next up previous contents
Next: 4.1.2 The tanh Shape Up: 4.1 Shape Functions Previous: 4.1 Shape Functions   Contents

4.1.1 The arctan Shape Function

The $\textsf {arctan}$ function covers the physical properties of SBT( $\mathrm{SrBi_2Ta_2O_9}$) in a very accurate way [DBL98]:


\begin{displaymath}
P = \frac{2}{\pi} \cdot k \cdot P_\mathrm{Sat} \cdot\textsf{...
...gl( 2 \cdot(E \pm E_c)\cdot \frac{k}{w}\Bigr) + P_\mathrm{off}
\end{displaymath} (4.3)

$w$ is the shape parameter necessary to match the remanent polarization $P_\mathrm{Rem}$. $k$ and $P_\mathrm{off}$ are used for the simulation of subcycles. For the calculation of these parameters the equation system

$\displaystyle P_\mathrm{old}=$ $\textstyle \frac{2}{\pi} \cdot k \cdot P_\mathrm{Sat}\cdot \textsf{arctan}\Bigl(2 \cdot(E_\mathrm{old} \pm E_c)
\cdot \frac{k}{w}\Bigr) + P_\mathrm{off}$    
$\displaystyle P_\mathrm{turn}=$ $\textstyle \frac{2}{\pi} \cdot k \cdot P_\mathrm{Sat}\cdot \textsf{arctan}\Bigl(2 \cdot(E_\mathrm{turn} \pm E_c)
\cdot \frac{k}{w}\Bigr) + P_\mathrm{off}$   (4.4)

has to be solved. As this equation system cannot be solved analytically, a Newton procedure is applied [Dir86]. This leads, if compared to the $\textsf {tanh}$ shape function (4.1.2), to a slight increase of computation time and more sophisticated numerical problems.



Klaus Dragosits
2001-02-27