next up previous contents
Next: 2.9 Time Step and Up: 2. Finite Element Method Previous: 2.7 Assembling


2.8 General Solving Procedure

The complete solving procedure for a time dependent problem has the following structure,

Image solving_snapshot_cut

This yields values of $ \mathbf{c}^n$ for discrete times $ t_n=\sum_i \Delta t_i$. Automatic time step and mesh control are discussed in the next section. As the terminating condition (condition( $ \mathbf{c}_h^{k,n}$) in the Solving Algorithm) for the Newton loop, the following inequalities are commonly used,

$\displaystyle \Vert\mathbf{c}_h^{k+1,n}-\mathbf{c}_h^{k,n} \Vert\leq \eta_{abs},$ (2.48)

$\displaystyle \Vert\mathbf{c}_h^{k+1,n}-\mathbf{c}_h^{k,n} \Vert\leq \eta_{rel}\Vert\mathbf{c}_h^{k+1,n}\Vert,$ (2.49)

$\displaystyle \Vert\mathbf{R}(\mathbf{c}_h^{k+1,n})\Vert\leq \eta_f.$ (2.50)

where $ \eta_{abs}$, $ \eta_{rel}$, and $ \eta_f$ are given tolerances and $ \Vert \Vert$ Euclidian norm.


next up previous contents
Next: 2.9 Time Step and Up: 2. Finite Element Method Previous: 2.7 Assembling

H. Ceric: Numerical Techniques in Modern TCAD