3.4 Neumann series

To develop a Neumann series of a general Fredholm equation, the function appearing in the integrand is expanded recursively. The first expansion yields

                 ∫               {         ∫                     }
f (Q0 ) = fi(Q0 )+ dQ1K  (Q0,Q1 )  fi(Q1 )+    dQ2K (Q1, Q2)f (Q2 )
                 ∫                       ∫      ∫
                                                                                                          (3.20)
      = f◟i(◝Q◜0-)◞+   dQ1K  (Q0,Q1 )fi(Q1 )+    dQ1   dQ2K  (Q0,Q1 )K (Q1, Q2)f (Q2 ).
           f0     ◟---------◝◜1---------◞  ◟--------------2--◝3◜---n-------------◞
                           f                           f +f +⋅⋅⋅+f
The Neumann series is formed by an iterative application of the kernel K to the free term fi. The term fn corresponds to n applications of the kernel:
          ∑∞
      f =     fn;                                                                        (3.21)
          n=0
          { ∫                  n-1
f n(Qn ) =    dQnK (Qn -1,Qn )f    (Qn )  if n > 0                                         (3.22)
            fi(Q0)                       if n = 0.
The evaluation of a Neumann series formally solves the Fredholm integral equation [124].