next up previous contents
Next: 2.3.3.4 Non-linear Capacitor Up: 2.3.3 Devices Previous: 2.3.3.2 Resistor

2.3.3.3 Linear Capacitor

The constitutive relation for a linear capacitor is I = C . dV/dt. For the backward Euler discretization scheme the equations are as follows
I = G . $\displaystyle \left(\vphantom{V - V_o}\right.$V - Vo$\displaystyle \left.\vphantom{V - V_o}\right)$ (2.35)
G = $\displaystyle {\frac{C}{\Delta t}}$ (2.36)

The stamp is given as
yx, y $ \varphi_{1}^{}$ $ \varphi_{2}^{}$ f
n1 G - G - I
n2 - G G I

For thermal capacitors C is substituted by Cth and $ \varphi$ by $ \vartheta$, respectively.



Tibor Grasser
1999-05-31