next up previous contents
Next: 4.1.3 Comparison between the Up: 4.1 Shape Functions Previous: 4.1.1 The arctan Shape   Contents


4.1.2 The tanh Shape Function

Although this type, contrarily to the $\textsf {arctan}$ shape function, allows the analytic calculation of the subcycle parameters $k$ and $P_\mathrm{off}$, it provides a less accurate fit, especially for low voltages [UGH+99]. The implementation of this function, as introduced by Jiang et al. [JZJ+97], is

\begin{displaymath}
P = k \cdot P_\mathrm{Sat}\cdot \textsf{tanh}\Bigl(w \cdot (E \pm E_c)\Bigr) + P_{ \mathrm{off}}.
\end{displaymath} (4.5)

The resulting equation system reads as
  $\textstyle P_\mathrm{old}$ $\displaystyle = k \cdot P_\mathrm{Sat}\cdot \textsf{tanh}\Bigl(w \cdot (E_\mathrm{old} \pm E_c)\Bigr)
+ P_{ \mathrm{off}}$  
  $\textstyle P_\mathrm{turn}$ $\displaystyle = k \cdot P_\mathrm{Sat}\cdot \textsf{tanh}\Bigl(w \cdot (E_\mathrm{turn} \pm E_c)\Bigr) + P_{ \mathrm{off}}.$ (4.6)

For the calculation of the subcycle two different sets of equations are obtained, depending on whether an initial polarization cycle is calculated or not. In the case of an initial cycle the turning point has the values
$\displaystyle P_\mathrm{turn}=$ $\textstyle P_\mathrm{Sat}$    
$\displaystyle E_\mathrm{turn}=$ $\textstyle \infty.$   (4.7)

Consequently, the parameters for the locus curves are
$\displaystyle k$ $\textstyle =$ $\displaystyle \frac{P_\mathrm{old} - P_\mathrm{Sat}}{ P_\mathrm{Sat}\cdot(\textsf{tanh}(w \cdot (E_\mathrm{old} - E_c) - 1))}$ (4.8)
$\displaystyle \vspace{-6pt}$      
$\displaystyle P_\mathrm{off}$ $\textstyle =$ $\displaystyle P_\mathrm{Sat}\cdot( k-1)$ (4.9)

if the electric field increases, and
$\displaystyle k$ $\textstyle =$ $\displaystyle \frac{P_\mathrm{old} + P_\mathrm{Sat}}{ P_\mathrm{Sat}\cdot(\textsf{tanh}(w \cdot (E_\mathrm{old} + E_c)+1))}$ (4.10)
$\displaystyle \vspace{-6pt}$      
$\displaystyle P_\mathrm{off}$ $\textstyle =$ $\displaystyle P_\mathrm{Sat}\cdot( k-1)$ (4.11)

if the electric field decreases. In general the parameters for the subcycles are calculated as
$\displaystyle k$ $\textstyle =$ $\displaystyle \frac{P_\mathrm{old} - P_\mathrm{turn}}
{ P_\mathrm{Sat}\cdot(\te...
... (E_\mathrm{old} \pm E_c) - \textsf{tanh}(w \cdot (E_\mathrm{turn} \pm E_c))))}$ (4.12)
$\displaystyle \vspace{-6pt}$      
$\displaystyle P_\mathrm{off}$ $\textstyle =$ $\displaystyle P_\mathrm{turn} - k \cdot P_\mathrm{Sat}\cdot
\textsf{tanh}(w \cdot (E_\mathrm{turn} \pm E_c)).$ (4.13)

The signs depend on whether the electric field strength increases or decreases.


next up previous contents
Next: 4.1.3 Comparison between the Up: 4.1 Shape Functions Previous: 4.1.1 The arctan Shape   Contents
Klaus Dragosits
2001-02-27