Next: List of Figures
Up: Dissertation Johann Cervenka
Previous: 7. Conclusion and Outlook
- 1
-
D. Adalsteinsson and J.A. Sethian,
``A Fast Level Set Method for Propagating Interfaces,''
J.Comput.Phys., vol. 118, no. 1, pp. 269-277, April 1995.
- 2
-
O.E. Akcasu,
``Convergence Properties of Newton's Method for the Solution of the
Semiconductor Transport Equations and Hybrid Solution Techniques for
Multidimensional Simulation of VLSI Devices,''
Solid-State Electron., vol. 27, no. 4, pp. 319-328, 1984.
- 3
-
V. Axelrad,
``Grid Quality and Its Influence on Accuracy and Convergence in
Device Simulation,''
IEEE Trans.Computer-Aided Design of Integrated Circuits and
Systems, vol. 17, no. 2, pp. 149-157, 1998.
- 4
-
R.E. Bank and D.J. Rose,
``Parameter Selection for Newton-like Methods Applicable to Nonlinear
Partial Differential Equations,''
SIAM J.Numer.Anal., vol. 17, no. 6, pp. 806-822, 1980.
- 5
-
D.A. Bell,
``Improved Formulation of Gummel's Algorithm for Solving the
2-Dimensional Current-Flow Equations in Semiconductor Devices,''
Electron.Lett., vol. 8 pp. 536-538, 1972.
- 6
-
T. Binder, J. Cervenka, K. Dragosits, A. Gehring, T. Grasser, M. Gritsch,
R. Klima, M. Knaipp, H. Kosina, R. Mlekus, V. Palankovski,
R. Rodriguez-Torres, M. Rottinger, G. Schrom, S. Selberherr, M. Stockinger,
and S. Wagner,
Minimos-NT, Device and Circuit Simulator, Version 2.0,
Institut für Mikroelektronik, 2002.
- 7
-
H. Ceric and S. Selberherr,
``An Adaptive Grid Approach for the Simulation of Electromigration
Induced Void Migration,''
IEICE Trans.Electronics, vol. E86-C, no. 3, pp. 421-426,
2003.
- 8
-
T. Chen, D.W. Yergeau, and R.W. Dutton,
``A Common Mesh Implementation for Both Static and Moving Boundary
Process Simulations,''
In Meyer and Biesemans [37], pp. 101-104.
- 9
-
Y.-K. Choi, T.-J. King, and C. Hu,
``Nanoscale CMOS Spacer FinFET for the Terabit Era,''
IEEE Electron Device Lett., vol. 23, no. 1, pp. 25-27,
January 2002.
- 10
-
H.J. Dirschmid,
Einführung in die mathematischen Methoden der theoretischen
Physik,
Vieweg, 1976.
- 11
-
C. Fischer, P. Habaš, O. Heinreichsberger, H. Kosina, Ph. Lindorfer,
P. Pichler, H. Pötzl, C. Sala, A. Schütz, S. Selberherr,
M. Stiftinger, and M. Thurner,
MINIMOS 6 User's Guide,
Institut für Mikroelektronik, Technische Universität
Wien, Austria, 1994.
- 12
-
P. Fleischmann,
Mesh Generation for Technology CAD in Three Dimensions,
Dissertation, Technische Universität Wien, 2000
http://www.iue.tuwien.ac.at/phd/fleischmann.
- 13
-
P. Fleischmann, B. Haindl, R. Kosik, and S. Selberherr,
``Investigation of a Mesh Criterion for Three-Dimensional Finite
Element Diffusion Simulation,''
In SISPAD'99 [62], pp. 71-74.
- 14
-
P. Fleischmann, R. Kosik, B. Haindl, and S. Selberherr,
``Simple Mesh Examples to Illustrate Specific Finite Element Mesh
Requirements,''
In 8th International Meshing Roundtable, pp. 241-246, 1999.
- 15
-
P. Fleischmann, R. Sabelka, A. Stach, R. Strasser, and S. Selberherr,
``Grid Generation for Three-Dimensional Process and Device
Simulation,''
In Simulation of Semiconductor Processes and Devices, pp.
161-166, Business Center for Academic Societies Japan, Tokyo, Japan, 1996.
- 16
-
Ch. Großmann and H. G. Roos,
Numerik partieller Differentialgleichungen,
Teubner Studienbücher Mathematik, Teubner-Verlag, Stuttgart, 1994.
- 17
-
H.K. Gummel,
``A Self-Consistent Iterative Scheme for One-Dimensional Steady State
Transistor Calculations,''
IEEE Trans.Electron Devices, vol. ED-11 pp. 455-465, 1964.
- 18
-
K. Haberger, H. Ryssel, G. Prinke, and K. Hoffmann,
``Diffusionsmechanismen in Halbleitern,''
Techn. Report RY1/6, Institut für Festkörpertechnologie,
München, 1979.
- 19
-
B. Haindl, R. Kosik, P. Fleischmann, and S. Selberherr,
``Comparison of Finite Element and Finite Box Discretization for
Three-Dimensional Diffusion Modeling Using AMIGOS,''
In SISPAD'99 [62], pp. 131-134.
- 20
-
M.R. Hestenes and E. Stiefel,
``Method of Conjugate Gradients for Solving Linear Systems,''
J.Res.Nat.Bur.Stand., vol. 49 pp. 409-436, 1952.
- 21
-
N. Hitschfeld, M.C. Rivara, and M. Palma,
``Improving the Quality of Delaunay Triangulations for the Control
Volume Discretization Method,''
In Meyer and Biesemans [37], pp. 189-192.
- 22
-
H. Hofmann,
Das elektromagnetische Feld,
Springer, Wien New-York, 1974.
- 23
-
H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
``Surface Reconstruction from Unorganized Points,''
Computer Graphics, vol. 26, no. 2, pp. 71-78, 1992.
- 24
-
A. Hössinger, S. Selberherr, M. Kimura, I. Nomachi, and S. Kusanagi,
``Three-Dimensional Monte-Carlo Ion Implantation Simulation for
Molecular Ions,''
In Electrochemical Society Proceedings, vol. 99-2, pp. 18-25,
1999.
- 25
-
T. Ikeda,
Maximum Principle in Finite Element Models for
Convection-Diffusion Phenomena,
North Holland, Amsterdam, 1983.
- 26
-
J.D. Jackson,
Klassische Elektrodynamik,
John Wiley & Sons, 1999.
- 27
-
I. Kaufman,
``Finite Volume Poisson Solver for Ionic Channels,''
Techn. report, Department of Physics, Lancaster University, Lancaster
http://www.lancs.ac.uk/kaufmani/psn/fvm.pdf.
- 28
-
R. Kosik, P. Fleischmann, B. Haindl, P. Pietra, and S. Selberherr,
``On the Interplay Between Meshing and Discretization in
Three-Dimensional Diffusion Simulation,''
IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 19, no. 11, pp. 1233-1240, 2000.
- 29
-
I. Kossacky,
``A Recursive Approach to Local Mesh Refinement in Two and Three
Dimensions,''
J.Comp.Appl.Math., vol. 55 pp. 275-288, 1994.
- 30
-
C. Ledl,
``Konvertierung rasterorienter Geometrien in polygonal begrenzte,''
Diplomarbeit, Technische Universität Wien, 1994.
- 31
-
E. Leitner and S. Selberherr,
``Three-Dimensional Grid Adaptation Using a Mixed-Element
Decomposition Method,''
In Ryssel and Pichler [53], pp. 464-467.
- 32
-
K. Lilja, V. Moroz, and D. Wake,
``A 3D Mesh Generation Method for the Simulation of Semiconductor
Processes and Devices,''
In Proc. International Conference on Modeling and Simulation of
Microsystems Semiconductors, Sensors and Actuators, pp. 334-338, Santa
Clara, CA, USA, April 1998.
- 33
-
J. Litsios, B. Schmithüsen, U. Krumbein, A. Schenk, E. Lyumkis, B. Polsky,
and W. Fichtner,
DESSIS 3.0: Manual,
ISE Integrated Systems Engineering, Zürich, Switzerland, 1996
release 3.0 edition.
- 34
-
W.E. Lorensen and H.E. Cline,
``Marching Cubes: A High Resolution 3D Surface Construction
Algorithm,''
Computer Graphics, vol. 21, no. 4, pp. 163-169, 1987.
- 35
-
P.A. Markowich, C.A. Ringhofer, S. Selberherr, and M. Lentini,
``A Singular Perturbation Approach for the Analysis of the
Fundamental Semiconductor Equations,''
IEEE Trans.Electron Devices, vol. ED-30, no. 9, pp.
1165-1180, 1983.
- 36
-
C.W. Mastin and J.F. Thompson,
``Quasiconformal Mappings and Grid Generation,''
SIAM J.Sci.Stat.Comput., vol. 5, no. 2, pp. 305-316, 1984.
- 37
-
K. De Meyer and S. Biesemans, editors,
Simulation of Semiconductor Processes and Devices,
Springer, Wien, New York, 1998.
- 38
-
R. Mlekus, Ch. Ledl, E. Strasser, and S. Selberherr,
``Polygonal Geometry Reconstruction after Cellular Etching or
Deposition Simulation,''
In Ryssel and Pichler [53], pp. 50-53.
- 39
-
N. Molino, R. Bridson, J. Teran, and R. Fedkiw,
``A Crystalline, Red Green Strategy for Meshing Highly Deformable
Objects with tetrahedra,''
In 12th International Meshing Roundtable, pp. 103-114. Sandia
National Laboratories, 2003.
- 40
-
Y. Nishi and R. Doering,
Handbook of Semiconductor Manufactoring Technology,
Marcel Dekker AG, 2000.
- 41
-
J.T. Oden and J.N. Reddy,
An Introduction to the Mathematical Theory of Finite Elements,
Wiley, 1976.
- 42
-
A. Okabe, B. Boots, and K. Sugihara,
Spatial Tessellations - Concepts and Applications of Voronoi
Diagrams,
Wiley, 1992.
- 43
-
C. Pao,
Nonlinear Parabolic and Elliptic Equations,
Plenum, New York, 1992.
- 44
-
A.L. Pardhanani and G.F. Carey,
``A Mapped Scharfetter-Gummel Formulation for the Efficient
Simulation of Semiconductor Device Models,''
IEEE Trans.Computer-Aided Design of Integrated Circuits and
Systems, vol. 16, no. 10, pp. 1227-1233, 1997.
- 45
-
M.H. Protter and H.F. Weinberger,
Maximum Principles in Differential Equations,
Springer, 1999.
- 46
-
M. Putti and Ch. Cordes,
``Finite Element Approximation of the Diffusion Operator on
Tetrahedra,''
SIAM J.Sci.Comput., vol. 19, no. 4, pp. 1154-1168, 1998.
- 47
-
M. Radi,
Three-Dimensional Simulation of Thermal Oxidation,
Dissertation, Technische Universität Wien, 1998
http://www.iue.tuwien.ac.at/phd/radi.
- 48
-
M. Radi, E. Leitner, E. Hollensteiner, and S. Selberherr,
``Analytical Partial Differential Equation Modeling Using AMIGOS,''
In Proc. IASTED International Conference Artificial Intelligence
and Soft Computing, pp. 423-426, Banff, Canada, July 1997.
- 49
-
J.K. Reid,
``On the Method of Conjugate Gradients for the Solution of Large
Sparse Systems of Linear Equations,''
In J.K. Reid, editor, Large Sparse Sets of Linear Equations.
Academic Press, 1971.
- 50
-
M.C. Rivara,
``Mesh Refinement Processes Based on the Generalized Bisection of
Simplices,''
SIAM J.Numer.Anal., vol. 21, no. 3, pp. 604-613, 1984.
- 51
-
M.C. Rivara and P. Inostroza,
``A Discussion on Mixed (Longest Side Midpoint Insertion) Delaunay
Techniques for the Triangulation Refinement Problem,''
In 4th International Meshing Roundtable, pp. 335-346, Sandia
National Labs., Albuquerque, New Mexico, 1995.
- 52
-
H. Ryssel,
``Implantation and Diffusion Models for Process Simulation,''
In K.M. DeMeyer, editor, VLSI Process and Device Modeling, pp.
1-41. Katholieke Universiteit Leuven, 1983.
- 53
-
H. Ryssel and P. Pichler, editors,
Simulation of Semiconductor Devices and Processes,
vol. 6, Springer, Wien, Austria, 1995.
- 54
-
R. Sabelka,
Dreidimensionale Finite Elemente Simulation von
Verdrahtungsstrukturen auf Integrierten Schaltungen,
Dissertation, Technische Universität Wien, 2001
http://www.iue.tuwien.ac.at/phd/sabelka.
- 55
-
R. Sabelka, R. Martins, and S. Selberherr,
``Accurate Layout-Based Interconnect Analysis,''
In Meyer and Biesemans [37], pp. 336-339.
- 56
-
R. Sabelka and S. Selberherr,
``SAP -- A Program Package for Three-Dimensional Interconnect
Simulation,''
In Proc. Intl. Interconnect Technology Conference, pp.
250-252, Burlingame, California, June 1998.
- 57
-
D.L. Scharfetter and H.K. Gummel,
``Large-Signal Analysis of a Silicon Read Diode Oscillator,''
IEEE Trans.Electron Devices, vol. ED-16, no. 1, pp. 64-77,
1969.
- 58
-
W.J. Schroeder, J.A. Zarge, and W.E. Lorenson,
``Decimation of Triangle Meshes,''
Computer Graphics, vol. 26, no. 2, pp. 65-70, 1992.
- 59
-
G. Schumicki and P. Seegebrecht,
Prozeßtechnologie,
Springer, 1991.
- 60
-
A.H. Sherman,
``On Newton-Iterative Methods for the Solution of Systems of
Nonlinear Equations,''
SIAM J.Numer.Anal., vol. 15 pp. 755-771, 1978.
- 61
-
Jonathan Richard Shewchuk,
``Triangle: Engineering a 2D Quality Mesh Generator and
Delaunay Triangulator,''
In Ming C. Lin and Dinesh Manocha, editors, Applied
Computational Geometry: Towards Geometric Engineering, vol. 1148 of Lecture Notes in Computer Science, , pp. 203-222, Springer-Verlag, May 1996
From the First ACM Workshop on Applied Computational Geometry.
- 62
-
Proc. Simulation of Semiconductor Processes and Devices,
Kyoto, Japan, September 1999.
- 63
-
P. Stein and R.L. Rosenberg,
``On the Solution of Linear Simultaneous Equations by Iteration,''
J.London Math.Soc., vol. 23 pp. 111-118, 1948.
- 64
-
J.L. Stone and J.C. Plunkett,
``Ion Implantation Processes in Silicon,''
In F.F.Y. Wang, editor, Impurity Doping Processes in Silicon,
pp. 56-146, North-Holland, Amsterdam, 1981.
- 65
-
N. Strecker,
ISE TCAD Manuals vol. 5,
ISE Integrated Systems Engineering, Zürich, Switzerland, 1997
release 4.
- 66
-
J.C. Strikwerda,
Finite Difference Schemes and Partial Differential Equations,
Chapman & Hall, New York, 1989.
- 67
-
A.D. Sutherland,
``On the Use of Overrelaxation in Conjuncton with Gummel's Algorithm
to Speed the Convergence in a Two-Dimensional Computer Model for MOSFET's,''
IEEE Trans.Electron Devices, vol. ED-27 pp. 1297-1298, 1980.
- 68
-
Technology Modeling Associates, Inc., Sunnyvale, California
TMA Medici, Two-Dimensional Device Simulation Program, Version
4.0 User's Manual,, October 1997.
- 69
-
N.D. Thai,
``Concentration Dependent Diffusion of Boron and Phosphorus in
Silicon,''
J.Appl.Phys., vol. 41, no. 7, pp. 2859-2866, 1970.
- 70
-
J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin,
Numerical Grid Generation,
North Holland, 1985.
- 71
-
University of Nijmegen, NL
Short Course on Preconditioned Conjugate Gradient Methods,
1989.
- 72
-
W. Wessner, C. Heitzinger, A. Hössinger, and S. Selberherr,
``Error Estimated Driven Anisotropic Mesh Refinement for
Three-Dimensional Diffusion Simulation,''
In Simulation of Semiconductor Processes and Devices, pp. 109
- 112, Boston,USA, September 2003.
- 73
-
W. Wessner, C. Hollauer, A. Hössinger, and S. Selberherr,
``Anisotropic Laplace Refinement for Three-Dimensional Oxidation
Simulation,''
In Simulation of Semiconductor Processes and Devices, Munich,
Germany, September 2004.
- 74
-
R.E. White,
An Introduction to the Finite Element Method with Applications
to Nonlinear Problems,
John Wiley & Sons, New York, 1985.
- 75
-
J. Xu and L. Zikatanov,
``A Monotone Finite Element Scheme for Convection-Diffusion
Equations,''
Mathematics of Computation, vol. 68, no. 228, pp. 1429-1446,
October 1999.
Next: List of Figures
Up: Dissertation Johann Cervenka
Previous: 7. Conclusion and Outlook
J. Cervenka: Three-Dimensional Mesh Generation for Device and Process Simulation