Bibliography

  • [1] Y. Fu, Z. S. Li, W. T. Ng, and J. K. O. Sin. Integrated Power Devices and TCAD Simulation. 1st ed. CRC Press, 2014. isbn: 9781466583818. doi: 10.1201/b16396.

  • [2] T. Ma, V. Moroz, R. Borges, K. E. Sayed, P. Asenov, and A. Asenov. “Future Perspectives of TCAD in the Industry”. Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). 2016, pp. 335–339. doi: 10.1109/SISPAD.2016.7605215.

  • [3] M. Li, F. J. Ma, I. M. Peters, K. D. Shetty, A. G. Aberle, B. Hoex, and G. S. Samudra. “Numerical Simulation of Doping Process by BBr3 Tube Diffusion for Industrial n -Type Silicon Wafer Solar Cells”. IEEE Journal of Photovoltaics 7.3 (2017), pp. 755–762. doi: 10.1109/JPHOTOV.2017.2679342.

  • [4] C. Diaz Llorente, C. Le Royer, P. Batude, C. Fenouillet-Beranger, S. Martinie, C. M. Lu, F. Allain, J. P. Colinge, S. Cristoloveanu, G. Ghibaudo, and M. Vinet. “New Insights on SOI Tunnel FETs with Low-Temperature Process Flow for CoolCube™ Integration”. Solid-State Electronics 144 (2018), pp. 78–85. doi: 10.1016/j.sse.2018.03.006.

  • [5] R. K. Sharma, M. Gupta, and R. S. Gupta. “TCAD Assessment of Device Design Technologies for Enhanced Performance of Nanoscale DG MOSFET”. IEEE Transactions on Electron Devices 58.9 (2011), pp. 2936–2943. doi: 10.1109/TED.2011.2160065.

  • [6] S. Maheshwaram, S. K. Manhas, G. Kaushal, B. Anand, and N. Singh. “Device Circuit Co-Design Issues in Vertical Nanowire CMOS Platform”. IEEE Electron Device Letters 33.7 (2012), pp. 934–936. doi: 10.1109/LED.2012.2197592.

  • [7] S. Donati Guerrieri, M. Pirola, and F. Bonani. “Concurrent Efficient Evaluation of Small-Change Parameters and Green’s Functions for TCAD Device Noise and Variability Analysis”. IEEE Transactions on Electron Devices 64.3 (2017), pp. 1261–1267. doi: 10.1109/TED.2017.2651168.

  • [8] N. Yadav, A. P. Shah, and S. K. Vishvakarma. “Stable, Reliable, and Bit-Interleaving 12T SRAM for Space Applications: A Device Circuit Co-Design”. IEEE Transactions on Semiconductor Manufacturing 30.3 (2017), pp. 276–284. doi: 10.1109/TSM.2017.2718029.

  • [9] C. Maiti. Introducing Technology Computer-Aided Design (TCAD) Fundamentals, Simulations, and Applications. Pan Stanford Publishing, 2017. isbn: 9789814745512.

  • [10] G. S. May and C. J. Spanos. Fundamentals of Semiconductor Manufacturing and Process Control. John Wiley & Sons, 2006. isbn: 9780471784067. doi: 10.1002/0471790281.

  • [11] J. Chaskalovic. Finite Element Methods for Engineering Sciences. Springer Berlin Heidelberg, 2008. isbn: 9783540763420. doi: 10.1007/978-3-540-76343-7.

  • [12] R. Eymard, T. Gallouët, and R. Herbin. “Finite Volume Methods”. Handbook of Numerical Analysis. Vol. 7. Elsevier, 2000, pp. 713–1018. doi: 10.1016/S1570-8659(00)07005-8.

  • [13] A. Chvála, D. Donoval, A. Šatka, M. Molnár, J. Marek, and P. Príbytný. “Advanced Methodology for Fast 3-D TCAD Device/Circuit Electrothermal Simulation and Analysis of Power HEMTs”. IEEE Transactions on Electron Devices 62.3 (2015), pp. 828–834. doi: 10.1109/TED.2015.2395251.

  • [14] T. Ikegami, K. Fukuda, J. Hattori, H. Asai, and H. Ota. “A TCAD Device Simulator for Exotic Materials and Its Application to a Negative-Capacitance FET”. Journal of Computational Electronics (2019). doi: 10.1007/s10825-019-01313-7.

  • [15] P. A. Markowich. Applied Partial Differential Equations: A Visual Approach. Springer, 2006. isbn: 9783540346456. doi: 10.1007/978-3-540-34646-3.

  • [16] D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Jeffrey, and C. Hu. “FinFET—A Self-Aligned Double-Gate MOSFET Scalable to 20 nm”. IEEE Transactions on Electron Devices 47.12 (2000), pp. 2320–2325. doi: 10.1109/16.887014.

  • [17] L. Gnam, P. Manstetten, A. Hössinger, S. Selberherr, and J. Weinbub. “Accelerating Flux Calculations Using Sparse Sampling”. Micromachines 9.11 (2018). doi: 10.3390/mi9110550. Invited.

  • [18] L. Gnam, J. Weinbub, K. Rupp, F. Rudolf, and S. Selberherr. “Using Graph Partitioning and Coloring for Flexible Coarse-Grained Shared-Memory Parallel Mesh Adaptation”. Proceedings of the International Meshing Roundtable (IMR). 2017. url: https://imr.sandia.gov/papers/imr26/2016_imr26RN_Gnam.pdf. Accessed on 6 February 2020.

  • [19] A. Makarov, S. E. Tyaginov, B. Kaczer, M. Jech, A Chasin, A. Grill, G. Hellings, M. I. Vexler, D Linten, and T. Grasser. “Analysis of the Features of Hot-Carrier Degradation in FinFETs”. Semiconductors 52.10 (2018), pp. 1177–1182. doi: 10.1134/S1063782618100081.

  • [20] S. E. Tyaginov, A. A. Makarov, M. Jech, M. I. Vexler, J. Franco, B. Kaczer, and T. Grasser. “Physical Principles of Self-Consistent Simulation of the Generation of Interface States and the Transport of Hot Charge Carriers in Field-Effect Transistors Based on Metal–Oxide–Semiconductor Structures”. Semiconductors 52.2 (2018), pp. 242–247. doi: 10.1134/S1063782618020203.

  • [21] S. E. Tyaginov, A. A. Makarov, B. Kaczer, M. Jech, A. Chasin, A. Grill, G. Hellings, M. I. Vexler, D. Linten, and T. Grasser. “Impact of the Device Geometric Parameters on Hot-Carrier Degradation in FinFETs”. Semiconductors 52.13 (2018), pp. 1738–1742. doi: 10.1134/S1063782618130183.

  • [22] F. Alfaro, L. Weiss, P. Campbell, M. Miller, and G. K. Fedder. “Design of a Multi-Axis Implantable MEMS Sensor for Intraosseous Bone Stress Monitoring”. Journal of Micromechanics and Microengineering 19.8 (2009). doi: 10.1088/0960-1317/19/8/085016.

  • [23] J. R. Shewchuk. Lecture Notes on Delaunay Mesh Generation. University of California at Berkeley, CA, USA, 2012.

  • [24] W. E. Lorensen and H. E. Cline. “Marching Cubes: A High Resolution 3D Surface Construction Algorithm”. SIGGRAPH Computer Graphics 21.4 (1987), pp. 163–169. doi: 10.1145/37402.37422.

  • [25] G. Hager and G. Wellein. Introduction to High Performance Computing for Scientists and Engineers. 1st ed. Chapman and Hall/CRC, 2011. isbn: 9781439811924. doi: 10.1201/EBK1439811924.

  • [26] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP: Portable Shared Memory Parallel Programming. MIT Press, 2007. isbn: 9780262533027.

  • [27] F. Manne. “A Parallel Algorithm for Computing the Extremal Eigenvalues of Very Large Sparse Matrices”. Applied Parallel Computing Large Scale Scientific and Industrial Problems. Vol. 1541. 1998, pp. 332–336. doi: 10.1007/BFb0095354.

  • [28] H. Lu, M. Halappanavar, D. Chavarría-Miranda, A. H. Gebremedhin, A. Panyala, and A. Kalyanaraman. “Algorithms for Balanced Graph Colorings with Applications in Parallel Computing”. IEEE Transactions on Parallel and Distributed Systems 28.5 (2017), pp. 1240–1256. doi: 10.1109/TPDS.2016.2620142.

  • [29] G. Rokos and G. Gorman. “PRAgMaTIc – Parallel Anisotropic Adaptive Mesh Toolkit”. Facing the Multicore-Challenge III: Aspects of New Paradigms and Technologies in Parallel Computing. 2013, pp. 143–144. doi: 10.1007/978-3-642-35893-7_22.

  • [30] D. Ibanez and M. Shephard. “Mesh Adaptation for Moving Objects on Shared Memory Hardware”. Proceedings of the International Meshing Roundtable (IMR). 2016. url: https://imr.sandia.gov/papers/imr25/2007_imr25RN_Ibanez.pdf. Accessed on 6 February 2020.

  • [31] L. Gnam, P. Manstetten, M. Quell, K. Rupp, S. Selberherr, and J. Weinbub. “A Flexible Shared-Memory Parallel Mesh Adaptation Framework”. Proceedings of the International Conference on Computational Science and Its Applications (ICSSA). 2019, pp. 158–165. doi: 10.1109/ICCSA.2019.00016.

  • [32] J. Gross, J. Yellen, and Z. Ping. Handbook of Graph Theory. 2nd ed. Chapman and Hall/CRC, 2013. isbn: 9781439880197. doi: 10.1201/b16132.

  • [33] R. Lewis. A Guide to Graph Colouring. Algorithms and Applications. 1st ed. Springer International Publishing, 2016. isbn: 9783319257280. doi: 10.1007/978-3-319-25730-3.

  • [34] B. Mondal and K. De. “An Overview Applications of Graph Theory in Real Field”. International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2.5 (2017), pp. 751–759.

  • [35] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979. isbn: 9780716710455.

  • [36] Z. Zhu, J. Su, and L. Kong. “Measuring Influence in Online Social Network Based on the User-Content Bipartite Graph”. Computers in Human Behavior 52 (2015), pp. 184–189. doi: 10.1016/j.chb.2015.04.072.

  • [37] R. Lewis. “Graph Colouring: An Ancient Problem with Modern Applications”. Impact 2.1 (2016), pp. 47–50. doi: 10.1080/2058802X.2016.11963998.

  • [38] R. Merris. Graph Theory. John Wiley & Sons, Inc., 2000. isbn: 9780471389255. doi: 10.1002/9781118033043.

  • [39] M. Kubale. Graph Colorings. American Mathematical Society, 2004. isbn: 9780821834589. doi: 10.1090/conm/352.

  • [40] S.-M. Lo, W.-H. Lin, C. Chen, and Y.-C. Tseng. “Optimal Coloring for Data Collection in Tree-Based Wireless Sensor Networks”. Theoretical Computer Science 700 (2017), pp. 23–36. doi: 10.1016/j.tcs.2017.07.024.

  • [41] A. Pratap, R. Misra, and U. Gupta. “Randomized Graph Coloring Algorithm for Physical Cell ID Assignment in LTE-A Femtocellular Networks”. Wireless Personal Communications 91.3 (2016), pp. 1213–1235. doi: 10.1007/s11277-016-3522-3.

  • [42] M. Zais and M. Laguna. “A Graph Coloring Approach to the Deployment Scheduling and Unit Assignment Problem”. Journal of Scheduling 19.1 (2016), pp. 73–90. doi: 10.1007/s10951-015-0434-0.

  • [43] D. Feillet, T. Garaix, F. Lehuédé, O. Péton, and D. Quadri. “A New Consistent Vehicle Routing Problem for the Transportation of People With Disabilities”. Networks 63.3 (2014), pp. 211–224. doi: 10.1002/net.21538.

  • [44] A. Sharp. “Distance Coloring”. Proceedings of the European Symposium on Algorithms (ESA). 2007, pp. 510–521. doi: 10.1007/978-3-540-75520-3_46.

  • [45] J. H. Conway and R. Guy. The Book of Numbers. Copernicus, 1996. isbn: 9780387979939. doi: 10.1007/978-1-4612-4072-3.

  • [46] D. E. Loeb. “A Generalization of the Stirling Numbers”. Discrete Mathematics 103.3 (1992), pp. 259–269. doi: 10.1016/0012-365X(92)90318-A.

  • [47] A. Bojita, M. Purcar, C. Boianceanu, E. Tomas, and V. Topa. “A Study of Adaptive Mesh Refinement Techniques for an Efficient Capture of the Thermo-Mechanical Phenomena in Power Integrated Circuits”. Proceedings of the International Semiconductor Conference (CAS). 2017, pp. 205–208. doi: 10.1109/SMICND.2017.8101201.

  • [48] H. Coxeter. Regular Polytopes. Dover Publications, 1974. isbn: 9780486614809.

  • [49] S.-W. Cheng, T. Dey, and J. Shewchuk. Delaunay Mesh Generation. 1st ed. Chapman and Hall/CRC, 2013. isbn: 9781584887300.

  • [50] H. Si. TetGen - A Quality Tetrahedral Mesh Generator and 3D Delaunay Triangulator. Version 1.5 User’s Manual. 2013.

  • [51] W. Wessner. “Mesh Refinement Techniques for TCAD Tools”. Doctoral Dissertation. TU Wien, Austria, 2006. url: https://www.iue.tuwien.ac.at/phd/wessner/. Accessed on 2 February 2020.

  • [52] P. M. Knupp. “Achieving Finite Element Mesh Quality Via Optimization of the Jacobian Matrix Norm and Associated Quantities. Part I—A Framework for Surface Mesh Optimization”. International Journal for Numerical Methods in Engineering 48.3 (2000), pp. 401–420. doi: 10.1002/(SICI)1097-0207(20000530)48:3<401::AID-NME880>3.0.CO;2-D.

  • [53] P. M. Knupp. “Achieving Finite Element Mesh Quality Via Optimization of the Jacobian Matrix Norm and Associated Quantities. Part II—A Framework for Volume Mesh Optimization and the Condition Number of the Jacobian Matrix”. International Journal for Numerical Methods in Engineering 48.8 (2000), pp. 1165–1185. doi: 10.1002/(SICI)1097-0207(20000720)48:8<1165::AID-NME940>3.0.CO;2-Y.

  • [54] C. Stimpson, C. Ernst, P. M. Knupp, P. P. Pébay, and D. C. Thompson. The Verdict Geometric Quality Library. Technical Report. Sandia National Laboratories, 2006. doi: 10.2172/901967.

  • [55] G. Rokos. “Scalable Multithreaded Algorithms for Mutable Irregular Data with Application to Anisotropic Mesh Adaptivity”. Doctoral Dissertation. Imperial College of London, United Kingdom, 2014.

  • [56] X. Li, M. S. Shephard, and M. W. Beall. “3D Anisotropic Mesh Adaptation by Mesh Modification”. Computer Methods in Applied Mechanics and Engineering 194.48 (2005), pp. 4915–4950. doi: 10.1016/j.cma.2004.11.019.

  • [57] M. Bern, D. Eppstein, and J. Erickson. “Flipping Cubical Meshes”. Engineering with Computers 18.3 (2002), pp. 173–187. doi: 10.1007/s003660200016.

  • [58] P. Lindstrom and G. Turk. “Fast and Memory Efficient Polygonal Simplification”. Proceedings of the IEEE Conference on Visualization (Visualization). 1998, pp. 279–286. doi: 10.1109/VISUAL.1998.745314.

  • [59] D. A. Field. “Laplacian Smoothing and Delaunay Triangulations”. Communications in Applied Numerical Methods 4.6 (1988), pp. 709–712. doi: 10.1002/cnm.1630040603.

  • [60] S. A. Canann, J. R. Tristano, and M. L. Staten. “An Approach to Combined Laplacian and Optimization-Based Smoothing for Triangular, Quadrilateral, and Quad-Dominant Meshes”. Proceedings of the International Meshing Roundtable (IMR). 1998, pp. 479–494.

  • [61] L. A. Freitag and C. Ollivier-Gooch. “Tetrahedral Mesh Improvement Using Swapping and Smoothing”. International Journal for Numerical Methods in Engineering 40.21 (1997), pp. 3979–4002. doi: 10.1002/(SICI)1097-0207(19971115)40:21<3979::AID-NME251>3.0.CO;2-9.

  • [62] L. Chen. “Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations”. Proceedings of the International Meshing Roundtable (IMR). 2004, pp. 109–120.

  • [63] N. Amenta, M. Bern, and D. Eppstein. “Optimal Point Placement for Mesh Smoothing”. Journal of Algorithms 30.2 (1999), pp. 302–322. doi: 10.1006/jagm.1998.0984.

  • [64] V. Parthasarathy and S. Kodiyalam. “A Constrained Optimization Approach to Finite Element Mesh Smoothing”. Finite Elements in Analysis and Design 9.4 (1991), pp. 309–320. doi: 10.1016/0168-874X(91)90004-I.

  • [65] P. Ceruzzi. A History of Modern Computing. 2nd ed. MIT Press, 2003. isbn: 9780262532037.

  • [66] T. Hasegawa, K. Terabe, T. Tsuruoka, and M. Aono. “Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von-Neumann Computers”. Advanced Materials 24.2 (2012), pp. 252–267. doi: 10.1002/adma.201102597.

  • [67] D. Callahan, K. Kennedy, and A. Porterfield. “Software Prefetching”. ACM SIGOPS Operating Systems Review 25.Special Issue (1991), pp. 40–52. doi: 10.1145/106975.106979.

  • [68] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. “Software Pipelining”. ACM Computing Surveys 27.3 (1995), pp. 367–432. doi: 10.1145/212094.212131.

  • [69] G. E. Moore. “Cramming More Components Onto Integrated Circuits, Reprinted from Electronics, Volume 38, Number 8, April 19, 1965, pp.114 ff.” IEEE Solid-State Circuits Society Newsletter 11.3 (2006), pp. 33–35. doi: 10.1109/N-SSC.2006.4785860.

  • [70] M. M. Waldrop. “The Chips Are Down for Moore’s Law”. Nature 530 (2016), pp. 144–147. doi: 10.1038/530144a.

  • [71] R. S. Williams. “What’s Next? [The End of Moore’s Law]”. Computing in Science & Engineering 19.2 (2017), pp. 7–13. doi: 10.1109/MCSE.2017.31.

  • [72] F. Khorasani, R. Gupta, and L. N. Bhuyan. “Scalable SIMD-Efficient Graph Processing on GPUs”. Proceedings of the International Conference on Parallel Architecture and Compilation (PACT). 2015, pp. 39–50. doi: 10.1109/PACT.2015.15.

  • [73] C. Rodrigues, A. Phaosawasdi, and P. Wu. “SIMDization of Small Tensor Multiplication Kernels for Wide SIMD Vector Processors”. Proceedings of the Workshop on Programming Models for SIMD/Vector Processing (WPMVP). 2018, 3:1–3:8. doi: 10.1145/3178433.3178436.

  • [74] K. M. Wilson and B. B. Aglietti. “Dynamic Page Placement to Improve Locality in CC-NUMA Multiprocessors for TPC-C”. Proceedings of the ACM/IEEE Conference on Supercomputing (SC). 2001, p. 33. doi: 10.1145/582034.582067.

  • [75] M. S. Papamarcos and J. H. Patel. “A Low-Overhead Coherence Solution for Multiprocessors With Private Cache Memories”. ACM SIGARCH Computer Architecture News 12.3 (1984), pp. 348–354. doi: 10.1145/773453.808204.

  • [76] L. Dagum and R. Menon. “OpenMP: An Industry-Standard API for Shared-Memory Programming”. IEEE Computing in Science & Engineering 5.1 (1998), pp. 46–55. doi: 10.1109/99.660313.

  • [77] OpenMP. url: https://www.openmp.org. Accessed on 22 December 2019.

  • [78] Intel Cilk Plus. url: https://www.cilkplus.org/. Accessed on 22 December 2019.

  • [79] “IEEE Standard for Information Technology–Portable Operating System Interface (POSIX(R)) Base Specifications, Issue 7”. IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008) (2018). doi: 10.1109/IEEESTD.2018.8277153.

  • [80] Intel Threading Building Blocks. url: https://www.threadingbuildingblocks.org/. Accessed on 22 December 2019.

  • [81] M. Raynal. Concurrent Programming: Algorithms, Principles, and Foundations. Springer, 2012. isbn: 9783642320262. doi: 10.1007/978-3-642-32027-9.

  • [82] M. P. I. Forum. MPI: A Message-Passing Interface Standard Version 3.1. 2015. url: https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf. Accessed on 6 February 2020.

  • [83] Message Passing Interface. url: https://www.mpi-forum.org/. Accessed on 22 December 2019.

  • [84] C. Rice University. “High Performance Fortran Language Specification”. SIGPLAN Fortran Forum 12.4 (1993), pp. 1–86. doi: 10.1145/174223.158909.

  • [85] K. Kennedy, C. Koelbel, and H. Zima. “The Rise and Fall of High Performance Fortran: An Historical Object Lesson”. Proceedings of the ACM SIGPLAN Conference on History of Programming Languages (HOPL). 2007, 7:1–7:22. doi: 10.1145/1238844.1238851.

  • [86] Partitioned Global Address Space. url: http://www.pgas.org/. Accessed on 22 December 2019.

  • [87] T. El-Ghazawi and L. Smith. “UPC: Unified Parallel C”. Proceedings of the ACM/IEEE Conference on Supercomputing (SC). 2006. doi: 10.1145/1188455.1188483.

  • [88] Unified Parallel C. url: https://upc-lang.org/. Accessed on 22 December 2019.

  • [89] G. Gorman, J. Southern, P. Farrell, M. Piggott, G. Rokos, and P. Kelly. “Hybrid OpenMP/MPI Anisotropic Mesh Smoothing”. Procedia Computer Science 9 (2012), pp. 1513–1522. doi: 10.1016/j.procs.2012.04.166.

  • [90] X. Guo, J. Kim, and J. E. Killough. “Hybrid MPI-OpenMP Scalable Parallelization for Coupled Non-Isothermal Fluid-Heat Flow and Elastoplastic Geomechanics”. Proceedings of the SPE Reservoir Simulation Conference. 2017. doi: 10.2118/182665-MS.

  • [91] L. Shi, M. Rampp, B. Hof, and M. Avila. “A Hybrid MPI-OpenMP Parallel Implementation for Pseudospectral Simulations With Application to Taylor–Couette Flow”. Computers & Fluids 106 (15), pp. 1–11. doi: 10.1016/j.compfluid.2014.09.021.

  • [92] Intel Summit. url: https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/. Accessed on 22 December 2019.

  • [93] J. Nickolls, I. Buck, M. Garland, and K. Skadron. “Scalable Parallel Programming with CUDA”. Queue 6.2 (2008), pp. 40–53. doi: 10.1145/1365490.1365500.

  • [94] Tianhe-2. url: https://www.top500.org/featured/systems/tianhe-2/. Accessed on 31 July 2019.

  • [95] S. Memeti and S. Pllana. “A Machine Learning Approach for Accelerating DNA Sequence Analysis”. The International Journal of High Performance Computing Applications 32.3 (2018), pp. 363–379. doi: 10.1177/1094342016654214.

  • [96] A. Viebke, S. Memeti, S. Pllana, and A. Abraham. “CHAOS: A Parallelization Scheme for Training Convolutional Neural Networks on Intel Xeon Phi”. The Journal of Supercomputing 75.1 (2019), pp. 197–227. doi: 10.1007/s11227-017-1994-x.

  • [97] M. McCool, J. Reinders, and A. D. Robison. Structured Parallel Programming. Morgan Kaufmann, 2012. isbn: 9780124159938. doi: 10.1016/C2011-0-04251-5.

  • [98] G. M. Amdahl. “Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities”. Proceedings of the Spring Joint Computer Conference (AFIPS). 1967, pp. 483–485. doi: 10.1145/1465482.1465560.

  • [99] J. L. Gustafson. “Reevaluating Amdahl’s Law”. Communications of the ACM 31.5 (1988), pp. 532–533. doi: 10.1145/42411.42415.

  • [100] Vienna Scientific Cluster. url: https://vsc.ac.at. Accessed on 22 December 2019.

  • [101] N. Deo. Graph Theory With Applications To Engineering And Computer Science. PHI Learning, 2011. isbn: 9788120301450.

  • [102] S. S. Ray. Graph Theory with Algorithms and its Applications. Springer India, 2013. isbn: 9788132207498. doi: 10.1007/978-81-322-0750-4.

  • [103] A. Petermann, M. Junghanns, S. Kemper, K. Gómez, N. Teichmann, and E. Rahm. “Graph Mining for Complex Data Analytics”. Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW). 2016, pp. 1316–1319. doi: 10.1109/ICDMW.2016.0193.

  • [104] M. T. Jones and P. E. Plassmann. “Scalable Iterative Solution of Sparse Linear Systems”. Parallel Computing 20.5 (1994), pp. 753–773. doi: 10.1016/0167-8191(94)90004-3.

  • [105] F. Manne. “A Parallel Algorithm for Computing the Extremal Eigenvalues of Very Large Sparse Matrices”. Applied Parallel Computing Large Scale Scientific and Industrial Problems. 1998, pp. 332–336. doi: 10.1007/BFb0095354.

  • [106] K. Hawick, A. Leist, and D. Playne. “Parallel Graph Component Labelling with GPUs and CUDA”. Parallel Computing 36.12 (2010), pp. 655–678. doi: 10.1016/j.parco.2010.07.002.

  • [107] Ü. V. Çatalyürek, J. Feo, A. H. Gebremedhin, M. Halappanavar, and A. Pothen. “Graph Coloring Algorithms for Multi-Core and Massively Multithreaded Architectures”. Parallel Computing 38.10 (2012), pp. 576–594. doi: 10.1016/j.parco.2012.07.001.

  • [108] G. Rokos, G. Gorman, and P. H. Kelly. “A Fast and Scalable Graph Coloring Algorithm for Multi-Core and Many-Core Architectures”. Lecture Notes in Computer Science. Vol. 9233. 2015, pp. 414–425. doi: 10.1007/978-3-662-48096-0_32.

  • [109] L. Gnam, P. Manstetten, S. Selberherr, and J. Weinbub. “Comparison of High-Performance Graph Coloring Algorithms”. Proceedings of the Vienna Young Scientists Symposium (VSS). 2018, pp. 30–31. url: https://vss.tuwien.ac.at/fileadmin/t/vss/2018/manuscript_VSS2018_web.pdf. Accessed on 6 February 2020.

  • [110] L. Gnam, S. Selberherr, and J. Weinbub. “Evaluation of Serial and Parallel Shared-Memory Distance-1 Graph Coloring Algorithms”. Lecture Notes in Computer Science. Vol. 11189. 2019, pp. 106–114. doi: 10.1007/978-3-030-10692-8_12.

  • [111] M. Kubale and B. Jackowski. “A Generalized Implicit Enumeration Algorithm for Graph Coloring”. Communications of the ACM 28.4 (1985), pp. 412–418. doi: 10.1145/3341.3350.

  • [112] A. Hertz, R. Montagné, and F. Gagnon. “A Comparison of Integer Programming Models for the Partial Directed Weighted Improper Coloring Problem”. Discrete Applied Mathematics 261 (2019), pp. 229–245. doi: 10.1016/j.dam.2018.08.026.

  • [113] S. Thevenin, N. Zufferey, and J.-Y. Potvin. “Graph Multi-Coloring for a Job Scheduling Application”. Discrete Applied Mathematics 234 (2018), pp. 218–235. doi: 10.1016/j.dam.2016.05.023.

  • [114] A. Jabrayilov and P. Mutzel. “New Integer Linear Programming Models for the Vertex Coloring Problem”. Lecture Notes in Computer Science. Vol. 10807. 2018, pp. 640–652. doi: 10.1007/978-3-319-77404-6_47.

  • [115] D. J. A. Welsh and M. B. Powell. “An Upper Bound for the Chromatic Number of a Graph and Its Application to Timetabling Problems”. The Computer Journal 10.1 (1967), pp. 85–86. doi: 10.1093/comjnl/10.1.85.

  • [116] A. Gyárfás and J. Lehel. “On-Line and First Fit Colorings of Graphs”. Journal of Graph Theory 12.2 (1988), pp. 217–227. doi: 10.1002/jgt.3190120212.

  • [117] F. Manne and E. Boman. “Balanced Greedy Colorings of Sparse Random Graphs”. Proceedings of the Norwegian Informatics Conference (NIK). 2005, pp. 113–124.

  • [118] J. C. Culberson and F. Luo. “Exploring the k-Colorable Landscape With Iterated Greedy”. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge 26 (1995), pp. 245–284.

  • [119] W. Erben. “A Grouping Genetic Algorithm for Graph Colouring and Exam Timetabling”. Lecture Notes in Computer Science. Vol. 2079. 2001, pp. 132–156. doi: 10.1007/3-540-44629-X_9.

  • [120] C. L. Mumford. “New Order-Based Crossovers for the Graph Coloring Problem”. Lecture Notes in Computer Science. Vol. 4193. 2006, pp. 880–889. doi: 10.1007/11844297_89.

  • [121] A. Hertz and D. de Werra. “Using Tabu Search Techniques for Graph Coloring”. Computing 39.4 (1987), pp. 345–351. doi: 10.1007/BF02239976.

  • [122] P. Galinier and J.-K. Hao. “Hybrid Evolutionary Algorithms for Graph Coloring”. Journal of Combinatorial Optimization 3.4 (1999), pp. 379–397. doi: 10.1023/A:1009823419804.

  • [123] K. A. Dowsland and J. M. Thompson. “An Improved Ant Colony Optimisation Heuristic for Graph Colouring”. Discrete Applied Mathematics 156.3 (2008), pp. 313–324. doi: 10.1016/j.dam.2007.03.025.

  • [124] M. T. Jones and P. E. Plassmann. “A Parallel Graph Coloring Heuristic”. SIAM Journal on Scientific Computing 14.3 (1992), pp. 654–669. doi: 10.1137/0914041.

  • [125] A. H. Gebremedhin and F. Manne. “Scalable Parallel Graph Coloring Algorithms”. Concurrency and Computation: Practice and Experience 12.12 (2000), pp. 1131–1146. doi: 10.1002/1096-9128(200010)12:12<1131::AID-CPE528>3.0.CO;2-2.

  • [126] D. Chakrabarti and C. Faloutsos. “Graph Mining: Laws, Generators, and Algorithms”. ACM Computing Surveys 38.1 (2006). doi: 10.1145/1132952.1132954.

  • [127] P. Erdős and A. Rényi. “On the Evolution of Random Graphs”. Publications of the Mathematical Institute of the Hungarian Acadamey of Sciences 5.1 (1960), pp. 17–61.

  • [128] T. A. Davis and Y. Hu. “The University of Florida Sparse Matrix Collection”. ACM Transactions on Mathematical Software 38.1 (2011), 1:1–1:25. doi: 10.1145/2049662.2049663.

  • [129] E. Ivanov. “Parallel Tetrahedral Mesh Generation Based on A-Priori Domain Decomposition”. Doctoral Dissertation. TU Kaiserslautern, Germany, 2008.

  • [130] F. Moukalled, L. Mangani, and M. Darwish. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab. Springer International Publishing, 2016. isbn: 9783319168739. doi: 10.1007/978-3-319-16874-6.

  • [131] P. Mostaghimi, J. R. Percival, D. Pavlidis, R. J. Ferrier, J. L. M. A. Gomes, G. J. Gorman, M. D. Jackson, S. J. Neethling, and C. C. Pain. “Anisotropic Mesh Adaptivity and Control Volume Finite Element Methods for Numerical Simulation of Multiphase Flow in Porous Media”. Mathematical Geosciences 47.4 (2015), pp. 417–440. doi: 10.1007/s11004-014-9579-1.

  • [132] J. D. Arregui-Mena, L. Margetts, and P. M. Mummery. “Practical Application of the Stochastic Finite Element Method”. Archives of Computational Methods in Engineering 23.1 (2016), pp. 171–190. doi: 10.1007/s11831-014-9139-3.

  • [133] P. Fromme, G. W. Blunn, W. J. Aston, T. Abdoola, J. Koris, and M. J. Coathup. “The Effect of Bone Growth onto Massive Prostheses Collars in Protecting the Implant from Fracture”. Medical Engineering & Physics 41 (2017), pp. 19–25. doi: 10.1016/j.medengphy.2016.12.007.

  • [134] J. Fernández-Pato, M. Morales-Hernández, and P. García-Navarro. “Implicit Finite Volume Simulation of 2D Shallow Water Flows in Flexible Meshes”. Computer Methods in Applied Mechanics and Engineering 328 (2018), pp. 1–25. doi: 10.1016/j.cma.2017.08.050.

  • [135] T. D. dos Santos, M. Morlighem, H. Seroussi, P. R. B. Devloo, and J. C. Simões. “Implementation and Performance of Adaptive Mesh Refinement in the Ice Sheet System Model (ISSM v4.14)”. Geoscientific Model Development 12 (2019), pp. 215–232. doi: 10.5194/gmd-12-215-2019.

  • [136] X. Deng, B. Xie, H. Teng, and F. Xiao. “High Resolution Multi-Moment Finite Volume Method for Supersonic Combustion on Unstructured Grids”. Applied Mathematical Modelling 66 (2019), pp. 404–423. doi: 10.1016/j.apm.2018.08.010.

  • [137] T. Smitha and K. Nagaraja. “Application of Automated Cubic-Order Mesh Generation for Efficient Energy Transfer Using Parabolic Arcs for Microwave Problems”. Energy 168 (2019), pp. 1104–1118. doi: 10.1016/j.energy.2018.11.138.

  • [138] J. Schöberl. “NETGEN An Advancing Front 2D/3D-Mesh Generator Based on Abstract Rules”. Computing and Visualization in Science (1997), pp. 41–52. doi: 10.1007/s007910050004.

  • [139] Netgen/NGSolve. url: https://ngsolve.org/. Accessed on December 25 2019.

  • [140] R. Löhner. “A 2nd Generation Parallel Advancing Front Grid Generator”. Proceedings of the International Meshing Roundtable (IMR). 2013, pp. 457–474. doi: 10.1007/978-3-642-33573-0_27.

  • [141] C. A. Navarro, N. Hitschfeld-Kahler, and E. Scheihing. “A Parallel GPU-Based Algorithm for Delaunay Edge-Flips”. Proceedings of the European Workshop on Computational Geometry (EuroCG), pp. 75–78.

  • [142] F. Carter, N. Hitschfeld, C. A. Navarro, and R. Soto. “GPU Parallel Simulation Algorithm of Brownian Particles With Excluded Volume Using Delaunay Triangulations”. Computer Physics Communications 229 (2018), pp. 148–161. doi: 10.1016/j.cpc.2018.04.006.

  • [143] A. González. “Trends in Processor Architecture”. Harnessing Performance Variability in Embedded and High-Performance Many/Multi-Core Platforms. 2019, pp. 23–42. doi: 10.1007/978-3-319-91962-1_2.

  • [144] B. R. Gaeke, P. Husbands, X. S. Li, L. Oliker, K. A. Yelick, and R. Biswas. “Memory-Intensive Benchmarks: IRAM Vs. Cache-Based Machines”. Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS). 2002. doi: 10.1109/IPDPS.2002.1015506.

  • [145] K. Hwang and N. Jotwani. Advanced Computer Architecture. 3rd ed. McGraw Hill Education, 2016. isbn: 9789339220921.

  • [146] B. G. Larwood, N. P. Weatherill, O. Hassan, and K. Morgan. “Domain Decomposition Approach for Parallel Unstructured Mesh Generation”. International Journal for Numerical Methods in Engineering 58.2 (2003), pp. 177–188. doi: 10.1002/nme.769.

  • [147] C. Burstedde, L. Wilcox, and O. Ghattas. “p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees”. SIAM Journal on Scientific Computing 33.3 (2011), pp. 1103–1133. doi: 10.1137/100791634.

  • [148] F. Alauzet, X. Li, E. S. Seol, and M. S. Shephard. “Parallel Anisotropic 3D Mesh Adaptation by Mesh Modification”. Engineering with Computers 21.3 (2006), pp. 247–258. doi: 10.1007/s00366-005-0009-3.

  • [149] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. “libMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations”. Engineering with Computers 22.3 (2006), pp. 237–254. doi: 10.1007/s00366-006-0049-3.

  • [150] G. Karypis and V. Kumar. “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs”. SIAM Journal on Scientific Computing 20.1 (1998), pp. 359–392. doi: 10.1137/S1064827595287997.

  • [151] W. Yu and X. Li. “A Geometry-Aware Data Partitioning Algorithm for Parallel Quad Mesh Generation on Large-scale 2D Regions”. Procedia Engineering 124 (2015), pp. 44–56. doi: 10.1016/j.proeng.2015.10.121.

  • [152] Q. Du, V. Faber, and M. Gunzburger. “Centroidal Voronoi Tessellations: Applications and Algorithms”. SIAM Review 41.4 (1999), pp. 637–676. doi: 10.1137/S0036144599352836.

  • [153] X. Li, W. Yu, and C. Liu. “Geometry-Aware Partitioning of Complex Domains for Parallel Quad Meshing”. Computer-Aided Design 85 (2017), pp. 20–33. doi: 10.1016/j.cad.2016.07.014.

  • [154] M. O. Freitas, P. A. Wawrzynek, J. B. Cavalcante-Neto, C. A. Vidal, B. J. Carter, L. F. Martha, and A. R. Ingraffea. “Parallel Generation of Meshes with Cracks Using Binary Spatial Decomposition”. Engineering with Computers 32.4 (2016), pp. 655–674. doi: 10.1007/s00366-016-0444-3.

  • [155] P. Kůs and J. Šistek. “Coupling Parallel Adaptive Mesh Refinement with a Nonoverlapping Domain Decomposition Solver”. Advances in Engineering Software 110 (2017), pp. 34–54. doi: 10.1016/j.advengsoft.2017.03.012.

  • [156] B. Liang, A. Nagarajan, and S. Soghrati. “Scalable Parallel Implementation of CISAMR: A Non-Iterative Mesh Generation Algorithm”. Computational Mechanics 64.1 (2018), pp. 173–195. doi: 10.1007/s00466-018-1664-8.

  • [157] S. Soghrati, A. Nagarajan, and B. Liang. “Conforming to Interface Structured Adaptive Mesh Refinement: New Technique for the Automated Modeling of Materials With Complex Microstructures”. Finite Elements in Analysis and Design 125 (2017), pp. 24–40. doi: 10.1016/j.finel.2016.11.003.

  • [158] A. Nagarajan and S. Soghrati. “Conforming to Interface Structured Adaptive Mesh Refinement: 3D Algorithm and Implementation”. Computational Mechanics 62.5 (2018), pp. 1213–1238. doi: 10.1007/s00466-018-1560-2.

  • [159] A. Samaké, P. Rampal, S. Bouillon, and E. Ólason. “Parallel Implementation of a Lagrangian-Based Model on an Adaptive Mesh in C++: Application to Sea-Ice”. Journal of Computational Physics 350 (2017), pp. 84–96. doi: 10.1016/j.jcp.2017.08.055.

  • [160] R. Jain and T. J. Tautges. “Generating Unstructured Nuclear Reactor Core Meshes in Parallel”. Procedia Engineering 82 (2014), pp. 351–363. doi: 10.1016/j.proeng.2014.10.396.

  • [161] S. J. Owen and R. M. Shih. “A Template-Based Approach for Parallel Hexahedral Two-Refinement”. Procedia Engineering 124 (2015), pp. 31–43. doi: 10.1016/j.proeng.2015.10.120.

  • [162] A. Loseille and V. Menier. “Serial and Parallel Mesh Modification Through a Unique Cavity-Based Primitive”. Proceedings of the International Meshing Roundtable (IMR). 2014, pp. 541–558. doi: 10.1007/978-3-319-02335-9_30.

  • [163] H. Digonnet, T. Coupez, P. Laure, and L. Silva. “Massively Parallel Anisotropic Mesh Adaptation”. The International Journal of High Performance Computing Applications 33.1 (2019), pp. 3–24. doi: 10.1177/1094342017693906.

  • [164] G. Saxena, P. K. Jimack, and M. A. Walkley. “A Cache-Aware Approach to Adaptive Mesh Refinement in Parallel Stencil-Based Solvers”. Proceedings of the IEEE International Conference on High Performance Computing and Communications; IEEE International Conference on Smart City; IEEE International Conference on Data Science and Systems (HPCC/SmartCity/DSS). 2017, pp. 364–371. doi: 10.1109/HPCC-SmartCity-DSS.2017.48.

  • [165] F. Alauzet and A. Loseille. “On the Use of Space Filling Curves for Parallel Anisotropic Mesh Adaptation”. Proceedings of the International Meshing Roundtable (IMR). 2009, pp. 337–357. doi: 10.1007/978-3-642-04319-2_20.

  • [166] D. Benítez, E. Rodríguez, J. M. Escobar, and R. Montenegro. “Performance Evaluation of a Parallel Algorithm for Simultaneous Untangling and Smoothing of Tetrahedral Meshes”. Proceedings of the International Meshing Roundtable (IMR). 2014, pp. 579–598. doi: 10.1007/978-3-319-02335-9_32.

  • [167] P. A. Rodriguez and M.-C. Rivara. “Multithread Lepp-Bisection Algorithm for Tetrahedral Meshes”. Proceedings of the International Meshing Roundtable (IMR). 2014, pp. 525–540. doi: 10.1007/978-3-319-02335-9_29.

  • [168] J.-F. Remacle, V. Bertrand, and C. Geuzaine. “A Two-Level Multithreaded Delaunay Kernel”. Procedia Engineering 124 (2015), pp. 6–17. doi: 10.1016/j.proeng.2015.10.118.

  • [169] K. Fujita, K. Katsushima, T. Ichimura, M. Hori, and L. Maddegedara. “Octree-Based Multiple-Material Parallel Unstructured Mesh Generation Method for Seismic Response Analysis of Soil-Structure Systems”. Procedia Computer Science 80 (2016), pp. 1624–1634. doi: 10.1016/j.procs.2016.05.496.

  • [170] M. Shang, C. Zhu, J. Chen, Z. Xiao, and Y. Zheng. “A Parallel Local Reconnection Approach for Tetrahedral Mesh Improvement”. Procedia Engineering 163 (2016), pp. 289–301. doi: 10.1016/j.proeng.2016.11.062.

  • [171] H. Rakotoarivelo, F. Ledoux, and F. Pommereau. “Fine-Grained Locality-Aware Parallel Scheme for Anisotropic Mesh Adaptation”. Procedia Engineering 163 (2016), pp. 123–135. doi: 10.1016/j.proeng.2016.11.035.

  • [172] H. Rakotoarivelo, F. Ledoux, F. Pommereau, and N. Le-Goff. “Scalable Fine-Grained Metric-Based Remeshing Algorithm for Manycore/NUMA Architectures”. Proceedings of the European Conference on Parallel Processing (Euro-Par). 2017, pp. 594–606. doi: 10.1007/978-3-319-64203-1_43.

  • [173] H. Rakotoarivelo and F. Ledoux. “Accurate Manycore-Accelerated Manifold Surface Remesh Kernels”. Proceedings of the International Meshing Roundtable (IMR). 2018. doi: 10.1007/978-3-030-13992-6_22.

  • [174] R. Zangeneh and C. F. Ollivier-Gooch. “Thread-Parallel Mesh Improvement Using Face and Edge Swapping and Vertex Insertion”. Computational Geometry 70-71 (2018), pp. 31–48. doi: 10.1016/j.comgeo.2018.01.006.

  • [175] N. Chrisochoides, A. Chernikov, A. Fedorov, A. Kot, L. Linardakis, and P. Foteinos. “Towards Exascale Parallel Delaunay Mesh Generation”. Proceedings of the International Meshing Roundtable (IMR). 2009, pp. 319–336. doi: 10.1007/978-3-642-04319-2_19.

  • [176] A. Loseille, V. Menier, and F. Alauzet. “Parallel Generation of Large-Size Adapted Meshes”. Procedia Engineering 124 (2015), pp. 57–69. doi: 10.1016/j.proeng.2015.10.122.

  • [177] D. Feng, C. Tsolakis, A. N. Chernikov, and N. P. Chrisochoides. “Scalable 3D Hybrid Parallel Delaunay Image-to-Mesh Conversion Algorithm for Distributed Shared Memory Architectures”. Procedia Engineering 124 (2015), pp. 18–30. doi: 10.1016/j.proeng.2015.10.119.

  • [178] D. Feng, A. N. Chernikov, and N. P. Chrisochoides. “A Hybrid Parallel Delaunay Image-To-Mesh Conversion Algorithm Scalable on Distributed-Memory Clusters”. Procedia Engineering 163 (2016), pp. 59–71. doi: 10.1016/j.proeng.2016.11.018.

  • [179] D. Feng, A. Chernikov, and N. Chrisochoides. “Efficient Core Utilization in a Hybrid Parallel Delaunay Meshing Algorithm on Distributed-Memory Cluster”. Proceedings of the International Meshing Roundtable (IMR). 2017.

  • [180] G. J. Gorman, G. Rokos, J. Southern, and P. H. J. Kelly. “Thread-Parallel Anisotropic Mesh Adaptation”. New Challenges in Grid Generation and Adaptivity for Scientific Computing. 2015, pp. 113–137. doi: 10.1007/978-3-319-06053-8_6.

  • [181] G. Rokos, G. J. Gorman, K. E. Jensen, and P. H. J. Kelly. “Thread Parallelism for Highly Irregular Computation in Anisotropic Mesh Adaptation”. Proceedings of the International Conference on Exascale Applications and Software (EASC). 2015, pp. 103–108.

  • [182] PRAgMaTIc. url: https://github.com/meshadaptation/pragmatic. Accessed on 30 December 2019.

  • [183] D. A. Ibanez, E. S. Seol, C. W. Smith, and M. S. Shephard. “PUMI: Parallel Unstructured Mesh Infrastructure”. ACM Transactions on Mathematical Software 42.3 (2016), 17:1–17:28. doi: 10.1145/2814935.

  • [184] MeshAdapt. url: https://www.scorec.rpi.edu/meshadapt/index.php. Accessed on 30 December 2019.

  • [185] S. M. Shontz and D. M. Nistor. “CPU-GPU Algorithms for Triangular Surface Mesh Simplification”. Proceedings of the International Meshing Roundtable (IMR). 2013, pp. 475–492. doi: 10.1007/978-3-642-33573-0_28.

  • [186] H. Wang, N. Zhang, J.-C. Créput, J. Moreau, and Y. Ruichek. “Parallel Structured Mesh Generation with Disparity Maps by GPU Implementation”. IEEE Transactions on Visualization and Computer Graphics 21.9 (2015), pp. 1045–1057. doi: 10.1109/TVCG.2015.2413775.

  • [187] J. Wu, L. Deng, G. Jeon, and J. Jeong. “GPU-Parallel Interpolation Using the Edge-Direction Based Normal Vector Method for Terrain Triangular Mesh”. Journal of Real-Time Image Processing 14.4 (2018), pp. 813–822. doi: 10.1007/s11554-016-0575-1.

  • [188] F. Rudolf, J. Weinbub, K. Rupp, and S. Selberherr. “The Meshing Framework ViennaMesh for Finite Element Applications”. Journal of Computational and Applied Mathematics 270 (2014), pp. 166–177. doi: 10.1016/j.cam.2014.02.005.

  • [189] ViennaMesh. url: https://github.com/viennamesh/viennamesh-dev. Accessed on 30 December 2019.

  • [190] D. Lasalle and G. Karypis. “Multi-Threaded Graph Partitioning”. Proceedings of the IEEE International Symposium on Parallel and Distributed Processing (IPDPS. 2013, pp. 225–236. doi: 10.1109/IPDPS.2013.50.

  • [191] H. Si. “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator”. ACM Transactions on Mathematical Software 41.2 (2015), 11:1–11:36. doi: 10.1145/2629697.

  • [192] TetGen. url: http://wias-berlin.de/software/index.jsp?id=TetGen&lang=1. Accessed on 22 December 2019.

  • [193] W. Schroeder, K. M. Martin, and W. E. Lorensen. The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. 2nd ed. Prentice-Hall, Inc., 1998. isbn: 0139546944.

  • [194] The Visualization Toolkit. url: https://vtk.org/. Accessed on 22 December 2019.

  • [195] R. Biswas and R. C. Strawn. “A New Procedure for Dynamic Adaption of Three-Dimensional Unstructured Grids”. Applied Numerical Mathematics 13.6 (1994), pp. 437–452. doi: 10.1016/0168-9274(94)90007-8.

  • [196] O. Meister, K. Rahnema, and M. Bader. “Parallel Memory-Efficient Adaptive Mesh Refinement on Structured Triangular Meshes with Billions of Grid Cells”. ACM Transactions on Mathematical Software 43.3 (2017), 19:1–19:24. doi: 10.1145/2947668.

  • [197] M. R. Shaeri, T.-C. Jen, C. Y. Yuan, and M. Behnia. “Investigating Atomic Layer Deposition Characteristics in Multi-Outlet Viscous Flow Reactors Through Reactor Scale Simulations”. International Journal of Heat and Mass Transfer 89 (2015), pp. 468–481. doi: 10.1016/j.ijheatmasstransfer.2015.05.079.

  • [198] P. Manstetten. “Efficient Flux Calculations for Topography Simulation”. Doctoral Dissertation. TU Wien, Austria, 2018. url: https://www.iue.tuwien.ac.at/phd/manstetten/. Accessed on 2 February 2020.

  • [199] B. Willsch, J. Hauser, S. Dreiner, A. Goehlich, H. Kappert, and H. Vogt. “Analysis of Semiconductor Process Variations by Means of Hierarchical Median Polish”. Proceedings of the Austrochip Workshop on Microelectronics (Austrochip). 2017, pp. 1–5. doi: 10.1109/Austrochip.2017.19.

  • [200] C. M. Huard, Y. Zhang, S. Sriraman, A. Paterson, K. J. Kanarik, and M. J. Kushner. “Atomic Layer Etching of 3D Structures in Silicon: Self-Limiting and Nonideal Reactions”. Journal of Vacuum Science & Technology A 35.3 (2017), pp. 031306–1–031306–15. doi: 10.1116/1.4979661.

  • [201] Y.-T. Oh, K.-B. Kim, S.-H. Shin, H. Sim, N. Van Toan, T. Ono, and Y.-H. Song. “Impact of Etch Angles on Cell Characteristics in 3D NAND Flash Memory”. Microelectronics Journal 79 (2018), pp. 1–6. doi: 10.1016/J.MEJO.2018.06.009.

  • [202] P. Manstetten, L. Gnam, A. Hössinger, S. Selberherr, and J. Weinbub. “Sparse Surface Speed Evaluation on a Dynamic Three-Dimensional Surface Using an Iterative Partitioning Scheme”. Lecture Notes in Computer Science. Vol. 10860. 2018, pp. 694–707. doi: 10.1007/978-3-319-93698-7_53.

  • [203] B. N. Bailey. “A Reverse Ray-Tracing Method for Modelling the Net Radiative Flux in Leaf-Resolving Plant Canopy Simulations”. Ecological Modelling 368 (2018), pp. 233–245. doi: 10.1016/J.ECOLMODEL.2017.11.022.

  • [204] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Vol. 3. Cambridge University Press, 1999. isbn: 0521645573.

  • [205] G. Kokkoris, P. Brault, A.-L. Thomann, A. Caillard, D. Samelor, A. G. Boudouvis, and C. Vahlas. “Ballistic and Molecular Dynamics Simulations of Aluminum Deposition in Micro-Trenches”. Thin Solid Films 536 (2013), pp. 115–123. doi: 10.1016/j.tsf.2013.03.098.

  • [206] A. Yanguas-Gil. Growth and Transport in Nanostructured Materials: Reactive Transport in PVD, CVD, and ALD. Springer Cham. isbn: 9783319246703. doi: 10.1007/978-3-319-24672-7.

  • [207] J. Pagazani, F. Martyl, A. Babayan, A. Hoessinger, G. Lissorgues, and A. Nejim. “DRIE Process Modelling - A MEMS Case Study on a Real Design”. Proceedings of the Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP). 2013, pp. 1–3.

  • [208] Silvaco. Victory Process - 3D Process Simulator. url: https://www.silvaco.com/products/tcad/process_simulation/victory_process/victory_process.html. Accessed on 30 December 2019.

  • [209] O. Ertl and S. Selberherr. “A Fast Level Set Framework for Large Three-Dimensional Topography Simulations”. Computer Physics Communications 180.8 (2009), pp. 1242–1250. doi: 10.1016/J.CPC.2009.02.002.

  • [210] O. Ertl and S. Selberherr. “Three-Dimensional Level Set Based Bosch Process Simulations Using Ray Tracing for Flux Calculation”. Microelectronic Engineering 87.3 (2009), pp. 20–29. doi: 10.1016/j.mee.2009.05.011.

  • [211] C. Heitzinger, A. Sheikholeslami, F. Badrieh, H. Puchner, and S. Selberherr. “Feature-Scale Process Simulation and Accurate Capacitance Extraction for the Backend of a 100-nm Aluminum/TEOS Process”. IEEE Transactions on Electron Devices 51.7 (2004), pp. 1129–1134. doi: 10.1109/TED.2004.829868.

  • [212] J.-C. Yu, Z.-F. Zhou, J.-L. Su, C.-F. Xia, X.-W. Zhang, Z.-Z. Wu, and Q.-A. Huang. “Three-Dimensional Simulation of DRIE Process Based on the Narrow Band Level Set and Monte Carlo Method”. Micromachines 9.2 (2018). doi: 10.3390/mi9020074.

  • [213] A. T. Áfra and L. Szirmay-Kalos. “Stackless Multi-BVH Traversal for CPU, MIC and GPU Ray Tracing”. Computer Graphics Forum 33.1 (2014), pp. 129–140. doi: 10.1111/cgf.12259.

  • [214] M. Vinkler, V. Havran, and J. Bittner. “Performance Comparison of Bounding Volume Hierarchies and Kd-Trees for GPU Ray Tracing”. Computer Graphics Forum 35.8 (2016), pp. 68–79. doi: 10.1111/cgf.12776.

  • [215] S. Yu, B. Wu, J. Song, L. Hao, X. Zheng, and L. Shen. “Bi-Level Spatial Subdivision Based Monte Carlo Ray Tracing Directly Using CAD Models”. Fusion Engineering and Design 122 (2017), pp. 211–217. doi: 10.1016/j.fusengdes.2017.08.015.

  • [216] H. Naeimi and F. Kowsary. “Macro-Voxel Algorithm for Adaptive Grid Generation to Accelerate Grid Traversal in the Radiative Heat Transfer Analysis via Monte Carlo Method”. International Communications in Heat and Mass Transfer 87 (2017), pp. 22–29. doi: 10.1016/j.icheatmasstransfer.2017.06.020.

  • [217] J. P. Aguerre and E. Fernández. “A Hierarchical Factorization Method for Efficient Radiosity Calculations”. Computers & Graphics 60 (2016), pp. 46–54. doi: 10.1016/j.cag.2016.08.003.

  • [218] P. Manstetten, J. Weinbub, A. Hössinger, and S. Selberherr. “Using Temporary Explicit Meshes for Direct Flux Calculation on Implicit Surfaces”. Procedia Computer Science 108 (2017), pp. 245–254. doi: 10.1016/j.procs.2017.05.067.

  • [219] S. Wolf. Silicon Processing for the VLSI Era. Volume 4 - Deep-Submicron Process Technology. Lattice Press, 2002, pp. 671–710. isbn: 096167217X.

  • [220] J. Nag, S. Ray, K. K. Kohli, A. H. Simon, B. A. Cohen, F. Tijiwa-Birk, C. J. Parks, and S. A. Krishnan. “Non-Contact, Sub-Surface Detection of Alloy Segregation in Back-End of Line Copper Dual-Damascene Structures”. IEEE Transactions on Semiconductor Manufacturing 28.4 (2015), pp. 469–473. doi: 10.1109/TSM.2015.2480037.

  • [221] J. Kriz, C. Angelkort, M. Czekalla, S. Huth, D. Meinhold, A. Pohl, S. Schulte, A. Thamm, and S. Wallace. “Overview of Dual Damascene Integration Schemes in Cu BEOL Integration”. Microelectronic Engineering 85.10 (2008), pp. 2128–2132. doi: 10.1016/j.mee.2008.05.034.

  • [222] K. Seshan and D. Schepis. Handbook of Thin Film Deposition. 4th ed. Elsevier, 2018. isbn: 9780128123119.

  • [223] K. Museth. “VDB: High-Resolution Sparse Volumes with Dynamic Topology”. ACM Transactions on Graphics 32.3 (2013), 27:1–27:22. doi: 10.1145/2487228.2487235.

  • [224] OpenVDB. url: http://www.openvdb.org/. Accessed on 3 January 2020.

  • [225] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst. “Embree: A Kernel Framework for Efficient CPU Ray Tracing”. ACM Transactions on Graphics 33.8 (2014). doi: 10.1145/2601097.2601199.

  • [226] O. Ertl. “Numerical Methods for Topography Simulation”. Doctoral Dissertation. TU Wien, Austria, 2010. url: http://www.iue.tuwien.ac.at/phd/ertl/. Accessed on 2 February 2020.

  • [227] ViennaTS - The Vienna Topography Simulator. url: http://www.iue.tuwien.ac.at/software/viennats/. Accessed on 3 January 2020.

  • [228] R. Courant, K. Friedrichs, and H. Lewy. “Über die partiellen Differenzengleichungen der mathematischen Physik”. Mathematische Annalen 100.1 (1928), pp. 32–74. doi: 10.1007/BF01448839.