next up previous contents
Next: Physical Quantities Up: List of Symbols Previous: List of Symbols

Notation

$ x$ ... Scalar
$ x^\ast$ ... Complex conjugate of $ x$
$ {\mathbf{x}}$ ... Vector
$ \ensuremath{{\underline{A}}}$ ... Matrix
$ A_{ij}$ ... Elements of the matrix $ {\underline{A}}$
$ \ensuremath{{\underline{A}}}^T$ ... Conjugate transposed matrix: $ A_{ij} = A_{ji}^\ast$
$ \mathbf{e}_x$ ... Unity vector in direction x
$ \mathbf{x} \cdot \mathbf{y}$ ... Scalar (in) product
$ \partial_t(\cdot)$ ... Partial derivative with respect to $ t$
$ \ensuremath{{\mathbf{\nabla}}}$ ... Nabla operator
$ \ensuremath{{\mathbf{\nabla}}}\mathbf{x}$ ... Gradient of $ {\mathbf{x}}$
$ \ensuremath{{\mathbf{\nabla}}}\cdot \mathbf{x}$ ... Divergence of $ {\mathbf{x}}$
$ \ensuremath{{\mathbf{\nabla}}}\cdot \ensuremath{{\mathbf{\nabla}}}= \ensuremath{{\mathbf{\nabla}}}^2$ ... LAPLACE operator
$ \Gamma(\cdot)$ ... Gamma function
$ \Gamma_i(\cdot,\cdot)$ ... Incomplete gamma function
$ \langle\cdot\rangle$ ... Statistical average
$ f(\mathbf{r},\mathbf{k},t)$ ... Distribution function
$ \ensuremath{{\underline{H}}}$ ... HAMILTONian operator
$ \ensuremath{{\underline{I}}}$ ... Unity matrix


next up previous contents
Next: Physical Quantities Up: List of Symbols Previous: List of Symbols

S. Dhar: Analytical Mobility Modeling for Strained Silicon-Based Devices