Next:
1. Introduction
Up:
Dissertation Hajdin Ceric
Previous:
Acknowledgment
Contents
1. Introduction
1.1 Silicon Technology CAD
1.2 Interconnect Reliability
1.3 IC Fabrication Process Steps
1.4 Components of a Numerical Solution Method
1.4.1 Mathematical Model
1.4.2 Discretization Method
1.4.3 Mesh
1.4.4 Accuracy
1.5 Motivation and Outline of the Thesis
2. Finite Element Method
2.1 The Systems of Partial Differential Equations
2.2 Rayleigh-Ritz Method
2.3 Galerkin's Method
2.4 Time Dependent Problems
2.5 Finite Element Spaces and Meshes
2.6 Newton Methods
2.6.1 Introduction
2.6.2 Basic Newton Method
2.6.3 Simplified Newton Method
2.6.4 Damping
2.7 Assembling
2.8 General Solving Procedure
2.9 Time Step and Mesh Control
3. Diffusion Phenomena in Semiconductors
3.1 The Physics of Diffusion
3.2 Interaction of Dopants with Simple Native Point Defects
3.2.1 Charge Exchange Reactions
3.2.2 Dopant and Point Defect Reactions
3.3 Equilibrium Diffusion
3.3.1 Intrinsic Diffusion
3.3.2 Extrinsic Diffusion
3.3.3 Vacancy-Only Assisted Diffusion
3.4 Nonequilibrium Models
3.4.1 Simple Point Defect Model
3.4.2 Three-Stream Mulvaney-Richardson Model
3.4.3 Five-Stream Dunham Model
3.5 Boundary and Interface Conditions
3.5.1 Dirichlet Boundary Condition
3.5.2 Neumann Boundary Condition
3.5.3 Segregation Interface Condition
3.5.4 Surface Reactions
3.6 The Plus-One Model
3.7 Dopant Diffusion in the Presence of Exdendend Crystal Defects
3.8 Numerical Handling of the Diffusion Models
3.8.1 Discretization of the Simple Diffusion Model
3.8.2 Discretization of the Simple Extrinsic Diffusion Model
3.8.3 Discretization of the Three-Stream Mulvaney-Richardson Model
3.8.4 Analytical Solution of the Segregation Problem for One Dimension
3.8.5 Numerical Handling of the Segregation Model
3.9 Dosis Conservation
3.10 Simulation Results
3.10.1 Equilibrium Diffusion at the Silicon/Silicon-Dioxide Interface
3.10.2 Point Defect Assisted Diffusion
4. Electromigration Problem in the Interconnect
4.1 Integrating Void Pre-Nucleation and Void Evolution
4.2 The Physics of Electromigration
4.3 Electromigration TCAD Solutions
4.3.1 Black's Law
4.3.2 Modeling of the Electromigration Promoting Factors
4.4 Prediction of the Voids Nucleation Sites
4.4.1 Korhonen's Model
4.4.2 Analytical Solution of Korhonen's Equation
4.4.3 The Sink/Source Term
4.4.4 An Explanation of Black's Law
4.4.5 Sarychev's Model
4.4.6 Finite Element Discretization of the Basic Equation
4.5 Void evolution and Interconnect Resistance Change Models
4.5.1 Theoretical Formulation
4.5.2 The Diffuse Interface Model
4.5.3 Numerical Implementation
4.5.4 Setting of the Initial Order Parameter Profile and Initial Grid Refinement
4.5.5 Finite Element Scheme
4.5.6 Maintaining the Grid during Simulation
4.5.7 Grid Adaptation
4.5.8 Solving Procedure
4.6 Simulation Results
4.6.1 Two-Dimensional Void Evolution
4.6.2 Estimating the Void Growth Time and Resistance Change
4.6.3 A Study of Electromigration Promoting Factors and Vacancy Dynamics
5. Summary and Outlook
A. Vacancies in Solids
B. Some Tools from Abstract Mathematical Analysis
Bibliography
Own Publications
Next:
1. Introduction
Up:
Dissertation Hajdin Ceric
Previous:
Acknowledgment
H. Ceric: Numerical Techniques in Modern TCAD