next up previous contents
Next: Own Publications Up: Dissertation Siddhartha Dhar Previous: Appendix B

Bibliography

Aberg04
I. Aberg, O.O. Olubuyide, C.N. Chleirigh, I. Lauer, D.A. Antoniadis, J. Li, R. Hull, and J.L. Hoyt.
Electron and Hole Mobility Enhancements in sub-10 nm-thick Strained Silicon Directly on Insulator Fabricated by a Bond and Etch-Back Technique.
VLSI Symp. Tech.Dig., pages 52-53, 2004.

Abstreiter85
G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H.J. Herzog.
Strain Induced Two-Dimensional Electron Gas in Selectively Doped Si/SiGe Superlattices.
Phys.Rev.Letters, vol. 54, no. 22, pages 2441-2444, 1985.

Ang05
K.-W. Ang, K.-J. Chui, V. Bliznetsov, C.-H. Tung, A. Du, N. Balasubramanian, G. Samudra, M.F Li, and Y.-C. Yeo.
Lattice Strain Analysis of Transistor Structures with Silicon-Germanium and Silicon-Carbon Source/Drain Stressors.
Appl.Phys.Lett., vol. 86, no. 9, pages 093102-1-3, 2005.

Arora82
N.D. Arora, J.R. Hauser, and D.J. Roulston.
Electron and Hole Mobilities in Silicon as a Function of Concentration and Temperature.
IEEE Trans.Electron Devices, vol. 29, no. 2, pages 292-295, 1982.

ATHENA02
ATHENA.
ATHENA, User Manual Ed. 8.
Silvaco International, Santa Clara, 2002.
http://www.silvaco.com/products/.

Balslev66
I. Balslev.
Influence of Uniaxial Stress on the Indirect Absorption Edge in Silicon and Germanium.
Phys.Rev., vol. 143, no. 2, pages 636-647, 1966.

Bardeen50
J. Bardeen, and W. Shockley.
Deformation Potentials and Mobilities in Non-Polar Crystals.
Phys.Rev., vol. 80, no. 1, pages 72-80, 1950.

Bean87
J.C. Bean.
Silicon Molecular Beam Epitaxy: 1984-1986.
J.Cryst.Growth, vol. 81, pages 411-205, 1987.

Bir74
G. L. Bir, and G. E. Pikus.
``Symmetry and Strain Induced Effects in Semiconductors,''.
Wiley, New York, 1974.

Bouckaert36
L. P. Bouckaert, R. Smoluchowski, and E. Wigner.
Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals.
Phys.Rev., vol. 50, no. 1, pages 58-67, 1936.

Brillouët06
M. Brillouët.
An Introduction to Ultimate Lithography.
Comptes Rendus Physique, vol. 7, no. 8, pages 837-840, 2006.

Bufler97
F.M. Bufler, P. Graf, S. Keith, and B. Meinerzhagen.
Full-Band Monte Carlo Investigation of Electron Transport in Strained Si Grown on Si$ _{1-x}$Ge$ _x$ Substrates.
Appl.Phys.Lett., vol. 70, pages 2144-2146, 1997.

Canali71
C. Canali, G. Ottaviani, and A. Alberigi-Quaranta.
Drift Velocity of Electrons and Holes and Associated Anisotropic Effects in Si.
J.Phys.Chem.Solids, vol. 32, pages 1707-1720, 1971.

Cardona66
M. Cardona, and F.H. Pollak.
Energy-Band Structure of Germanium and Silicon: The $ k \cdot p$ Method.
Phys.Rev., vol. 142, no. 2, pages 530-543, 1966.

Caughey67
D.M. Caughey, and R.E. Thomas.
Carrier Mobilities in Silicon Empirically Related to Doping and Field.
Proceedings of the IEEE, vol. 55, no. 12, pages 2192-2193, 1967.

Cervenka99
J. Cervenka.
Generation of Geometry Conforming Triangular Grids: Master Thesis.
1999.

Chan05
V. Chan, Ken Rim, Meikei Ieong, Sam Yang, Rajeev Malik, Young Way Teh, Min Yang, and Q. Ouyang.
Strain for CMOS Performance Improvement.
In Custom Integrated Circuits Conference, 2005. Proceedings of the IEEE 2005, pages 667-674, 2005.

Chaney71
R.C. Chaney, C.C. Lin, and E.E. Lafon.
Application of the Method of Tight Binding to the Calculation of the Energy Band Structures of Diamond, Silicon, and Sodium Crystals.
Phys.Rev.B, vol. 3, no. 2, pages 459-472, 1971.

Chau04
R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz.
High-$ \kappa$ Metal-Gate Stack and Its MOSFET Characteristics.
IEEE Electron Device Lett., vol. 25, no. 6, pages 408-410, 2004.

Chelikowsky76
J.R. Chelikowsky, and M.L. Cohen.
Nonlocal Pseudopotential Calculations for the Electronic Structure of Eleven Diamond and Zinc-Blende Semiconductors.
Phys.Rev.B, vol. 14, no. 2, pages 556-582, 1976.

Chen04
Chien-Hao Chen, T. L. Lee, T. H. Hou, C. L. Chen, C. C. Chen, J. W. Hsu, K. L. Cheng, Y. H. Chiu, H. J. Tao, Y. Jin, C. H. Diaz, S. C. Chen, and M. S. Liang.
Stress Memorization Technique (SMT) by Selectively Strained-Nitride Capping for sub-65nm High-Performance Strained-Si Device Application.
In VLSI Symp. Tech.Dig., pages 56-57, 2004.

Colman68
D. Colman, R.T. Bate, and J.P. Mize.
Mobility Anisotropy and Piezoresistance in Si p-type Inversion Layers.
J.Appl.Phys., vol. 39, no. 4, pages 1923-1931, 1968.

Conwell67
E.M. Conwell.
``High field transport in semiconductors,''.
Academic Press, New York, London, 1967.

Currie98
M.-T. Currie, S.B. Samavedam, T.A. Langdo, C.W. Leitz, and E.A. Fitzgerald.
Controlling Threading Dislocation Densities in Ge on Si Using Graded SiGe Layers and Chemical-Mechanical Polishing.
Appl.Phys.Lett., vol. 71, no. 14, pages 1718-1720, 1998.

Currie01
M.-T. Currie, C. W. Leitz, T. A. Langdo, G. Taraschi, E. A. Fitzgerald, and D. A. Antoniadis.
Carrier Mobilities and Process Stability of Strained Si n- and p-MOSFETs on SiGe Virtual Substrates.
J.Vac.Sci.Technol.B, vol. 19, no. 6, pages 2268-2279, 2001.

Currie03
M.-T. Currie, S.B. Samavedam, T.A. Langdo, C.W. Leitz, and E.A. Fitzgerald.
SiGe-Free Strained Si on Insulator by Wafer Bonding and Layer Transfer.
Appl.Phys.Lett., vol. 82, no. 24, pages 4256-4258, 2003.

Darwish97
M.N. Darwish, J.L. Lentz, M.R. Pinto, P.M. Zeitzoff, T.J. Krutsick, and H.H. Vuong.
An Improved Electron and Hole Mobility Model for General Purpose Device Simulation.
IEEE Trans.Electron Devices, vol. 44, no. 9, pages 1529-1538, 1997.

Davies98
J.H. Davies.
``The Physics of Low-dimensional Semiconductors: An Introduction,''.
Cambridge University Press, 1998.

de Walle86
C. G. Van de Walle.
Theoretical Calculations of Heterojunction Discontinuities in the Si/Ge System.
Phys.Rev.B, vol. 34, no. 8, pages 5621-5633, 1986.

Dhar05a
S. Dhar, G. Karlowatz, E. Ungersboeck, and H. Kosina.
Numerical and Analytical Modeling of the High-Field Electron Mobility in Strained Si.
In Proc. SISPAD, pages 223-226, 2005.

Dhar05b
S. Dhar, H. Kosina, V. Palankovski, E. Ungersboeck, and S. Selberherr.
Electron Mobility Model for Strained-Si Devices.
IEEE Trans.Electron Devices, vol. 52, no. 4, pages 527-533, 2005.

Dhar06
S. Dhar, H. Kosina, G. Karlowatz, E. Ungersboeck, T. Grasser, and S. Selberherr.
High-Field Electron Mobility Model for Strained-Silicon Devices.
IEEE Trans.Electron Devices, vol. 53, no. 12, pages 3054-3062, 2006.

Dresselhaus55
G. Dresselhaus, A. F. Kip, and C. Kittel.
Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals.
Phys.Rev., vol. 98, no. 2, pages 368-382, 1955.

Drude00
P. Drude.
Ann. Physics (Leipzig), vol. 1, page 566, 1900.

Egley93
J. Egley, and D. Chidambarao.
Strain Effects on Device Characteristics: Implementation in Drift-Difusion Simulators.
Solid State Electronics, vol. 36, no. 12, pages 1653-1664, 1993.

Fan04
X.F. Fan, X. Wang, B. Winstead, L.F. Register, U. Ravaioli, and S.K. Banerjee.
MC Simulation of Strained-Si MOSFET with Full-Band Structure and Quantum Correction.
IEEE Trans.Electron Devices, vol. 51, no. 6, pages 962-970, 2004.

Fischer99
B. Fischer, and K. Hofmann.
Full-Band Monte Carlo Model for Electron and Hole Transport in Strained Si Including Inelastic Acoustic Phonon Scattering.
Appl.Phys.Lett., vol. 74, pages 2185-2187, 1999.

Fischetti96
M.V. Fischetti, and S.E. Laux.
Band Structure, Deformation Potentials, and Carrier Mobility in Strained Si, Ge, and SiGe Alloys.
J.Appl.Phys., vol. 80, no. 4, pages 2234-2252, 1996.

Fischetti02
M.V. Fischetti, F. Gamiz, and W. Haensch.
On the Enhanced Electron Mobility in Strained-Silicon Inversion Layers.
J.Appl.Phys., vol. 92, no. 12, page 7320, 2002.

Fitzgerald91
E.A. Fitzgerald, Y.H. Xie, M.L. Green, D. Brasen, and A.R. Kortan.
Strain-Free Ge$ _x$Si$ _{l-x}$ Layers with Low Threading Dislocation Densities Grown on Si Substrates.
Mater. Res. Soc. Symp. Proc., vol. 220, pages 811-813, 1991.

Friedel89
P. Friedel, M. S. Hybertsen, and M. Schlueter.
Local Empirical Pseudopotential Approach to the Optical Properties of Si/Ge Superlattices.
Phys.Rev.B, vol. 39, no. 11, pages 7974-7977, 1989.

Gallon04
C. Gallon, G. Reimbold, G. Ghibaudo, R.A. Bianchi, and R. Gwoziecki.
Electrical Analysis of External Mechanical Stress Effects in Short Channel MOSFETs on (001) Si.
Solid-State Electron., vol. 48, no. 4, pages 561-566, 2004.

Gamiz02
F. Gamiz et al.
Strained-Si/SiGe-on-Insulator Inversion Layers: The Role of Strained-Si Layer Thickness on Electron Mobility.
Appl.Phys.Lett., vol. 80, no. 22, pages 4160-4162, 2002.

Haensch.06
W. Haensch., E. J. Nowak, R. H. Dennard, P. M. Solomon, A. Bryant, O. H. Dokumaci, A. Kumar, X. Wang, J. B. Johnson, and M. V. Fischetti.
Silicon CMOS Devices Beyond Scaling.
IBM J.Res.Develop., vol. 50, no. 4-5, pages 339-361, 2006.

Hänsch91
W. Hänsch.
``The drift diffusion equation and its application in mosfet modeling,''.
Springer Verlag, Wien, New York, 1991.

Hensel65
J.C. Hensel, H. Hasegawa, and M. Nakayama.
Cyclotron Resonance in Uniaxially Stressed Silicon. II. Nature of the Covalent Bond.
Phys.Rev., vol. 138, no. 1A, pages A225-A238, Apr 1965.

Herring56
C. Herring, and E. Vogt.
Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering.
Phys.Rev., vol. 101, no. 3, pages 944-961, 1956.

Hinckley90
J.M. Hinckley, and J. Singh.
Influence of Substrate Composition and Crystallographic Orientation on the Band Structure of Pseudomorphic Si-Ge Alloy Films.
Phys.Rev.B, vol. 42, no. 6, pages 3546-3566, 1990.

Hook78
R. Hook.
De Potentia restitutiva.
1678.

Huang01
L.-J. Huang, J. Chu, S. Goma, C. Emic, S. Koester, D. Canaperi, P. Mooney, S. Cordes, J. Speidell, R. Anderson, and H. Wong.
Carrier Mobility Enhancement in Strained Si-on-Insulator Fabricated by Wafer Bonding.
In VLSI Symp. Tech.Dig., pages 57-58, 2001.

Ismail91a
K. Ismail, B.S. Meyerson, and P.J. Wang.
Extremely high electron mobility in Si/SiGe structures grown by molecular beam epitaxy.
Appl.Phys.Lett., vol. 59, no. 13, pages 1611-1613, 1991.

Ismail91b
K. Ismail, B.S. Meyerson, and P.J. Wang.
High Electron Mobility in Modulation Doped Si/SiGe.
Appl.Phys.Lett., vol. 58, no. 19, pages 2117-2119, 1991.

Ismail93
K. Ismail, S. Nelson, J. Chu, and B. Meyerson.
Electron Transport Properties of Si/SiGe Heterostructures: Measurements and Device Applications.
Appl.Phys.Lett., vol. 63, no. 5, pages 660-662, 1993.

Issacson06
D. M. Issacson, G. Taraschi, A. J. Pitera, N. Ariel, T. A. Langdo, and E.A. Fitzgerald.
Strained Si on Si and Strained Si on SiGe on Si by Relaxed Buffer Bonding.
J.Electrochem.Soc., vol. 153, no. 2, pages G134-G140, 2006.

Ito00
S. Ito, H. Namba, K. Yamaguchi, T. Hirata, K. Ando, S. Koyama, S. Kuroki, N. Ikezawa, T. Suzuki, T. Saitoh, and T. Hotiuchi.
Mechanical Stress Effect of Etch-Stop Nitride and its Impact on Deep Submicron Transistor Design.
In IEDM Tech.Dig., pages 247-250, 2000.

ITRS05
ITRS.
International Technology Roadmap for Semiconductors - 2005 Edition, 2005.
http://public.itrs.net.

IuE04
IuE.
MINIMOS-NT 2.1 User's Guide.
Technische Universität Wien, Austria, 2004.
http://www.iue.tuwien.ac.at/software.

IuE06
IuE.
VMC 2.0 User's Guide.
Institut für Mikroelektronik, Technische Universität Wien, Austria, 2006.
http://www.iue.tuwien.ac.at/software.

Jacoboni83
C. Jacoboni, and L. Reggiani.
The Monte Carlo Method for the Solution of Charge Transport in Semiconductors with Applications to Covalent Materials.
Review of Modern Physics, vol. 55, no. 3, pages 645-705, 1983.

Jenkins02
K. A. Jenkins, and K. Rim.
Measurement of the Effect of Self Heating in Strained Si MOSFETs.
IEEE Electron Device Lett., vol. 23, no. 6, pages 360-362, 2002.

Jungemann01
C. Jungemann, C.D. Nguyen, B. Neinhus, S. Decker, and B. Meinerzhagen.
Improved Modified Local Density Approximation for Modeling of Size Quantization in NMOSFETs.
Proc. Intl. Conf. Modeling and Simulation of Microsystems, 2001.

Jungemann03a
C. Jungemann, and B. Meinerzhagen.
``Hierarchical Device Simulation - The Monte Carlo Perspective,''.
Springer, Wien, New York, 2003.

Jungemann03b
C. Jungemann, and B. Meinerzhagen.
MC Simulation of Strained Si/SiGe Devices.
Proc. European Solid-State Device Research Conf., pages 9-14, 2003.

Kanda82
Y. Kanda.
A Graphical Representation of the Piezoresistance Coefficients in Silicon.
IEEE Trans.Electron Devices, vol. 29, no. 1, pages 64-70, 1982.

Kasper75
E. Kasper, H.J. Herzog, and H. Kibbel.
A One-Dimensional SiGe Superlattice Grown by UHV Epitaxy.
Appl. Phys. A: Mater. Scien. & Processing, vol. 8, no. 3, pages 199-205, 1975.

Kirsch06
P. D. Kirsch, M. A. Quevedo-Lopez, S. A. Krishnan, C. Krug, H. AlShareef, C.S. Park, R. Harris, N. Moumen, A. Neugroschel, G. Bersuker et al.
Band Edge n-MOSFETs with High-k/Metal Gate Stacks Scaled to EOT=0.9 nm with Excellent Carrier Mobility and High Temperature Stability.
IEDM Tech.Dig., pages 1-4, 2006.

Klaassen92
DBM Klaassen.
Unified Mobility Model for Device Simulation. I. Model Equations and Concentration Dependence.
Solid-State Electronics, vol. 35, no. 7, pages 953-959, 1992.

Kosina98
H. Kosina, and G. Kaiblinger-Grujin.
Ionized-Impurity Scattering of Majority Electrons in Silicon.
Solid State Electronics, vol. 42, no. 3, pages 331-338, 1998.

Kurosawa66
T. Kurosawa.
Monte Carlo Simulation of Hot Electron Problems.
Journal of the Physical Society of Japan, vol. 21, page 527, 1966.

Laude71
L.D. Laude, F.H. Pollak, and M. Cardona.
Effect of Uniaxial Stress on the Indirect Excition Spectrum of Silicon.
Phys.Rev.B, vol. 3, no. 8, pages 2623-2636, Apr 1971.

Lee91
K. Lee, J.S. Choi, S.P. Sim, and C. K. Kim.
Physical Understanding of Low-Field Carrier Mobility in Silicon MOSFET Inversion layer.
In IEEE Trans.Electron Devices, volume 38, pages 1905-1912, 1991.

LeGoues92
F.K. LeGoues, K. Eberl, and S.S. Iyer.
Relaxation by the Modified Frank-Read Mechanism in Compositionally Uniform Thin Films.
Appl.Phys.Lett., vol. 60, no. 23, pages 2862-2864, 1992.

Levinstein99
M. Levinstein, S. Rumyantsev, and M. Shur.
``Handbook Series on Semiconductor Parameters,'', volume 1,2.
World Scientific, London, 1999.

Lim04
J.S. Lim, S.E. Thompson, and J.G. Fossum.
Comparison of Threshold-Voltage Shifts for Uniaxial and Biaxial Tensile-Stressed n-MOSFETs.
IEEE Electron Device Lett., vol. 25, no. 11, pages 731-733, 2004.

Liu05
C. W. Liu, S. Maikap, and C. Y. Yu.
Mobility Enhancement Technologies.
IEEE Circuits and Devices Magazine, vol. 21, no. 3, pages 21-36, 2005.

Lochtefeld01
A. Lochtefeld, and D. Antoniadis.
Investigating the Relationship Between Electron Mobility and Velocity in Deeply Scaled NMOS via Mechanical Stress.
IEEE Electron Device Lett., vol. 22, no. 12, pages 591-593, 2001.

Lombardi88
C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi.
A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices.
IEEE Trans.Computer-Aided Design of Integrated Circuits and Systems, vol. 7, no. 11, pages 1164-1171, 1988.

Low04
T. Low, M. F. Li, C. Shen, Y. C. Yeo, Y. T. Hou, C. Zhu, A. Chin, and D. L. Kwong.
Electron Mobility in Ge and Strained-Si Channel Ultrathin-Body Metal-Oxide Semi Conductor Field-Effect Transistors.
Appl.Phys.Lett., vol. 85, no. 12, pages 2402-2404, 2004.

Lundstrom00
M.S. Lundstrom.
``Fundamentals of Carrier Transport,''.
Cambridge University Press, 2000.

Maeda03
T. Maeda et al.
Ultra-thin Strained-SOI CMOS for High Temperature Operation.
In VLSI Symp. Tech.Dig., pages 99-100, 2003.

Maikap04a
S. Maikap, M.H. Liao, F. Yuan, M.H. Lee, C.F. Huang, S.T. Chang, and C.W. Liu.
Package Strain Enhanced Device and Circuit Performance.
IEDM Tech.Dig., pages 233-236, 2004.

Maikap04b
S. Maikap, C.Y. Yu, S.R. Jan, M.H. Lee, and C.W. Liu.
Mechanically Strained Si NMOSFETs.
IEEE Electron Device Lett., vol. 25, no. 1, pages 40-42, 2004.

Majhi06
P. Majhi, H. C. Wen, H. Alshareef, H. R. Harris, H. Luan, K. Choi, C. S. Park, S.C. Song, B. H. Lee, and R. Jammy.
Developing a Systematic Approach to Metal Gates and High-k Dielectrics in Future-Generation CMOS.
MICRO Magazine, 2006.

Manku92
T. Manku, and A. Nathan.
Electon Drift Mobility Model for Devices Based on Unstrained and Coherently Strained Si$ _{1-x}$Ge$ _x$ Grown on (001) Silicon Substrates.
IEEE Trans.Electron Devices, vol. 39, no. 9, pages 2082-2089, 1992.

Manku93a
T. Manku, and A. Nathan.
Electrical Properties of Silicon under Nonunifrom stress.
J.Appl.Phys., vol. 74, no. 3, pages 1832-1837, 1993.

Manku93b
T. Manku, and A. Nathan.
Valence Energy Band Structure for Strained Group-IV Semiconductors.
J.Appl.Phys., vol. 73, no. 3, pages 1205-1213, 1993.

Marchetti05
R. Marchetti, F. Montalenti, L. Miglio, G. Capellini, M. De Seta, and F. Evangelisti.
Strain-Induced Ordering of Small Ge Islands in Clusters at the Surface of Multilayered Si-Ge Nanostructures.
Appl.Phys.Lett., vol. 87, page 261919, 2005.

Masetti83
G. Masetti, M. Severi, and S. Solmi.
Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus- and Boron-Doped Silicon.
IEEE Trans.Electron Devices, vol. ED-30, no. 7, pages 764-769, 1983.

MATLAB04
MATLAB.
MATLAB- Language of Technical Computing, User's Guide, Release 14.0.
The MathWorks, Inc., 2004.
http://www.mathworks.com/.

Matthews74
J.W. Matthews, and A.E. Blakeslee.
Defects in Epitaxial Multilayers - I. Misfit Dislocations.
J.Cryst.Growth, vol. 27, pages 118-125, 1974.

Mizuno00
T. Mizuno et al.
Advanced SOI-MOSFETs with strained-Si channel for high speed CMOS-electron/hole mobility enhancement.
In VLSI Symp. Tech.Dig., pages 210-211, 2000.

Mizuno03
T. Mizuno, N. Sugiyama, T. Tezuka, T. Numata, and S. Takagi.
High Performance Strained SOI-CMOS Devices Using Thin Film SiGe on Insulator Technology.
In IEEE Trans.Electron Devices, volume 50, pages 988-994, 2003.

Momose02
H.S Momose, T.O.K. Kojima, S Nakamura, and Y Toyoshima.
110 GHz Cutoff Frequency of Ultra-Thin Gate Oxide P-MOSFETs on [110] Surface-Oriented Si Substrate.
In VLSI Symp. Tech.Dig., pages 156-157, 2002.

Mori79
S. Mori, and T. Ando.
Intersubband Scattering Effect on the Mobility of a Si (100) Inversion Layer at Low Temperatures.
Phys.Rev.B, vol. 19, no. 12, pages 6433-6441, 1979.

Morin54
F. J. Morin.
Lattice Scattering Mobility in Germanium.
Phys.Rev., vol. 93, pages 62-63, 1954.

Mujtaba94
S.A. Mujtaba, R.W. Dutton, and D.L. Scharfetter.
Semi-Empirical Local NMOS Mobility Model for 2-D Device Simulation Incorporating Screened Minority Impurity Scattering.
International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits, NUPAD V., pages 3-6, 1994.

Mujtaba95
S. A. Mujtaba.
Advanced Mobility Models for Design and Simulation of Deep SubMicrometer MOSFETs.
Ph.D Thesis, Stanford, 1995.

Nayak93
D.K. Nayak, J.C.S. Woo, J.S. Park, K.L. Wang, and K.P. MacWilliams.
High-Mobility p-Channel Metal-Oxide-Semiconductor Field-Effect Transistor on Strained Si.
Appl.Phys.Lett., vol. 62, no. 22, pages 2853-2855, 1993.

Nishida87
T. Nishida, and C.T. Sah.
A Physically Based Mobility Model for MOSFET Numerical Simulation.
IEEE Trans.Electron Devices, vol. 34, no. 2, pages 310-320, 1987.

Nowak02
E.J. Nowak.
Maintaining the Benefits of CMOS Scaling when Scaling Bogs Down.
IBM J.Res.Develop., vol. 46, no. 2-3, pages 169-186, 2002.

Ootsuka00
F. Ootsuka, S. Wakahara, K. Ichinose, A. Honzawa, S. Wada, H. Sato, T. Ando, H. Ohta, K. Watanabe, and T. Onai.
A Highly Dense, High-Performance 130 nm node CMOS Technology for Large Scale system-on-a-chip Applications.
In IEDM Tech.Dig., pages 575-578, 2000.

Palankovski04
V. Palankovski, and R. Quay.
``Analysis and simulation of heterostructure devices,''.
Springer, Wien, New York, 2004.

Pidin04
S. Pidin, T. Mori, K. Inoue, K. Fukata, N. Itoh, E. Mutoh, K.Ohkoshi, R. Nakamura, K. Kobayashi, K. Kawamura, T. Saiki, S. Fukayama, S. Satoh, M. Kase, and K. Hashimoto.
A Novel Strain Enhanced CMOS Architecture using Selectively Deposited High Tensile and High Compressive Silicon Nitride Films.
In IEDM Tech.Dig., pages 213-216, 2004.

Prince53
M. B. Prince.
Drift Mobilities in Semiconductors. I. Germanium.
Phys.Rev., vol. 92, no. 3, pages 681-687, 1953.

Rairigh05
D. Rairigh.
Limits of CMOS Technology Scaling and Technologies Beyond-CMOS.
2005.
http://drlock.com/papers/cmos_survey.pdf.

Rashed95
M. Rashed et al.
Monte Carlo Simulation of Electron Transport in Strained Si/Si$ _{1-x}$Ge$ _x$ N-MOSFETs.
In IEDM Tech.Dig., pages 765-768, 1995.

Reggiani99
S. Reggiani, M. Valdinoci, L. Colalongo, and G. Baccarani.
A Unified Analytical Model for Bulk and Surface Mobility in Si n-and p-Channel MOSFET's.
Proc. European Solid-State Device Research Conf., vol. 1, 1999.

Rieger93
M.M. Rieger, and P. Vogl.
Electronic-Band Parameters in Strained Si$ _{1-x}$Ge$ _x$ Alloys on Si$ _{1-y}$Ge$ _y$ Substrates.
Phys.Rev.B, vol. 48, no. 19, pages 14276-14287, 1993.

Rim01
K. Rim et al.
Strained Si NMOSFETs for high performance CMOS technology.
In VLSI Symp. Tech.Dig., pages 59-60, 2001.

Rim02
K. Rim, J. Chu, H. Chen, K. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and H. Wong.
Characteristics and device design of sub-100 nm strained Si N- and PMOSFETs.
In VLSI Symp. Tech.Dig., pages 98-99, 2002.

Rim03
K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott, N. Klymko, F. Cardone, L. Tai, S. Koester, M. Cobb, D. Canaperi, B. To, E. Duch, I. Babich, R. Carruthers, P. Saunders, G. Walker, M. Steen, and M. Ieong.
Fabrication and Mobility Characteristics of Ultra-Thin Strained Si Directly on Insulator (SSDOI) MOSFETS.
In IEDM Tech.Dig., pages 1-4, 2003.

Roldan96
J.B. Roldan.
A Monte Carlo Study on the Electron-transport Properties of High-Performance Strained-Si on Relaxed Si$ _{1-x}$Ge$ _x$ Channel MOSFETs.
J.Appl.Phys., vol. 80, no. 9, page 5121, 1996.

Roldan03
J.B. Roldan, F. Gamiz, P. Cartujo-Cassinello, P. Cartujo, J. E. Carceller, and A. Roldan.
Strained-Si on Si$ _{1-x}$Ge$ _{x}$ MOSFET Mobility Model.
IEEE Trans.Electron Devices, vol. 50, no. 5, pages 1408-1411, 2003.

Sabnis79
A. Sabnis, and J. T. Clemens.
Characterization of the Electron Mobility in the inverted $ \langle$100$ \rangle$ Si Surface.
In IEDM Tech.Dig., volume 25, pages 18-21, 1979.

Sanuki03
T. Sanuki, A. Oishi, Y. Morimasa, S. Aota, T. Kinoshita, R. Hasumi, Y. Takegawa, K. Isobe, H. Yoshimura, M. Iwai, K. Sunouchi, and T. Noguchi.
Scalability of Strained Silicon CMOSFET and High Drive Current Enhancement in the 40 nm Gate Length Technology.
In IEDM Tech.Dig., pages 65-68, 2003.

Scharfetter69
D. L. Scharfetter, and H. K. Gummel.
Large Signal Analysis of a Silicon Read Diode Oscillator.
IEEE Trans.Electron Devices, vol. 16, pages 64-77, 1969.

Schmidt01
O.G. Schmidt, and K. Eberl.
Self-Assembled Ge/Si Dots for Faster Field-Effect Transistors.
IEEE Trans.Electron Devices, vol. 48, no. 6, pages 1175-1179, 2001.

Schwarz83
S.A. Schwarz, and S.E. Russek.
Semi-Empirical Equations for Electron Velocity in Silicon: Part II-MOS Inversion Layer.
IEEE Trans.Electron Devices, vol. 30, no. 12, pages 1634-1639, 1983.

Scott99
G. Scott, J. Lutze, M. Rubin, F. Nouri, and M. Manley.
NMOS Drive Current Reduction Caused by Transistor Layout and Trench Isolation Induced Stress.
In IEDM Tech.Dig., pages 827-830, 1999.

Seeger88
K. Seeger.
``Semiconductor physics: An introduction, fourth edition,''.
Springer Verlag, 1988.

Selberherr90
S. Selberherr, W. Haensch, M. Seavey, and J. Slotboom.
The Evolution of the MINIMOS Mobility Model.
Solid-State Electron., vol. 33, no. 11, pages 1425-1436, 1990.

Shimizu01
A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koguchi, Y. Nonaka, H. Sato, and F. Ootsuka.
Local Mechanical-Stress Control (LMC): A New Technique for CMOS Performance Enhancement.
In IEDM Tech.Dig., pages 433-436, 2001.

Shin89
H. Shin, A.F. Tasch, C.M. Maziar, and S.K. Banerjee.
A New Approach to Verify and Derive a Transverse-Field-Dependent Mobility Model for Electrons in MOS Inversion Layers.
IEEE Trans.Electron Devices, vol. 36, no. 6, pages 1117-1124, 1989.

Shirahata92
M. Shirahata, H. Kusano, N. Kotani, S. Kusanoki, and Y. Akasaka.
A Mobility Model Including the Screening Effect in MOS Inversion Layer.
IEEE Trans.Computer-Aided Design of Integrated Circuits and Systems, vol. 11, no. 9, pages 1114-1119, 1992.

Sil02
Silvaco International, Santa Clara.
VWF Interactive Tools, 2002.
http://www.silvaco.com/products/.

Smirnov03
S. Smirnov, H. Kosina, M. Nedjalkov, and S. Selberherr.
A Zero Field Monte Carlo Algorithm Accounting for the Pauli Exclusion Principle.
In Large-Scale Scientific Computing, pages 185-193, 2003.

Smith54
C. Smith.
Piezoresistance Effect in Germanium and Silicon.
Phys.Rev., vol. 94, no. 1, pages 42-49, 1954.

Smith80
P.M. Smith, M. Inoue, and J. Frey.
Electron Velocity in Si and GaAs at Very High Electric Fields.
Appl.Phys.Lett., vol. 37, no. 9, pages 797-798, 1980.

STI07
Transistor mobility improvement by adjusting stress in shallow trench isolation, 2007.
http://www.patentstorm.us/patents/7190036.html.

Stranski37
I.N. Stranski, and L. Krastanow.
Zur Theorie der Orientierten Ausscheidung von Ionenkristallen Aufeinander.
Monatshefte für Chemie/Chemical Monthly, vol. 71, no. 1, pages 351-364, 1937.

Sugii01
N. Sugii, D. Hisamoto, K. Washio, N. Yokoyama, and S. Kimura.
Enhanced Performance of Strained-Si MOSFETs on CMP SiGe Virtual Substrate.
In IEDM Tech.Dig., pages 737-740, 2001.

Sugiyama00
N. Sugiyama, T. Mizuno, S. Takagi, M. Koike, and A. Kurobe.
Formation of Strained-Silicon Layer on thin Relaxed-SiGe/SiO$ _2$/Si Structure using SIMOX Technology.
In Thin Solid Films, volume 369, pages 199-202, 2000.

Takagi94
S.-I. Takagi, A. Toriumi, M. Iwase, and H. Tango.
On the Universality of Inversion Layer Mobility in Si MOSFET's: Part I-Effects of Substrate Impurity Concentration.
IEEE Trans.Electron Devices, vol. 41, no. 12, pages 2357-2362, 1994.

Takagi96
S. Takagi, J.L. Hoyt, J.J. Welser, and J.F. Gibbons.
Comparative Study of Phonon-Limited Mobility of Two-Dimensional Electrons in Strained and Unstrained Si Metal-Oxide-Semiconductor Field-Effect Transistors.
J.Appl.Phys., vol. 80, no. 3, pages 1567-1577, 1996.

Taur98
Y. Taur, and T. H. Ning.
``Fundamentals of modern vlsi devices,''.
Cambridge University Press, UK, 1998.

Tersoff89
J. Tersoff.
Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems.
Phys.Rev.B, vol. 39, no. 8, pages 5566-5568, 1989.

Thompson98
S. Thompson, P. Packan, and M. Bohr.
MOS Scaling: Transistor Challenges for the 21st Century.
Intel Technology Journal, vol. 3, pages 3-5, 1998.

Thompson04
S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman et al.
A 90nm Logic Technology Featuring Strained Si.
IEEE Trans.Electron Devices, vol. 51, no. 11, pages 1790-1797, 2004.

Tserbak93
C. Tserbak, H.M. Polatoglou, and G. Theodorou.
Unified Approach to the Electronic Structure of Strained Si/Ge Superlattices.
Phys.Rev.B, vol. 47, no. 12, pages 7104-7124, 1993.

Ungersboeck06
E. Ungersboeck, and H. Kosina.
Monte Carlo Study of Electron Transport in Strained Silicon Inversion Layers.
Journal of Computational Electronics, vol. 5, no. 2, pages 79-83, 2006.

Ungersboeck07
Enzo Ungersboeck.
Advanced Modeling of Strained CMOS Technology.
Ph.D Thesis, TU Wien, 2007.

van Dort94
M.J. van Dort, P.H. Woerlee, and A.J. Walker.
Simple Model for Quantisation Effects in Heavily-Doped Silicon MOSFETs at Inversion Conditions.
sse, vol. 37, no. 3, pages 411-414, 1994.

Vastola
G. Vastola, and L. Miglio.
Personal Communication, University Milano Bicocca.

Vogelsang93
T. Vogelsang, and K.R. Hofmann.
Electron Transport in Strained Si Layers on Si$ _{1-x}$Ge$ _x$ Substrates.
Appl.Phys.Lett., vol. 63, no. 2, pages 186-188, 1993.

Watt87
J.T. Watt.
Surface Mobility Modeling.
Computer-Aided Design of IC Fabrication Processes, 1987.

Welser92
J. Welser, J.L. Hoyt, and J.F. Gibbons.
NMOS and PMOS Transistors Fabricated in Strained Silicon/Relaxed Silicon-Germanium Structures.
In IEDM Tech.Dig., pages 1000-1002, 1992.

Welser94a
J. Welser et al.
Electron mobility Enhancement in Strained-Si N-type Metal-Oxide-Semiconductor Field-Effect Transistors.
IEEE Electron Device Lett., vol. 15, no. 3, pages 100-102, 1994.

Welser94b
J. Welser et al.
Strain Dependence of the Performance Enhancement in Strained-Si N-MOSFETs.
In IEDM Tech.Dig., pages 373-376, 1994.

Yamada94
T. Yamada, J.R. Zhou, H. Miyata, and D.K. Ferry.
In-Plane Transport Properties of Si/Si$ _{1-x}$Ge$ _{x}$ Structure and its FET Performance by Computer Simulation.
IEEE Trans.Electron Devices, vol. 41, no. 9, pages 1513-1522, 1994.

Yang04
H. S. Yang, R. Malik, S. Narasimha, Y. Li, R. Divakaruni, P. Agnello, S. Allen, A. Antreasyan, J. C. Arnold, K. Bandy et al.
Dual Stress Liner for High Performance sub 45nm Gate Length SOI CMOS Manufacturing.
In IEDM Tech.Dig., pages 1075-1077, 2004.

Yang06
M. Yang, V. W. C. Chan, K. K. Chan, L. Shi, D. M. Fried, J. H. Stahis, A. I. Chou, E. Gusev, J. A. Ott, L. E. Burns, and M. V. Fischetti.
Hybrid-Orientation Technology (HOT): Opportunities and Challenges.
In IEEE Trans.Electron Devices, volume 53, pages 965-978, 2006.

Yeo05
C. Yeo, B. Cho, F. Gao, S. Lee, M. Lee, C. Yu, C. Liu, L. Tang, and T. Lee.
Electron Mobility Enhancement Using Ultrathin Pure Ge on Si Substrate.
IEEE Electron Device Lett., vol. 26, no. 10, pages 761-763, 2005.

Yoder93
P.D. Yoder, V.D. Natoli, and R.M. Martin.
Ab Initio Analysis of the Electron-Phonon Interaction in Silicon.
J.Appl.Phys., vol. 73, pages 4378-4383, 1993.

Yoder94
P.D. Yoder.
Ph.D Thesis, University of Illinois at Urbana-Champagne, 1994.

Yu03
P. Yu, and M. Cardona.
``Fundamental of semiconductors,''.
Springer, Berlin, Heidelberg, New York, 2003.


next up previous contents
Next: Own Publications Up: Dissertation Siddhartha Dhar Previous: Appendix B

S. Dhar: Analytical Mobility Modeling for Strained Silicon-Based Devices