3.4.2 Thermal Properties

The thermal material properties are modeled by the tensors of the thermoelectric power $ \overset{\sim }{P}_\nu$ for electrons and holes, the heat capacity $ c$, and the tensor of the thermal conductivity $ \overset{\sim }{\kappa }$. To date no measured data about the tensors of the thermoelectric power $ \overset{\sim }{P}$ are available for SiC. Hence, corresponding values measured for Si have to be used [143,144].


The measured data which are available for the heat capacity of $ \alpha $-SiC [145] can be adapted to (3.98). The model evaluates the specific heat capacity for the transient simulation with self-heating.

$\displaystyle c(T) = A_{c}+B_{c}\cdot T_\mathrm{L}+C_{c}\cdot T_\mathrm{L}^{2}+D_{c}\cdot T_\mathrm{L}^{-2}.$ (3.98)

The fitting parameters A$ _c$, B$ _c$, C$ _c$ and D$ _c$ are summarized in Table 3.7.


Similarly, published experimental data of the thermal conductivity available for $ \alpha $-SiC [146,147] can be adapted to the model

$\displaystyle \kappa (T_\mathrm{L}) = \frac{1}{A_{k}+B_{k}\cdot T_\mathrm{L}+C_{k}\cdot T_\mathrm{L}^{2}}.$ (3.99)

The constants A$ _k$, B$ _k$ and C$ _k$ are listed in Table 3.7 and  Fig. 3.12 illustrates the influence of the temperature on the heat capacity and the thermal conductivity in $ \alpha $-SiC. Furthermore, the anisotropic ratio of 6H-SiC has been experimentally determined to $ \kappa _{\perp }/\kappa
_{\parallel}=0.7$ [146] independent of the temperature and the doping concentration.

Table 3.7: Model parameters for the heat capacity and the thermal conductivity in $ \alpha $-SiC.
  A$ _{c}$[Jkg$ ^{-1}$K$ ^{-1}$] B$ _{c}$[Jkg$ ^{-1}$K$ ^{-2}$] C $ _{c}$[Jkg$ ^{-1}$K$ ^{-3}$] D$ _{c}$ [Jkg$ ^{-1}$K]
c 1026 0.201 0 -3.66$ \times$10$ ^{7}$
  A $ _{\kappa }$[mKW$ ^{-1}$] B $ %
_{\kappa }$[mW$ ^{-1}$] C $ _{\kappa }$[mK$ ^{-1}$W$ ^{-1}$]  
$ \kappa$ 2.5$ \times$10$ ^{-5}$ 2.750$ \times$ 10$ ^{-6}$ 1.3$ \times$10$ ^{-8}$  


Figure 3.12: Influence of temperature on heat capacity and thermal conductivity in $ \alpha $-SiC.
\includegraphics[width=0.6\linewidth]{figures/thermal.eps}


For the purpose of device simulation the thermal conductivity is often modeled by a power law expression given by

$\displaystyle \kappa(T_\mathrm{L}) = \kappa_{0}\cdot{\left(\frac{T_\mathrm{L}}{\mathrm{300\ K}}\right)}^\alpha,$ (3.100)

where $ \kappa_{0} = 490$ W/mK is the value for the thermal conductivity at $ {\mathrm{300\,K}}$ for $ \alpha $-SiC, and $ \alpha = -1.5$ is a fitting parameter.


The lattice thermal flux density between two boxes and its derivatives with respect to the input quantities, which are the temperatures $ T_1$ and $ T_2$, are calculated by

$\displaystyle \int_{T_1}^{T_2} \kappa(T_\mathrm{L})\ dT_\mathrm{L}= \frac{\kapp...
...{\alpha+1} - \left(\frac{q\cdot T_1}{300\ \mathrm{K}}\right)^{\alpha+1}\right).$ (3.101)

T. Ayalew: SiC Semiconductor Devices Technology, Modeling, and Simulation