Subsections

2.5.2.4 Intervalley Phonon Scattering

An electron can be scattered from one valley to another one both by acoustical and optical phonons. Intervalley scattering can be treated as a deformation-potential interaction [30] in the same way as intravalley scattering by optical phonons.

2.5.2.4.1 Equivalent X-X Intervalley Scattering

This scattering process is subdivided into f-type and g-type processes. A process is referred to as f-type, if the initial and final orientations are different, otherwise as g-type process. The transition probability of this mechanism is given by:

$\displaystyle \lambda(\epsilon_{i})=Z_{f}\frac{\pi D^{2}_{XX}}{\rho\omega_{XX}}\left(N_{XX}+\frac{1}{2}\pm\frac{1}{2}\right)g_{X}(\epsilon_{f}),$ (2.115)

where $ \epsilon_{f}$ is:

$\displaystyle \epsilon_{f}=\epsilon_{i}\mp\hbar\omega_{XX}.$ (2.116)

$ N_{XX}$ is the equilibrium phonon number of the involved phonon type:

$\displaystyle N_{XX}=\frac{1}{\exp\bigl(\frac{\hbar\omega_{XX}}{k_{B}T_{L}}\bigr)-1}.$ (2.117)

$ Z_{f}$ is the number of possible equivalent final valleys of the same type. For f-type scattering $ Z_{f}=4$ and for g-type scattering $ Z_{f}=1$. $ D_{XX}$ is the coupling constant, $ \hbar\omega_{XX}$ is the corresponding phonon energy.

The numerical values of the coupling constants and phonon energies [18,20] are shown in Table 2.4.

Table 2.4: Numerical values for the intervalley X-X scattering rate.
  Silicon Germanium
$ D_{XX}^{g_{1}}$ $ 0.5\times 10^{8}$ eV/cm $ 0.488\times 10^{8}$ eV/cm
$ \hbar\omega_{XX}^{g_{1}}$ $ 0.01206$ eV $ 0.005606$ eV
$ D_{XX}^{g_{2}}$ $ 0.8\times 10^{8}$ eV/cm $ 0.79\times 10^{8}$ eV/cm
$ \hbar\omega_{XX}^{g_{2}}$ $ 0.01853$ eV $ 0.00861$ eV
$ D_{XX}^{g_{3}}$ $ 1.1\times 10^{9}$ eV/cm $ 9.5\times 10^{8}$ eV/cm
$ \hbar\omega_{XX}^{g_{3}}$ $ 0.06204$ eV $ 0.03704$ eV
$ D_{XX}^{f_{1}}$ $ 0.3\times 10^{8}$ eV/cm $ 0.283\times 10^{8}$ eV/cm
$ \hbar\omega_{XX}^{f_{1}}$ $ 0.01896$ eV $ 0.00992$ eV
$ D_{XX}^{f_{2}}$ $ 2.0\times 10^{8}$ eV/cm $ 1.94\times 10^{8}$ eV/cm
$ \hbar\omega_{XX}^{f_{2}}$ $ 0.04739$ eV $ 0.02803$ eV
$ D_{XX}^{f_{3}}$ $ 2.0\times 10^{8}$ eV/cm $ 1.69\times 10^{8}$ eV/cm
$ \hbar\omega_{XX}^{f_{3}}$ $ 0.05903$ eV $ 0.03278$ eV


2.5.2.4.2 Equivalent L-L Intervalley Scattering

For this type of scattering there is no separation into f- and g-type processes. The scattering rate is given as:

$\displaystyle \lambda(\epsilon_{i})=Z_{L}\frac{\pi D^{2}_{LL}}{\rho\omega_{LL}}\left(N_{LL}+\frac{1}{2}\pm\frac{1}{2}\right)g_{L}(\epsilon_{f})$ (2.118)

where $ \epsilon_{f}$ is

$\displaystyle \epsilon_{f}=\epsilon_{i}\mp\hbar\omega_{LL}.$ (2.119)

$ N_{LL}$ is the equilibrium phonon number of the involved phonon type:

$\displaystyle N_{LL}=\frac{1}{\exp\bigl(\frac{\hbar\omega_{LL}}{k_{B}T_{L}}\bigl)-1}.$ (2.120)

$ Z_{L}=\frac{7}{2}$ for the transition between two different orientations and $ Z_{L}=\frac{1}{2}$ for scattering within the same orientation, $ D_{LL}$ denotes the corresponding coupling constant and $ \hbar\omega_{LL}$ is the energy of the phonon involved in the scattering process.

The numerical values of the coupling constants and phonon energies [18,20] for this type of scattering are shown in Table 2.5.

Table 2.5: Numerical values for the intervalley L-L scattering rate.
  Silicon Germanium
$ D_{LL}$ $ 5.26\times 10^{8}$ eV/cm $ 3.0\times 10^{8}$ eV/cm
$ \hbar\omega_{LL}$ $ 0.02395$ eV $ 0.02756$ eV


2.5.2.4.3 Non-Equivalent Intervalley Scattering

This process involves transitions between all possible valleys in the conduction band. The scattering rate is given by:

$\displaystyle \lambda(\epsilon_{i})=Z_{j}\frac{\pi D^{2}_{ij}}{\rho\omega_{ij}}\left(N_{ij}+\frac{1}{2}\pm\frac{1}{2}\right)g_{j}(\epsilon_{f}),$ (2.121)

where $ \epsilon_{f}$ is:

$\displaystyle \epsilon_{f}=\epsilon_{i}\mp\hbar\omega_{ij}-\Delta \epsilon_{ij}.$ (2.122)

$ N_{ij}$ is the equilibrium phonon number of the involved phonon type:

$\displaystyle N_{ij}=\frac{1}{\exp\left(\frac{\hbar\omega_{ij}}{k_{B}T_{L}}\right)-1},$ (2.123)

and $ \delta\epsilon_{ij}$ is given as

$\displaystyle \Delta \epsilon_{ij}=\epsilon_{j,{\min}}-\epsilon_{i,{\min}}.$ (2.124)

Indices $ i$ and $ j$ stand for the initial and final valley, respectively, $ Z_{j}$ is the number of possible equivalent final valleys, $ D_{ij}$ is the corresponding coupling constant, $ \hbar\omega_{ij}$ is the respective phonon energy, $ \epsilon_{i,{\min}}$ and $ \epsilon_{j,{\min}}$ are the energy minima of the initial and the final valley, respectively.

The numerical values of the coupling constants and phonon energies [18,20] for this type of scattering are shown in Table 2.6.

Table 2.6: Numerical values for the non-equivalent intervalley scattering rate.
  Silicon Germanium
$ D_{GX}$ $ 0.0$ eV/cm $ 10^{9}$ eV/cm
$ \hbar\omega_{GX}$ $ 0.0$ eV $ 0.02756$ eV
$ D_{GL}$ $ 0.0$ eV/cm $ 2.0\times 10^{8}$ eV/cm
$ \hbar\omega_{GL}$ $ 0.0$ eV $ 0.02756$ eV
$ D_{XL}$ $ 4.65\times 10^{8}$ eV/cm $ 4.1\times 10^{8}$ eV/cm
$ \hbar\omega_{XL}$ $ 0.02283$ eV $ 0.02756$ eV


S. Smirnov: