next up previous contents
Next: List of Figures Up: Dissertation Johann Cervenka Previous: 7. Conclusion and Outlook

Bibliography

1
D. Adalsteinsson and J.A. Sethian,
``A Fast Level Set Method for Propagating Interfaces,''
J.Comput.Phys., vol. 118, no. 1, pp. 269-277, April 1995.

2
O.E. Akcasu,
``Convergence Properties of Newton's Method for the Solution of the Semiconductor Transport Equations and Hybrid Solution Techniques for Multidimensional Simulation of VLSI Devices,''
Solid-State Electron., vol. 27, no. 4, pp. 319-328, 1984.

3
V. Axelrad,
``Grid Quality and Its Influence on Accuracy and Convergence in Device Simulation,''
IEEE Trans.Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no. 2, pp. 149-157, 1998.

4
R.E. Bank and D.J. Rose,
``Parameter Selection for Newton-like Methods Applicable to Nonlinear Partial Differential Equations,''
SIAM J.Numer.Anal., vol. 17, no. 6, pp. 806-822, 1980.

5
D.A. Bell,
``Improved Formulation of Gummel's Algorithm for Solving the 2-Dimensional Current-Flow Equations in Semiconductor Devices,''
Electron.Lett., vol. 8 pp. 536-538, 1972.

6
T. Binder, J. Cervenka, K. Dragosits, A. Gehring, T. Grasser, M. Gritsch, R. Klima, M. Knaipp, H. Kosina, R. Mlekus, V. Palankovski, R. Rodriguez-Torres, M. Rottinger, G. Schrom, S. Selberherr, M. Stockinger, and S. Wagner,
Minimos-NT, Device and Circuit Simulator, Version 2.0,
Institut für Mikroelektronik, 2002.

7
H. Ceric and S. Selberherr,
``An Adaptive Grid Approach for the Simulation of Electromigration Induced Void Migration,''
IEICE Trans.Electronics, vol. E86-C, no. 3, pp. 421-426, 2003.

8
T. Chen, D.W. Yergeau, and R.W. Dutton,
``A Common Mesh Implementation for Both Static and Moving Boundary Process Simulations,''
In Meyer and Biesemans [37], pp. 101-104.

9
Y.-K. Choi, T.-J. King, and C. Hu,
``Nanoscale CMOS Spacer FinFET for the Terabit Era,''
IEEE Electron Device Lett., vol. 23, no. 1, pp. 25-27, January 2002.

10
H.J. Dirschmid,
Einführung in die mathematischen Methoden der theoretischen Physik,
Vieweg, 1976.

11
C. Fischer, P. Habaš, O. Heinreichsberger, H. Kosina, Ph. Lindorfer, P. Pichler, H. Pötzl, C. Sala, A. Schütz, S. Selberherr, M. Stiftinger, and M. Thurner,
MINIMOS 6 User's Guide,
Institut für Mikroelektronik, Technische Universität Wien, Austria, 1994.

12
P. Fleischmann,
Mesh Generation for Technology CAD in Three Dimensions,
Dissertation, Technische Universität Wien, 2000
http://www.iue.tuwien.ac.at/phd/fleischmann.

13
P. Fleischmann, B. Haindl, R. Kosik, and S. Selberherr,
``Investigation of a Mesh Criterion for Three-Dimensional Finite Element Diffusion Simulation,''
In SISPAD'99 [62], pp. 71-74.

14
P. Fleischmann, R. Kosik, B. Haindl, and S. Selberherr,
``Simple Mesh Examples to Illustrate Specific Finite Element Mesh Requirements,''
In 8th International Meshing Roundtable, pp. 241-246, 1999.

15
P. Fleischmann, R. Sabelka, A. Stach, R. Strasser, and S. Selberherr,
``Grid Generation for Three-Dimensional Process and Device Simulation,''
In Simulation of Semiconductor Processes and Devices, pp. 161-166, Business Center for Academic Societies Japan, Tokyo, Japan, 1996.

16
Ch. Großmann and H. G. Roos,
Numerik partieller Differentialgleichungen,
Teubner Studienbücher Mathematik, Teubner-Verlag, Stuttgart, 1994.

17
H.K. Gummel,
``A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculations,''
IEEE Trans.Electron Devices, vol. ED-11 pp. 455-465, 1964.

18
K. Haberger, H. Ryssel, G. Prinke, and K. Hoffmann,
``Diffusionsmechanismen in Halbleitern,''
Techn. Report RY1/6, Institut für Festkörpertechnologie, München, 1979.

19
B. Haindl, R. Kosik, P. Fleischmann, and S. Selberherr,
``Comparison of Finite Element and Finite Box Discretization for Three-Dimensional Diffusion Modeling Using AMIGOS,''
In SISPAD'99 [62], pp. 131-134.

20
M.R. Hestenes and E. Stiefel,
``Method of Conjugate Gradients for Solving Linear Systems,''
J.Res.Nat.Bur.Stand., vol. 49 pp. 409-436, 1952.

21
N. Hitschfeld, M.C. Rivara, and M. Palma,
``Improving the Quality of Delaunay Triangulations for the Control Volume Discretization Method,''
In Meyer and Biesemans [37], pp. 189-192.

22
H. Hofmann,
Das elektromagnetische Feld,
Springer, Wien New-York, 1974.

23
H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
``Surface Reconstruction from Unorganized Points,''
Computer Graphics, vol. 26, no. 2, pp. 71-78, 1992.

24
A. Hössinger, S. Selberherr, M. Kimura, I. Nomachi, and S. Kusanagi,
``Three-Dimensional Monte-Carlo Ion Implantation Simulation for Molecular Ions,''
In Electrochemical Society Proceedings, vol. 99-2, pp. 18-25, 1999.

25
T. Ikeda,
Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena,
North Holland, Amsterdam, 1983.

26
J.D. Jackson,
Klassische Elektrodynamik,
John Wiley & Sons, 1999.

27
I. Kaufman,
``Finite Volume Poisson Solver for Ionic Channels,''
Techn. report, Department of Physics, Lancaster University, Lancaster
http://www.lancs.ac.uk/$ \sim$kaufmani/psn/fvm.pdf.

28
R. Kosik, P. Fleischmann, B. Haindl, P. Pietra, and S. Selberherr,
``On the Interplay Between Meshing and Discretization in Three-Dimensional Diffusion Simulation,''
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 11, pp. 1233-1240, 2000.

29
I. Kossacky,
``A Recursive Approach to Local Mesh Refinement in Two and Three Dimensions,''
J.Comp.Appl.Math., vol. 55 pp. 275-288, 1994.

30
C. Ledl,
``Konvertierung rasterorienter Geometrien in polygonal begrenzte,''
Diplomarbeit, Technische Universität Wien, 1994.

31
E. Leitner and S. Selberherr,
``Three-Dimensional Grid Adaptation Using a Mixed-Element Decomposition Method,''
In Ryssel and Pichler [53], pp. 464-467.

32
K. Lilja, V. Moroz, and D. Wake,
``A 3D Mesh Generation Method for the Simulation of Semiconductor Processes and Devices,''
In Proc. International Conference on Modeling and Simulation of Microsystems Semiconductors, Sensors and Actuators, pp. 334-338, Santa Clara, CA, USA, April 1998.

33
J. Litsios, B. Schmithüsen, U. Krumbein, A. Schenk, E. Lyumkis, B. Polsky, and W. Fichtner,
DESSIS 3.0: Manual,
ISE Integrated Systems Engineering, Zürich, Switzerland, 1996
release 3.0 edition.

34
W.E. Lorensen and H.E. Cline,
``Marching Cubes: A High Resolution 3D Surface Construction Algorithm,''
Computer Graphics, vol. 21, no. 4, pp. 163-169, 1987.

35
P.A. Markowich, C.A. Ringhofer, S. Selberherr, and M. Lentini,
``A Singular Perturbation Approach for the Analysis of the Fundamental Semiconductor Equations,''
IEEE Trans.Electron Devices, vol. ED-30, no. 9, pp. 1165-1180, 1983.

36
C.W. Mastin and J.F. Thompson,
``Quasiconformal Mappings and Grid Generation,''
SIAM J.Sci.Stat.Comput., vol. 5, no. 2, pp. 305-316, 1984.

37
K. De Meyer and S. Biesemans, editors,
Simulation of Semiconductor Processes and Devices,
Springer, Wien, New York, 1998.

38
R. Mlekus, Ch. Ledl, E. Strasser, and S. Selberherr,
``Polygonal Geometry Reconstruction after Cellular Etching or Deposition Simulation,''
In Ryssel and Pichler [53], pp. 50-53.

39
N. Molino, R. Bridson, J. Teran, and R. Fedkiw,
``A Crystalline, Red Green Strategy for Meshing Highly Deformable Objects with tetrahedra,''
In 12th International Meshing Roundtable, pp. 103-114. Sandia National Laboratories, 2003.

40
Y. Nishi and R. Doering,
Handbook of Semiconductor Manufactoring Technology,
Marcel Dekker AG, 2000.

41
J.T. Oden and J.N. Reddy,
An Introduction to the Mathematical Theory of Finite Elements,
Wiley, 1976.

42
A. Okabe, B. Boots, and K. Sugihara,
Spatial Tessellations - Concepts and Applications of Voronoi Diagrams,
Wiley, 1992.

43
C. Pao,
Nonlinear Parabolic and Elliptic Equations,
Plenum, New York, 1992.

44
A.L. Pardhanani and G.F. Carey,
``A Mapped Scharfetter-Gummel Formulation for the Efficient Simulation of Semiconductor Device Models,''
IEEE Trans.Computer-Aided Design of Integrated Circuits and Systems, vol. 16, no. 10, pp. 1227-1233, 1997.

45
M.H. Protter and H.F. Weinberger,
Maximum Principles in Differential Equations,
Springer, 1999.

46
M. Putti and Ch. Cordes,
``Finite Element Approximation of the Diffusion Operator on Tetrahedra,''
SIAM J.Sci.Comput., vol. 19, no. 4, pp. 1154-1168, 1998.

47
M. Radi,
Three-Dimensional Simulation of Thermal Oxidation,
Dissertation, Technische Universität Wien, 1998
http://www.iue.tuwien.ac.at/phd/radi.

48
M. Radi, E. Leitner, E. Hollensteiner, and S. Selberherr,
``Analytical Partial Differential Equation Modeling Using AMIGOS,''
In Proc. IASTED International Conference Artificial Intelligence and Soft Computing, pp. 423-426, Banff, Canada, July 1997.

49
J.K. Reid,
``On the Method of Conjugate Gradients for the Solution of Large Sparse Systems of Linear Equations,''
In J.K. Reid, editor, Large Sparse Sets of Linear Equations. Academic Press, 1971.

50
M.C. Rivara,
``Mesh Refinement Processes Based on the Generalized Bisection of Simplices,''
SIAM J.Numer.Anal., vol. 21, no. 3, pp. 604-613, 1984.

51
M.C. Rivara and P. Inostroza,
``A Discussion on Mixed (Longest Side Midpoint Insertion) Delaunay Techniques for the Triangulation Refinement Problem,''
In 4th International Meshing Roundtable, pp. 335-346, Sandia National Labs., Albuquerque, New Mexico, 1995.

52
H. Ryssel,
``Implantation and Diffusion Models for Process Simulation,''
In K.M. DeMeyer, editor, VLSI Process and Device Modeling, pp. 1-41. Katholieke Universiteit Leuven, 1983.

53
H. Ryssel and P. Pichler, editors,
Simulation of Semiconductor Devices and Processes,
vol. 6, Springer, Wien, Austria, 1995.

54
R. Sabelka,
Dreidimensionale Finite Elemente Simulation von Verdrahtungsstrukturen auf Integrierten Schaltungen,
Dissertation, Technische Universität Wien, 2001
http://www.iue.tuwien.ac.at/phd/sabelka.

55
R. Sabelka, R. Martins, and S. Selberherr,
``Accurate Layout-Based Interconnect Analysis,''
In Meyer and Biesemans [37], pp. 336-339.

56
R. Sabelka and S. Selberherr,
``SAP -- A Program Package for Three-Dimensional Interconnect Simulation,''
In Proc. Intl. Interconnect Technology Conference, pp. 250-252, Burlingame, California, June 1998.

57
D.L. Scharfetter and H.K. Gummel,
``Large-Signal Analysis of a Silicon Read Diode Oscillator,''
IEEE Trans.Electron Devices, vol. ED-16, no. 1, pp. 64-77, 1969.

58
W.J. Schroeder, J.A. Zarge, and W.E. Lorenson,
``Decimation of Triangle Meshes,''
Computer Graphics, vol. 26, no. 2, pp. 65-70, 1992.

59
G. Schumicki and P. Seegebrecht,
Prozeßtechnologie,
Springer, 1991.

60
A.H. Sherman,
``On Newton-Iterative Methods for the Solution of Systems of Nonlinear Equations,''
SIAM J.Numer.Anal., vol. 15 pp. 755-771, 1978.

61
Jonathan Richard Shewchuk,
``Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator,''
In Ming C. Lin and Dinesh Manocha, editors, Applied Computational Geometry: Towards Geometric Engineering, vol. 1148 of Lecture Notes in Computer Science, , pp. 203-222, Springer-Verlag, May 1996
From the First ACM Workshop on Applied Computational Geometry.

62
Proc. Simulation of Semiconductor Processes and Devices,
Kyoto, Japan, September 1999.

63
P. Stein and R.L. Rosenberg,
``On the Solution of Linear Simultaneous Equations by Iteration,''
J.London Math.Soc., vol. 23 pp. 111-118, 1948.

64
J.L. Stone and J.C. Plunkett,
``Ion Implantation Processes in Silicon,''
In F.F.Y. Wang, editor, Impurity Doping Processes in Silicon, pp. 56-146, North-Holland, Amsterdam, 1981.

65
N. Strecker,
ISE TCAD Manuals vol. 5,
ISE Integrated Systems Engineering, Zürich, Switzerland, 1997
release 4.

66
J.C. Strikwerda,
Finite Difference Schemes and Partial Differential Equations,
Chapman & Hall, New York, 1989.

67
A.D. Sutherland,
``On the Use of Overrelaxation in Conjuncton with Gummel's Algorithm to Speed the Convergence in a Two-Dimensional Computer Model for MOSFET's,''
IEEE Trans.Electron Devices, vol. ED-27 pp. 1297-1298, 1980.

68
Technology Modeling Associates, Inc., Sunnyvale, California
TMA Medici, Two-Dimensional Device Simulation Program, Version 4.0 User's Manual,, October 1997.

69
N.D. Thai,
``Concentration Dependent Diffusion of Boron and Phosphorus in Silicon,''
J.Appl.Phys., vol. 41, no. 7, pp. 2859-2866, 1970.

70
J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin,
Numerical Grid Generation,
North Holland, 1985.

71
University of Nijmegen, NL
Short Course on Preconditioned Conjugate Gradient Methods,
1989.

72
W. Wessner, C. Heitzinger, A. Hössinger, and S. Selberherr,
``Error Estimated Driven Anisotropic Mesh Refinement for Three-Dimensional Diffusion Simulation,''
In Simulation of Semiconductor Processes and Devices, pp. 109 - 112, Boston,USA, September 2003.

73
W. Wessner, C. Hollauer, A. Hössinger, and S. Selberherr,
``Anisotropic Laplace Refinement for Three-Dimensional Oxidation Simulation,''
In Simulation of Semiconductor Processes and Devices, Munich, Germany, September 2004.

74
R.E. White,
An Introduction to the Finite Element Method with Applications to Nonlinear Problems,
John Wiley & Sons, New York, 1985.

75
J. Xu and L. Zikatanov,
``A Monotone Finite Element Scheme for Convection-Diffusion Equations,''
Mathematics of Computation, vol. 68, no. 228, pp. 1429-1446, October 1999.


next up previous contents
Next: List of Figures Up: Dissertation Johann Cervenka Previous: 7. Conclusion and Outlook

J. Cervenka: Three-Dimensional Mesh Generation for Device and Process Simulation