Projects Details
Efficient Thermoelectrics Based on Silicon Nanomeshes | |
Project Number | P25368 |
Principal Investigator | Hans Kosina |
Scientists/Scholars | Oskar Baumgartner Hui Wen Karner Robert Kosik Neophytos Neophytou Mahdi Pourfath Zlatan Stanojevic Michael Thesberg |
Scientific Fields | 2524, Physikalische Elektronik, 30%
2939, Computerunterstützte Simulation, 30% 2941, Erneuerbare Energie, 20% 2968, Nanotechnologie, 20% |
Keywords | thermoelectrics, nanoporous materials, silicon nanomesh, modeling and simulation, band structure engineering, phonon transport |
Approval Date | 26. November 2012 |
Start of Project | 31. March 2013 |
End of Project | 29. September 2016 |
Additional Information | Entry in FWF Database |
Abstract |
Thermoelectric devices convert heat flow into useful electrical power. They are characterized by the figure of merit ZT, which is around unity for some of the best thermoelectric bulk materials such as bismuth telluride (Bi2Te3) and lead telluride (Pb2Te3). Efficiency of these thermoelectrics, however, is still too low to enable wide spread use in energy harvesting and cooling applications. Another problem of these materials is the rareness of Te. Nanostructures, on the other hand, provide the opportunity to design the properties of materials such that high thermoelectric performance can be achieved. This is also feasible for abundant, cost effective, and even poor thermoelectric starting materials such as silicon with a ZT value of around 0.01. A ZT value around one was already demonstrated for Si-based nanocomposites, 1D nanowires, and 2D superlattices. A novel nanostructure proposed recently is the Si nanomesh, also known as nano-porous Si. This structure benefits from well established and less expensive fabrication processes. In this project, we theoretically investigate thermoelectric transport in Si-based nanomeshes. An optimized thermoelectric material needs to have low thermal and high electrical conductivity. Important tasks of the project are, therefore, the analysis of i) the electronic and phononic bandstructures, and ii) the electron and phonon transport properties in nanomeshes. Geometries with feature sizes from a few hundred down to a few nanometers are considered. Accordingly, we employ k∙p models on the continuum level and the tight-binding model sp3d5s* on the atomistic level for electronic bandstructure calculation. For the phonon bandstructures we also employ both continuum methods and the atomistic valence-force-field method. For electronic transport we resort to both semiclassical (Boltzmann transport) and quantum mechanical (non-equilibrium Green’s functions) approaches, for phonon transport to diffusive as well as coherent methods depending on the device length scales. We investigate design concepts for the electronic and phononic properties of these artificial lattices to maximize thermoelectric efficiency. In particular, we address fundamental open questions such as: i) The possibility of relaxing the usual interdependence of the Seebeck coefficient and the electrical conductivity that limits the power factor, ii) Development of understanding towards electronic bandstructure engineering in nanomeshes, iii) Possible ways to engineer energy bands to alter the density of states by proper filling of the pores of the nanomeshes to improve performance, and iv) Design directions of the phonon modes of the nanomesh using the “phononic crystal” concept for drastically reducing the thermal conductivity. An expected outcome is to theoretically demonstrate designs that will achieve ZT > 3 in a large range of operating temperatures, a value required to enable broad, economic application. |
Kurzfassung |
Thermoelektrische Elemente wandeln einen Wärmestrom in nutzbare, elektrische Leistung um. Diese werden durch die Gütezahl ZT charakterisiert, welche für die besten bekannten thermoelektrischen Materialien wie Bismuttellurid (Bi2Te3) und Bleitellurid (Pb2Te3) einen Wert von etwa eins erreicht. Der Wirkungsgrad dieser Thermoelektrika ist jedoch immer noch zu niedrig um eine breite Anwendung bei der Verwertung von Abwärme oder bei Kühlprozessen zu ermöglichen. Weitere Nachteile dieser Materialien sind das äußerst seltene Vorkommen von Te. Andererseits bieten Nanostrukturen die Möglichkeit, gewisse Materialeigenschaften gezielt einzustellen, sodass auf diese Weise gute thermoelektrische Eigenschaften erreicht werden können. Dafür können auch leicht verfügbare, preiswerte Ausgangsmaterialien mit ungünstigen thermoelektrischen Eigenschaften verwendet werden, wie etwa Silizium mit einem ZT Wert von nur 0.01. Für Si-basierte Verbundstrukturen, 1D Quantendrähte und 2D Übergitter wurden bereits ZT Werte nahe eins nachgewiesen. Eine kürzlich vorgeschlagene, neue Nanostruktur ist nano-poröses Si, auch als Si-Nanogitter bezeichnet. Ein wesentlicher Vorteil dieser Nanostruktur liegt im Vorhandensein von etablierten und kosteneffektiven Herstellungsprozessen. |
View Final Report |