next up previous contents
Next: 2.4 Time Dependent Problems Up: 2. Finite Element Method Previous: 2.2 Rayleigh-Ritz Method


2.3 Galerkin's Method

A weak formulation of ( % latex2html id marker 12991
$ \ref{gen_eq}$) for $ \frac{\partial \mathbf{c} }{\partial t}=0$ is given by,

$\displaystyle (v,\mathcal{L}(\mathbf{c}))=(v,\mathbf{f}),  \forall v\in C^{1}(\Omega),$ (2.7)

$ v$ is called test function. In this case we have an inner product between a scalar and a vector function on both sides of equation (2.7).

If the solution of the problem (2.1) in the space $ \mathcal{V}$ exists, than it is possible to represent this solution as the sum of an infinite series with the weighted basis functions of the space $ \mathcal{V}=C^2(\Omega)$.

The central idea of Galerkin's method is to seek the solution of the problem given by (2.1), (2.2), and (2.3) not represented through the basis functions of the infinite space $ \mathcal{V}$ but through the basis functions of the finite space $ \mathcal{V}_h\subset \mathcal{V}$ ( dim$ \mathcal{V}_h<\infty$) [9,10]. Such a solution can only be an approximation of the real solution of (2.1).
We choose $ N$ linear independent functions $ \varphi_i\in\mathcal{V}$, $ i=1,\dots,N$ which span the space $ \mathcal{V}_h$, e.g.

$\displaystyle \mathcal{V}_h=\Bigl\{ v   :    v(\mathbf{x})=\sum_{i=1}^{N}s_i \varphi_i(\mathbf{x})\Bigr\},$ (2.8)

where $ s_i\in \Bbb{R}$.
Now we can write equation (2.7) in the space $ \mathcal{V}_h$,

$\displaystyle (v_h,\mathcal{L}(\mathbf{c}_h))=(v_h,\mathbf{f}),\quad \forall v_h\in \mathcal{V}_h.$ (2.9)

Trivially $ \varphi_i\in\mathcal{V}_h$, and we can write,

$\displaystyle (\varphi_i,\mathcal{L}(\mathbf{c}_h))=(\varphi_i,\mathbf{f}),$   for$\displaystyle   i=1,\dots,N.$ (2.10)

Considering that

$\displaystyle \mathbf{c}_h=(c_{h,1},c_{h,2},\dots,c_{h,M})^T=\Bigl(\sum_{i=1}^{N}c_{i,1}\varphi_i,\dots,\sum_{i=1}^{N}c_{i,M}\varphi_i\Bigr)^T,$ (2.11)

we see that inner product in (2.10) transforms the differential operator $ \mathcal{L}$ into the operator

$\displaystyle \ell : \Bbb{R}^{n}\rightarrow \Bbb{R}^{n},   n=M\cdot N,$ (2.12)

and we write (2.10) as a system of nonlinear algebraic equations

$\displaystyle \ell_{ij}(c_{1,1},\dots,c_{1,N},\dots,c_{M,1},\dots,c_{M,N})=(\varphi_i,f_j),   $for$\displaystyle   i=1,\dots,N  $and$\displaystyle   j=1,\dots,M.$ (2.13)

This equation is solved by means of Newton's method (see Section 2.6). The solutions $ c_{ij}$ of (2.13) are used to construct approximation of the functions $ c_i(\mathbf{x})$ from $ \mathcal{V}_h$ using (2.8).
The value

$\displaystyle R_{ij}=\ell_{ij}(c_{1,1},\dots,c_{1,N},\dots,c_{M,1},\dots,c_{M,N})-(\varphi_i,f_j),   $for$\displaystyle   i=1,\dots,N  $and$\displaystyle   j=1,\dots,M$ (2.14)

is called residuum.


next up previous contents
Next: 2.4 Time Dependent Problems Up: 2. Finite Element Method Previous: 2.2 Rayleigh-Ritz Method

H. Ceric: Numerical Techniques in Modern TCAD