next up previous contents
Next: 3.2.3 Consistent Physical Parameters Up: 3.2 Physical Parameters Previous: 3.2.1 Mobility Model

3.2.2 Energy Relaxation Time

Two different models for the energy relaxation time $ \tau_{\epsilon,\nu}^{}$ are provided. The first model simply uses a constant, carrier temperature independent $ \tau_{\epsilon,\nu}^{}$. For electrons a second model is available which has been derived by curve-fitting to Monte-Carlo simulation results and reads

$ \tau_{\epsilon,n}^{}$ = $ \tau_{\epsilon,0}^{}$ + $ \tau_{\epsilon,1}^{}$ . exp$ \left(\vphantom{C_1\cdot\left(\frac{T_{n}}{\mathrm{300\ K}}+C_{0}\right)^2+ C_...
...\ K}}+C_{0}\right)+ C_3\cdot \left(\frac{T_{L}}{\mathrm{300\ K}}\right)}\right.$C1 . $ \left(\vphantom{\frac{T_{n}}{\mathrm{300\ K}}+C_{0}}\right.$$ {\frac{T_{n}}{\mathrm{300\ K}}}$ + C0$ \left.\vphantom{\frac{T_{n}}{\mathrm{300\ K}}+C_{0}}\right)^{2}_{}$ + C2 . $ \left(\vphantom{\frac{T_{n}}{\mathrm{300\ K}}+C_{0}}\right.$$ {\frac{T_{n}}{\mathrm{300\ K}}}$ + C0$ \left.\vphantom{\frac{T_{n}}{\mathrm{300\ K}}+C_{0}}\right)$ + C3 . $ \left(\vphantom{\frac{T_{L}}{\mathrm{300\ K}}}\right.$$ {\frac{T_{L}}{\mathrm{300\ K}}}$ $ \left.\vphantom{\frac{T_{L}}{\mathrm{300\ K}}}\right)$ $ \left.\vphantom{C_1\cdot\left(\frac{T_{n}}{\mathrm{300\ K}}+C_{0}\right)^2+ C_...
...\ K}}+C_{0}\right)+ C_3\cdot \left(\frac{T_{L}}{\mathrm{300\ K}}\right)}\right)$ (3.34)



Tibor Grasser
1999-05-31