Next: Curriculum Vitae
Up: Dissertation Robert Entner
Previous: 8. Summary and Conclusions
- 1
-
G. E. Moore, ``Cramming More Components onto Integrated Circuits,'' Electronics, vol. 38, no. 8, pp. 114-117, 1965.
- 2
-
J. C. Maxwell, ``A Dynamical Theory of the Electromagnetic Field,'' Royal Society Transactions, vol. CLV, 1864.
- 3
-
W. VanRoosbroeck, ``Theory of Flow of Electrons and Holes in Germanium and
Other Semiconductors,'' Bell Syst.Techn.J., vol. 29, pp. 560-607,
1950.
- 4
-
T. Grasser, W. Gös, V. Sverdlov, and B. Kaczer, ``The Universality of NBTI
Relaxation and its Implications for Modeling and Characterization,'' in Proc. Intl.Rel.Phys.Symp., pp. 1-13, 2007.
- 5
-
D. K. Schroder, Semiconductor Material and Device Characterization, 3rd
Edition.
Wiley Interscience, 2006.
- 6
-
R. A. B. Devine, J.-L. Autran, W. L. Warren, K. L. Vanheusdan, and J.-C.
Rostaing, ``Interfacial Hardness Enhancement in Deuterium Annealed 0.25 mu m
Channel Metal Oxide Semiconductor Transistors,'' Appl.Phys.Lett.,
vol. 70, no. 22, pp. 2999-3001, 1997.
- 7
-
W. Shockley and W. T. Read, ``Statistics of the Recombinations of Holes and
Electrons,'' Phys.Rev., vol. 87, no. 5, pp. 835-842, 1952.
- 8
-
R. N. Hall, ``Electron-Hole Recombination in Germanium,'' Phys.Rev.,
vol. 87, no. 2, p. 387, 1952.
- 9
-
R. Entner, A. Gehring, T. Grasser, and S. Selberherr, ``A Comparison of
Quantum Correction Models for the Three-Dimensional Simulation of FinFET
Structures,'' in Proc. IEEE International Spring Seminar on Electronics
Technology, (Sophia, Bulgaria), pp. 114-117, 2004.
(best poster).
- 10
-
G. Paasch and H. Übensee, ``A Modified Local Density Approximation -
Electron Density in Inversion Layers,'' Phys.Stat.Sol B, vol. 113,
pp. 165-178, 1982.
- 11
-
W. Hänsch, T. Vogelsang, R. Kircher, and M. Orlowski, ``Carrier Transport
Near the Si/SiO2 Interface of a MOSFET,'' Solid-State Electron.,
vol. 32, no. 10, pp. 839-849, 1989.
- 12
-
M. J. van Dort, P. H. Woerlee, and A. J. Walker, ``A Simple Model for
Quantisation Effects in Heavily-Doped Silicon MOSFETs at Inversion
Conditions,'' Solid-State Electron., vol. 37, no. 3, pp. 411-414,
1994.
- 13
-
M. J. van Dort, P. H. Woerlee, A. J. Walker, C. A. H. Juffermans, and H. Lifka,
``Influence of High Substrate Doping Levels on the Threshold Voltage and the
Mobility of Deep-Submicrometer MOSFETs,'' IEEE Trans.Electron Devices,
vol. 39, no. 4, pp. 932-938, 1992.
- 14
-
S. Selberherr, ``MOS Device Modeling at 77K,'' IEEE Trans.Electron
Devices, vol. 36, no. 8, pp. 1464-1474, 1989.
- 15
-
F. J. Grunthaner, P. J. Grunthaner, R. P. Vasquez, B. F. Lewis, J. Maserjian,
and A. Madhukar, ``Local Atomic and Electronic Structure of Oxide/GaAs and
/Si Interfaces Using High-Resolution XPS,'' J.Vac.Sci.Technol.,
vol. 16, pp. 1443-1453, 1979.
- 16
-
A. H. Edwards, ``Interaction of H and H with the Silicon Dangling Orbital
at the 111 Si/SiO Interface,'' Phys.Rev.B,
vol. 44, no. 4, pp. 1832-1838, 1991.
- 17
-
C. R. Helms and E. H. Poindexter, ``The Silicon-Silicon Dioxide System: Its
Microstructure and Imperfections,'' Reports on Progress in Physics,
vol. 57, no. 8, pp. 791-852, 1994.
- 18
-
J. P. Campbell, P. M. Lenahan, A. T. Krishnan, and S. Krishnan, ``Observations
of NBTI-Induced Atomic Scale Defects,'' IEEE Trans.Dev.Mat.Rel.,
vol. 6, no. 2, pp. 117-122, 2006.
- 19
-
J. Campbell, P. Lenahan, A. Krishnan, and S. Krishnan, ``Direct Observation of
the Structure of Defect Centers Involved in the Negative Bias Temperature
Instability,'' Appl.Phys.Lett., vol. 87, no. 20, pp. 1-3, 2005.
- 20
-
P. Lenahan, T. Mishima, J. Jumper, T. Fogarty, and R. Wilkins, ``Direct
Experimental Evidence for Atomic Scale Structural Changes Involved in the
Interface-Trap Transformation Process,'' IEEE Trans.Nuclear Science,
vol. 48, no. 6, pp. 2131-2135, 2001.
- 21
-
L.-A. Ragnarsson and P. Lundgren, ``Electrical Characterization of
Centers in (100) Si/
Structures: The Influence of Surface Potential
on Passivation During Post Metallization Anneal,'' J.Appl.Phys.,
vol. 88, no. 2, pp. 938-942, 2000.
- 22
-
P. Lenahan and J. Conley Jr., ``What Can Electron Paramagnetic Resonance
Tell Us about the Si/SiO2 System?,'' J.Vac.Sci.Technol.B, vol. 16,
no. 4, pp. 2134-2153, 1998.
- 23
-
S. Fujieda, Y. Miura, M. Saitoh, Y. Teraoka, and A. Yoshigoe,
``Characterization of Interface Defects Related to Negative-Bias Temperature
Instability in Ultrathin Plasma-Nitrided SiON/Si100
Systems,'' Microelectron.Reliab., vol. 45, no. 1, pp. 57-64, 2005.
- 24
-
S. Fujieda, Y. Miura, M. Saitoh, E. Hasegawa, S. Koyama, and K. Ando,
``Interface Defects Responsible for Negative-Bias Temperature Instability in
Plasma-Nitrided SiON/Si(100) Systems,'' Appl.Phys.Lett., vol. 82,
no. 21, pp. 3677-3679, 2003.
- 25
-
Y. Miura and S. Fujieda, ``Nitridation Effects on
Center Structures at
/Si(100) Interfaces,'' J.Appl.Phys., vol. 95, no. 8,
pp. 4096-4101, 2004.
- 26
-
M. Jupina and P. Lenahan, ``A Spin Dependent Recombination Study of Radiation
Induced Defectsat and Near the Si/
Interface,'' IEEE
Trans.Nuclear Science, vol. 36, no. 6, pp. 1800-1807, 1989.
- 27
-
P. M. Lenahan and M. A. Jupina, ``Spin Dependent Recombination at the
Silicon/Silicon Dioxide Interface,'' Colloids and Surfaces, vol. 45,
pp. 191-211, 1990.
- 28
-
D. J. Lepine, ``Spin-Dependent Recombination on Silicon Surface,'' Phys.Rev.B, vol. 6, no. 2, pp. 436-441, 1972.
- 29
-
K. L. Brower and S. M. Myers, ``Chemical Kinetics of Hydrogen and (111)
Si-
Interface Defects,'' Appl.Phys.Lett., vol. 57, no. 2,
pp. 162-164, 1990.
- 30
-
K. L. Brower, ``Dissociation Kinetics of Hydrogen-Passivated (111) Si-
Interface Defects,'' Phys.Rev.B, vol. 42, no. 6, pp. 3444-3453, 1990.
- 31
-
J. P. Campbell and P. M. Lenahan, ``Density of States of
Si/
Interface Trap Centers,'' Appl.Phys.Lett., vol. 80, pp. 1945-1947,
2002.
- 32
-
M. L. Reed and J. D. Plummer, ``Chemistry of Si-SiO Interface Trap
Annealing,'' J.Appl.Phys., vol. 63, pp. 5776-5793, June 1988.
- 33
-
K. L. Brower, ``Passivation of Paramagnetic Si/
Interface States with
Molecular Hydrogen,'' Appl.Phys.Lett., vol. 53, no. 6, pp. 508-510,
1988.
- 34
-
A. Stesmans, ``Passivation of
and
Interface Defects in Thermal
(100) Si/
with Molecular Hydrogen,'' Appl.Phys.Lett., vol. 68,
no. 15, pp. 2076-2078, 1996.
- 35
-
E. Cartier, J. Stathis, and D. Buchanan, ``Passivation and Depassivation of
Silicon Dangling Bonds at the Si(111)/
Interface by Atomic Hydrogen,''
Appl.Phys.Lett., vol. 63, no. 11, pp. 1510-1512, 1993.
- 36
-
J. F. Conley, P. M. Lenahan, H. L. Evans, R. K. Lowry, and T. J. Morthorst,
``Electron-Spin-Resonance Evidence for an Impurity-Related
-Like Hole
Trapping Defect in Thermally Grown
on Si,'' J.Appl.Phys.,
vol. 76, no. 12, pp. 8186-8188, 1994.
- 37
-
J. F. Conley and P. M. Lenahan, ``Room Temperature Reactions Involving Silicon
Dangling Bond Centers and Molecular Hydrogen in Amorphous SiO Thin Films
on Silicon,'' IEEE Trans.Nuclear Science, vol. 39, no. 6,
pp. 2186-2191, 1992.
- 38
-
Z.-Y. Lu, C. J. Nicklaw, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides,
``Structure, Properties, and Dynamics of Oxygen Vacancies in Amorphous
SiO,'' Phys.Rev.Lett., vol. 89, p. 285505, Dec 2002.
- 39
-
J. S. Brugler and P. G. A. Jespers, ``Charge Pumping in MOS Devices,'' IEEE Trans.Electron Devices, vol. 16, no. 3, pp. 297-302, 1969.
- 40
-
G. Groeseneken, H. Maes, N. Beltran, and R. F. De Keersmaecker, ``Reliable
Approach to Charge-Pumping Measurements in MOS Transistors,'' IEEE
Trans.Electron Devices, vol. 31, no. 1, pp. 42-53, 1984.
- 41
-
A. B. M. Elliot, ``The Use of Charge Pumping Currents to Measure Surface
State Densities in MOS Transistors,'' Solid-State Electron., vol. 19,
pp. 241-247, Mar. 1976.
- 42
-
U. Cilingiroglu, ``A General Model for Interface Trap Charge Pumping Effects
in MOS-Devices,'' Solid-State Electron., vol. 28, no. 11,
pp. 1127-1141, 1985.
- 43
-
E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics
and Technology.
Wiley, 1982.
- 44
-
Institut für Mikroelektronik, Technische Universität Wien, Austria,
MINIMOS-NT 2.1 User's Guide, 2004.
www.iue.tuwien.ac.at/software/.
- 45
-
S. Zhu, A. Nakajima, T. Ohashi, and H. Miyake, ``Interface Trap and Oxide
Charge Generation under Negative Bias Temperature Instability of p-Channel
Metal-Oxide-Semiconductor Field-Effect Transistors with Ultrathin
Plasma-Nitrided SiON Gate Dielectrics,'' J.Appl.Phys., vol. 98,
no. 11, pp. 1-6, 2005.
- 46
-
D. J. Fitzgerald and A. S. Grove, ``Surface Recombination in
Semiconductors,'' IEEE Trans.Electron Devices, vol. 15, no. 6,
pp. 426-427, 1968.
- 47
-
A. Neugroschel, C.-T. Sah, K. M. Han, and M. S. Carroll, ``Direct-Current
Measurements of Oxide and Interface Traps on Oxidized Silicon,'' IEEE
Trans.Electron Devices, vol. 42, no. 9, pp. 1657-1662, 1995.
- 48
-
D. M. Fleetwood, P. S. Winokur, J. R. A. Reber, T. L. Meisenheimer, J. R.
Schwank, M. R. Shaneyfelt, and L. C. Riewe, ``Effects of Oxide Traps,
Interface Traps, and ``Border Traps'' on Metal-Oxide-Semiconductor
Devices,'' J.Appl.Phys., vol. 73, no. 10, pp. 5058-5074, 1993.
- 49
-
E. Takeda, N. Suzuki, and T. Hagiwara, ``Device Performance Degradation to
Hot-Carrier Injection at Energies Below the Si-SiO Energy Barrier,'' in
Proc. Intl. Electron Devices Meeting, pp. 396-399, 1983.
- 50
-
P. E. Cottrell, R. R. Troutman, and T. H. Ning, ``Hot-Electron Emission in
n-Channel IGFETs,'' IEEE J.Solid-State Circuits, vol. 14, no. 2,
pp. 442-455, 1979.
- 51
-
S. Tam, P. K. Ko, and C. Hu, ``Lucky-Electron Model of Channel Hot-Electron
Injection in MOSFET's,'' IEEE Trans.Electron Devices, vol. 31, no. 9,
pp. 1116-1125, 1984.
- 52
-
S. Kohyama, T. Furuyama, S. Mimurat, and H. Iizuka, ``Non-Thermal Carrier
Generation in MOS Structures,'' Jpn.J.Appl.Phys., vol. 19, Suppl.
19-1, pp. 85-92, 1980.
- 53
-
T. H. Ning, ``Hot-Electron Emission from Silicon into Silicon Dioxide,'' Solid-State Electron., vol. 21, no. 1, pp. 273-282, 1978.
- 54
-
D. J. DiMaria, ``Defect Generation Under Substrate-Hot-Electron Injection Into
Ultrathin Silicon Dioxide Layers,'' J.Appl.Phys., vol. 86, no. 4,
pp. 2100-2109, 1999.
- 55
-
J. H. Stathis and D. J. DiMaria, ``Reliability Projection for Ultra-Thin
Oxides at Low Voltage,'' Proc. Intl. Electron Devices Meeting,
pp. 167-170, 1998.
- 56
-
J. S. Suehle, ``Ultrathin Gate Oxide Reliability: Physical Models, Statistics,
and Characterization,'' IEEE Trans.Electron Devices, vol. 49, no. 6,
pp. 958-971, 2002.
- 57
-
S. Lee, B. Cho, J. Kim, and S. Choi, ``Quasi-Breakdown of Ultrathin Gate Oxide
Under High Field Stress,'' Proc. Intl. Electron Devices Meeting,
pp. 605-608, 1994.
- 58
-
B. E. Weir, P. J. Silverman, D. Monroe, K. S. Krisch, M. A. Alam, G. B. Alers,
T. W. Sorsch, G. L. Timp, F. Baumann, C. T. Liu, Y. Ma, and D. Hwang,
``Ultra-Thin Gate Dielectrics: They Break Down, but do they Fail?,'' in
Proc. Intl. Electron Devices Meeting, pp. 73-76, 1997.
- 59
-
I. C. Chen, S. Holland, K. K. Young, C. Chang, and C. Hu, ``Substrate Hole
Current and Oxide Breakdown,'' Appl.Phys.Lett., vol. 49, no. 11,
pp. 669-671, 1986.
- 60
-
K. F. Schuegraf and C. Hu, ``Metal-Oxide-Semiconductor Field-Effect-Transistor
Substrate Current During Fowler-Nordheim Tunneling Stress and Silicon
Dioxide Reliability,'' J.Appl.Phys., vol. 76, no. 6, pp. 3695-3700,
1994.
- 61
-
K. F. Schuegraf and C. Hu, ``Effects of Temperature and Defects on Breakdown
Lifetime of Thin SiO at Very Low Voltages,'' Proc.
Intl.Rel.Phys.Symp., pp. 126-135, 1994.
- 62
-
E. Avni and J. Shappir, ``A Model for Silicon-Oxide Breakdown Under High Field
and Current Stress,'' J.Appl.Phys., vol. 64, no. 2, pp. 743-748,
1988.
- 63
-
J. Suñé, I. Placencia, N. Barniol, E. Farrés, F. Martín, and
X. Aymerich, ``On the Breakdown Statistics of Very Thin SiO Films,''
Thin Solid Films, vol. 185, pp. 347-362, 1990.
- 64
-
D. J. Dumin, J. R. Maddux, R. S. Scott, and R. Subramoniam, ``A Model Relating
Wearout to Breakdown in Thin Oxides,'' IEEE Trans.Electron Devices,
vol. 41, no. 9, pp. 1570-1580, 1994.
- 65
-
P. P. Apte and K. C. Saraswat, ``Modeling Ultrathin Dielectric Breakdown on
Correlation of Charge Trap-Generation to Charge-to-Breakdown,'' Proc.
Intl.Rel.Phys.Symp., pp. 136-142, 1994.
- 66
-
R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, P. J. Roussel,
and H. E. Maes, ``New Insights in the Relation Between Electron Trap
Generation and the Statistical Properties of Oxide Breakdown,'' IEEE
Trans.Electron Devices, vol. 45, no. 4, pp. 904-911, 1998.
- 67
-
R. Tsu and L. Esaki, ``Tunneling in a Finite Superlattice,'' Appl.Phys.Lett., vol. 22, no. 11, pp. 562-564, 1973.
- 68
-
Khairurrijal, W. Mizubayashi, S. Miyazaki, and M. Hirose, ``Analytic Model of
Direct Tunnel Current Through Ultrathin Gate Oxides,'' J.Appl.Phys.,
vol. 87, no. 6, pp. 3000-3005, 2000.
- 69
-
A. Gehring, Simulation of Tunneling in Semiconductor Devices.
Dissertation, Technische Universität Wien, 2003.
http://www.iue.tuwien.ac.at/phd/gehring.
- 70
-
R. Moazzami and C. Hu, ``Stress-Induced Current in Thin Silicon Dioxide
Films,'' in Proc. Intl. Electron Devices Meeting, pp. 139-142, 1992.
- 71
-
B. Riccó, G. Gozzi, and M. Lanzoni, ``Modeling and Simulation of
Stress-Induced Leakage Current in Ultrathin SiO2 Films,'' IEEE
Trans.Electron Devices, vol. 45, no. 7, pp. 1554-1560, 1998.
- 72
-
M. Herrmann and A. Schenk, ``Field and High-Temperature Dependence of the Long
Term Charge Loss in Erasable Programmable Read Only Memories: Measurements
and Modeling,'' J.Appl.Phys., vol. 77, no. 9, pp. 4522-4540, 1995.
- 73
-
F. Schuler, R. Degraeve, P. Hendrickx, and D. Wellekens, ``Physical
Description of Anomalous Charge Loss in Floating Gate Based NVM's and
Identification of its Dominant Parameter,'' in Intl. Reliability
Physics Symposium, pp. 26-33, 2002.
- 74
-
D. Ielmini, A. S. Spinelli, A. L. Lacaita, and A. Modelli, ``Modeling of
Anomalous SILC in Flash Memories Based on Tunneling at Multiple Defects,''
Solid-State Electron., vol. 46, no. 11, pp. 1749-1756, 2002.
- 75
-
D. Ielmini, A. S. Spinelli, A. L. Lacaita, and M. J. van Duuren, ``Defect
Generation Statistics in Thin Gate Oxides,'' IEEE Trans.Electron
Devices, vol. 51, no. 8, pp. 1288-1295, 2004.
- 76
-
L. Larcher, ``Statistical Simulation of Leakage Currents in MOS and Flash
Memory Devices with a New Multiphonon Trap-Assisted Tunneling Model,'' IEEE Trans.Electron Devices, vol. 50, no. 5, pp. 1246-1253, 2003.
- 77
-
R. Entner, A. Gehring, H. Kosina, T. Grasser, and S. Selberherr, ``Impact of
Multi-Trap Assisted Tunneling on Gate Leakage of CMOS Memory Devices,'' in
Proc. NSTI Nanotech, (Anaheim, California, USA), pp. 45-48, May
2005.
- 78
-
R. Entner, A. Gehring, H. Kosina, T. Grasser, and S. Selberherr, ``Modeling of
Tunneling Currents for Highly Degraded CMOS Devices,'' in Proc.
Simulation of Semiconductor Processes and Devices, (Tokyo, Japan),
pp. 219-222, Sept. 2005.
- 79
-
W. J. Chang, M. P. Houng, and Y. H. Wang, ``Simulation of Stress-Induced
Leakage Current in Silicon Dioxides: A Modified Trap-Assisted Tunneling Model
considering Gaussian-Distributed Traps and Electron Energy Loss,'' J.Appl.Phys., vol. 89, no. 11, pp. 6285-6293, 2001.
- 80
-
A. Gehring, F. Jiménez-Molinos, H. Kosina, A. Palma, F. Gámiz, and
S. Selberherr, ``Modeling of Retention Time Degradation Due to Inelastic
Trap-Assisted Tunneling in EEPROM Devices,'' Microelectron.Reliab.,
vol. 43, no. 9-11, pp. 1495-1500, 2003.
- 81
-
A. Palma, A. Godoy, J. A. Jimenez-Tejada, J. E. Carceller, and J. A.
Lopez-Villanueva, ``Quantum Two-Dimensional Calculation of Time Constants of
Random Telegraph Signals in Metal-Oxide-Semiconductor Structures,'' Phys.Rev.B, vol. 56, no. 15, pp. 9565-9574, 1997.
- 82
-
F. Jiménez-Molinos, A. Palma, F. Gámiz, J. Banqueri, and J. A.
Lopez-Villanueva, ``Physical Model for Trap-Assisted Inelastic Tunneling in
Metal-Oxide-Semiconductor Structures,'' J.Appl.Phys., vol. 90, no. 7,
pp. 3396-3404, 2001.
- 83
-
Y. Miura and Y. Matukura, ``Investigation of Silicon-Silicon Dioxide Interface
Using MOS Structure,'' Jpn.J.Appl.Phys., vol. 5, p. 180, 1966.
- 84
-
D. K. Schroder and J. A. Babcock, ``Negative Bias Temperature Instability:
Road to Cross in Deep Submicron Silicon Semiconductor Manufactoring,'' J.Appl.Phys., vol. 94, no. 1, pp. 1-18, 2003.
- 85
-
M. A. Alam and S. Mahapatra, ``A Comprehensive Model of PMOS NBTI
Degradation,'' Microelectron.Reliab., vol. 45, no. 71-81, pp. 71-81,
2005.
- 86
-
V. Huard, M. Denais, and C. Parthasarathy, ``NBTI Degradation: From Physical
Mechanisms to Modelling,'' Microelectron.Reliab., vol. 46, no. 1,
pp. 1-23, 2006.
- 87
-
J. Stathis and S. Zafar, ``The Negative Bias Temperature Instability in MOS
Devices: A Review,'' Microelectron.Reliab., vol. 46, no. 2-4,
pp. 270-286, 2006.
- 88
-
B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and
M. Goodwin, ``Temperature Dependence of the Negative Bias Temperature
Instability in the Framework of Dispersive Transport,'' Appl.Phys.Lett., vol. 86, p. 143506, 2005.
- 89
-
A. Goetzberger and H. Nigh, ``Surface Charge After Annealing of Al-
-Si
Structures Under Bias,'' Proc.IEEE, vol. 54, no. 10, p. 1454, 1966.
- 90
-
E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, ``Characteristics of the
Surface-State Charge (Qss) of Thermally Oxidized Silicon,'' J.Electrochem.Soc., vol. 114, no. 3, p. 266, 1967.
- 91
-
M. Ershov, S. Saxena, H. Karbasi, S. Winters, S. Minehane, J. Babcock,
R. Lindley, P. Clifton, M. Redford, and A. Shibkov, ``Dynamic Recovery of
Negative Bias Temperature Instability in p-Type Metal-Oxide-Semiconductor
Field-Effect Transistors,'' Appl.Phys.Lett., vol. 83, no. 8,
pp. 1647-1649, 2003.
- 92
-
B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and
M. Goodwin, ``Disorder-Controlled-Kinetics Model for Negative Bias
Temperature Instability and Its Experimental Verification,'' Proc.
Intl.Rel.Phys.Symp., pp. 381-387, 2005.
- 93
-
M. Denais, A. Bravaix, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier,
Y. Rey-Tauriac, and N. Revil, ``On-the-fly Characterization of NBTI in
Ultra-Thin Gate Oxide PMOSFET's,'' in Proc. Intl. Electron Devices
Meeting, pp. 109-112, 2004.
- 94
-
M. Denais, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, N. Revil, and
A. Bravaix, ``New Methodologies of NBTI Characterization Eliminating
Recovery Effects,'' in Proc. ESSDERC, pp. 265-268, 2004.
- 95
-
S. Rangan, N. Mielke, and E. Yeh, ``Universal Recovery Behavior of Negative
Bias Temperature Instability,'' in Proc. Intl. Electron Devices
Meeting, pp. 341-344, 2003.
- 96
-
T. Yang, C. Shen, M. Li, C. Ang, C. Zhu, Y.-C. Yeo, G. Samudra, and D.-L.
Kwong, ``Interface Trap Passivation Effect in NBTI Measurement for p-MOSFET
with SiON Gate Dielectric,'' IEEE Electron Device Lett., vol. 26,
no. 10, pp. 758-760, 2005.
- 97
-
T. Yang, M. Li, C. Shen, C. Ang, C. Zhu, Y. Yeo, G. Samudra, S. Rustagi, M. Yu,
and D. Kwong, ``Fast and Slow Dynamic NBTI Components in p-MOSFET with SiON
Dielectric and Their Impact on Device Life-Time and Circuit Application,''
in IEEE Symposium on VLSI Technology Digest of Technical Papers,
pp. 92-93, 2005.
- 98
-
D. Varghese, D. Saha, S. Mahapatra, K. Ahmed, F. Nouri, and M. Alam, ``On the
Dispersive versus Arrhenius Temperature Activation of NBTI Time Evolution in
Plasma Nitrided Gate Oxides: Measurements, Theory, and Implications,'' in
Proc. Intl. Electron Devices Meeting, pp. 1-4, Dec. 2005.
- 99
-
C. Shen, M.-F. Li, C. E. Foo, T. Yang, G. S. Samudra, and Y.-C. Yeo,
``Characterization and Physical Origin of Fast
Transient in NBTI of
pMOSFETs with SiON Dielectric,'' in Proc. Intl. Electron Devices
Meeting, 2006.
- 100
-
C. Shen, M.-F. Li, X. P. Wang, Y.-C. Yeo, and D.-L. Kwong, ``A Fast
Measurement Technique of MOSFET
-
Characteristics,'' IEEE
Electron Device Lett., vol. 27, no. 1, pp. 55-57, 2006.
- 101
-
Y. Mitani, M. Nagamine, H. Satake, and A. Toriumi, ``NBTI Mechanism in
Ultra-Thin Gate Dielectric - Nitrogen-Originated Mechanism in SiON,'' in
Proc. Intl. Electron Devices Meeting, pp. 509-512, 2002.
- 102
-
L. Tsetseris, X. Zhou, D. Fleetwood, R. Schrimpf, and S. Pantelides,
``Physical Mechanisms of Negative-Bias Temperature Instability,'' Appl.Phys.Lett., vol. 86, no. 14, pp. 1-3, 2005.
- 103
-
K. O. Jeppson and C. M. Svensson, ``Negative Bias Stress of MOS Devices at
High Electric Fields and Degradation of MNOS Devices,'' J.Appl.Phys.,
vol. 48, no. 5, pp. 2004-2014, 1977.
- 104
-
S. Chakravarthi, A. Krishnan, V. Reddy, C. Machala, and S. Krishnan, ``A
Comprehensive Framework for Predictive Modeling of Negative Bias Temperature
Instability,'' in Proc. Intl.Rel.Phys.Symp., pp. 273-282, 2004.
- 105
-
S. Ogawa and N. Shiono, ``Generalized Diffusion-Reaction Model for the
Low-Field Charge Build Up Instability at the Si/SiO Interface,'' Phys.Rev.B, vol. 51, no. 7, pp. 4218-4230, 1995.
- 106
-
R. Entner, T. Grasser, H. Enichlmair, and R. Minixhofer, ``Negative Bias
Temperature Instability Modeling for High-Voltage Oxides at Different Stress
Temperatures,'' in Proc. Workshop on Dielectrics in Microelectronics,
pp. 96-97, 2006.
- 107
-
R. Entner, T. Grasser, H. Enichlmair, and R. Minixhofer, ``Investigation of
NBTI Recovery During Measurement,'' in San Francisco 2006 MRS Meeting
Abstracts, (San Francisco), pp. 110-111, Apr. 2006.
- 108
-
R. Entner, T. Grasser, H. Enichlmair, and R. Minixhofer, ``Influence of
Interface and Oxide Traps on Negative Bias Temperature Instability,'' in
Abstracts IEEE 2006 Silicon Nanoelectronics Workshop, (Honolulu),
pp. 163-164, June 2006.
- 109
-
M. Houssa, M. Aoulaiche, S. D. Gendt, G. Groeseneken, M. Heyns, and
A. Stesmans, ``Reaction-Dispersive Proton Transport Model for Negative Bias
Temperature Instabilities,'' Appl.Phys.Lett., vol. 86, no. 9,
pp. 1-3, 2005.
- 110
-
S. Zafar, ``Statistical Mechanics Based Model for Negative Bias Temperature
Instability Induced Degradation,'' J.Appl.Phys., vol. 97, no. 10,
pp. 1-9, 2005.
- 111
-
T. Grasser, R. Entner, O. Triebl, H. Enichlmair, and R. Minixhofer, ``TCAD
Modeling of Negative Bias Temperature Instability,'' in Proc.
Simulation of Semiconductor Processes and Devices, (Monterey, USA),
pp. 330-333, Sept. 2006.
- 112
-
R. Entner, T. Grasser, O. Triebl, H. Enichlmair, and R. Minixhofer, ``Negative
Bias Temperature Instability Modeling for High-Voltage Oxides at Different
Stress Temperatures,'' Microelectron.Reliab., 2007, in print.
- 113
-
V. Arkhipov and A. Rudenko, ``Drift and Diffusion in Materials with Traps,''
Philos.Mag.B, vol. 45, no. 2, pp. 189-207, 1982.
- 114
-
T. Grasser, W. Gös, and B. Kaczer, ``Dispersive Transport and Negative Bias
Temperature Instability: Influence of Boundary and Initial Conditions,''
submitted.
- 115
-
C. Schlünder, R. Brederlow, B. Ankele, W. Gustin, K. Goser, and R. Thewes,
``Effects of Inhomogeneous Negative Bias Temperature Stress on p-channel
MOSFETs of Analog and RF Circuits,'' Microelectron.Reliab., vol. 45,
no. 1, pp. 39-46, 2005.
- 116
-
G. Kresse and J. Furthmüller, ``Efficient Iterative Schemes for Ab Initio
Total-Energy Calculations Using a Plane-Wave Basis Set,'' Phys.Rev.B,
vol. 54, no. 16, pp. 11169-11186, 1996.
- 117
-
J. H. Stathis, ``Dissociation Kinetics of Hydrogen-Passivated (100) Si/
Interface Defects,'' J.Appl.Phys., vol. 77, no. 12, pp. 6205-6207,
1995.
- 118
-
S. N. Rashkeev, D. M. Fleetwood, R. D. Schrimpf, and S. T. Pantelides,
``Defect Generation by Hydrogen at the Si-
Interface,'' Phys.Rev.Lett., vol. 87, no. 16, p. 165506, 2001.
- 119
-
L. Tsetseris and S. Pantelides, ``Migration, Incorporation, and Passivation
Reactions of Molecular Hydrogen at the Si-
Interface,'' Phys.Rev.B, vol. 70, no. 24, pp. 1-6, 2004.
- 120
-
J. Zhu, N. M. Johnson, and C. Herring, ``Negative-Charge State of Hydrogen in
Silicon,'' Phys.Rev.B, vol. 41, no. 17, pp. 12354-12357, 1990.
- 121
-
S. Chakravarthi, A. Krishnan, V. Reddy, and S. Krishnan, ``Probing Negative
Bias Temperature Instability Using a Continuum Numerical Framework: Physics
to Real World Operation,'' Microelectron.Reliab., 2007, in print.
- 122
-
D. Varghese, S. Mahapatra, and M. Alam, ``Hole Energy Dependent Interface Trap
Generation in MOSFET Si/
Interface,'' IEEE Electron Device
Lett., vol. 26, no. 8, pp. 572-574, 2005.
Next: Curriculum Vitae
Up: Dissertation Robert Entner
Previous: 8. Summary and Conclusions
R. Entner: Modeling and Simulation of Negative Bias Temperature Instability