫︁
Ω

𝑒j(k
1
i+k2

i−k1
𝑓−k2

𝑓 )·r2𝑑r2𝑑u

=

∫︁
Ω

𝑒j(k
1
i+k2

i−k1
𝑓−k2

𝑓 )·r2𝑑r2

∫︁
Ω

exp(−u/l𝑐)

4𝜋u
𝑒−j(k1

i+k1
𝑓 )·u𝑑u

(3.33)

The first integral of (3.33) can be evaluated as

∫︁
Ω

𝑒j(k
1
i+k2

i−k1
𝑓−k2

𝑓 )·r2𝑑r2 = Ω𝛿k1
i+k2

i ,k
1
𝑓+k2

𝑓
(3.34)

The second one is the Fourier transform of the screened Coulomb potential [6].

∫︁
Ω

exp(−u/l𝑐)

4𝜋u
𝑒−j(k1

i+k1
𝑓 )·u𝑑u =

1

|k1
i − k1

𝑓 |2 + 1/l2𝑐
(3.35)

Substituting both integrals back in (3.33) gives the matrix element

⟨k𝑓 |𝑈 |ki⟩ = 𝑒2

𝜖𝑆Ω

𝛿k1
i+k2

i ,k
1
𝑓+k2

𝑓

|k1
i − k1

𝑓 |2 + 1/l2𝑐
(3.36)

Fermi’s golden rule (3.1) then writes as

𝑃 (k1
i ,k

2
i ,k

1
𝑓 ,k

2
𝑓 ) =

2𝜋

ℎ̄

(︂
𝑒2

𝜖𝑆Ω

)︂2 𝛿k1
i+k2

i ,k
1
𝑓+k2

𝑓

(|k1
i − k1

𝑓 |2 + 1/l2𝑐)
2 𝛿[𝜖(k

1
𝑓 ) + 𝜖(k2

𝑓 )− 𝜖(k1
i )− 𝜖(k2

i )]

(3.37)

The Kronecker-𝛿 in this equation states momentum conservation. The rate is non-

zero only when k1
i + k2

i = k1
𝑓 + k2

𝑓 or k1
𝑓 − k1

i = k2
i − k2

𝑓 . This difference denotes the

momentum transfer vector q, which we define as q = k1
𝑓 − k1

i . Inserting q in (3.37)

gives

𝑃 (k1
i ,k

2
i ,q) =

2𝜋

ℎ̄

(︂
𝑒2

𝜖𝑆Ω

)︂2
𝛿[𝜖(k1

i + q) + 𝜖(k2
i − q)− 𝜖(k1

i )− 𝜖(k2
i )]

(|q|2 + 1/l2𝑐)
2 (3.38)
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Scattering rate

The scattering rate is the probability per unit time that a transition from an initial

state to any final state happens. The transferred momentum is between 0 and qm𝑎x =

|k1
i − k2

i |. By assuming that all final states are empty 1 ≈ (1− 𝑓(k)) this rate can be

written as

Γ𝑒𝑒(k
1
i ,k

2
i ) =

∑︁
q

𝑃 (k1
i ,k

2
i ,q). (3.39)

By using the density of states the sum can be converted to an integral

Γ𝑒𝑒(k
1
i ,k

2
i ) =

(︂
Ω

(2𝜋)3

)︂2 ∫︁
𝑃 (k1

i ,k
2
i ,q)𝑑q. (3.40)

Inserting the transition rate from (3.38) in (3.40) gives

Γ𝑒𝑒(k
1
i ,k

2
i ) =

2𝜋

ℎ̄

(︂
𝑒2

𝜖𝑆Ω

)︂2 (︂
Ω

(2𝜋)3

)︂2 ∫︁
𝛿[𝜖(k1

i + q) + 𝜖(k2
i − q)− 𝜖(k1

i )− 𝜖(k2
i )]

(q2 + 1/l2𝑐)
2

𝑑q

(3.41)

With the dispersion relation 𝜖(k) = ℎ̄2k2/2m the delta function can be rewritten as

𝛿

(︂
ℎ̄2q

m
(q − qm𝑎x cos𝜗)

)︂
(3.42)

where 𝜗 denotes the angle between q and qm𝑎x = k1
i − k2

i . The integral can be

evaluated in spherical coordinates.

Γ𝑒𝑒(k
1
i ,k

2
i ) =

𝑒4

(2𝜋)4𝜖2sℎ̄

∫︁ ∞

0

∫︁ 𝜋/2

0

𝛿( ℎ̄
2q
m
(q − qm𝑎x cos𝜗))

(q2 + 1/l2𝑐)
2

sin𝜗𝑑𝜗q2𝑑q (3.43)

By substituting u = cos𝜗, 𝑑𝜗 = 𝑑u/ sin𝜗 the integral can be further simplified.

Γ𝑒𝑒(k
1
i ,k

2
i ) = 𝐴

∫︁ ∞

0

q2

(q2 + 1/l2𝑐)
2

∫︁ 1

0

𝛿(q2 − qm𝑎xqu)𝑑u𝑑q

= 𝐴

∫︁ ∞

0

q2

(q2 + 1/l2𝑐)
2

1

qm𝑎xq
[Θ(qm𝑎x − q)−Θ(−q)]𝑑q

=
𝐴

qm𝑎x

∫︁ qm𝑎x

0

q

(q2 + 1/l2𝑐)
2
𝑑q

(3.44)

30



Here the prefactor 𝐴 is defined as 𝐴 = 𝑒4m/
(︀
(2𝜋)4𝜖2sℎ̄

3
)︀

and Θ denotes the unit step

function. One finally attains the EES rate

Γ𝑒𝑒(k
1
i ,k

2
i ) = 𝐵

qm𝑎x

q2m𝑎x + 1/l2𝑐
(3.45)

with

𝐵 =
n𝑒4m

4𝜋ℎ̄3𝜖2s1/l
2
𝑐

, 1/l2𝑐 =
𝑒2n

𝜖sk𝐵𝑇
(3.46)

Momentum transfer, selection of the angle, state after scattering

If two electrons with a certain momentum collide, the transferred momentum will be

q ∈ {0, qm𝑎x}. The momentum transfer vector q is chosen randomly, its magnitude

q is calculated by the inversion method [6]. A bijective mapping r ∈ {0, 1} ←→ q ∈
{0, qm𝑎x} is needed. The mapping is found by the monotonically increasing function

𝐹 (q) which gets normalized by 𝐹 (qm𝑎x).

𝐹 (q) =

∫︁ q

0

𝑃 (k1
i ,k

2
i , q

′)𝑑q′ (3.47)

The desired integral in (3.47) can be found in (3.44).

𝑃 (q) =
𝐹 (q)

𝐹 (qm𝑎x)
=

q2

q2 + l2𝑐

q2m𝑎x + l2𝑐
q2m𝑎x

(3.48)

A random number r1 will be set and the equation 𝑃 (q) = r1 solved. Then q can be

found by rearranging (3.48).

q2 =
r1q

2
m𝑎x1/l

2
𝑐

q2m𝑎x(1− r1) + 1/l2𝑐
(3.49)

The magnitude of q is given by the square root of (3.49). According to (3.42) it holds

q − qm𝑎x cos𝜗 = 0. Therefore, the angle 𝜗 between q and qm𝑎x is given by

𝜗 = arccos
q

qm𝑎x

, (3.50)
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whereas 𝜙 is chosen uniformly distributed in [0, 2𝜋].

𝜙 = 2𝜋r2 (3.51)

In order to create a vector q that fulfils the angle relations between q and qm𝑎x, a local

spherical coordinate system (ek, e1, e2) with qm𝑎x as polar axis needs to be created.

The basis vectors are written in the basis of the Cartesian coordinate system. The

direction of q is therefore given as

eq = cos𝜗ek + sin𝜗 sin𝜙e1 + sin𝜗 cos𝜙e2 (3.52)

The new wave vectors k1
𝑓 and k2

𝑓 can be written as

k1
𝑓 = k1

i + qeq, k2
𝑓 = k2

i − qeq (3.53)

Figure 3-2: Momentum transfer
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Chapter 4

Monte Carlo algorithm

The core of the algorithm is the MC loop (Figure 4-1). The number of the loop

passes is typically in the range of 104 to 108, which makes an effective implemen-

tation important. Every pass of the MC loop consists of a free flight followed by a

scattering event. The flight procedure first generates the random flight-time. Then

the trajectory will be calculated and sampled either at given time steps Δt or at the

end of the flight. The scattering procedure starts by evaluating the scattering rates

which depend on the energy of the electron. A scattering mechanism will then be

chosen randomly and the new state is calculated.

Figure 4-1: Structogram of MC loop

In the stationary algorithm the MC loop (Figure 4-1) is executed only once. An av-

erage of all sampling points will be calculated to produce the mean values of interest.

Such simulations can be used, for example, to predict the mean velocity or mean

energy of the ensemble as a function of the electric field.

In the transient algorithm the MC loop (Figure 4-1) is executed for a large number of

electrons. In order to study the ensemble properties evolving in time, the trajectories
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need to be sampled at equidistant time steps.

If EES is included, pairs of two trajectories instead of single trajectories need to

be simulated. The algorithms using single trajectories and trjectory pairs are very

similar, the differences are explained in Chapter 4.2

4.1 MC-algorithm without EES

4.1.1 Initial state

The initial state should be chosen in a way that its energy is close to the settled end

value. This way the transient is short, and most sampling values are taken from the

stationary solution.

In the case of the transient algorithm it is important that every electron starts with

a different initial state. Each electron of the ensemble gets its initial momentum

according to a Gaussian distribution N (𝜇, 𝜎2) with an expected value 𝜇 = 0 and a

variance of 𝜎2 = mk𝐵𝑇/ℎ̄
2.

4.1.2 Flight duration

In order to find out how long it will take till the next scattering event occurs, one

needs to consider the scattering rates described in Chapter 3. The total rate Γtot

is the sum of the rates Γi of all individual mechanisms. The rates depend on the

electron energy 𝜖(t), which in general is a function of time. In the equilibrium case

no electric field is applied and the rates are constant troughout the free flight. In the

non-equilibrium case an electric filed is applied and the rates are changing during the

free flight.

Equilibrium

The probability density p(t) describes how likely a scattering event takes place at a

certain point in time. The time dependence can be written as 𝑑p/𝑑t = −Γp. This
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differential equation is solved by

p(t) = Γ exp(−Γt) (4.1)

The cumulative probability 𝑃 (t) describes how likely a scattering event takes place

till a certain point in time.

𝑃 (t) =

∫︁ t

0

p(t′)𝑑t′ (4.2)

After infinite time, it is certain that the electron had experienced an scattering event

such that 𝑃 (t −→ ∞) = 1. This way 𝑃 (t) acts as bijective mapping 𝑃 ∈ {0, 1} ←→
t𝑓 ∈ {0,∞}. For a uniform random number r, t𝑓 can be evaluated by rearranging

(4.2). This approach is called inversion method [6].

r = 𝑃 (t = t𝑓 ) =

∫︁ t𝑓

0

p(t)𝑑t, t𝑓 =
−1

Γ
ln(1− r) (4.3)

Non-equilirium / self scattering

In the presence of an electric field, the electron is accelerated and Γ becomes time

dependent Γ(t). Equation (4.2) would become a path integral, this would still work

but results in a much higher computational effort. Thus the method described for

equilibrium must be adapted. An additional self scattering rate Γss is added such that

the total rate Γtot = Γss +
∑︀

Γi becomes constant. This self scattering mechanism

has no physical meaning and the electron state remains the same as before. The total

rate Γtot is chosen at the begin of the simulation and is kept constant troughout the

simulation. It must be chosen small enough to keep computational overhead small

and big enough to avoid failures. In the course of a simulation it must always hold∑︀
Γi < Γtot. This way (4.3) for flight duration stays valid.

4.1.3 State before scattering

If an electron is accelerated by an electric field E, the electron gains energy. Therefore

the electron’s energy and momentum must be updated at the end of the flight. The
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force due to the electric field is given by F = 𝑒E, where 𝑒 denotes the charge of the

electron. The change in the k-vector is then given by Δk = Δp/ℎ̄, where, for a

constant force during the flight the change in momentum is Δp = Ft𝑓 . The energy

can then be calculated through the dispersion relation.

k𝑏 = k𝑎 +
F

ℎ̄
t𝑓 , 𝜖𝑏 =

ℎ̄2k2
𝑏

2m
(4.4)

The subindices 𝑏 and 𝑎 refer to the state immediately before and after the scattering

event.

4.1.4 Selection of the scattering mechanism

After a flight the rates Γi of the single scattering mechanism i ∈ {1, n} are evaluated.

Then one scattering mechanism is chosen by a uniform random number r. This can

be implemented by storing the partial sums of the rates in an array, so that the array

element 𝑆[i] with index i stores

𝑆[0] = 0, 𝑆[n] =
n∑︁

i=1

Γi (4.5)

If there are n different mechanisms the array is of the size n+1 and the last element

𝑆[n] stores the total rate Γtot. Then scattering mechanism i will be selected if it fulfills

𝑆[i− 1] < Γtot · r < 𝑆[i].

4.1.5 Sampling

There are two sampling approaches, the before scattering method, which has the

advantage of a simple implementation, and the constant Δt sampling method, which

is required for transient simulations.

Before scattering sampling

The sampling of the physical quantities of interest happens at the end of a free flight,

immediately before the scattering event. Since the flight time differs for every flight,
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the values that will be saved need to be weighted. This statistical weight can either

be the flight time or the reciprocal of the total scattering rate.

Sampling at constant time steps

Sampling with a fixed time step Δt is used in the transient algorithms, since the

trajectories of many electrons need to be sampled at the same points in time to

enable the calculation of ensemble averages.

Figure 4-2: Constant Δt sampling

Figure 4-3: Structogram of sampling with constant Δt
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4.2 Modifications for MC-algorithm to include EES

In order to simulate EES the trajectories of two individual electrons need to be

considered simultaneously. The algorithm is very similar to the one particle MC

algorithm. It differs in the calculation of the flight time and in the additional EES

mechanism.

Sampling

Sampling is performed as described in Section 4.1.2. Since two trajectories will be

sampled it is possible to average the results of both trajectories to gain more sampling

points. However, in some simulation cases the two electrons start with different initial

energies, which result in two trajectories that can not be merged. The relaxation

simulation where an ensemble of hot electrons interact with cold electrons would be

such a case.

Determination of flight duration and selection of scattering event

Selection of the scattering mechanism is a two step process. At first the affected

electrons need to be determined. This can either be electron 1 or electron 2 in the

case of phonon scattering, or both electrons in case of EES. This is done by evaluating

the different scattering rates Γ(1)
𝑃ℎ, Γ

(2)
𝑃ℎ for both electrons and Γ𝑒𝑒. Then the respective

flight times can be calculated by t𝑓 = − ln(1− r)/Γ. The shortest flight time will be

used for the flight and the according scattering event is performed after the flight.

The second step, which is only required for phonon scattering, is the selection of the

phonon scattering mechanism. It is explained in Section 4.1.5.
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Chapter 5

Results

In the following simulations we assumed the material parameters of bulk silicon. All

results have been obtained with the constant Δt sampling method. The simulation

code is implemented in Python according to Chapters 3, 4 and Appendix A

5.1 Stationary simulations

Figure 5-1 and Figure 5-2 show the mean values of energy and momentum as a

function of the electric field. The simulation was done with the parameters from

Table 5.1. The saturation in velocity is due to the high scattering rates that decelerate

the electrons. Figure 5-3 shows the velocity distribution for different electric fields.

The momentum distributions broaden for higher electric fields. Figure 5-4 shows

the energy distribution for different electric fields. In the equilibrium case (E = 0),

carriers are Maxwell distributed which can be observed in the exponential decrease of

the distribution. An important finding is that EES does not affect the mean values.

sampling points Δt Temperature
1× 106 10−14 s 300K

Table 5.1: Parameters for the stationary algorithm
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Figure 5-1: Mean velocity as a function of the electric field
solid curve: phonon scattering only; Symbols: EES included

Figure 5-2: Mean energy as a function of the electric field
solid curve: phonon scattering only; Symbols: EES included
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Figure 5-3: Velocity distribution function for different electric field strengths

Figure 5-4: Energy distribution function for different electric field strengths
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5.2 Transient simulations

The following results are time dependent and thus simulated by an ensemble of elec-

trons or electron pairs. The results show the sample mean at the given time step.

5.2.1 Step response

Figure 5-5 shows how the mean velocity and the mean energy of the electron respond

to a Heaviside step function in the electric field. After 1 ps the electric field changes

from 1 kV cm−1 to 50 kV cm−1. The simulation was done with the parameters from

Table 5.2. The result shows a velocity overshoot.

ensemble size sampling points Δt Temperature
10000 300 10−14 s 300K

Table 5.2: Parameter for transient algorithm

Figure 5-5: Step response of mean velocity and mean energy
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5.2.2 Relaxation

If electrons with high energy enter a domain of electrons with low energy, there will

be a relaxation process towards thermal equilibrium. This happens for example at

the junction between the channel and the drain region of a MOSFET. In Figure 5-6

the relaxation process of two electron ensembles is shown. One ensemble has a high

initial energy representing the hot electrons (3000K) coming from the channel. The

other ensemble has a low initial energy representing the cold drain domain (300K). If

the simulation is done without EES, one can see that the cold electron’s, that already

are at lattice temperature, won’t change their energy throughout the simulation time.

On the other hand the hot electrons relax to the lattice temperature in an exponential

process. If EES is included, the behavior is different. The hot electron interact with

the cold ones and heat them above the equilibrium energy. Also, the hot electrons

relax much faster due to the additional interaction.

Figure 5-6: Relaxation process for 𝑇𝐿 = 300K and n = 1019 cm−3

Figure 5-7 and Figure 5-8 show the same relaxation process as 5-6. The difference

is that the hot ensemble has now a temperature of 770K and the cold one 77K.

The simulation was done with two different carrier densities n = 1019 cm−3 and n =

1016 cm−3. In the simulation with the higher carrier densities hot and cold electrons

relax faster, due to the higher EES rate. In the simulation with the higher carrier

densities n = 1019 cm−3, it can also be seen, that curves approaches each other much

faster in the beginning. This is because from 0 ps to 0.5 ps relaxation happens mostly
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due to EES. Afterwards phonon scattering is dominant.

Figure 5-7: Relaxation process for 𝑇𝐿 = 77K and n = 1019 cm−3

Figure 5-8: Relaxation process for 𝑇𝐿 = 77K and n = 1016 cm−3
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Appendix A

Code

The Code was structured in three files: topfile.py, MonteCarlo.py, parameter.py.

The file topfile.py holds the core MC loop. It is the entry point of the program.

From here, the desired simulation can selected by setting the according if condition

true.

The file MonteCarlo.py holds all deeper intelligence and functionality of the code.

There are classes to calculate rates, flight and scattering behavior as well as classes

which manage the recording of data.

The file parameter.py holds all parameters in a data structure similar to JSON

(Python dict). Parameters will be scaled as described in A.1 and preconstants will

be evaluated at the beginning of the program in this file.

In the following the most important Code snippets are shown.
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A.1 System of units

In Order to improve numerical accuracy, all variables need to be scaled close to 1.

Therefore a distinction between units from the user input (external) and units used

for the actual calculations (internal) has to be made. The unit system for the user

input is chosen in a way to match common used units in literature. Every value

is divided by its unit, which leads to unitless calculations. Since the calculations

inside the code are done unitless, the results at the end of the simulation need to be

multiplied by the according unit in order to obtain meaningful output.

physical quantity unit

l𝑒n𝑔tℎ 1 cm
m𝑎ss 1 g
tim𝑒 1 s

volt𝑎𝑔𝑒 1V
𝑐urr𝑒nt 1A
𝑒n𝑒r𝑔y 1 eV

t𝑒mp𝑒r𝑎tur𝑒 1K

Table A.1: External units

physical quantity unit

l𝑒n𝑔tℎ 1 nm
m𝑎ss 1 g
tim𝑒 1 ns

volt𝑎𝑔𝑒 1𝜇V
𝑐urr𝑒nt 1𝜇A
𝑒n𝑒r𝑔y 1× 10−21 J

t𝑒mp𝑒r𝑎tur𝑒 1K

Table A.2: Internal units

constant value

ℎ̄ 6.582 119 569× 10−16 eV s
𝐾𝐵 8.617 333 262× 10−5 eVK−1

𝑒 1.602 176 63× 10−19 As

Table A.3: Constants [8]
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A.2 Particle state

The state of the electron is saved in a data class object. At the beginning of the code

this object is shared with all other classes that need to read or overwrite the current

state. In this way the object does not have to be passed or returned at every function

call.

1 @dataclass

2 class State:

3 energy: np.double =0

4 k: np.double =0; k_x: np.double =0; k_y: np.double =0; k_z: np.

double =0

5 r_x: np.double =0

6 mech: int=0

7 Gamma: np.double =0

8 flighttime: np.double =0

9 failure: np.bool_=False

10

Listing A.1: State dataclass
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A.3 Scattering rates

In order to evaluate the scattering rate a class was implemented in MonteCarlo.py.

It calculates the new rates based on the energy of the particle and constants saved in

parameter.py.

1 class Rates:

2 def __init__(self ,state:State=None):

3 self.state=state;

4 self.rates_array=np.zeros (13)#rates array init

5 cs=state

6 cs.energy=p["energy_max"]

7 self.rates_array_update ()

8 cs.vars.Gamma=self.rates_array [12]

9 cs.energy=p["energy_init"]

10 def rate_ac(self ,energy):# electron -acustical phonon scattering

11 return para.preconst_rates [12]* np.sqrt(energy)

12 def rate_intervally(self ,energy ,i):#Intervalley scattering

13 E_f=energy+para.dE[i]

14 if E_f <0: return 0

15 return para.preconst_rates[i]*np.sqrt(E_f)

16 def rates_array_update(self):

17 energy=self.state.energy

18 self.rates_array [0]= self.rate_intervally(energy ,0)

19 for i in range (1 ,12):

20 self.rates_array[i]=self.rates_array[i-1]+ self.

rate_intervally(energy ,i)

21 self.rates_array [12]= self.rates_array [11]+ self.rate_ac(

energy)

22

Listing A.2: Evaluation of phonon scatter rates
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1 def ee_flight_time(self ,cs1:State ,cs2:State):

2 B=self.B

3 Kv=[cs2.k_x -cs1.k_x ,cs2.k_y -cs1.k_y ,cs2.k_z -cs1.k_z]

4 K=np.linalg.norm(Kv)

5 Gamma_ee =(B/2)*K/(self.beta2+K**2)

6 t_ee =-1/( Gamma_ee)*np.log(random.random ())

7 return t_ee

8

9 def ee_scattering(self ,cs1:State ,cs2:State):

10 cs1.vars.mech =14; cs2.vars.mech =14

11 #build an local polar coordnate system with Kv as polar axis

12 K_v = [cs2.k_x -cs1.k_x ,cs2.k_y -cs1.k_y ,cs2.k_z -cs1.k_z]

13 e1_v = [-K_v[1], K_v[0], 0] # this vector is orthogonal to K_v

14 K=np.linalg.norm(K_v)

15 ek_v=K_v/K

16 e1_v = e1_v/np.linalg.norm(e1_v)

17 e2_v=np.cross(ek_v ,e1_v) # both ek_v and e1_v are normalized

18

19 #generate momentumtransfer vector

20 r=random.random ()

21 q=np.sqrt(r*(K**2)*self.beta2 /(K**2*(1 -r)+self.beta2))

22 cos_theta=q/K

23 sin_theta=np.sqrt(1- cos_theta **2)

24 phi=random.uniform (0,2*np.pi)

25 e_v=cos_theta*ek_v + sin_theta*np.sin(phi)*e1_v + sin_theta*np.

cos(phi)*e2_v

26 q_v=q*e_v

27

28 #change momentum wavevektor and energy

29 cs1.k_x+=q_v [0]; cs1.k_y+=q_v [1]; cs1.k_z+=q_v [2]

30 cs2.k_x -=q_v [0]; cs2.k_y -=q_v [1]; cs2.k_z -=q_v [2]

31

32 energy_old = cs1.energy+cs2.energy

33 k2=cs1.k_x **2+ cs1.k_y **2+ cs1.k_z **2

34 cs1.k=np.sqrt(k2)

35 cs1.energy=k2*self.k2toE
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36

37 k2=cs2.k_x **2+ cs2.k_y **2+ cs2.k_z **2

38 cs2.k=np.sqrt(k2)

39 cs2.energy=k2*self.k2toE

40 energy_new = cs1.energy+cs2.energy

41

Listing A.3: Evaluation of EES fligthtime and rates
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